
______________________________________________________________________________________

Why some colors appear more memorable than others:
A model combining categories and particulars in color working memory

______________________________________________________________________________________

Gi-Yeul Bae*,^, Maria Olkkonen#, Sarah R. Allred%, & Jonathan I. Flombaum^

*Center for Mind and Brain, University of California, Davis
#Department of Psychology, University of Pennsylvania

%Department of Psychology, Rutgers—The State University of New Jersey
^Department of Psychological and Brain Sciences, Johns Hopkins University

Address correspondence to any author:
GYB: gybae@ucdavis.edu
MO: mariaol@sas.upenn.edu
SRA: srallred@scarletmail.rutgers.edu
JIF: flombaum@jhu.edu

Mailing address for correspondence:
Jonathan Flombaum
JHU / 3400 N. Charles Street
Ames Hall / PBS
Baltimore, MD 21218

Running Head: A model incorporating categories into color working memory
Key words: visual working memory, delayed estimation, color perception, 

categorization
Word count: 1156 incl. Abstract; 16 Figures.
Draft: March 2015; In Press; JEP:G

1

mailto:flombaum@jhu.edu


Abstract (225)

Categorization with basic color terms is an intuitive and universal aspect of color percep-

tion. Yet research on visual working memory capacity has largely assumed that only con-

tinuous estimates within color space are relevant to memory. As a result, the influence of 

color categories on working memory remains unknown. We propose a dual content model

of color representation in which color matches to objects that are either present (percep-

tion) or absent (memory) integrate category representations along with estimates of spe-

cific values on a continuous scale (“particulars”). We develop and test the model through 

four experiments. In a first experiment pair, participants reproduce a color target, both 

with and without a delay, using a recently influential estimation paradigm. In a second 

experiment pair, we use standard methods in color perception to identify boundary and 

focal colors in the stimulus set. The main results are that responses drawn from working 

memory are significantly biased away from category boundaries and toward category 

centers. Importantly, the same pattern of results is present without a memory delay. The 

proposed dual content model parsimoniously explains these results, and it should replace 

prevailing single content models in studies of visual working memory. More broadly, the 

model and the results demonstrate how the main consequence of visual working memory 

maintenance is the amplification of category related biases and stimulus-specific variabil-

ity that originate in perception.
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Introduction

Visually guided behavior requires both perception and working memory. For example, 

choosing the ripest avocado at the store requires a comparison between avocados experi-

enced in the past and those observable now. Distinguishing between objects that differ on 

color —or any other basic visual feature— may seem effortless. But like many other 

tasks in perception and cognition, it is enormously challenging in practice. Because of in-

herent uncertainty in perception, inescapably noisy neural processing, and the complexity

of viewing conditions, even comparing two side-by-side avocados is computationally dif-

ficult. Adding memory demands compounds the difficulty. 

Despite considerable interest in the role of visual working memory in behaviors 

such as detecting changes and reproducing remembered features, little contact has been 

made between research on the perception of basic visual features and research that uses 

those features to investigate the nature of visual working memory. Here we focus on 

color, which has received the majority of attention in studies targeting visual working 

memory. We test three hypotheses: (1) that working memory maintenance exhibits color-

specific biases, (2) that biases originate in perception, and (3) that observers functionally 

use two kinds of color information when matching colors between objects. These are an 

estimate of hue on a continuous scale —what has been called a “particular” in other con-

texts (e.g. Huttenlocher et al., 2000)— and a probabilistic category assignment. The re-

sults are central for theories of visual working memory, where inferences about memory 

processing rest on assumptions that are contravened by our hypotheses. More generally, 

our results demonstrate that visual perception and working memory share a common vo-

cabulary for describing the material properties of surfaces in the world. 
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Delayed estimation

Recent and influential work in the domain of visual working memory has exam-

ined the mechanisms that support detection of object change, detection of object similar-

ity (match), and more generally, the mechanisms involved in the reproduction of features 

seen in the recent past. Research on visual working memory has typically framed such 

tasks in the language of estimation; a participant must estimate the feature of an object 

seen in the past, given noisy inputs, and then compare it with an estimate of what is seen 

currently. Appropriately, a paradigm called ‘delayed estimation’ has been devised and 

proven productive for investigating working memory mechanisms associated with match-

ing (Figure 1a; Wilken & Ma, 2004; Zhang & Luck, 2008). 

Figure 1. Procedure for color estimation with a delay (a) and without a delay (b).

The majority of studies using this task focus on color working memory —as we 

will here— and so we describe the basic methodology in that context. In a typical experi-

ment, participants remember the individual hues in a set of circles or squares. After a 

short delay period, participants report the hue value of one of the study objects on a con-

4



tinuous response scale, a hue circle (usually with 180 exemplars) comprising all the hues 

utilized in the study. Response variability —measured as angular deviation between se-

lected and true hues— differs between trials and by condition, motivating inferences con-

cerning the structure of visual working memory (Anderson & Awh, 2012; Bays, Catalao, 

& Husain, 2009; Bays, Wu, & Husain, 2011; Emrich & Ferber, 2011; Fougnie & Alvarez,

2011; Fougnie, Asplund, & Marois, 2010; Fougnie, Suchow, & Alvarez, 2012; Gold et 

al., 2010; van den Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma, 2004; Zhang & 

Luck, 2011; 2009; 2008). 

Ultimately, interpreting the results of this and any related paradigm depends on 

one’s expectations about performance without memory maintenance (without an enforced

memory delay), situations that are constrained more by perception than by the attendant 

challenges arising from an absent stimulus and working memory maintenance. Fortu-

nately, the same paradigm can be manipulated minimally to investigate this performance. 

Simply removing the delay period allows one to measure variability of responses when 

there are no externally enforced memory demands, what we will call ‘undelayed estima-

tion’ (Figure 1b; see also Bae, Olkkonen, Allred, Wilson, & Flombaum, 2014). Practi-

cally, undelayed estimation supplies an opportunity to build empirical expectations about 

performance for use when interpreting effects of memory. And theoretically, it supplies a 

good methodological opportunity to directly relate perception and working memory in 

the same task (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Bae et al., 2014; Gold et al., 

2010; Souza, Rerko, & Lin, 2014). 

However, we have recently demonstrated that several unwarranted assumptions 

are built into expectations about undelayed and delayed responses in the literature on vis-
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ual working memory (Bae et al., 2014). In our previous study, we investigated responses 

on a color-specific basis, while also employing what appears to be standard color render-

ing practice in published reports using delayed estimation. We discovered considerable 

stimulus-dependent differences in response variability. This is a problem because stan-

dard practice with delayed estimation has been to collapse responses across colors, char-

acterizing response variability under the implicit assumption that all colors would elicit 

more or less similar response distributions. 

Further scrutiny of these color-specific response properties led to several addi-

tional discoveries. First, color-specific differences correlated across independent ob-

servers, demonstrating that they were not random. Second, color-specific differences ap-

peared in undelayed experiments and were correlated with delayed color-specific differ-

ences, demonstrating that they originate in perception. Third, color-specific differences 

were large: in some instances, differences between colors were larger than differences 

caused by memory load, the primary phenomenon that theories of visual working mem-

ory seek to explain. Fourth, color-specific response properties were reliably related to cat-

egory structure within the set of color samples, suggesting that color categories likely 

play a role in visual working memory. Finally, we discovered that omitting the calibration

and rendering techniques prescribed in research on color perception has likely caused 

many studies to include rendered colors that differ in meaningful ways from intended 

ones. Notably, in our study, which specified equiluminant intended colors, rendered col-

ors differed considerably in luminance.

These results motivate the present study. They suggest that color working memory

may not behave uniformly, even with equiluminant stimuli, and that it may rely on encod-
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ing of stimulus categories —along with continuous values— to support comparative 

stimulus judgments. 

Indeed, there are good reasons to expect such effects (Allred & Flombaum, 2014).

With respect to stimulus-specific response properties, it is known that even equiluminant 

but different hues will elicit meaningfully different response distributions in a matching 

context (Witzel & Gegenfurtner, 2013). These effects can originate in perception, as op-

posed to arising only through an interaction with working memory maintenance (Nemes, 

Parry, & McKeefry, 2010; Olkkonen & Allred, 2014; Olkkonen, McCarthy, & Allred, 

2014). More generally, careful work on color discrimination in psychology and color sci-

ence has shown that no color space is ever likely to be perceptually uniform (for discus-

sion, see Brainard, 2003; Wyszecki & Stiles, 1982). 

In addition, color perception has a salient categorical aspect, at least intuitively. 

English speakers generally feel comfortable using only 11 terms, often even fewer, to de-

scribe a space including a million discriminable shades (Pointer & Attridge, 1997; Lin-

hares, Pinto, & Nascimento, 2008). The development of color terms seems to follow a  

seemingly universal hierarchical structure suggesting that people using different lan-

guages share broadly similar intuitions about color categories (Berlin & Kay, 1969). Ad-

ditionally, both continuous and categorical representations of colors are present in mam-

malian brains, although the latter representation (Bird, Berens, Horner, & Franklin, 2014; 

Brouwer & Heeger, 2013; Koida & Komatsu, 2007) is perhaps less established than the 

former (e.g. Johnson, Hawken, & Shapley, 2001, 2004; Conway & Tsao, 2006; Horwitz 

& Hass, 2012).

7



We therefore sought to use the estimation paradigm to test three related proposals 

about the contents of color working memory and their relationship to perceptual inputs. 

We propose that reproducing a perceived hue relies on both continuous and categorical 

representations of hue, that reproducing a remembered hue relies on these same two rep-

resentations, and that the joint reliance on these contents produces stimulus-specific bi-

ases. This challenges prevailing assumptions in color working memory research, which 

include only a continuous hue estimate and no stimulus-specific biases.

Dual contents: continuous estimates (“particulars”) and probabilistic categories

To explain how joint continuous and categorical representations can produce re-

production biases, the well-known relationship between spatial working memory and lo-

cal landmarks serves as an elegant example. Consider an empty piece of paper with a dot 

on it. If asked to reproduce the dot on another, entirely empty piece of paper, your re-

sponses will likely form a cloud —probably a two-dimensional Gaussian— characterized

by the uncertainty in your position estimates and noise in your motor machinery. Now 

consider a case in which the dot is placed in the same place on the paper, but within a 

larger circle and near its perimeter. Assuming the circle is also on the reproduction paper, 

your responses over many trials will form a different cloud. None of your responses will 

cross the perimeter of the circle. The presence of a salient landmark will bias responses. 

These and related experiments conducted by Huttenlocher and colleagues (2000; Craw-

ford, Huttenlocher, & Hedges, 2006; Duffy, Huttenlocher, Hedges, & Crawford, 2010) 

demonstrate that spatial working memory relies on both continuous position estimates —

in their terms, “particulars”— and categorical descriptions relative to either inductively 

developed categories, such as distributions of stimuli used during an experiment, or land-
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marks, such as “within the circle and near the perimeter.” Combining these contents pro-

duces biased reproductions. 

We propose that color working memory (and perception) work in much the same 

way. In the case of the delayed estimation task, each stimulus in a memory sample is rep-

resented both by a noisy estimate of a particular hue value on a continuous scale and also 

by a category label from the set comprising the basic color terms (e.g. blue, green, orange

etc.). In our model, the category label is itself assigned probabilistically, so that hues near

a category boundary will be assigned to different categories on different occasions. The 

combination of these two contents will result in biases that differ by stimulus. Colors near

the center of categories are unlikely to produce biased estimates, because continuous and 

categorical estimates align. But colors near boundaries will exhibit large biases in the fo-

cal direction of their categories. In the same way that an observer will not place a dot out-

side a circle when she remembers it as being inside the circle, she should not respond 

with hues she would label as green to reproduce one she remembers as blue. 

To test our proposal, we employ two approaches. In behavioral experiments, we 

first characterize stimulus-specific response distributions elicited by each of the colors 

(i.e. 180 colors) in a complete hue circle using delayed and undelayed estimation. In or-

der to establish the relationship between continuous and categorical contents of colors, 

we independently identify probabilistic category boundaries and focal exemplars using 

category assignment and focal identification procedures typical in research on color ap-

pearance (Figure 2; see also Bae et al, 2014; Witzel & Gegenfurtner, 2013). The results 

of these experiments are reported first. We then describe a computational model designed 

9



to predict empirically obtained response distributions by combining continuous estimates 

and probabilistic category assignments. 

 

Figure 2. Procedure for Category Naming (a) and Category Identification (b). 

Experiments: Categories and Stimulus-Specific Response Properties

The experiments included in this study encompass several goals. The first is to 

characterize any systematic stimulus-specific properties of matching responses to colors 

on a hue circle (with constant luminance), using both delayed and undelayed estimation. 

By ‘systematic,’ we mean stimulus-specific properties that do not arise randomly, which 

we diagnose through correlations across independent observers. Toward this end, we 

identified a circle of 180 equally spaced colors (CIELAB) with a constant luminance that 

we employ in delayed and undelayed estimation experiments. Both experiments include 

only a single sample item in each trial, either presented simultaneously with a response 

wheel (undelayed estimation) or followed by a delay and then a response wheel (delayed 

estimation; Figure 1). 
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Our second goal is to identify category boundaries and focal colors within the hue

circle. We do this using a pair of experiments similar to those common in research on 

color perception (c.f. Witzel & Gegenfurtner, 2013). One group of participants completed

a category naming experiment, in which they indicate which color term best describes 

each of the 180 hues. Another group of participants completed a category identification 

experiment, in which they select the best example of each of the basic color terms from 

the complete hue circle. The third goal is to characterize any reliable relationships be-

tween stimulus-specific response properties in the estimation experiments and the cate-

gory landmarks derived from the category experiments. 

Methods

Participants. All participants were Johns Hopkins University undergraduates who 

received course-related credit in exchange for participation: Delayed estimation, n=3; un-

delayed estimation, n=8; category naming, n=10; category identification, n = 5. All par-

ticipants had normal or corrected-to-normal visual acuity and reported normal color vi-

sion. Each completed only one of the four experiments. Protocol was approved by the 

Johns Hopkins University Homewood IRB. 

Apparatus. The experiment took place in a dark, sound-attenuated room. There 

was no light source except for a CRT monitor at a viewing distance of 60 cm, such that 

the display subtended approximately 39.56° by 25.35° of visual angle. 

Stimuli: We chose 180 equally spaced stimuli that only varied in hue in CIELAB 

space (L*=70, a*=0, b*=0, radius of 38; Figure 3). This ring is similar to, but not identi-

cal with prevalently used rings in the literature on delayed estimation. We found that 

more commonly used settings were outside the monitor gamut. RGB values correspond-
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ing to the CIELAB coordinates were generated by performing a standard monitor calibra-

tion (Brainard, Pelli, & Robson, 2002). In color conversions from device-independent to 

device-dependent spaces, we used the measured monitor white point of CIE xyY [0.3184,

0.3119, 48.64]. Conversions between color spaces were performed with colorimetric rou-

tines implemented in the Psychophysics Toolbox (Brainard, 1997) and radiometer mea-

surements (PR655, PhotoResearch Inc, Chattsworth, CA). Stimuli were always presented 

on a uniform background that was the center point of the chosen CIELAB hue ring 

(L*a*b* = [70,0,0]) in order to ensure equal saturation and chromatic contrast with re-

spect to background across hues.

Figure 3. Hue circle used in experiments. a) Hue circle a* and b* coordinates in CIELAB space. b) L*
values of all hues, and c) x and y values of hue circle, shown within monitor gamut (triangle; CIE xyY
space).

Procedures and analyses: In the undelayed estimation experiment, participants 

made color matches to study stimuli as follows. Each trial began with a white fixation 

cross (0.5° x 0.5°) displayed in the center of the monitor. After 500 ms, the study stimulus

(a 2° x 2° colored square) appeared at one of eight possible positions (4.5° from fixation) 

together with the matching wheel (8.2° radius and 2° thick) that surrounded the space in 

which study stimuli could appear (Figure 1). The matching wheel consisted of all 180 

stimuli, organized as a hue circle. On each trial, the matching wheel was randomly ro-
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tated to prevent position-color associations. The task was to click the color on the match-

ing wheel that was perceived as most similar to the study color. Both the study stimulus 

and the matching wheel remained on the screen until response, at which time a black line 

superimposed on the matching color indicated the clicked position. 

The undelayed experiment included eight participants. This is because we sought 

approximately 60 measurements across the experiment in response to each individual 

hue, a typical number of measurements obtained in delayed estimation experiments 

within a condition (see e.g. Bays et al., 2009). Because obtaining 60 measurements per 

color, per participant in this case would have produced an excessively long experiment, 

we divided the 180 study colors into two sets of 90 colors. Arbitrarily setting one of the 

colors as number one and then moving around the circle until color 180, the two sets 

were made by grouping odd and even colors together, so that colors within each set 

formed a color wheel of 90 exemplars with an equal spacing of four degrees (instead of 

two) between hues. Half of the participants were presented only odd exemplars as study 

stimuli, and the other half were presented only even ones. All participants, however, en-

countered the entire color wheel for response selection. Each participant completed four 

blocks of 360 trials, totaling 1440 trials. Within a block, each color appeared four times in

a random order, producing 16 measurements per color per participant, and 64 observa-

tions per color overall. 

The delayed estimation task was identical to undelayed estimation, with the fol-

lowing exceptions. Most importantly, the study color remained on the screen for 100 ms, 

and then disappeared from view for 900 ms. Only after the delay did the matching wheel 
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appear (Figure 1). Participants were asked to remember the presented color as precisely 

as possible. 

This experiment included three participants, again, in order to obtain approxi-

mately 60 measurements per color across the experiment. In this case each participant 

completed ten blocks of 360 trials, totaling 3600 trials. In each block, each of the 180 col-

ors was presented twice, in a random order, resulting in 20 observations per color and 

participant, and 60 observations per color overall. The ten blocks were distributed over 

three consecutive days (with four blocks on the last day). This experiment was actually 

run before the undelayed experiment. We found it difficult to find participants that would 

reliably return to the lab over three consecutive days, which led us to the design of the 

undelayed experiment with more participants in shorter sessions, but producing approxi-

mately the same number of observations per color.

We used a mixture model comprised of a von Mises and a uniform distribution to 

analyze the results of each estimation experiment (Zhang & Luck, 2008). The model 

includes three free parameters: the proportion of target-based responses ( β , 0  β  

 1), bias (μ, -  μ  +), and the concentration parameter of the von Mises distribution 

(κ, 0  κ  700 ), which is the inverse variance and is often called ‘precision.’ Larger κ 

values reflect less dispersed distributions. In the remainder of the paper we refer to 

precision of color matches. The complete model is as follows:

p(
~X∨S i)=βϕ (S i+μi , κi )+(1−β )

1
2π

(1)

~
X denotes the angular position of an estimated hue to a particular target stimulus,

S i , so that p (~X|Si ) is the probability of a response sampled by an observer given the

target color. Note that we use the subscript i to denote individual stimulus values, 
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emphasizing the fact that we fit the model to each individual color stimulus with its own 

parameters. The first term in the model denotes the von Mises density ( ϕ , circular 

normal distribution) described by the two free parameters –-μ and κ–- multiplied by a 

mixture coefficient, β . By fitting μ along with κ we are able to determine whether 

individual colors elicit differentially biased distributions, that is, whether they elicit 

response distributions not centered on the correct sample color. 

The second term of the mixture model denotes the uniform density attributed to 

guessing; thus, (1- β ) is typically interpreted as the guessing rate, reflecting trials with 

encoding or maintenance failures. 

All model fitting was performed by maximum likelihood inference. Parameters 

were initialized to multiple starting values in an attempt to avoid local maxima. Impor-

tantly, we fit the model to each study color individually. 

The category naming experiment (Figure 2a) was designed to identify bound-

aries on the hue circle. On each trial, a square (2° x 2°) filled with one of the 180 study 

colors was presented at the center of the screen. On the right side of the square, the chro-

matic color terms comprising Berlin and Kay’s eight basic color categories were pre-

sented vertically (Berlin & Kay, 1969:  ‘Red’, ‘Brown’, ’Orange’, ’Yellow’, ’Green’, 

’Blue’, ’Purple’, and ‘Pink’). Participants selected the color term that most closely de-

scribed the study color. The study square and color terms remained on the screen until a 

response. Each participant completed six trials for each of the 180 study colors, presented

in random order, for a total of 1080 trials per participant. We included ten participants. 

Our previous study using this method included eight observers (Bae et al., 2014). We in-
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cluded ten here using a slightly shorter design per participant, intending to obtain the 

same number of observations nonetheless.

The category identification experiment (Figure 2b) was designed to identify fo-

cal exemplars for each of the basic color terms. Participants selected the study color that 

best exemplified each color category as follows. On each trial, the matching wheel ap-

peared in the center of the screen together with the basic color terms to the right of the 

wheel. Participants clicked on the matching wheel to indicate the best example of each 

color term. A black line appeared after the mouse click at each location to prevent multi-

ple responses for the same color term. The matching wheel randomly rotated on each trial

to prevent any association between color and position. 

The terms ‘Red’ and ‘Brown’ were excluded because very few study colors were 

identified with these terms in the color naming experiment (See Figure 4a). This is likely

due to the saturation level and luminance selected for the hue circle. Thus, participants 

made 6 responses —one for each color term— per trial, and they each completed 30 tri-

als, resulting in 30 responses for each color term per participant. 

The purpose of the category experiments pair was to derive distributions describ-

ing category membership for the six basic color terms. By collapsing responses across 

participants (within each experiment) we obtained two empirical frequencies for each 

color describing the probability that it was assigned a particular name, as the best name 

for that color in the category naming experiment, or as the best example of a given name 

in the category identification experiment. 

Through the category naming experiment we operationalized color boundaries as 

colors that were equally likely to be named with adjacent category terms. To interpret the 
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results of the identification experiment, we fit six von Mises distributions, one to the re-

sponses elicited by each of the six color terms. The means of these distributions were 

considered estimates of focal exemplars. 

Results

Categorization experiments. Figure 4a plots the results of the category naming 

experiment. Most colors were assigned a single term repeatedly. But some were likely to 

elicit more than a single response, and a handful received two adjacent terms with equal 

probability. These can be thought of as category boundaries. (Note that ‘red’ and ‘brown’ 

were rarely attributed to any of the samples). This pattern of response is similar to that in 

previous category experiments (e.g. Boynton & Olson, 1990; Sturges & Whitfield, 1997).

Figure 4b plots the frequency with which each color was selected as the best ex-

ample of any of the six colors terms, along with best-fit von Mises densities. If all sam-

ples within a category were perceived as equally good exemplars of the categories, these 

frequencies would have been relatively uniform, much like the distributions in the nam-

ing experiment. But distributions in the identification experiment were clearly peaked, re-

flecting agreement among observers about best exemplars. We treat the peaks of these 

distributions, operationalized as the mean of a von Mises distribution, as focal colors in 

the analyses reported below. 
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Figure 4.  Results  of  the  category  naming (a)  and  category  identification (b)  experiments.  In  (a),  the
response frequency with which each color term was used is shown for each of the 180 hues, and in (b) the
response frequency with which each hue was labeled as the best exemplar for each color term. von Mises
distributions fit to the response frequencies are shown in (b) as well.

The qualitative take away from this pair of experiments is that many colors were 

best described by a single color term, but not all of those colors were equally good exam-

ples of their respective terms. And some colors were neither good examples nor well 

characterized by a single term. 

Precision and bias in the estimation experiments. As expected, both estimation 

experiments produced uniformly low guessing rates (1 −β ; no-delay average: 0.8%; 

delay average: 2.1%). We could therefore use model-free measures of dispersion and bias

to characterize stimulus-specific response characteristics. Indeed, all the results reported 

are similar when viewed in this way. But we employ the model-based parameters to ac-

commodate the broader project of supplying a model of working memory contents that 

can be used to analyze responses in situations with higher expected guessing rates. 
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Figure 5 shows response distributions with and without delay for two target ex-

amples. It is meant to illustrate three broadly applicable points. First, distributions to dif-

ferent hues were not equally dispersed. In these cases, responses to the blue example 

were more dispersed than to the yellow one (high kappa values correspond to low disper-

sion). Second, responses were biased; the average of a response distribution (represented 

by the dotted lines in the figure) was usually not the veridical study hue (triangles in the 

figure). The degree of bias, which was computed as the distance between the mean re-

sponse and the study color, was also stimulus-specific, with some study hues showing 

more bias than other study hues, and as in the two examples shown, biases were not in 

the same angular direction for all hues.

Figure 5. Response distributions for two study hues, in undelayed (top) and delayed (bottom) estimation.
Triangles on the graphs designate the true hue values, and dotted lines identify the distribution means. 
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These patterns were evident in the dataset as a whole. Figure 6 makes the point 

theory-free: we plot the frequency with which each color was selected as a response 

across the whole of each experiment. If hues generally elicited similar and unbiased 

response distributions, these overall distributions should be close to uniform (each color 

was the target equally often). The distributions clearly are not uniform. Figures 7 and 8 

plot precision and bias estimates for each color with and without delay. Again, there was 

considerable color-by-color variability. Crucially, color-by-color κ estimates were 

significantly correlated in two out of three pairwise observer-relationships, and the third 

correlation was marginally significant (t(178) = 4.51, r =0.32, p <.01; t(178) = 2.81, r 

=0.21, p <0.01; t(178) = 1.81, r =0.13, p =0.07). μ estimates were also significantly 

correlated across all pairwise comparisons (t(178) = 12.88, r =0.70, p <0.001; t(178) = 

6.80, r =0.45, p <0.001; t(178) = 11.18, r =0.64, p <0.001).

Figure 6. Normalized response frequencies for each individual hue across all observers in the undelayed (a)
and delayed (b) estimation experiments. Each hue appeared as a target with equal frequency (60 or 64 times
depending on the experiment). A response proportion of one (the dashed horizontal lines) thus indicates that
a matching hue was selected with the same frequency it appeared as a study hue. Vertical  dotted lines
indicate focal colors, and vertical solid lines indicate border colors (see methods). 
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Figure 7. Hue-specific precision estimates (κ) in undelayed (a) and delayed (b) estimation. Vertical dotted
lines indicate focal colors, and vertical solid lines indicate border colors (see methods). The solid horizontal
line in each figure is the κ value obtained when the mixture model was fit to responses collapsed across
hues.

Figure 8. Hue-specific bias estimates, the difference in degrees between each hue value and the estimated
mean (μ) of the response distribution in trials in which the hue was the target, for undelayed (a) and delayed
(b) estimation. Positive values indicate leftward bias and negative values indicate rightward. Vertical dotted
lines  indicate  focal  colors,  and  vertical  solid  lines  indicate  border  colors  (see  methods).  The  black
smoothing curves are superimposed to emphasize the pattern of bias estimates.
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More importantly —for the purpose of characterizing the contents and mecha-

nisms of color working memory— delayed κ estimates were significantly smaller (more 

variable) than undelayed estimates (Delayed κ = 20.56; Undelayed κ = 38.39; t(179) = 

12.26, p <0.001), and estimates of μ were larger (more biased; mean μ: 5.61 vs. 2.84, 

t(179) = 11.204, p <0.001). Additionally, patterns of stimulus-specific response correlated

significantly between delayed and undelayed estimation experiments for both κ (t(178) = 

5.50, r = 0.38, p <0.001) and μ (t(178) = 10.82, r = 0.63, p < 0.001), as shown in Figure 

9. Recall that these experiments included distinct groups of participants.

Figure 9. Correlations of hue-specific precision (a) and bias (b) estimates between undelayed and delayed
estimation.

Having established reliable patterns of color-specific responses (with and without 

a delay) we considered whether these properties contained interpretable variability. A 

number of systematic effects become qualitatively apparent in the patterns of hue-specific

performance. First, some regions of the hue circle acted as attractors. Hues on either side 

of these regions showed oppositely directed biases towards the attractor region. Second, 

some regions of the color space seemed to repel responses. Responses to their surround-

ing colors were biased away from these regions.
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We sought to determine whether these patterns relate to category structure within 

the set of colors. First, we computed the angular distance between each study color and 

the nearest focal color on the wheel. There were 23 unique distances, which we used as 

bins (each with a 2 degree width). We then correlated distance with the average κ and ab-

solute bias of each bin. If the properties of response distributions are independent from 

the category structure of the color space, then there should be no effects on bias and pre-

cision of distance from the focal colors on the wheel. However, all four correlations were 

significant (Figure 10, Undelayed: κ t(21) = -2.79, p < 0.05, r = -0.52 ; Bias t(21) = 2.97, 

p < 0.01, r = 0.54; Delayed: κ t(21) = -7.04, p <0.001, r = -0.84; Bias t(21) = 6.85, p 

<0.001, r= 0.83).
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Figure 10. Relationship between kappa (top) and bias (bottom) and distances to focal colors in delayed
(empty symbols) and undelayed (filled) estimation. Error bars are s.e.m of parameters in each distance bin. 

Discussion

With a hue circle comprising stimuli of equal luminance, equal saturation, and 

equal chromatic contrast with the background, we discovered systematic stimulus-spe-

cific response variability in estimation tasks. Surprisingly, these patterns were evident in 

estimation without a delay. The precision and degree of bias for a given hue were pre-

dicted by its relative position within a color category, that is, its distance from focal col-

ors and category boundaries. The results are consistent with our hypothesis that estima-

tion responses rely on dual contents, including a noisy, continuous estimate of a particular

24



hue value, and a category assignment. The model presented in the next section is meant to

further support this point; we reserve most discussion of dual contents for the time being. 

Even without a model, however, it is readily apparent that patterns of stimulus-

specific responses that depend on imposed working memory maintenance have the same 

basic properties as those less reliant on maintenance (in the experiment without a delay). 

Stimuli that exhibit biases without a delay exhibit even greater biases with a delay. This is

consistent with part of our hypothesis, that working memory maintenance amplifies bi-

ases in estimation responses that originate prior to maintenance. 

This is relevant for considering the role of verbal rehearsal, which is sometimes 

thought to be involved in memory experiments for colored stimuli. The correlation be-

tween biases in the delayed and undelayed conditions indicates that if category rehearsal 

plays a role in the delayed condition, it also plays a role in the undelayed condition. Yet it

is odd to think of explicit rehearsal playing a role without a delay. Thus stimulus-specific 

bias and precision cannot be attributed to a verbal rehearsal process that is solely present 

when a maintenance period is imposed. 

Since including a delay appears to amplify biases present without a delay, an im-

portant question centers on the origin of the biases without a delay. Two classes of cause 

suggest themselves. First, it is possible that the categorical bias observed in undelayed es-

timation is caused by working memory. Estimation without a delay may involve memory 

to some extent. For example, if an observer saccades between targets and match posi-

tions, working memory is presumably involved in stimulus maintenance during the sac-

cade (Hollingworth, Matsukura, & Luck, 2013; Schneegans, et al., 2014). 
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On such a view, the difference between the two conditions would presumably be 

explained by greater maintenance demands with a delay (compared to without). Note that

with such a theory, biases caused by memory would still need to be related to color cate-

gories in order to produce the specific patterns of effects we have observed. 

The second possibility is that stimulus-specific biases are caused by processing 

that originates in perception. What we mean by this is that the visual system may sponta-

neously assign category labels to signals, and as we have proposed, that these labels inter-

act with encoded hue content to produce bias during response. On this view, bias with a 

delay is greater than without because increased uncertainty in metric signals lead to a 

greater impact of category encoding. If memory for hue value is noisier than perception 

of hue value —as it is in all theories that we are aware of— then category encoding 

should produce greater bias when it interacts with noisier metric signals. Our formal 

model makes this clear, and we discuss it further in the General Discussion.

These two possibilities are not mutually exclusive. What is crucial from our per-

spective is that both require that color categories be assigned to signals at some stage in 

order to impact responses. Below, we advance a formal version of the second possibility

—where category encoding (and thus bias) emerges in a categorical perceptual channel. 

But a theory in which category encoding occurs in working memory would also be im-

portantly different from prevailing theories, which assume that a hue is described only as 

a point in a continuous space. 

Two conclusions are therefore warranted based on the empirical findings reported.

First, working memory contents include category labels, though it remains unclear if they

are assigned during perception or later. Second, the effects of a minimal increase in work-
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ing memory demands—those differentiating a stimulus that can be re-inspected, even 

kept in view during response, and a stimulus that is absent when a response needs to be 

made—is an amplification of category-related stimulus-specific biases.

Categories and Particulars: A Dual Content Model of Color Working Memory

The objective of the dual content model that we propose below is twofold. Theo-

retically, the model is an implementation to test the hypothesis that color estimation com-

bines a continuous value with a probabilistic category assignment. Towards this end, we 

propose a probabilistic model that combines these two sources of information, and we 

compare it to a model that only utilizes a continuous value (the prevailing approach in the

working memory literature), and a model that only utilizes a probabilistic category as-

signment. 

Practically, the objective of our modeling effort is to supply a revised model for 

use in studies of working memory, one that efficiently predicts stimulus-specific response

variability and provides transparent parameters for building theories of working memory 

limits. To demonstrate the presence of stimulus-specific bias and precision in the experi-

mental section above, we fit a three-parameter mixture model to each of the 180 individ-

ual hues on our color circle. But this is an inefficient approach. It ultimately includes 

many free parameters, requires long experiments, and it is not obvious how it can be used

to build theories of working memory limits, or to engage in rigorous comparisons of 

those theories. Fortunately, the significant relationships we observed between stimulus-

specific responses and category-landmarks suggest a systematic cause —or at least, a re-

liable predictor— of inter-stimulus response differences. We thus sought to leverage the 
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results of the category experiments to build a more compact model, one that could re-

place the prevailing mixture model and eventually accommodate further alterations in the

service of better understanding visual working memory under a variety of experimental 

conditions. 

CATMET: A dual content model

In broad strokes, the model receives a study hue permuted by noise, termed a 

noisy sample, and then it estimates the study hue most likely to have caused the noisy 

sample. Crucially, noisy samples are encoded in two ways: The model infers a distribu-

tion of stimulus hues likely to have caused the noisy sample, what we will term a metric 

distribution, corresponding to an encoding of “particulars” in the terms of Huttenlocher 

and colleagues (2000). And the model assigns a category descriptor to the noisy sample, 

on the basis of which it produces a distribution of hues likely to generate that category 

descriptor, what we will term a category distribution. The initial assignment of category 

is also noisy, with probabilities derived empirically from the category experiment pair. 

Thus, identical study stimuli can be assigned to different color categories on different en-

counters. Both metric and category distributions are in continuous color space. The main 

difference between this model and prevailing models is in the implementation of a cate-

gorical encoding. In prevailing models, the stimulus hue is permuted by noise, and the 

noisy sample that results is encoded as metric value (a “particular”); CATMET also en-

codes it as a member of a coarse category. This is the dual content component of the 

model. 

The model then produces an estimate of the stimulus hue by sampling from a joint

distribution, achieved by multiplying the metric and category distributions. These steps 
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are laid out schematically in Figure 11. To summarize, the model involves three stages. 

In the first, it encodes a sample through a high-resolution metric channel, and also 

through a coarse, category channel. In the second step it generates distributions of contin-

uous values likely to have produced the content encoded through each channel. And it fi-

nally combines those distributions to arrive at a single distribution of probable study 

stimuli. Model details follow.

Figure 11. Schematic depiction of the dual content (CATMET) model. The study stimulus leads to a noisy
sample received by the observer, and encoded through two channels. In the top panel the particular hue of
the sample is encoded, leading to a distribution of study hues likely to have produced that sample, the
‘metric distribution’. In the bottom panels, the sample is encoded through a coarse categorical channel: a
category  is  assigned  to  the  sample,  and then a  distribution of  hues likely to  produce that  category is
generated, a category distribution. Finally, the distributions are combined to produce a joint distribution of
likely study hues (shown in black). 

Step 1: The noisy sample: As in most perceptual models, we assume that the in-

coming sensory signal is noisy. Thus on each run (simulation) of the CATMET model, 

the study hue will be encoded based on a noisy sample. Here we describe how we gener-

ate a noisy sample on each run given a study hue. 
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The probability of the model receiving a particular noisy sample, denoted Ŝ , 

given a study hue, S i , is determined by a von Mises distribution with two parameters,

μi  and κ i : 

S∨¿ Si

¿̂
¿

p¿

 (2)

We use the subscript i to denote stimulus specific μ and κ values, the values that apply to 

the ith exemplar on the color wheel. But our goal with this model is to characterize 

stimulus-specific differences without stimulus-specific parameters. Indeed, we assume 

that the metric distribution is unbiased, and instead, that observed biases result from the 

interaction with a category distribution. Accordingly, we assume unbiased sensory 

signals, endowing each study hue with μ equal to zero, and we use a single κ value for all 

stimuli. With stimulus-independent von Mises parameters, Equation 2 can be rewritten as 

follows:

S∨¿ Si

¿̂
¿
p¿

                        (3)

Rather than fit κ within the model, we choose an easily obtainable estimate. In 

modeling the results of the experiment without a delay, we obtain κ by fitting the 

prevailing mixture model (Zhang & Luck, 2008; Equation 1) to the responses from that 

experiment across all colors simultaneously, a value of 29.10 (which is the value of the 

horizontal line in Figure 7). Our goal here is to quickly obtain a reasonable, color-neutral

estimate in order to see the behavior that arises from the model generally. We discuss this 

further after presenting the model results. The same is done when we model the 

experiment with a delay; we fit the mixture model in Equation 1 across all responses and 
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colors in that experiment, obtaining a single κ value of 14.89 to utilize in testing the 

model. 

Step 2. Assigning noisy samples to categories. Unlike extant models, the 

CATMET model assigns a category label to any noisy sample received. Simply put, it 

labels the sample with one of a set of basic color terms. For most samples this should be a

straightforward and uncontroversial process; as shown in Figure 4a, most individual hues 

were reliably named with only one basic color term in the Category Naming experiment. 

But some colors received two adjacent labels, such as ‘Green’ and ‘Blue’ with high 

probabilities. On each simulation, we therefore assign labels to samples probabilistically, 

as follows.

First, we derive distributions of boundary colors by identifying the colors in the 

category naming experiment that were closest to receiving two adjacent color names with

equal frequency. We then set these values as border colors. To implement the assumption 

of noisy borders, we use von Mises distributions, centered on each border color, and with 

the color-independent κ values from Step 1. 

We now have six border colors, which we denote as B j . On each model 

simulation, a discrete border between each category j and j+1 is selected randomly by 

drawing a color from the probabilistic distributions defined by the parameters μ j and

κB  as described above. (The ‘B’ subscript here is just meant to denote the fact that we 

use the same precision value for all boarders).

μ j , κB

B j=ϕ¿
) (4)

With the sampled border colors, B j , the category of a target color is determined by the

relative position of a target color and each border color (Maddox & Ashby, 1993). 
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Suppose a target color is S i , and there are six alternative categories.

> B1  and ≤ B2; then S i ∈ category 1
> B2  and ≤ B3; then S i ∈ category 2
> B3  and ≤ B4; then S i ∈ category 3

if  the angular position of S i > B4  and ≤ B5; then S i ∈ category 4
       (5)

> B5  and ≤ B6; then S i ∈ category 5
> B6   or  ≤ B1; then S i ∈ category 6

Straightforwardly, if the angular position of a target color S i is between B j and

B j +1, the model determines that the target color is a member of category j. By using 

noisy samples and noisy borders, a single stimulus (especially one near a border) will be 

assigned to different categories on different simulations.  Thus on each model simulation 

the noisy sample Ŝ  that is used (in Step 4, below) to generate the metric distribution 

of likely stimulus hues, is also assigned a category which we denote Ĉ .

Step 3. Probability of study hues given a category: With a category label assigned,

the model now engages in a process to ensure that a response generated will be a good 

example of the category assigned. The coarse encoding of category leads the model to 

prefer responses that are better examples of a particular category. To do this, the model 

calculates the probability that each study-hue would have produced the category 

description encoded in Step 2, Formally, the probability of drawing a hue from a 

distribution of hues that are likely to belong to category Ĉ :

p (~XC|Ĉ ¿=ϕ (
~XC∨μc ,κc)   (6)

We denote this distribution 
~
XC ,∈order  to distinguish it from the distribution 

reflecting the probability of study hues obtained on the basis of a sample’s encoded 

metric value in extant models (and also in Step 4 upcoming, and denoted 
~
XS ). μc and 

κc are parameters describing a distribution of hue values in category C. We estimate their 
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values using the data from the category experiment pair. 

To do so, we combine the data from both category experiments into a frequency 

distribution, as follows. The raw data on each trial of those experiments —a total of 

10800 color naming and 150 category identification trials— are a color value and color 

term that were associated by a participant. On the basis of each experiment, we thus 

compute the probability of each of 180 colors being associated with a given color term. 

Since for each color we now have two association probabilities (one from each of the 

category experiments), we average the probabilities, producing a unified probability of 

association between each of the six basic color terms and each of the 180 color values. In 

other words, for each individual color term —the six possible color categories— we now 

have a distribution of normalized association strengths with each of the 180 hues. To each

of these six distributions we fit a von Mises, thus obtaining estimates for μc and κc for 

each category distribution. With these parameters, we can now use Equation 6 to compute

p (~XC|Ĉ ¿  for each color category and each of the 180 hues.

 Step 4. Probability of study hues given a noisy sample:  In addition to encoding 

the noisy sample (Equation 3) through a coarse categorical channel, the model encodes it 

through a higher-resolution channel. That is, it records the exact sample hue from among 

the set of 180 possible hues. And it then generates a distribution of study hues likely to 

have generated the encoded sample hue. This is accomplished using Bayes theorem: 

p(
~X S∨Ŝ)α p( Ŝ∨

~XS) p (
~X S)  (7)

Here, p(
~
X S)  is a uniform density —all colors are equally likely to occur— such that

p(
~X S∨Ŝ) is simply identical to p( Ŝ∨~XS) , a value obtainable by using Equation 3 

(with 
~
XS  replacing Si). Step 4 thus implements what is the typical metric model 
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applied widely in previous work (e.g. Zhang & Luck, 2008).

Step 5: Estimating the study hue. To arrive at a final estimate of the study hue, we 

combine the metric information about the noisy sample in Step 4 with the category 

information about the noisy sample in Step 3. This joint probability distribution is created

by combining the two distributions in Step 3 and Step 4 (Equations 6 and 7). We denote 

the final joint distribution 
~
X JD .

p (~X JD|Ŝ , Ĉ )=
p (~X C|Ŝ ) p (

~XS∨Ĉ)

∑ p (~XC|Ŝ ) p(
~XS∨Ĉ)

(8)

A single hue estimate for the response in a given simulation is obtained by sampling from

the distribution p (~X JD|Ŝ , Ĉ ) .

Analysis

We used the CATMET model to generate simulated responses to the delayed and 

undelayed estimation experiments that participants completed. As noted above, in places 

where the model employed a color-neutral κ value, it was derived from the data in the ap-

propriate experiment (i.e. delay or undelayed estimation). This was the only parameter 

derived from the estimation experiments themselves. The parameters employed in the as-

signment and use of category information were fit to responses in the categorization ex-

periments, which involved unique groups of participants, and which did not involve esti-

mation responses. 

The model generated 100 simulated responses to each of the 180 hues, in a simu-

lated version of the undelayed as well as the delayed estimation experiments. Once simu-

lated responses had been generated, we repeated the analyses that had been applied to the 

empirical results of the estimation experiments; we fit a mixture model to each individual
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color, thus allowing us to characterize the stimulus-specific response properties (disper-

sion and bias) that arose in practice (from a model with no initial representational biases).

We then compared these parameters to those that we had obtained from the responses of 

human participants.

Results

The CATMET model produced biased responses that are similar to the biases 

measured in the responses of human observers (Figure 12). The mean-response (μ) fits 

we obtained from the model were highly correlated with those of human observers (no-

delay; r = 0.55, p < 0.001; delay: r = 0.65, p < 0.001). Estimates of response precision, on

a color-by-color basis (Figure 13) fit to model responses also correlated significantly 

with the estimates fit to responses from experimental participants (no-delay: r = 0.16, p < 

0.05; delay: r = 0.39, p < 0.001). While significant, these correlations were weaker than 

those for bias. In participants, between-observer correlations were also weaker for 

matching precision than for bias. Thus, the precision of color matches appears less 

systematic than the bias of color matches. 
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Figure 12. CATMET model- (black open circles) and observer-derived (filled circles) bias estimates for
undelayed and delayed estimation, four-category model shown.
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Figure 13. CATMET model- (black open circles) and observer-derived (filled circles) precision estimates
for undelayed and delayed estimation, four-category model shown.

These correlations were obtained from a version of the CATMET model utilizing 

only four (instead of six) categories, ‘orange’, ‘green’, ‘blue’, and ‘pink’. The four-cate-

gory model performed better than the six-category model, and inspection of observer re-

sponses suggests that these categories are more obviously present in the set of colors, 

with yellow and purple less well represented. But the six-category model faired worse 

only by a small margin, as can be seen in Figure 14, which plots summed squared error 

for each model’s hue-specific predictions compared to estimates obtained from observer 

responses.
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Figure 14. Comparison of precision (top panels) and bias (bottom panels) estimates in undelayed (left) and
delayed (right) estimation via sum of absolute error (absolute value) for the four-category (4-CATMET)
and the six-category (6-CATMET) CATMET models. 

Comparison with other models

We also compared the CATMET model to two additional models, one that uses 

only category encoding (CATONLY), and one that is more similar to the prevailing ap-

proach, using only continuous values, without categories (the METRIC model). Imple-

mentation of these models is straightforward. The METRIC model omits all steps apart 

from 1 and 4 in the CATMET model. It receives a noisy sample, encodes the hue of that 

sample, which then becomes the basis for an inferred distribution of likely stimulus val-

ues (from which responses are sampled). The CATONLY model, in contrast, omits steps 

4 and 5. It encodes a noisy sample only in terms of its category. It then generates a distri-

bution of stimulus hues likely to belong to the encoded category, and it samples responses

from only that distribution. 
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We simulated each of these models 100 times for each of the 180 hues, then fit-

ting hue-specific μ and κ estimates to the generated responses (Equation 1), as we initially

did for the responses of human participants. These estimates were then correlated with 

those obtained from the human participants, with r values for each correlation shown in 

Figure 15. The CATMET model produced stronger correlations than the CATONLY 

model, while the correlations with the METRIC model were uniformly close to zero.

Figure 15. Comparison of correlation values obtained for four-category CATMET model, the four category
CATONLY model and the METRIC model, with responses of human observers. Correlations are based on
hue-specific model- and observer-derived parameter estimates. Top panel shows precision correlations, and
bottom panel shows bias correlations.

Discussion

To summarize, the CATMET model produced stimulus estimates and responses 

that correlated relatively strongly and significantly with biases observed in human re-

sponses. Crucially, it achieved this outcome with underlying representations that were un-

biased. Bias emerged by combining category-dependent and value-dependent estimates 

obtained through simultaneous encoding channels. Devising the model in this way, we 
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sought to capture what seems to us a commonsense way of characterizing individual col-

ors, as particular cases within categories, as opposed to particular cases within a general 

and entirely continuous color space. 

General Discussion

We sought to test a three-part hypothesis: (1) that working memory maintenance 

exhibits color-specific biases; (2) that these biases originate in perception, and (3) that 

observers functionally use two kinds of color information when matching colors between 

objects, an estimate of hue on a continuous scale —what has been called a “particular” in 

other contexts (e.g. Huttenlocher et al., 2000)— and a probabilistic category assignment.

First, to test for color-specific estimation biases subsequent to working memory 

maintenance, we conducted a standard delayed estimation experiment, collecting 60 

responses to each of 180 study hues. We found color-specific biases: average estimates 

frequently deviated from the study hue. Importantly, these biases correlated significantly 

across independent observers. Second, these color-specific delayed biases were 

significantly correlated with color-specific biases measured in an undelayed version of 

the task. This suggests perceptual origins for these effects, or minimally, origins that are 

not dependent on imposed memory maintenance and an absent target stimulus. 

Additionally, we found reliable patterns of differences in response precision across hues, 

suggesting differences in the fidelity with which observers estimate hue values among 

exemplars with equal contrast and luminance. To our knowledge, this is the only study to 

investigate delayed estimation with confirmed equal luminance and background contrast 

among rendered stimuli.
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  To investigate the role of color categories in these effects, we utilized a pair of 

experiments in which (different) groups of observers either selected a best name for each 

of 180 hues, or selected a best example for each of six color names from the basic color 

terms (Berlin & Kay, 1969). Consistent with previous results using similar tasks (e.g. 

Witzel and Gegenfurtner, 2013; Boynton & Olson, 1990, Sturges & Whitfield, 1997) we 

observed systematic responses, with most hues receiving a single color term reliably, 

some —which we interpreted as category boundaries— receiving two names with nearly 

equal proportion, and with a few hues repeatedly tagged as best examples —which we 

interpreted as focal colors. The degree of bias and response precision were both 

significantly predicted by a hue’s distance from the nearest category focal color. 

Finally, we presented a dual content model that can account for the observed hue-

specific estimation properties and interactions with category landmarks. The model is 

critically different from prevailing models in that it encodes noisy chromatic signals 

through two channels, a high-resolution channel that records the signal hue in continuous 

terms, and a coarse channel that records only a signal’s category. It then uses each of 

these contents to assess the probability that any given stimulus would have induced the 

encoded contents, and it combines these assigned probabilities to produce a jointly 

determined estimate of the stimulus. In this model, the first channel is bias-free. Bias 

emerges, through the interaction with the category assignment: hues that are already good

category exemplars will show less bias than hues near boundaries, since the category 

distribution generated in response to an encoded category describes the strength of each 

hue’s association with a given category. These results have important practical and 

theoretical implications for the study of color working memory and perception, in 

41



particular, and visual working memory, in general, which we discuss in detail below.

Previous evidence for hue-specific bias and precision

Previous work has yielded contradictory results about the relationship between 

color categories and color memory. For example, Uchikawa and Shinoda (1986) reported 

that colors near category borders are remembered more precisely than focal colors are 

(see also Bornstein & Korda, 1984; Boynton et al., 1989; Roberson & Davidoff, 2000; 

Pilling et al., 2003). In contrast, Bartleson (1960) reported that focal colors are 

remembered better than boundary colors, and others reported that they are remembered 

more precisely (Heider, 1972). Still other studies have failed to find systematic 

relationships between categories and fidelity of color memory; Witzel & Gergenfurtner 

(2013) found that category boundaries are not broadly predictive of stimulus-specific 

differences in discrimination thresholds and others have reported a lack of systematic bias

as a function of hue (Siple & Springer, 1983; Allred & Olkkonen, in press; Jin & Shevell,

1996). 

One potential explanation for mixed results involves differences in methodology. 

Alternative forced choice (AFC) methods for example may lead observers to rely on 

category and particular encodings differently than they do in estimation tasks. However, 

several observations suggest that our findings may generalize to other tasks. First, we 

previously reported hue-specific response precision using an estimation task with a 

different response method (Bae et al., 2014): an aperture through which participants 

rotated a color wheel to reveal one hue at a time (see also van Den Berg et al., 2012). 

Hue-specific responses in this experiment correlated significantly with responses in the 

standard estimation experiment. The effects in a standard estimation task therefore 
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generalize to an adjustment procedure. And second, the relative size of the biases we have

reported here are consistent with those reported elsewhere in tasks using AFC methods 

(Olkkonen & Allred, 2014; Nemes et al., 2010). We found values up to 10°, but with 

significant and systematic effects as small as 2° near focal colors, which is the smallest 

measurable effect in these experiments.

Two other methodological issues, both involving sampling, may produce 

differences between studies. First, if study stimuli sample only a small region of color 

space, or coarsely sample large regions of color space, they are ill-quipped to uncover 

patterns of responses across a hue circle (Allred & Olkkonen, in press; Hedrich et al., 

2009, Ling & Hurlbert, 2008). Second, if study stimuli are sampled too coarsely, this 

could also produce the impression of relatively discrete and precise —as opposed to 

probabilistic— category boundaries. To see why, consider the pattern of results in Figures

6 and 10. We have demonstrated that bias near boundaries is toward focal colors. Imagine

that colors on either side of the blue/green border are sampled—a between-border 

discrimination. If the border colors sampled are very far from the border, the focal bias 

will pull the just-green toward green and the just-blue toward blue, and the between-

category discrimination will appear very good. If, on the other hand, the colors sampled 

are very close to the border region, study colors will be easily confused. Thus many 

small-spaced samples across a relatively large space may be necessary to identify the 

kinds of effects found in our study. 

Finally, it is important to note that Zhang and Luck (2008) in their original report 

did investigate the possibility of category effects, and found none. Specifically, Zhang & 

Luck (2008) were concerned that participants may encode stimuli only in terms of color 
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categories, then selecting a nearby focal color value, but respecting category boundaries 

when making responses. To investigate this possibility they conducted an appropriate 

analysis, generating a heat map for responses given each target value with a memory load

of one. A category-only representation, they predicted, would produce a staircase pattern 

in such a heat map; but they found a continuous distribution, with average responses near 

target values. The problem is that this analysis assumes clear, ‘noiseless’ boundaries and 

focal colors. The noisy nature of category boundaries, in practice, means that responses 

near boundaries will appear ‘fuzzy,’ not staircase-like, even if observers respect 

boundaries. (Indeed, we were able to replicate their analysis with our data). Likewise, the 

noisy focal colors will lead to continuous distributions of category responses rather than 

discrete ones. 

Figure 16. Heat map showing color reports as a function of a target’s true color in delayed estimation,
replicating an analysis conducted by Zhang & Luck (2008; see their supplementary material).
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With the data from our delayed estimation experiment —which clearly include 

category effects— we were able to produce a heat map of responses very similar to the 

one produced by Zhang & Luck (2008) and meant to suggest an absence of category 

effects (Figure 16). In contrast, Figure 6 presents an alternative route to detecting non-

uniformity in responses, one that many groups can easily apply to their data sets 

(assuming each hue has been presented as target a sufficient number of times). There, we 

plotted normalized response frequency for each hue. There are clear peaks and valleys; 

retrospectively, it is clear that the biggest effects are at the category prototypes, not the 

boundaries. If hues generally elicited similar and unbiased response distributions, these 

overall distributions should be close to uniform (each color was the target equally often). 

The distributions clearly are not uniform. Figures 7 and 8 plot precision and bias 

estimates for each color with and without delay.   

Overall, a contribution of this work to ongoing research on precision and bias as a

function of category structure is in demonstrating that the estimation paradigm —devised 

for, and until now, used only to study working memory— can serve as an efficient 

paradigm for studying color perception. Forced choice and related psychophysical 

approaches require too many trials to design experiments with 180 hues and sufficient 

numbers of comparative observations. Future work should continue to investigate border 

and focal color performance, perhaps using estimation as a means to select smaller 

subsets of important comparisons for use with forced choice and related methods. 

Color terms and categories; verbal versus visual memory

Throughout this report we have used ‘color categories’ and ‘color terms’ 

interchangeably. But some have drawn a distinction between linguistic labels that do not 
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necessarily map onto underlying representations, and category markers in visual 

processing of color. This distinction may also relate to a common distinction between 

verbal and visual working memory (Baddeley & Hitch, 1974), with some arguing that 

color terms can be stored in verbal working memory, while visual working memory 

traffics only in continuous coordinates (Luck & Vogel, 2013). 

Importantly, the practical implications of our work are independent of whether the

categorical channel is verbal or non-verbal. We have demonstrated empirically that 

participant responses vary by hue in ways that relate to color terms, and that these 

responses can be modeled by combining probabilistic categorization with continuous hue 

estimates. Regardless of the underlying cause, this fact is important for understanding 

behaviors guided by visual working memory.

Theoretically, though, we would suggest that our results are consistent with the 

hypothesis that categorization occurs as part of visual processing, before any additional 

verbal labeling takes place. Category effects emerged in undelayed estimation, when 

resorting to verbal encoding is unnecessary since the study hue remained perpetually in 

view during response selection. Similarly, in our previous study (Bae et al., 2014) 

category effects were present with very short exposure and delay periods (100 ms each) 

and with large memory loads, where verbal encoding and rehearsal would be difficult and

unlikely. 

Note that categorical processing need not involve verbal rehearsal in principle. In 

the case of object orientation, for example, degrees of tilt are coded within the context of 

associated category labels related to object-internal axes and external frames of 

references. Roughly, this can be thought of as coding an object as ‘the top of the object is 
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tilted to the left, by 30 degrees’ in contrast with ‘tilted 330 degrees.’ Categorical, non-

verbal encoding of orientation appears critical for explaining neuropsychological 

dysfunction as well as performance asymmetries with healthy participants (adults and 

children; Gregory et al., 2011; Gregory & McCloskey, 2010; McCloskey, 2009; Valtonen 

et al., 2008; McCloskey et al., 2006). Similar conclusions have been reached in the 

context of orientation and visual search, where it has been suggested that objects are 

preattentively categorized as “steep,” “shallow,” “tilted-left,” and “tilted-right,” with 

attentive processing then augmenting these representations with continuous angular 

values (Wolfe et al., 1992; See also Foster & Ward, 1991; Treisman & Gormican, 1988).

In the case of color, whether non-verbal categorization takes place has long been 

an important question (along with broader questions about the impacts on perception of 

verbal categorization). Evidence that is consistent with nonverbal categorization taking 

place within perception includes neural evidence of early categorical encoding in the 

brain (Stoughton & Conway, 2008; Bird et al., 2014), categorical color constancy in 

perception of real-world scenes (Olkkonen et al., 2010), and categorical effects on visual 

search for colored targets (Daoutis et al., 2006). The reported results contribute to this 

body of evidence by demonstrating that categorization influences matching performance 

even with an in-view stimulus. Strengthening this evidence, as well, is the reported 

reliability of inter-observer category judgments and the ability to predict categorical 

influences on matching performance in one group of participants based on category 

landmarks identified by other individuals. 

Non-uniform visual memory

The empirical results presented here falsify key assumptions built into current 
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models of working memory. Specifically, we have demonstrated that the fidelity of 

working memory —both in terms of bias and precision— is not uniform across hues with

equal luminance and equal chromatic contrast with the background. These results suggest

that conclusions previously drawn about working memory utilizing delayed estimation 

should be reexamined, having incorporated inaccurate assumptions into data analysis and 

interpretation. 

As one example, consider the debate about whether or not observers ever ‘drop’ 

items from memory —perhaps because of a fixed capacity limit (see e.g. Ma et al., 2014; 

Luck & Vogel, 2013). Because the question is about whether some responses amount to 

random guesses, average angular error cannot be used to compare theories; it would 

conflate target-directed and ‘guess’ responses. This calculus led Zhang & Luck (2008) to 

their influential mixture model (Equation 1), designed to estimate average guessing rate 

and average response precision by best accounting for the individual angular errors that 

participants produce on each trial. The fitting seeks parameters that manage the tradeoff 

between lowering precision and, effectively, counting fewer responses as guesses (see 

also Suchow et al. 2014). But in the way the fitting has been done, it incorporates the 

assumption that all target-directed responses should look more or less the same, or 

equivalently, that no target-directed responses should look more guess-like than ones 

directed to any other target. Our results invalidate this assumption: some color targets do 

tend to elicit responses that are more distributed than others and with means distant from 

the target, responses that would look like guesses under a high-precision, unbiased 

assumption applied to all colors equally. 

The same concerns apply to many modifications, extensions, and proposed 
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alternatives to the Zhang & Luck model. For example, Bays and colleagues (2008) 

proposed that in addition to target-directed and guess responses, observers sometimes 

make nontarget-directed responses, arising from feature and object misbindings 

(Treisman & Gelade, 1980). To estimate the frequency of these occurrences, they added a

misbinding term to the Zhang & Luck (2008) model. In this case, the misbinding term 

included the same precision parameter as the target-directed term in the model. In other 

words, it implemented a uniformity assumption in two places. On this basis, Bays and 

colleagues argued that previous models produced the appearance of high guessing rates 

—interpreted to demonstrate fixed capacity limits— because they misattributed 

misbinding as guessing. 

It may turn out that deriving an estimated misbinding rate with a base that is more

similar to our model (or some other set of non-uniform expectations) will produce very 

similar estimates as those obtained previously. But at this stage the question remains 

open, empirical, and non-trivial. Assigning a probability to a given response under the 

assumption that it reflects a misbinding depends on the probability one would assign 

were it actually a response to the same hue in the case that the hue were the actual target. 

Just like estimating guessing rates, accurately estimating misbinding rates depends on 

one’s expectations about what target-directed responses will look like for each hue, and 

we have demonstrated that those expectations should not be uniform.

A final example concerns recent models that propose stochastic causes of inter-

trial and inter-item precision (e.g. van den Berg et al., 2012; see also Fougnie et al., 

2012). Essentially, these models propose that representational precision does not have the

same value at all moments in time, and should itself be thought of as drawn from a 
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(gamma) distribution. To account for seemingly unlikely responses as nonetheless target-

directed, the models ultimately suggest that with some frequency, precision is very low, 

making large angular-error responses more likely than they might otherwise appear (i.e. 

given a single precision value applied to all trials). The radical significance of this 

hypothesis is in the suggestion that there may be no fixed capacity limits in working 

memory whatsoever, evident in the complete absence of guessing responses in model fits.

But the methodological and analytical problem here should be clear: if each trial 

has a different target color, and different colors tend to produce different response 

distributions —some that are relatively biased and imprecise— then color-driven trial-by-

trial variability needs to be accounted for before further stochastic variability can be 

evaluated. The relevant models were fit under an assumption of color uniformity. 

None of the studies just mentioned are unique with respect to a uniformity 

assumption. In fact, all delayed estimation experiments we are aware of, including those 

investigating other visual features, appear to assume uniformity. And there are reasons to 

expect that non-uniformity extends to other stimulus domains. Orientation is probably the

second most common feature in studies of visual working memory with delayed 

estimation. All the relevant studies in this domain also seem to assume representational 

uniformity. But there are extant results that should give pause. There are known 

orientation-dependent asymmetries in visual search (Wolfe et al., 1992; Foster & Ward, 

1991; Treisman & Gormican, 1988), there are theories of orientation representation that 

rely on categorical variables (McCloskey, 2009), and the accuracy of orientation 

estimation is known to depend on orientation, apparently driven by prior expectations 

over orientation frequencies (Girshick, Landy, & Simoncelli, 2011). 
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Thus we suspect that uniformity assumptions are violated in practice in all or 

nearly all estimation experiments where they have been applied, certainly in all cases 

pertaining to color. Recognizing this may turn out to be a positive development. Debates 

concerning the underlying structure of visual working memory appear intransigent. 

Perhaps the impasse is to some degree caused by unexpected perceptual non-uniformity 

interacting with individual stimulus and data sets. 

Finally, we note that there are many ways to formally characterize non-

uniformities in a relevant feature space. The CATMET model does so on the basis of 

category identification experiments of a manageable size, and it is a natural extension of 

the original Zhang & Luck mixture model. In particular, CATMET uses a single precision

value, but produces non-uniform estimates through combination of hue information with 

category information. In this way, it may supply a quick, initial method for establishing 

parameter estimates for guessing rates, precision, and misbinding rates as a function of 

memory load. We hope that further research will identify alterations that can more 

completely model stimulus-specific response properties and also illuminate the nature of 

visual working memory limits. 

Categories as priors

The main theoretical contribution of this work is to support the hypothesis that 

estimation abilities for color rely on both continuous and categorical representations, 

even when a stimulus is in view. What appears, in aggregated responses, as differences in 

the memorability of different colors is the consequence of a tendency to categorize colors

such that some are better examples of a given category than others, and with some as 
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reasonable examples of more than one category. Colors are more accurately and precisely

remembered when they are good examples of their respective categories. 

The CATMET model was inspired by related models described by Huttenlocher 

and colleagues (2000) in the case of spatial memory, and thus it relied on a category-

encoding channel. This seems intuitive to us in the case of color, where typical discourse 

will refer to particulars within a category, as opposed to just particulars. To pump 

intuition: it seems that a paint buyer is more likely to hold up a sample and say, “We want

this blue”, than to say, “We want this color.” 

But there are other ways one might arrive to similar outcomes. One important 

possibility is that perceptual context effects elicit the bias: embedding a hue in the color 

wheel may alter its perception compared to the study hue. Perhaps the color wheel itself 

draws responses to particular points —category centers. Could the results be a response 

bias caused by perception of the color wheel, rather than any actual encoding of the study

hue’s category? Although this kind of perceptual context effect may play a role in 

estimation without delay, we note that the effects were even larger in the memory 

experiment. Thus the bias is not purely a perceptual context effect.   

A more thorny issue concerns whether the samples were actually encoded as 

categories, as our model and theorizing suggest. Perhaps a purely metric encoding 

interacts with a perceptual context effect at the wheel to produce response bias. In this 

case, the noisier metric encoding during estimation with delay would increase the relative

weight of the perceptual context effect. For example, an observer may encode the sample 

as #136, but upon inspecting the wheel, note that #139 is a better example of the kind of 

category that #136 belongs to. There are a number of reasons to think this is not the best 
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explanation for the effects. Specifically, in our previous work (Bae et al., 2014), we found

the same pattern of stimulus specific effects using a different response method, an 

aperture for viewing a single color at a time with the wheel rotating below. Similar biases

have also been found in research with alternative-forced-choice methods (Olkkonen & 

Allred, 2014; Nemes et al., 2010). Thus it seems inaccurate to describe the effects as 

merely response bias, driven by the response method.

But there is one other alternative that may suggest a useful distinction between 

working memory and long-term memory in the mechanisms that support color matching. 

This alternative relies on long-term memory to encode a prior over hues that can reflect 

category structure. That is, from a more typical Bayesian perspective, a non-uniform prior

over hues —with higher probabilities at focal colors— might produce the effects without 

an explicitly categorical encoding of each instance. We cannot exclude this possibility 

based on our current analyses, and we welcome future investigation of related models 

that are more traditionally Bayesian. Indeed, the consequences of a categorical encoding 

channel in the CATMET model are not very different from those that would be expected 

from a general prior over colors. The latter would bias participants away from any un-

likely hues. In the case of CATMET, the impact of category encoding is ultimately to bias

participants away from unlikely hues within a known category. 

Operationalizing the impact of categories through a Bayesian prior has the advan-

tage of connecting delayed and undelayed hue estimation to the much larger program of 

research involved in resolving memory as well as perceptual uncertainty. Bayesian priors 

are expected to apply to the perceptual appearance of stimuli, even in view. In perceptual 

contexts, Bayesian models have successfully explained stimulus-specific patterns of bias 
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in many domains, including size (Ashourian & Loewenstein, 2011), time (Jazayeri & 

Shadlen, 2010), motion speed (Stocker & Simoncelli, 2006), and orientation (Girshick et 

al., 2011). Given noisy signals that depend on interactions with viewing conditions, priors

facilitate perception by directing observers away from generally unlikely conclusions, 

and towards generally likely ones. Such priors —whether implemented as priors or as 

category encoding— should have stronger effects when signals are noisier. Under the pre-

sumption that signals associated with absent objects are noisier than signals associated 

with viewable ones, it makes sense that an imposed memory delay appears to have the 

impact of increasing category-related biases compared to undelayed conditions. From this

perspective, perception and working memory are perhaps less distinct than typically por-

trayed. Both face the challenge of estimating properties of the physical world from noisy 

sensory signals.

Conclusion

Interest in working memory has largely focused on the nature of underlying limits

that restrict the amount and quality of content that the system can store. Relatively ne-

glected, however, has been the nature of the content itself —the variables whose values 

the system stores in order to describe a stimulus. We have shown that in the case of color 

working memory, assumed contents inaccurately omit categorical variables, and as a re-

sult, produce unwarranted assumptions about content uniformity in the system’s outputs. 

This demonstrates how limits on content cannot be studied effectively without also char-

acterizing content empirically. Moreover, a research program that considers the contents 

of working memory systems inherently situates the system within a broader suite of be-

havior-guiding mechanisms. The contents of working memory are usually acquired from 
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perceptual inputs, and the nature of working memory outputs depends not only how much

it stores, but also on what it stores. 
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