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Abstract—The need for improved utilization of existing system 

assets and energy sources, as well as the smooth incorporation of 
new technologies (such as electric vehicles) into the grid, has 
prompted the participation of small power consumers and gener-
ators in the energy markets. A problem of such scale however 
cannot be managed in a centralized manner in its full detail. This 
paper examines the idea of a decentralized approach in clearing 
the energy market. A general framework for the problem de-
composition and its distributed solution is presented and ana-
lyzed. A key point of interest in this work is the fundamental 
question of how far decomposition may be pursued for a given 
system, while still achieving reasonable convergence properties. 
The corresponding optimization problem is formulated and 
solved through a parallel implementation of the Alternating Di-
rection Method of Multipliers (ࡹࡹࡰ). A thorough investigation 
of its convergence properties is conducted, and through its coor-
dination with an additional proximal based decomposition meth-
od we improve its scalability characteristics. 
 

Index Terms—Energy Markets, Optimal Power Flow, Distrib-
uted Optimization, Multi-Agent Systems 

I.  INTRODUCTION 
OWER systems are gradually transitioning from an era of 
a limited number of large generators and largely inelastic 

demand, to an era of highly dispersed small scale generation, 
deferrable demand (through advances in smart metering), 
large numbers of so-called prosumers (users alternately ap-
pearing as generators or consumers) and distributed storage 
(both dedicated grid-connected and mobile provided by elec-
tric vehicles). In order to make full use of the potential bene-
fits this increased granularity and diversity can offer in terms 
of market economic efficiency, the particular constraints and 
objectives of each individual have to be taken into account in 
the market clearing optimization problem. This however 
would result in a problem of a particularly large scale. Its cen-
tralized solution, due to both computational and communica-
tions requirements, might not be possible [1]. As a result a 
suitably designed decentralized approach, if tenable, would be 
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of particular interest, as it could enable handling the increased 
size of the problem in an efficient way. In addition, it could 
allow for a more detailed system representation and the 
smooth incorporation of demand response services, thus limit-
ing any related inefficiencies [2] or price volatility [3]. Resili-
ence (i.e. ability to work even with loss of some of its compo-
nents), limited information sharing (especially of financial 
nature), and fast solution speed (i.e. fast enough to clear the 
market at a desired time resolution, e.g. every 15min) are three 
important desirable properties of this decentralized scheme. 

A variety of mathematical techniques has been previously 
used in distributed and / or decentralized approaches to power 
system control and operation. In [4] a Lagrangian Relaxation 
 with a subgradient method is used. However, the fact that (ܴܮ)
in certain cases this technique may result in oscillating behav-
ior during convergence [5] has prompted the use of a variety 
of heuristics or augmented Lagrangian approaches. An exam-
ple of the former may be found in [1] which utilizes a central-
ized scheme which arbitrarily limits market players demand 
response capability, or in [6] where the full ܨܱܲ ܥܣ is solved 
using a centralized Newton method to update Lagrange multi-
pliers. In the case of augmented Lagrangian methods, a popu-
lar approach is based on the so called auxiliary problem prin-
ciple (ܲܲܣ) [7]. The method’s details and general implemen-
tation background are discussed in [8, 9, 10]. The results in 
[11] however indicate that for a poor parameter selection the 
method may fail to converge. In [12] a proximal point based 
method (ܲܲܯ) is used which bears close resemblance to the 
simpler alternating direction method of multipliers (ܯܯܦܣ). 
Reference [13] introduces a serial implementation of the latter 
and compares it with the previous two methods. The results do 
not indicate any significant differences. Reference [14] applies 
the ܯܯܦܣ method to randomly generated large scale demand 
management problems using ܥܦ load flow, indicating poten-
tially good scalability for the method. Reference [15] extends 
the method’s application to AC load flow with test cases most-
ly focusing on distribution, while [16] provides a more de-
tailed mathematical foundation for the method’s use in OPF 
problems and some results in meshed networks of up to 118 
buses. In [17, 18, 19] an approach based on the Karush-Kuhn-
Tucker optimality conditions decomposition (OCD) is used. 
Even though [20] indicates that this approach might reach a 
solution faster than Lagrangian based methods, its conver-
gence condition might not be always easy to verify, nor carry-
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ing out the subsequently required conditioning of the problem 
in a decentralized manner. 

The literature discussed above is significant yet the perfor-
mance of the aforementioned methods has not been tested for 
large degrees of decomposition (i.e. large number of optimiza-
tion subproblems, even down to the individual bus level) with 
the inclusion of the full ܥܣ equations describing the transmis-
sion system constraints. Such an analysis is the main task of 
this paper. Generally, this work proposes and investigates the 
feasibility of an approach for distributed optimization, for the 
purpose of clearing the energy market in a decentralized man-
ner. The basic point of interest is the fundamental question of 
how far decentralization can be pushed within an energy mar-
ket. In other words, can the ܱܲܨ  solution be decomposed 
down to the individual node, and even down to the individual 
energy user connected at each node? There is a wealth of liter-
ature on distributed ܱܲܨ but, to our knowledge, none before 
has investigated this particular question. This question has 
very important implications as, if the answer is positive, then 
there is a potential that individual market players could trade 
directly with each other without relying on the System Opera-
tor (ܱܵ). In our simulations we concentrate on transmission 
networks but the proposed method is general and the results 
relate to both transmission and distribution. 

A key point for decentralized energy markets is that they 
should not require any confidential financial information to be 
centrally reported (e.g. costs / profits). For this reason and also 
due to its robust convergence characteristics and limited num-
ber of parameters, we have employed the ܯܯܦܣ method. We 
assume a simplified but reasonable market model, but by no 
means do we offer a complete solution that covers all aspects 
of trading and market clearing. Instead we focus on fundamen-
tal convergence considerations of the decentralized approach 
and provide a general framework intended for use in energy 
market operations into which additional details can be incor-
porated. More specifically the main contributions of this work 
are: 
 We have investigated through extensive simulations the 
-prob ܨܱܲ method's convergence performance in the ܯܯܦܣ
lem. Our test systems include the 118 ,57 ,24 ܧܧܧܫ and 300 
bus systems, and a 707 bus system based on the UK network. 
The ܯܯܦܣ method has been applied before in power sys-
tems, but compared to [21] we focus in non-convex OPF 
formulations in meshed networks. Compared to [15, 16] we 
use a problem reformulation introduced in [22] extended to 
different decomposition structures with respect to demand 
disaggregation. In addition we relate the method’s parame-
ters to characteristics of the OPF problem and identify suita-
ble settings to improve convergence in typically hard to con-
verge network congested cases. 
 Through the introduction of aggregators and a variable 

penalty proximal decomposition algorithm for the corre-
sponding subproblems we illustrate the value of aggregation 
from an optimization perspective and improve the scalability 
of the initial ܯܯܦܣ decomposition scheme. The idea of co-
ordinating different distributed optimization algorithms in 
order to improve convergence is a novel part of this work. In 

addition compared to other approaches that consider demand 
decomposition (e.g. [23]) the proposed scheme does not re-
quire transmitting any financially sensitive information (e.g. 
objective function costs). 
 We investigate various degrees of decomposition of the 
network, down to the individual bus level, combined with 
decomposition of demand and generation connected at a giv-
en bus into independent blocks. The results provide signifi-
cant insight in the scalability of the proposed approach both 
with respect to network and user decomposition, and may 
serve as a reference for future testing of relevant distributed 
optimization applications. 

This paper is organized as follows: Section II describes the 
centralized problem equations, section III provides the math-
ematical background behind decomposition and the subprob-
lems structure, while section IV presents and analyses simula-
tion results. Finally section V summarizes the conclusions of 
this work. With respect to mathematical notation: we use bold 
font for vectors or matrices (e.g. ܢ) and italics for scalars (e.g. 
ݖ (௫,௬)ܢ ;(  indicates element (ݔ, {ܢ}݃ܽ݅݀ ;ܢ of matrix(ݕ  indi-
cates a diagonal matrix whose diagonal elements are the ele-
ments of vector ܢ; the operator ‖∙‖ଶଶ denotes the squared Eu-
clidean norm. 

II.  OPTIMIZATION PROBLEM FORMULATION 
The target in clearing the market is maximization of social 

benefit, i.e. the minimization of costs (negative utility) [6, 24]: 

minቐ  ቀݑ൫܁()൯ቁ
∈[ଵ…ೠ]

ᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ
బ

ቑ (1) 

Where: 
 . Cost function of the ݅-th clientݑ
݊௨ The number of clients / network users. 
Clients apparent power input / output ݊௨ ܁ × 1 vector. This 

may further be written as ܁ = +۾ ۾ where ,ۿ݆  and ۿ the 
active and reactive power components respectively. 

This optimization problem is subject to multiple constraints. 
First and foremost these involve the transmission network 
constraints: 
܁௨܋ =  (2) ∗(܄܇){܄}݃ܽ݅݀
܄ ≤ |܄| ≤  (3) ܄
|∗(܄௧܇) {܄௧܋}݃ܽ݅݀| ≤  (4)  ܂

Where: 
݊ The number of network buses. 
݊ The number of transmission system lines. 
Transmission line apparent power limit ݊ ܂ × 1 vector. 
Complex bus voltage ݊ ܄ × 1  vector. ܄  and ܄  denote the 

upper and lower bounds on voltage magnitude respectively. 
Bus admittance ݊ ܇ × ݊ matrix. 
௧ Line admittance ݊܇ × ݊  matrix with ܇௧(,) = ݕ  if line i 

starts from bus k, ܇௧(,) =   if line i ends at bus k, and 0ݕ−
other wise; ݕ is the admittance of line k. 

௨ Client to bus ݊܋ × ݊௨ connection matrix with ܋௨( ,) = 1 if 
client ݇ is connected to bus ݅, and 0 otherwise. 

௧ Line to bus voltage ݊܋ × ݊ connection matrix with ܋௧(,) =
1 if line i starts from bus k, and 0 otherwise. 

Equation (2) describes the power balance constraints at each 
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bus, equation (3) the voltage magnitude constraints and equa-
tion (4) the transmission capacity constraints (a similar set of 
equations is written for the power at the end of the line). Indi-
vidual network users are described by the following simplified 
generic equations: 
ݑ = ܿଶ۾()

ଶ + ܿଵ۾() (5) 
()۾ ≤ ()۾ ≤  (6) ()۾
()ۿ ≤ ()ۿ ≤ ()ۿ ()ۿ  ݎ   = ொ݂൫۾()൯ (7) 

Where ݅ ∈ [1, … , ݊௨] and: 
ܿଶ , ܿଵ Variable costs coefficients for generators. For demand ܿଶ =

0, ܿଵ > 0  and equal to the value a client associates with 
energy use. It can be thought of as an equivalent to the val-
ue of lost load (VOLL) which is assumed to be about 100 
times the value of energy at peak demand. 

ொ݂  Function of reactive power as a function of active power. 
For e.g. demand operating at a fixed load factor this is simp-
ly a linear function. For devices where reactive power is 
independent from active power, this function does not apply 
and only reactive power limitations are taken into account. 

Equations (5)-(7) imply that all demand may be curtailed. In 
this way, even in cases where demand may not be fully cov-
ered due to lack of adequate generation or transmission ca-
pacity, the overall optimization problem is still feasible. As 
shown in Fig.1, the right generation characteristic curve inter-
sects with the vertical part of the demand curve setting the 
price at marginal generation cost, while the left generation 
curve is inadequate to cover all demand. 

III.  OPTIMIZATION PROBLEM DECOMPOSITION 
This section addresses two basic questions: a) how to de-

termine the subproblems into which the initial optimization 
problem will be decomposed to, and b) how to perform the 
decomposition assuming the desired subproblems are known. 
Each subproblem is considered to be managed by an agent, i.e. 
an entity which handles all necessary communications and 
runs the required optimization routines. 

A.  Decomposition Mathematics 
As a first step to bring the problem into a suitable form for 

decomposition, one fictitious bus is introduced at the middle 
of each line that connects systems which are managed by sep-
arate agents. In a similar fashion a fictitious node may be in-
troduced for each demand or generation block that we want to 
handle as a separate subproblem. The variables associated 
with that particular bus / node are duplicated as seen on Fig.2. 

Let ܃ = ܃ܐ ,be the duplicated variables vector [܄;܁] =
0 the linear non-separable constraints ensuring duplicated var-
iables equality, ܃ = [܃;܄;܁]  a vector of all optimization 
variables, and ࢎ(܃) ≤ 0  the extended non-linear separable 
equations, similar in form to (2)-(4) and (5)-(7), that take into 
account the duplicated variables. The coupling constraints 
  are now handled using the ADMM method [25]. First the܃ܐ
initial optimization problem is reformulated as follows: 

min
܃,ܢ

{ ݂(܃) + ܢ:(ܢ)݃ = (܃)ࢎ,܃ ≤ 0} (8) 

(ܢ)݃ = ൜ 0
+∞  ݅ ܢܐ ݂ = 0

ܢܐ ݂݅ ≠ 0 (9) 

The augmented Lagrangian is: 
ℒఘ(ܢ,܃, ૃ) = ݂(܃) + (ܢ)݃ + ૃ்(܃ − (ܢ

+ ߩ) 2⁄ ࢋ܃‖( −  ଶଶ (10)‖ܢ

where ߩ is the penalty factor and ૃ a vector of Lagrange mul-
tipliers corresponding to the constraints ܢ =  . Then starting܃
from an estimate of ૃ and ܢ the following steps are repeated 
until convergence: 
ାଵ܃ = argmin

܃
൛ℒఘ(ܢ,܃ ,ૃ):ࢎ(܃) ≤ 0ൟ (11) 

ାଵܢ = argmin
௭

൛ℒఘ(܃ାଵ,ܢ,ૃ)ൟ (12) 
ૃାଵ = ૃ + ାଵ܃)ߩ −  ାଵ) (13)ܢ

where ݇ is the iteration number. Due to the fact that the last 
term in (10) is non-separable, instead of performing a minimi-
zation simultaneously over ܃  and ܢ , minimization is per-
formed separately, in an alternating fashion. A first minimiza-
tion step in (11) optimizes ܃ with ܢ fixed, and the second min-
imization step in (12) optimizes ܢ with ܃ fixed. Equations (11-
13) may be rewritten into the following form: 

ାଵ܃ = argmin
܃

൞ ݂(܃)ᇩᇪᇫ
௦௧ ௧

+ ൫ૃ൯
܃்

ᇩᇭᇪᇭᇫ
  ௧

+ ߩ) 2⁄ ܃‖( − ‖ଶଶᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫܢ
ெெ ௧௬  ௧

∶ (܃)ࢎ ≤ 0ൢ 

(14) 

ାଵܢ = argmin
ࢠ

ቄฮ܃ାଵ − ฮଶܢ
ଶ

ܢܐ: = 0ቅ (15) 
ૃାଵ = ૃ + ାଵ܃)ߩ −  ାଵ) (16)ܢ

Equations (14)-(16) are separable but require exchange of 
coupled variable values between directly connected subprob-
lems. The introduction of the auxiliary variable ܢ is what ef-
fectively induced this separability which enables the parallel 
solution of the generated subproblems. Equation (15) presup-

 
Fig.2. Fictitious buses and nodes, and duplication of variables. 

Fig.1. Demand curve and two example generation curves. When gen-
eration is inadequate the market clearing price is ܿଵ or equal to ܸܱܮܮ. 
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poses that the initial estimate for the Lagrange multiplier of a 
fictitious bus or node is selected so that (ૃ)்ܢ =
ܢܐ:ܢ} ∀ 0 = 0}. A proof may be found in section VI-B. 
Convergence requires that the primal and dual residuals 
should be sufficiently small. This may be expressed as 
|ૃାଵ − ૃ| ≤ ାଵܢ|ߩ and ߝ − |ܢ ≤  It has been suggested .ߝ
in [25, 14] that a variable penalty factor keeping the two re-
siduals in the same order of magnitude may improve conver-
gence. However depending on the penalty factor update step it 
was observed that this might not always be the case. Therefore 
in this work a constant penalty factor was used. 

B.  Decentralized System Structure 
The basic structure of the problems solved in this work is 

illustrated in Fig.3 while the corresponding algorithmic 
flowcharts and subsequent information exchange between 
agents may be seen on Fig.4. Three different decomposition 
schemes were considered: 
 Scheme A (network decomposition): Each subproblem con-
tains a part of the transmission network. The agent managing 
a subproblem is assumed to have complete knowledge of util-
ity functions and constraints of users connected to his net-
work area. Such an agent may be considered as the equivalent 
of a transmission system operator and is designated as TSO*. 
All TSO* agents operate in parallel, i.e. for the algorithm to 
progress to the next iteration all agents have to solve their re-
spective optimization subproblems. This scheme, which is 
similar to standard approaches in literature for power system 
areas coordination, is used to test scalability with respect to 
the number of network subproblems. 
 Scheme B (network and user decomposition): The power 
system is decomposed simultaneously to network areas and 
individual network user blocks. For each network area a TSO 
agent manages the corresponding subset of transmission con-
straints (2)-(4). In contrast with the TSO* agents the TSO 
problem no longer contains any user constraints or any cost 
term in the objective function which is similar in form to (14). 
A set of network users, represented by constraints similar to 
(5)-(7), is managed by a microgrid operator (MO). An MO 
agent would in practice represent any number of nearby lo-
cated users (at the extremes it could represent a single user or 
all the users at a specific bus), and would have to deal with 
the peculiarities of end user equipment and demands (e.g. 

communication issues, unexpected requests etc.). Again all 
agents work in parallel. This scheme is used to test scalability 
with respect to the disaggregation of network users. 
 Scheme C (network and user decomposition with user ag-
gregation): This is a two-step decomposition scheme used to 
test the effects of aggregation with respect to network users. 
First the initial problem is decomposed to TSO subproblems 
(as in scheme B) and bus aggregator subproblems. These bus 
aggregators could be considered the equivalent of a distribu-
tion system operator (DSO). Each bus aggregator subproblem 
(designated as DSO*) contains the objectives and constraints 
of all users located at a specific bus. The DSO* subproblem is 
the equivalent of having a single MO managing all the de-
mand at a transmission bus. Following, each DSO* subprob-
lem is further decomposed to individual MO subproblems and 
an aggregator subproblem (designated as DSO). The latter 
does not contain any user constraints and involves only the 
power balance constraint between the sum of MOs and the 
transmission grid. The DSO effectively sums up the MO 
agents response, thus limiting communications and computa-
tional requirements for TSO agents. In the following for ease 
of presentation of the aggregator problem we focus on active 
power only. The extension to include reactive power is 
straightforward. The DSO* subproblems are generally prob-
lems of following form: 

min
ವ∋ࡰ۾ ,ࡰࢋ

൞ ݂(۾)ᇩᇭᇪᇭᇫ
௦௧

+ ߣ ܲ
ᇩᇭᇪᇭᇫ
  ௧

+ ߩ) 2⁄ )ฮ ܲ − ฮଶݖ
ଶᇩᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇫ

ெெ ௧௬ ௧

 ൢ (17) 

Where ܥ is the intersection of multiple user constraints sets 
of the form (5)-(7) and in addition: 
ܲ  A single element of ܃ which is associated with the active 

power of the DSO as seen from the transmission level. 
 which correspond to ܃  A vector consisting of elements of۾

the active power of MOs associated with the DSO. 
ߣ  A single element of ߣ associated with the active power of 

the DSO. 
݂ The part of the original objective function ݂  that corre-

sponds to the aggregator based on his associated users. 
,ߩ   Penalty factor and auxiliary variable of the k-th iteration ofݖ

the original ADMM decomposition associated with the 
DSO. 

The adaptive proximal decomposition method (APDM) used 
for this problem’s solution involves the following steps: 

Fig.3. Tested decomposition schemes and sample illustration of generated subproblems interrelations. Each block represents a subproblem / 
agent and each line indicates subproblem (physical) coupling and a required bidirectional communications link. 
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ାଵ۾ = argmin
ವ∋ࡰ۾

൞ ݂(۾)ᇩᇭᇪᇭᇫ
௦௧

+ ߣ ۾
ᇩᇭᇪᇭᇫ
  ௧

+ ൫ߩ 2⁄ ൯ฮ۾ − ۾ ฮଶ
ଶᇩᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇫ

ெ ௧௬ ௧

ൢ 

(18) 

ାଵߣ = ∇ವ ቀߣ


ܲ +
ߩ
2
ฮ ܲ − ฮଶݖ

ଶቁቚ
ವୀವ۾ವశభ

= ߣ + ାଵ۾൫ߩ −  ൯ݖ
(19) 

Where ݈ is the iteration count. In addition: 
 .  Penalty factor for APDM methodߩ
 Marginal price associated with the constraint ܲߣ = ۾ 

(power balance at the DSO node). 
  A row vector of ones with length equal to the number of 

MOs associated with the DSO (i.e. length of ۾). 
Equation (18) is separable with respect to MOs and represents 
the MO subproblems, while equation (19) constitutes the DSO 
(price update) subproblem. Convergence is achieved if 
max൛ห۾ାଵ − ۾ หൟ ≤ ߝ . Assuming accuracy in the order of 
10kW is desirable, ε should be set accordingly. For a suitably 
selected ߩ  value, power converges following a quickly 
damped oscillation around its optimal value. However it is 
not easy to estimate the correct penalty value and too high a 
value will delay convergence. A simple way to achieve good 
performance is by setting initial bounds ߩ = ߩ,0 =  ݊ߩ
(where ݊ is the number of MOs managed by the DSO) and 
using the following empirical updating scheme every few it-
erations: 

• If max ൜൫ห۾ವ
శభି۾ವ หିห۾ವ ವషభห൯۾ି

ห۾ವశభି۾ವ ห
൘ ൠ ≤ ଵ

ଶ
→ ߩ = ߩ . The ine-

quality if valid implies large oscillations around the optimum 
and consequently slow convergence due to a low penalty val-
ue. Thus the lower bound is increased. 
• If max൛൫۾ାଵ ۾− ൯൫۾ ିଵ൯ൟ۾− ≥ 0 → ߩ = -. The inequaliߩ
ty if valid implies that convergence is slow due to a high pen-
alty factor value. Thus the upper bound is decreased. 
• Set ߩ = ቀߩ + ቁߩ /2. 
The reason for using this more complex proximal scheme in-
stead of a simple price-based approach is that users with non-
strongly convex (e.g. linear) utility curves may be effectively 
managed. For MOs with identical utility functions and a fixed 
penalty factor this method is equivalent to the one presented 
in [26]. 

It should be emphasized that all the proposed decomposi-
tion schemes have the important advantage that the agents 
handling each subproblem do not have to disclose any confi-
dential economic information to other agents. The coordina-
tion is done by exchanging information only about the power 
quantities each agent is willing to trade at the specific price (or 
Lagrange multiplier) estimate of each iteration. Constraints 
and objectives are managed locally by each agent and conse-
quently privacy over costs and limitations is retained. Fur-
thermore the price updates are performed independently at 
each node, thus no centralized control is required. The overall 
decomposition process and structure of the subproblems are 
also further clarified in the example of section VI. 

Fig.4. Flowcharts for the decentralized solution for each of the decomposition schemes and indicative illustration of information exchange 
between different types of agents within a single iteration. Initialization would typically use the values of ࣅ -of the last algorithm run. Re  ࢠ,
garding the information exchanges the iteration count is passed in order to facilitate agent synchronization. For purposes of error checking ࣅ
values could also be periodically transmitted. It should be noted that all schemes use synchronous implementation of the methods where at 
each iteration all subproblems have to solved and relevant information collected, before progressing to the next. 
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C.  Network Partitioning 
Determination of optimization subproblems at the transmis-

sion level presupposes partitioning the network which is a 
large integer programming problem, typically solved through 
various heuristic algorithms. In this work we use a spectral 
clustering algorithm [27]. Assuming a bus adjacency matrix is 
defined based on electrical distance [28] the bus admittance 
matrix ܇ (neglecting shunt admittances) is the associated La-
placian. If ݇  partitions are required the following steps are 
involved: 

1. Calculate the normalized Laplacian ۺ = ۲ି.ହ۲ି܇.ହ , 
where ۲ = ݀݅ܽ݃൫܇(ଵ,ଵ), … ್)܇, ,್)൯. 

2. Find the eigenvectors ݒଵ, … ݒ,  corresponding to the ݇ 
smallest eigenvalues of ۺ  and form the matrix ܄ =
,ଵݒ] … ,  .[ݒ

3. Determine the matrix ܄ by normalizing each of ܄'s rows 
to have unit length. 

4. Treating each row of ܄ as a point in ℝ, cluster them us-
ing a k-means algorithm. 

5. Assign a bus ݅ into partition ݆ if row ݅ of ܄ was assigned 
to cluster ݆. 

Spectral clustering is a commonly used partitioning method in 
power systems [29] and as such is reasonably adequate for 
illustrating the impact of increasing network decomposition. 
Of course this does not necessarily mean that this is the opti-
mal way to partition the system, and other methods, e.g. spec-
tral clustering variants [30] or based on fuzzy or evolutionary 
algorithms [31, 32], could have been used instead. Identifying 
an optimal partitioning would require appropriately linking the 
characteristics of currently available partitioning methods with 
those of the distributed optimization algorithm, and suitably 
extending and investigating their performance. This is a con-
siderable task far beyond the purposes of the present work. 

D.  Practical Implementation Considerations 
The proposed distributed optimization methods are general-

ly robust to changes in the network and will continue working 
even if users enter or leave the optimization process, or part of 
the network is lost due to an outage. However in order to 
achieve convergence a fixed problem structure is required. 
This presupposes rational agent behavior (i.e. consistent bid-
ding / response to received prices) and reliable communica-
tions. Regarding agent behavior, in this work it is assumed 
that each agent is equipped with a digital device that solves a 
generic predetermined form of optimization problem and han-
dles the necessary communications. The parameters of that 
problem would be provided by the agent and while they could 
be changed, they would remain ‘locked’ during a distributed 
optimization run. Implemented in such a way, in terms of 
agent behavior, the distributed approach would not face any 
different problems than a centralized solution would. At the 
same time the response speed of an agent is as fast as its pro-
cessing power and communications infrastructure allow. The 
overall behavior of an agent (i.e. how he determines the pa-
rameters of his optimization problem in terms of utility and 
constraints) between consecutive optimization runs is still an 
interesting research subject. A wide range of relevant work 

and ideas may be found in papers related to bidding practices 
in energy markets (e.g. [33, 34]), or agent-based operations 
modeling (e.g. [35]). 

On the other hand regarding communications, recurring er-
rors in the transmission of information could delay conver-
gence significantly, while persistent errors for an agent could 
be perceived as absence of that agent from the market and 
could lead to a wrong optimization solution. Reliable commu-
nications are of paramount importance for any decentralized 
scheme but how these would be achieved is outside the scope 
of this work. We should point out however that with respect to 
the proposed decomposition schemes, high reliability commu-
nications would be required between TSOs as significant 
amounts of energy may be expected to be traded by them (e.g. 
on the order of several MW to GW). The required communi-
cations reliability for DSOs (typically on the order of a few to 
several MW) could be more relaxed depending on their size, 
while for MOs a high level of reliability might be too expen-
sive to achieve. After all given their smaller size (e.g. on the 
order of several kW to MW) unreliable information from a 
few MO agents in most cases would not significantly affect 
the solution. Decomposition scheme C can help in such cases 
as the DSO could approximate an MO solution in case of a 
detected communications fault. This approximation could also 
be possible for both schemes B and C between TSOs and 
DSOs/MOs (e.g. with the TSOs simply using demand fore-
casts). Overall the selection of suitable communications meth-
ods and protocols for each decomposition level is a subject of 
great importance, and the answer regarding what is most effi-
cient in terms of performance and costs is not yet clear. Rele-
vant information for the interested reader may be found in e.g. 
[36, 37]. 

Closing it should be noted that in practice it might be the 
case that different market players are subjected to different 
market rules. These rules are related with the way market 
players perceive their utility and in certain cases, some of their 
constraints. The overall decomposition approach is independ-
ent of that, and can incorporate any such market variations. 

IV.  INDICATIVE RESULTS 
The test systems used in this work include the 24, 57, 118, 

300 bus IEEE test systems and a 707 bus representation of the 
UK network. Both a full AC and a non-linear DC formulation 
(by setting voltages to unity and neglecting reactive power 
equations) are investigated. No reactive power data were 
available for the UK test system and as a result it was tested 
only with the non-linear ܥܦ formulation. 

A.  General Observations (scheme A) 
The applied distributed optimization method has effectively 

two parameters which affect convergence. The first is the pen-
alty factor ߩ and the second the tolerance ߝ. Fig.5 illustrates 
the general convergence progress of the method for the 24 bus 
ܴܵܶ ܧܧܧܫ  system at peak demand. The problem is decom-
posed using scheme A to 24 subproblems (i.e. down to indi-
vidual bus level) using the full ܥܣ load flow equations with a 
flat start (i.e. ૃ = 0, ܢ = 0). Fig.5 shows that about 200 itera-
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tions are required for a tolerance of 10ିଶ but about twice as 
many are needed if tolerance is set to 10ିଷ. For ߝ = 10ିଵ the 
maximum error in marginal prices compared to centralized 
ߝ solution was 3.8%. For ܨܱܲ ≤ 10ିଶ the error was less than 
1%. It should be noted that the tolerance is not directly related 
to accuracy in marginal prices, so setting a high value on tol-
erance (e.g. higher than 10ିଶ) might give inaccurate results in 
certain cases. Consequently, despite the potential high increase 
in iterations, a low tolerance (i.e. on the order of 10ିଷ) is ad-
visable. 

Regarding the effect of ߩ on convergence it may be seen 
from (14) that for very low values the method nearly degener-
ates into basic Lagrangian Relaxation which implies that for 
non-strongly-convex objective functions may fail to converge. 
On the other hand high values of ߩ typically result in highly 
oscillatory behavior and subsequently delayed convergence. 
Intuitively the convergence performance would be dependent 
on the interaction of the last two terms in (14) and consequent-
ly on the value of ߣ/ߩ. Fig.6 illustrates convergence perfor-
mance for a large variety of cases which involve all our test 
systems at various degrees of decomposition (up to the indi-
vidual node level) and loading conditions (including cases 
which require demand curtailments), as a function of ߣ∗/ߩ, 
where ߣ∗  is the maximum Lagrangian multiplier value at the 
optimization problem solution. As may be seen the number of 
iterations in all cases is minimized for ߣ∗/ߩ ≈ 6-8. Thus ߩ 
should be accordingly set. In practice, a good estimate of ߣ∗  
would generally be available based on forecasts or any for-
ward market solutions. In cases where this estimate is far from 
the actually realized prices, simple logical rules could be used 
to periodically adjust the penalty factor during the algorithm 
execution. 

In Fig.7 convergence results are presented for a modified 
version of the 24 bus ܧܧܧܫ ܴܶܵ, where the capacity in certain 
transmission lines was reduced, resulting in a congested state 
with highly divergent prices. AC load flow with a flat start 
(i.e. ૃ = ܢ,0 = 0) and decomposition to the nodal level was 
used in the simulations. As may be seen the ܥܣ formulation 
leads to an oscillatory behavior around the optimal marginal 
prices (i.e. the prices a centralized solution yields) and has 
difficulty in converging. The reason was the interactions be-
tween the reactive and active power coupling variables. More 
specifically, within a subproblem, the local solution would 
manipulate voltage amplitudes / reactive power in order to 
enable procuring active power at a reduced cost, given that the 
penalty factor for them all is the same. However that would 
imply large voltage / reactive power deviations over the next 
ADMM iteration. This is a cycle that is constantly repeated 
with the marginal energy prices fluctuating around their opti-
mal value. This shortcoming of the original form of the meth-
od can be resolved by modifying the Lagrangian penalty terms 
from (ߩ 2⁄ ࢋ܃‖( − ଶଶ‖ܢ  to (1 2⁄ ࢋ܃)( − ࢋ܃)ૉ(ܢ − ்(ܢ . The 
matrix ૉ has to be set so that the penalty factors associated 
with voltage magnitudes and reactive power are an order high-
er than those associated with voltage angles and active power. 
Intuitively this amounts to solving subproblems where from an 
active power variables viewpoint, duplicated reactive power 

related variables are fixed. In this case convergence to the 
optimal marginal prices is achieved. It should be noted that the 
non-linear ܥܦ simulation converges without difficulties. 

Summing up, the observations made in this subsection pro-
vide general guidelines to setting the method’s parameters at 
any given optimization case, prior to running the case itself. 
Using the non-uniform penalty factors for AC problem formu-
lations, and associating penalty factors with the expected mar-
ginal prices of the system are advisable for achieving good 
convergence speed. 

B.  Network-wise Scalability (scheme A) 
This subsection investigates the decomposition algorithm’s 

scalability with respect to the number of network subprob-
lems, using decomposition scheme A. Each test system was 
decomposed to an increasing number of subproblems. Fig.8 

 
Fig.5. Marginal prices (in monetary units per ܹܯℎ) convergence for 
ܴܵܶ ܧܧܧܫ  decomposed to individual bus level. The vertical lines 
indicate the iteration when a specific convergence tolerance is 
reached. 

 
Fig.6. Effect of penalty factor ߩ  on iterations required for conver-
gence with a tolerance ߝ = 10ିଶ for a variety of cases for both AC 
and non-linear DC formulations. 

 
Fig.7. Convergence for the modified ܧܧܧܫ ܴܶ  ܵhigh congestion case 
with full ܥܣ  equations, decomposition to individual bus level and 
uniform penalty factors (left), non-uniform penalty factors (right). 
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shows the results when using the full ܥܣ equations, while the 
results with nonlinear ܥܦ equations are presented in Fig.9. The 
penalty factor ߩ was set for each system based on the guide-
lines of section IV-A, while the convergence tolerance was set 
to ߝ = 10ିଷ. As may be expected as the number of agents / 
subproblems increases, the number of iterations to conver-
gence also tends to increase. It is of note that each system 
scales differently, e.g. the 24 or 57 bus systems on average 
have a much steeper increase in iterations than the 118 or 300 
bus systems. However a larger system does not necessarily 
imply a more difficult convergence (e.g. convergence for the 
118 bus system can be faster than convergence for the 24 or 
57 bus system). Performance in terms of iterations appears to 
be more case specific, rather than system size specific. 

It may be observed that for the ܷܭ network after 4 parti-
tions there is a steep increase in iterations. From 5 to 11 parti-
tions the iterations number does not significantly vary, while 
for more than 11 partitions the increase in iterations is quite 
significant. The peculiarity of this system, which the other test 
systems do not share, is that due to a small number of active 
transmission constraints there is an increased energy price in 
some buses, significantly higher than the price in other nodes. 
For a given system partitioning, the effect of those constraints 
on price might not propagate quickly enough through the net-
work, or in other words the Lagrangian multipliers update can 
be very slow. Delayed convergence in congested cases espe-
cially as the decomposition degree increases may be an issue. 

It is interesting to note that often the ܥܣ formulation con-
verged faster than the nonlinear ܥܦ despite the fact that the 
problem in the latter case is essentially much simpler. Conse-
quently the size and complexity of the subproblems does not 
seem to be a defining factor as far as convergence speed is 
concerned. Furthermore, for a given system, as the number of 
subproblems increases, while the general trend is an increase 

in iterations, the presented curves show a fluctuating behavior 
(e.g. for AC load flow and 90 subproblems the 300 bus sys-
tem converges slower than when it is decomposed to 105 sub-
problems). This implies that the way the system is partitioned 
can greatly affect convergence. 

Overall the results in this section indicate that the conver-
gence speed of the method depends more on the case under 
study and the extreme conditions (e.g. congestion) that a sys-
tem may be subjected to, than the size of the problem and 
number of constraints. When investigating the applicability of 
ADMM in a power system, typical congested scenarios should 
be studied and special consideration should be given to the 
method used for network partitioning. Regarding the interpre-
tation of the results already presented here, e.g. for the UK 
network, assuming a maximum computational plus communi-
cations latency time of 1s for each subproblem iteration and a 
market clearing frequency of about 15min, it is not possible to 
partition the system to more than 4 areas using this spectral 
clustering approach, as the required time for convergence 
would be more than the actually available time. It should be 
noted however that warm-starting the algorithm (e.g. based on 
forecasts) can improve these results. 

C.  User-wise Scalability (schemes B & C) 
An important property of any distributed scheme is its abil-

ity to manage sufficiently fast a large number of network us-
ers. This section investigates how the proposed schemes per-
form for a given network structure as granularity on the de-
mand side increases, i.e. when different clients connected to 
the same node are handled increasingly individually, rather 
than as a single aggregate client. Tests are based on decompo-
sition schemes B and C. For any single subproblem the total 
time for a single iteration would be ݐଵ = ݐ +  , i.e. the sumݐ
of the subproblem local solution time plus the communica-

Fig.8. Iterations to convergence as a function of the number of TSO*

agents (i.e. number of areas) using the full AC equations. 
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Fig.9. Iterations to convergence as a function of the number of TSO*

agents (i.e. number of areas) using the nonlinear DC equations. 
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tions latency time (time required for sending the information 
to another agent). The total execution time for scheme B and 
C may be given by the following relations: 
ݐ = ∑൫max൛ݐଵ(்ௌைభ), ଵ(்ௌைమ)ݐ … , ,ଵ(ெைభ)ݐ ଵ(ெைమ)ݐ , … ൟ൯ (20) 
ݐ = ∑൫max൛ݐଵ(்ௌைభ), ଵ(்ௌைమ)ݐ … , ,ଵ(ௌைభ∗)ݐ ,ଵ(ௌைమ∗)ݐ … ൟ൯ (21) 
ଵ(ௌை∗)ݐ = ∑൫max൛ݐଵ(ெைభ) , ,ଵ(ெைమ)ݐ … ൟ+  ଵ(ௌை)൯ (22)ݐ

The operator Σ denotes summation over all iterations. Current-
ly there is no fully fledged communications standard for the 
smart grid, and as such it is difficult to predict latency values. 
Therefore in the examples that follow we assume for all sub-
problems ݐ = -It should be noted that this is an admitted .ݏ0.1
ly simple model for latency; however it is considered adequate 
for the purpose of comparing the performance of the different 
decomposition schemes. A more realistic modeling of latency 
times is an important open problem requiring both new theo-
retical derivations and practical experimentation. 

In the following paragraphs we investigate the comparative 
performance of the two decomposition schemes assuming a 
single TSO agent. Our test results are illustrated in Fig.10 and 
involve the disaggregation of demand to an increasing number 
of MO problems by randomly breaking down the initial de-
mand blocks. Parameters for the decomposition algorithms 
were set based on the guidelines of the previous sections. 
 Case 1 (IEEE RTS 24bus system – base data): In this case 

the TSO subproblem is small in size and solved fast. The so-
lution of DSO* subproblems takes typically longer. For a 
fixed penalty factor value, iterations for scheme B increase 
roughly linearly. To a certain extent this may be expected as 
due the smaller demand block sizes, primal residuals tend to 
be smaller and consequently so are the Lagrangian multiplier 
updates. On the other hand, the performance of scheme C is 
roughly independent of the number of clients as the iterations 
remain constant. This is due to two reasons: 1) independently 
of the degree of demand disaggregation iterations at the TSO 
level remain constant; 2) the proximal decomposition algo-
rithm is close in principle to a price-based decomposition and 
thanks to its adaptive penalty update scheme is not signifi-
cantly affected by the number of subproblems. For small de-
grees of user disaggregation scheme B performs better as it 
does not involve the additional round of communications re-
quired for the solution of DSO* subproblems. For high de-
grees of decomposition scheme C outperforms scheme B. 
 Case 2 (IEEE RTS 24bus system – contingency): In this 

case a few generators are assumed to be on outage due to a 

fault. Demand curtailments are required and as such demand 
sets the price. This implies strong interactions between MO 
subproblems during convergence which could make the prox-
imal algorithm convergence more difficult. While some in-
crease may be observed in terms of total time for scheme C, 
convergence time is much better than scheme B. It should be 
noted that compared to the previous case convergence time is 
also increased. This is typical behavior of ADMM when it has 
to converge to a particularly high price (VOLL). 
 Case 3 (IEEE 300bus system – base data): This case differs 

from the first in that the TSO problem is much larger and 
takes longer to solve. Typically here DSO* subproblems are 
faster to solve, thus the number of TSO-level iterations de-
termines the overall convergence time. As may be seen 
scheme C practically outperforms scheme B in every case. 

It should be noted that in all the above test cases the linear 
increase in iterations for scheme B actually represents a worst 
case performance, as convergence could be potentially im-
proved through a suitable modification of the ADMM penalty 
factors. However this could be challenging to do for different 
operating cases in a system without affecting the TSO-level 
iterations. For large systems this is particularly important as a 
larger number of iterations at that level directly implies an 
increased convergence time. In addition it should be noted that 
a more complex and accurate latency model would probably 
reinforce our conclusions as the communications burden for 
scheme B is generally higher than that of scheme C. 

It is well-known that aggregators are considered to be a 
fundamental part of the future smart grid [38]. The way these 
are organized and the algorithms they utilize will have a sig-
nificant impact on the convergence speed of any decentralized 
power system operation scheme. Given that the point of deliv-
ery of energy in a power system does matter, a collection of 
microgrids combined with distribution network aggregators 
could be the natural basis for disaggregated power systems 
operations in the future. As it is, our results indicate that this is 
indeed an efficient decomposition structure from a distributed 
optimization perspective, where increased granularity in de-
mand does not necessarily imply slower convergence. 

D.  On Decentralized Schemes Convergence 
It is a fact that ܯܯܦܣ has been proven to converge only 

for convex problems, whereas the OPF problem is a non-
linear and non-convex one. As reference [25] points out con-
vergence for non-convex cases cannot be guaranteed. The 

 
Fig.10. Time to convergence for three different test cases for decomposition schemes B and C. As may be seen scheme C consistently outper-
forms scheme B as the degree of disaggregation increases. 
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results presented in Fig.7 are indicative of this fact. On the 
other hand, for a suitable selection of penalty factors, the 
method always converged. In terms of optimality, again as 
[25] points out, the method should be considered as a local 
optimization method, and as such its performance is dependent 
on the initial conditions. This however does not imply any 
worse performance than centralized methods [16]. This was 
also verified through our simulation results, where the solution 
of both centralized (interior point method based) and distribut-
ed (ADMM-based) approaches was the essentially the same. 
Overall, while a mathematical convergence proof cannot be 
provided for the general non-convex case, our extensive simu-
lation results indicate that ADMM can work reliably for the 
OPF problem, independently of its formulation. Of course, if 
the recent efforts in convexifying the OPF problem (e.g. [39, 
40, 41]) find general application then any such convergence 
issues would be obsolete. 

Another question of interest is convergence performance in 
degenerate cases. As indicated in [42] there are two common 
types of degeneracy in the OPF problem, related to controls 
and constraints respectively. Control degenerate cases were 
included in our test set (e.g. load curtailment cases where mul-
tiple demand blocks at a single bus were marginal at the same 
time). This type of degeneracy is resolved through the quad-
ratic terms included in the subproblems and convergence can 
be ensured. On the other hand, constraint degenerate cases 
were not involved in our tests. Such cases are difficult to iden-
tify but could appear on more complex formulations of the 
problem with more complex market rules. Relevant investiga-
tion could be a direction for future research. 

V.  CONCLUSIONS 
As power systems are becoming ever more granular due to 

the increased penetration of small renewable generators, dis-
tributed storage and electric vehicles, there is a fundamental 
question to what extent power system operation and control 
can be decomposed into smaller units. In this paper the answer 
to that question was investigated within the context of an ܱܲܨ 
problem, considering both the traditional network decomposi-
tion into parallel areas but extended down to the individual 
bus level, and the decomposition of demand connected to a 
given bus into individual clients. A parallel implementation of 
the ܯܯܦܣ algorithm has been proposed as a basis for the 
decomposition of non-convex formulations of the ܱܲܨ prob-
lem coupled with an additional proximal decomposition 
scheme to improve scalability. Extensive simulations have 
been performed that illustrate the convergence properties of 
the proposed scheme, and provide insight on the extent that 
decomposition for an ܱܲܨ problem is feasible. 

Overall the presented results indicate that convergence 
speed is largely dependent on the peculiarity of the particular 
case to be solved and the way it is decomposed, rather than the 
number of involved constraints. Slow convergence to high 
price values (e.g. during load curtailments) and poor propaga-
tion of certain constraints (in cases of network congestion) are 
problems of the method used in this work. Regardless of these 
facts, the algorithm did eventually converge in every tested 

case with sufficient accuracy. With a fast communications 
infrastructure and a suitably selected partitioning at the trans-
mission level, the proposed scheme does seem able to solve 
problems fast enough to be of practical value. No financially 
sensitive information is exchanged between agents, and the 
scheme is robust to loss of any of its individual components. 
Furthermore an extension to a multi-period optimization prob-
lem is straightforward, with transmission system agents han-
dling independent subproblems for each time period, and other 
agents handling time-linkage constraints. 

It should be emphasized that this work is just a first step 
towards developing a decentralized structure for energy mar-
kets and further research is required. Improving the price up-
date mechanism, extending the algorithm to facilitate the solu-
tion of problems with discrete constraints, investigating the 
effects of security and distribution network constraints, ancil-
lary services and bidding practices, are all key future research 
targets. In addition, development of accurate communications 
latency models and investigation of asynchronous algorithms 
would also be of significant value. 

VI.  APPENDIX 

A.  Decomposition Example 
In order to clearly illustrate how our decomposition method 

works we present a simple example for scheme C. Following 
is the initial problem formulation for the simple network illus-
trated on Fig.11. For brevity and ease of presentation we use 
only active power balance equations where the amplitude of 
all voltage vectors is equal to unity: 

min
۾
ቐ  ܿ ܲ
ୀଵ…ଷ

:  
۾ = {∗(܄܇)(܄)݃ܽ݅݀}݈ܽ݁ݎ
܄ = [ ଵܸ, ଶܸ],۾ = [ ଵܲ, ଶܲ + ଷܲ]  

ܲ ≤ ܲ ≤ ܲ , ݅ = 1 … 3
ቑ 

Now we introduce fictitious buses and nodes (3, 4 and 5), du-
plicate the corresponding variables, and rewrite the system 
equations which yields: 

min
ࡼ

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

 ܿ ܲ
ୀଵ…ଷ

:  

ଵ۾ = ݈ܽ݁ݎ ቄ݀݅ܽ݃(܄ଵ)൫܇ 2ൗ ଵ൯܄
∗
ቅ

ଵ܄ = [ ଵܸ, ଷܸ],۾ଵ = [ ସܲ , ଷܲ]
ଶ۾ = ݈ܽ݁ݎ ቄ݀݅ܽ݃(܄ଶ)൫܇ 2ൗ ଶ൯܄

∗
ቅ

ଶ܄ = [ ଶܸ, ଷܸ],۾ଶ = [ ହܲ , ଷܲ]

ܲ ≤ ܲ ≤ ܲ , ݅ = 1,2,3

ଵܲ − ସܲ = 0
ଶܲ + ଷܲ − ହܲ = 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

ℎ(܃) ≤ 0

ଷߜ  − ଷߜ = 0
ܲ + ܲ = 0, ݅ = 3,4,5                ൠ ܃ܐ   = 0⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

Where ߜ = ݈ܽ݊݃݁{ ܸ}. With ܢ = [ ଷܲ , ଷܲ , … , ଷߜ  ଷ] basedߜ,
on (14) for ADMM iteration k we get two TSO subproblems, 
e.g.: 

 
Fig.11. Simple decomposition example. 
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min
యೌ
ర್
ఋయೌ ⎩

⎪
⎨

⎪
⎧−ૃ(ଵ)

ିଵ
ଷܲ − ૃ(ସ)

ିଵ
ସܲ − ૃ()

ିଵߜଷ

      +
ߩ
2 ቀ൫ ଷܲ − (ଵ)ܢ

ିଵ൯
ଶ

+ ൫ ସܲ − (ସ)ܢ
ିଵ൯

ଶ
+ ൫ߜଷ − ()ܢ

ିଵ൯
ଶ
ቁ :

ଵ۾ = ݈ܽ݁ݎ ቄ݀݅ܽ݃(܄ଵ)൫܇ 2ൗ ଵ൯܄
∗
ቅ

ଵ܄ = [ ଵܸ, ଷܸ],۾ଵ = [ ସܲ, ଷܲ] ⎭
⎪
⎬

⎪
⎫

 

In addition we have the subproblem of the generator: 

min
భ

ቊܿଵ ଵܲ − ૃ(ଷ)
ିଵ

ସܲ +
ߩ
2 ൫ ସܲ − (ଷ)ܢ

ିଵ൯
ଶ

:  ଵܲ ≤ ଵܲ ≤ ଵܲ

ଵܲ− ସܲ = 0
ቋ 

And the DSO* subproblem: 

min
మ
య
ఱೌ ⎩

⎪
⎨

⎪
⎧ܿଶ ଶܲ + ܿଷ ଷܲ − ૃ(ହ)

ିଵ
ହܲ +

ߩ
2 ൫ ହܲ − (ହ)ܢ

ିଵ൯
ଶ

:

ଶܲ ≤ ଶܲ ≤ ଶܲ

ଷܲ ≤ ଷܲ ≤ ଷܲ

ଶܲ + ଷܲ − ହܲ = 0 ⎭
⎪
⎬

⎪
⎫

 

This subproblem is further decomposed using the APDM algo-
rithm, yielding for iteration l two MO subproblems based on 
(18), e.g.: 
min
మ

ቄܿଶ ଶܲ − ିଵߣ ଶܲ +
ߩ
2 ൫ ଶܲ − ଶܲ

ିଵ൯
ଶ

: ଶܲ ≤ ଶܲ ≤ ଶܲቅ 

And in addition the DSO price update equation based on (19): 
ߣ = ૃ(ହ)

ିଵ + ൫ߩ ହܲ
 − (ହ)ܢ

ିଵ൯ ܽ݊݀ ଶܲ
 + ଷܲ

 − ହܲ
 = 0 

This completes the description of all possible types of sub-
problems involved. 

B.  Multipliers & Auxiliary Variables Updates 
Let us assume that (ૃ)்ܢ = ܢܐ:ܢ} ∀ 0 = 0} . The La-

grangian of (12) is: 
ℒ = ݂(܃ାଵ) + (ૃ)்(܃ାଵ − (ܢ + ఘ

ଶ
ฮࢋ܃ାଵ − ฮܢ

ଶ
ଶ +  ܢܐ்ૄ

Where ૄ  are the Lagrange multipliers corresponding to the 
constraints ܐܢ = 0. Removing the terms which are constant 
and do not affect the optimal ܢ value, the above simplifies to: 
ℒ =  ఘ

ଶ
ฮࢋ܃ାଵ − ฮܢ

ଶ
ଶ +  ܢܐ்ૄ

Based on the first order KKT conditions: 
ାଵࢋ܃)ߩ−      − ்(ାଵܢ + ܐ்ૄ = 0 →
→ ାଵࢋ܃)ߩ − ܢ்(ାଵܢ = ܢܐ்ૄ = 0

 

Which is valid for any {ܐ:ܢܢ = 0}. From (16) it follows: 
     ૃାଵ = ૃ + ାଵ܃)ߩ − (ାଵܢ →
→ (ૃାଵ)்ܢ = (ૃ)்ܢ+ ࢋ܃)ߩ

ାଵ − ܢ்(ାଵܢ = 0
 

This completes the proof and justifies rewriting (12) as (15). 
In order to further clarify the ૃ  updates, referring again ܢ,

to Fig.11, let us consider the constraint ଷܲ + ଷܲ = 0 and cor-
responding auxiliary variables ܢ(ଵ) , ,Let ૃ(ଵ) .(ଶ)ܢ ૃ(ଶ)  be the 
Lagrange multipliers corresponding to the constraints ܢ(ଵ) =
ଷܲ , (ଶ)ܢ = ଷܲ  and assume their initial values are selected so 

that ૃ(ଵ)
 = ૃ(ଶ)

 . It follows from (12) that ܢ(ଵ)
ଵ = (ଶ)ܢ−

ଵ =  ଵݖ
and also: 
ଵݖ = argmin

௭
ቄૃ(ଶ)

 ݖ − ૃ(ଵ)
 ݖ + ఘ

ଶ
( ଷܲ

ଵ − ଶ(ݖ + ఘ
ଶ

( ଷܲ
ଵ + ଶቅ(ݖ →

→  ( ଷܲ
ଵ − −( ଵݖ ( ଷܲ

ଵ + (ଵݖ = 0 → ଵݖ = ( ଷܲ
ଵ − ଷܲ

ଵ ) 2⁄
 

From (13) we then have: 
ૃ(ଵ)
ଵ = ૃ(ଵ)

 + )ߩ ଷܲ
ଵ − ( ଷܲ

ଵ − ଷܲ
ଵ ) 2⁄ ) = ૃ(ଵ)

 + ఘ
ଶ

( ଷܲ
ଵ + ଷܲ

ଵ )

ૃ(ଶ)
ଵ = ૃ(ଶ)

 + )ߩ ଷܲ
ଵ + ( ଷܲ

ଵ − ଷܲ
ଵ ) 2⁄ ) = ૃ(ଶ)

 + ఘ
ଶ
( ଷܲ

ଵ + ଷܲ
ଵ )

 

As may be seen ૃ(ଵ)
ଵ = ૃ(ଶ)

ଵ . It should be clear that closed 
form solutions of (12) are used which implies a negligible 
computational burden. 
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