
Skyrmions and monopoles — isolated and arrayed

R S Ward

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

E-mail: richard.ward@durham.ac.uk

Abstract. There are two basic types of three-dimensional topological soliton, namely
skyrmions and monopoles. This article reviews some of the features of such solitons,
concentrating on static multi-skyrmions and multi-monopoles with structure group SU(2), and
focusing in particular on periodic arrays. An isolated multi-skyrmion typically has a regular, for
example polyhedral, structure; and there are multi-monopoles which look very similar. However,
when it comes to infinite arrays of solitons — chains, walls or crystals — then the skyrmion
and monopole systems behave rather differently.

1. Introduction: 3-dimensional topological solitons

Topological solitons come in two basic types: skyrmions, which wind around all of space; and
monopoles, which wind around spatial infinity. The general background to both may be found
in the monograph [1]. Skyrmions were introduced fifty years ago, as a model of nucleons [2].
Magnetic monopoles were introduced even longer (eighty years) ago, by Dirac [3]. Monopoles
are predicted in many cosmological models, but as yet there has been no confirmed sighting,
and much of the interest in them over the last thirty years has been mathematical: the partial
differential equations for static BPS monopoles are completely-integrable, and are associated
with some fascinating geometric structure.

Both types of object (skyrmions and monopoles) also occur in condensed-matter contexts.
But these applications are more commonly 2-dimensional rather than 3-dimensional, and will
not be pursued here.

Topological solitons are stable classical objects, described by fields φα(xj). Here xj =
(x1, x2, x3) are the standard coordinates on R

3; we shall concentrate here on the the static case,
so the fields are functions only of these spatial coordinates (but there will be a brief mention of
time-dependence later on).

Static solitons correspond to local minima of an energy functional E[φα] =
∫
E(φα, ∂jφα) d3x,

where the energy density E is localized in space. In the best-known cases, one has a high degree
of internal symmetry: in particular, the system is invariant under the action of a Lie group G
(for example a gauge group). Soliton stability comes partly from non-trivial topology of the
fields φα; but topology is scale-free, and so some additional mechanism is needed to fix the
soliton size. In our case, this is achieved by the balance of terms in E : typically between a term
which provides an expanding force and one which provides a contracting force. For each of the
two systems — skyrmions and monopoles — we will review isolated solitons in R

3 with finite
total energy, before discussing arrays in R

3: singly-periodic chains, doubly-periodic walls, and
triply-periodic crystals.



2. Skyrmions in R
3

In the Skyrme system, we have a field U(xj) which takes values in a Lie group G; from now on,
take the simplest nontrivial case G = SU(2). The boundary condition is U(xj)→ 1 as r →∞.
The energy density is defined to be

E = −1

2
tr(ξjξj)−

1

16
tr([ξj , ξk][ξj, ξk]),

where ξj = U−1∂jU (note that ξj is Lie-algebra-valued). Topology arises because U has a
winding number N ∈ Z; in the nuclear-physics application, N is the baryon number. The
energy satisfies a topological lower bound EN = E/(12π2N) ≥ 1.

For N ≤ 4 one gets the following minimal-energy solutions, the energy densities of which are
plotted in figure 1:

• N = 1: EN = 1.232, sphere;

• N = 2: EN = 1.179, torus;

• N = 3: EN = 1.146, tetrahedron;

• N = 4: EN = 1.120, cube.

Figure 1. Skyrmions for 1 ≤ N ≤ 4: energy densities.

In general, for N ≫ 1, skyrmions attract and coalesce. There are many local minima, which
are only accessible numerically. Typically, the solution resembles a hollow shell (‘buckyball’),
or a solid crystal chunk. For some shell-like examples with N = 32, 37, 47, 67, 97, see [4, 5]. In
the case N = 32, the solid crystal chunk has an energy which is slightly higher than that of the
shell [5] (EN = 1.072 for the shell, versus EN = 1.076 for the crystal); but the belief is that for
very large N , the lowest-energy solution should be a solid crystal chunk.

3. Arrays of skyrmions

The lowest possible of EN , namely EN = 1.038, is attained for a triply-periodic configuration,
in fact a cubic lattice of half-skyrmions. In what follows, this will be referred to as the Skyrme
crystal; its energy density is plotted in figure 2, where one sees eight half-skyrmions in a



Figure 2. The energy density of
the Skyrme crystal.

fundamental cell of the crystal. Skyrme crystals (triply-periodic) are in fact closely related
[6] to doubly-periodic Skyrme walls, and also to singly-periodic Skyrme chains, each of which
will now be described.

If the shell-like solutions of the previous section are visualized, in the language of carbon
chemistry, as buckyballs (spherical fullerenes), then a Skyrme wall corresponds to graphene.
For a single wall, the field U is doubly-periodic in x and y, and has the asymptotic behaviour
U → ±1 as z → ±∞. The corresponding 2-dimensional array of half-skyrmions can be either
square or hexagonal, with the latter having an energy-per-charge which is slightly lower than
the former: EN = 1.062 for the hexagonal wall, and EN = 1.068 for the square wall [1]. The
energy densities of these two solutions are plotted in figure 3. Parallel walls attract one another,
so there are also doubly-periodic solutions representing p parallel multi-walls [7]. As one might
expect, the p-square-wall solution tends to the Skyrme crystal as p→∞.

Figure 3. The energy densities of the square wall and the hexagonal wall.

Finally, one can have Skyrme chains: in this case, U(x, y, z) is periodic in z, and U → ±1 as
x2 + y2 → ±∞. The simplest chain may be viewed as a chain of half-skyrmion pairs, and also
as a bound vortex-antivortex pair [8], and its energy-per-charge is EN = 1.143. More generally,
there exist stable chains in which each link consists of 2p half-skyrmions; and (as before) these
solutions tend to the Skyrme crystal as p → ∞. The simplest case, a p = 1 chain along the
z-axis, is illustrated in figure 4. This plots the energy density of the solution over two periods
— four links of the chain, with each link being antiperiodic.



Figure 4. The energy density of the simplest Skyrme chain.

To summarize: in principle, all of nuclear physics is described by quantum chromodynamics
(QCD); but direct calculations of nuclear properties in QCD is still rather difficult, and it is
worth investigating a simpler approximations such as the Skyrme model. However, fitting to
actual nuclear data involves modifications to the basic system, for example, adding quantum
corrections and a pion-mass term. The Skyrme system admits arrays of half-skyrmions of various
sorts — one may ‘add up’ infinitely many skyrmions without encountering divergences — and
such arrays may be relevant to nuclei and exotic nuclear states. In this context, one would need
to study the effect of modifications such as those mentioned above. Another interesting question,
on which little work has been done, is to see what happens for larger groups G > SU(2).

4. Magnetic monopoles in R
3

The setting here is gauge theory, and more specifically that of a Yang-Mills-Higgs system. The
first step is to specify the gauge group G, a Lie group; in what follows, this will be either
U(1) (in which case the equations are linear) or SU(2) (in which case they are nonlinear).
The gauge potential is a 1-form Aj(x

k) on R
3, taking values in the Lie algebra g of G. The

corresponding magnetic field is Bj = εjkl(∂kAl +AkAl), and the energy density of the magnetic
field is EB = |Bj |

2.
The case g = u(1) corresponds to electromagnetism, and then Bj is the usual magnetic field

vector. Stationary points of the magnetic-field energy are solutions of ∂jBj = 0. The simplest
solution incorporating a point source at xj = 0 is

Bj = 1

2
N r−3 xj , (1)

where N , for topological reasons, has to be an integer. This is the Dirac monopole [3]. Note
that it is singular at r = 0, and it has infinite energy.

The generalization of this to non-Abelian gauge groups allows smooth finite-energy solutions.
The simplest version is that of Bogomolny-Prasad-Sommerfield (BPS) monopoles, with gauge
algebra g = su(2). In addition to the gauge potential Aj(x

k), we now also have a scalar (Higgs)
field Φ(xk) taking values in g. The covariant derivative of Φ is defined to beDjΦ = ∂jΦ+[Aj ,Φ],
and the system satisfies the Bogomolny equations

DjΦ = Bj . (2)



This system of nonlinear partial differential equations is completely-integrable, and consequently
has many remarkable properties.

The energy density is defined to be E = −1

2
tr[BjBj + (DjΦ)(DjΦ)]; and the boundary

condition is − tr(Φ2) → 1, E → 0 as r → ∞. The asymptotic Higgs field Φ|r=∞ is, in effect,
a map from S2 to S2, and so it has a winding number N ∈ Z: in other words, configurations
are classified topologically by the integer N . The energy satisfies the topological lower bound
E ≥ 2πN ; and E = 2πN if and only if the equations (2) hold. For each N ∈ Z there exists a
4N -parameter family of smooth solutions of (2). These 4N moduli correspond to the position
in space for each of the N monopoles (there are no forces between static monopoles, so each of
them can have any location), plus a phase for each one.

One consequence of the integrability of (2) is the existence of the Nahm Transform for BPS

monopoles. This is a generalized integral transform (Aj ,Φ) ←→ (Âα, Φ̂) between Yang-Mills-
Higgs systems. In summary, one first solves a linear partial differential equation ∆ψ = 0 in which
the coefficients of the operator ∆ are constructed from (Aj ,Φ); and then one does an integral

involving ψ to get the transformed field (Âα, Φ̂). For monopoles on R
3, the Nahm transform

of an N -monopole is a set of Nahm data consisting of three N ×N matrices Φj(s) on (−1, 1),
satisfying the ordinary differential equations

Φ′
j = εjklΦkΦl . (3)

Since it is generally easier to solve the ODEs (3) than to solve the PDEs (2), this transform
is a highly-effective way of understanding and constructing monopole solutions. For example,
there are explicit solutions (involving trigonometric and elliptic functions) of (3) corresponding
to spherical, toroidal, tetrahedral and cubic monopoles for N = 1, 2, 3, 4 respectively; and there
are many similar explicit examples for N > 4. Each 4N -dimensional moduli space M has a
natural hyper-Kähler metric (for example, the Atiyah-Hitchin metric in the case N = 2), and
slow-motion dynamics of monopole systems corresponds to geodesic motion onM. More details
on all this may be found in [1].

5. Arrays of monopoles

In this section, we consider what happens when one tries to form periodic arrays of monopoles.
The first issue is that of convergence. Suppose that we have an infinite array of Dirac monopoles
of the form (1). The monopole at xn has Φn = −1/(2|x−xn|), and

∑
n Φn diverges for a regular

array {xn}. So we need to regularize this infinite series, by (in effect) subtracting an infinite
constant. For example, if the poles are equally-spaced along the z-axis chain — say xn = x−n e,
where e = (0, 0, 2π) — then the series

Φ = −
1

2r
−

1

2

∑

n 6=0

[
1

|x− xn|
−

1

2πn

]
(4)

converges (except at the poles), and Φ ∼ 1

4π
log(x2 + y2) as x, y →∞. So (4) represents a chain

of Dirac monopoles. And it motivates the boundary condition that one uses in the non-abelian
case [9]: again Φ behaves logarithmically as x, y →∞.

The Nahm transform of an SU(2) N -monopole chain is a solution of the U(N) Hitchin

equations on the cylinder R×S1 [9]. The latter consists of a U(N) gauge potential (Â1, Â2), plus

a Higgs field Φ̂ taking values in the complexification of SU(2), satisfying the Hitchin equations

Dζ̄Φ̂ = 0, B̂ = 1

2
i [Φ̂, Φ̂∗]. (5)

Here ζ is a complex coordinate on R × S1, Φ̂∗ denotes the Hermitian conjugate of Φ̂, and B̂ is
the magnetic field. In addition, (Âα, Φ̂) are required to satisfy various boundary conditions and



constraints, of which one is

det Φ̂ = (−1)N+1C cosh (2πζ) +K, (6)

where C and K are complex constants. In fact, |C| corresponds to the ratio monopole size/chain
period; so |C| ≫ 1 corresponds to a monopole chain in which the individual monopoles spread
out and overlap (see below).

The simplest case is N = 1, corresponding to a chain of 1-monopoles, and in that case (5,6)
gives us an explicit solution of the Hitchin equations, namely

Φ̂ = C cosh (2πζ) +K, Âα = 0.

The (inverse) Nahm transform of this can be implemented numerically, and we get the 1-
monopole chain illustrated in figure 5. This plots the quantity |Φ|2 = −1

2
tr(Φ2) over one period

in the z-direction, for various values of the parameter C. If C = 1, the individual monopoles
are localized, but for C ≫ 1 they spread out to form a strip in the z-direction. More details of
this may be found in [10].

Figure 5. |Φ|2 over one period, for C = 1, 4, 8.

For N ≥ 2, things are not quite as explicit, but one can still use the Nahm transform to obtain
useful information. For example, a special case of N = 2 describes the slow-motion dynamics
of interacting parallel monopole chains, corresponding to geodesics on the N = 2 moduli space
[11]. In general, the procedure is to:

• identify a geodesic Γ in the moduli space;

• for each t ∈ Γ, compute the corresponding solution (Âα, Φ̂) of the SU(2) Hitchin equations;

• Nahm-transform to compute the monopole field (Aj , Φ);

• display these as a function of t.

The simplest example is obtained by fixing the centre-of-mass of the 2-monopole system, and
imposing a D2 symmetry corresponding to invariance under rotations by π about each of the
x-, y- and z-axes: this selects a particular geodesic in the moduli space. The Hitchin equations
then reduce to an elliptic sinh-Gordon equation on the cylinder, which can be solved numerically.
Finally, the Nahm transform can be implemented numerically, and |Φ|2 = − tr Φ2 plotted for a
sequence of t-values, to visualize the dynamics. This was the process used to produce figure 6,
which shows snapshots of the scattering of two monopole chains (each plotted over three z-
periods). One sees the right-angle scattering which is typical of topological-soliton interactions.



Figure 6. Scattering of two monopole chains.

Our final topic is that of doubly-periodic monopole solutions, or monopole walls. (It is
worth pointing out that smooth triply-periodic monopoles, or monopole crystals, cannot exist
— the divergences become uncontrollable. So double periodicity is as far as one can go.) So we
impose periodicity in the x- and y-directions. There are now two topological charges N+ and
N−, corresponding to the winding number of the Higgs field Φ as z → ±∞ respectively. The
appropriate boundary condition in z turns out to be

Φ ∼ 2πN± z as z → ±∞,

with the energy density behaving like E → 8π2(N±)2. The interpretation is that one has a wall
of monopoles separating two domains, in each of which the energy density is constant. In this
case, the Nahm transform maps walls to walls, with (in general) different gauge group G and
topological charges N±. For example, the simplest non-trivial case of a Nahm correspondence is

{G = U(1), N± = ±1} ↔ {G = SU(2), N− = 0, N+ = 1}.

The energy density E of the SU(2) monopole wall in this case is illustrated in figure 7: the

Figure 7. {G = SU(2), N− = 0, N+ = 1}: an example solution

left-hand plot is a 3-dimensional plot of E over two periods in x and y, so one sees four of the



monopoles in the wall; while the right-hand plot shows E integrated over x and y, as a function
of z, revealing how the wall separates two domains, one with zero energy and one with constant
positive energy density.

Monopole arrays have many other nice mathematical features which follow from the complete-
integrability of the equations (2). For example, associated with any solution is a set of “spectral
data” which are usually much simpler than the field itself, are invariant under the Nahm
transform, and give one a lot of information about the solution. For example, in the monopole-
wall case, the holonomy of Dx + iΦ over one period in the x-direction is holomorphic in z − iy
(as a consequence of (2)), and it has a very simple explicit form. All this structure ensures that
BPS monopoles will remain of great mathematical interest, even if their physical importance
remains unclear.
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