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Abstract 

Metastatic melanoma remains incurable, emphasising the acute need for improved 

research models to investigate the underlying biological mechanisms mediating 

tumour invasion and metastasis, and to develop more effective targeted therapies to 

improve clinical outcome. Available animal models of melanoma do not accurately 

reflect human disease and current in vitro human skin equivalent models 

incorporating melanoma cells are not fully representative of the human skin 

microenvironment. 

We have developed a robust and reproducible, fully-humanised 3D skin equivalent 

comprising a stratified, terminally differentiated epidermis and a dermal compartment 

consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated 

into the epidermis were able to invade through the basement membrane and into the 

dermis, mirroring early tumour invasion in vivo. 

Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and 

metastatic melanoma indicates this model accurately recreates features of disease 

pathology, making it a physiologically representative model of early radial and 

vertical growth phase melanoma invasion. 

 

Introduction 

Cutaneous metastatic melanoma remains one of the most deadly forms of cancer, 

with a rapidly increasing incidence, mortality and public health burden. Although 

early stage melanoma is largely curable through surgical resection, continued 5-year 
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survival rates of only 5-19% for advanced disease (1) reflect the lack of consistently 

beneficial treatments for metastatic melanoma. Improved research models are 

therefore urgently needed to investigate the underlying biological mechanisms 

mediating tumour invasion and subsequent metastasis, and to facilitate the 

development of more effective targeted therapies to improve clinical outcome. 

Human skin comprises an upper epidermal layer containing mainly keratinocytes in 

close association with melanocytes, and a lower dermal layer containing multiple cell 

types including fibroblasts that synthesise extracellular matrix (ECM) components to 

support cellular growth (2). Keratinocytes form a proliferative basal layer and 

differentiate as they move towards the surface of the skin, while melanocytes, the 

precursor cells of melanoma, proliferate less frequently and remain at the epidermal-

dermal junction where they interact with basal layer keratinocytes to regulate tanning 

of the skin in response to UV radiation (3). A basement membrane, composed of 

matrix molecules including laminin isoforms and type IV, VII and XVII collagens 

separate melanocytes and keratinocytes from the papillary dermis (4). However, 

when melanocytes become transformed, hyper-proliferative and migratory 

melanoma cells invade through the basement membrane into the dermis. Therefore 

models that aim to investigate early melanoma development must recreate the 

microenvironment of this distinct cellular niche (5). 

While mouse xenograft models of melanoma in immunocompromised mice are 

commonly used to investigate tumour development, progression and therapeutic 

response they do not accurately recreate the microenvironment of human melanoma 

at either the primary or distant site. As such, these models cannot recapitulate the 

initial events leading to early invasion through the basement membrane or 

dissemination of melanoma cells throughout the skin and to subsequent metastatic 
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sites. Furthermore, while spontaneous mouse melanoma models (6-8) are useful for 

investigating the early stages of mouse melanoma development, significant 

differences between the architecture of human and rodent skin (9), as well as 

differences observed in the histopathological features of human and murine 

melanoma subtypes (10) make it difficult to extrapolate results from these studies 

into a clinically relevant context. 

To more accurately investigate early stage human melanoma, full-thickness in vitro 

skin equivalent models incorporating melanoma cells have been developed, which 

allow investigation of melanoma migration and invasion from the epidermis into the 

dermis (11-14). However, such equivalents comprise a dermal component created 

from fibroblasts embedded in bovine or rat-tail collagen, which as well as contracting 

over time leading to distortion and disruption of the equivalent, are not representative 

of the normal human skin microenvironment as they include non-human ECM 

components. Alternatively, while de-cellularised human skin models offer a human 

skin microenvironment, variability between donors results in inconsistent melanoma 

migration, which impacts the reproducibility of these assays (15). 

The present study describes a novel in vitro model for the investigation of early 

melanoma invasion, such as that which occurs in radial and vertical growth phase 

melanoma, within a fully-humanised cutaneous microenvironment. We have 

developed a unique full-thickness three dimensional (3D) skin equivalent 

(organotypic skin culture) through the incorporation of an inert porous scaffold (16) 

with appropriate pore sizes to support the 3D growth and cell-cell contact of primary 

human dermal fibroblasts. Fibroblasts are stimulated to produce their own ECM 

constituents (17, 18), forming a stable dermal component that is physiologically 

representative of normal human skin. Following addition of primary human 
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keratinocytes, crosstalk between fibroblasts and keratinocytes facilitates the 

development of a permissive microenvironment conducive to long-term culture (19). 

This is consistent with previous studies showing the stratum corneum of skin 

equivalents formed on fibroblast-derived matrix contains a considerably higher 

concentration of natural moisturising factor compared to animal collagen based skin 

equivalents, thus allowing cultures to be maintained for up to 20 weeks (20). 

Seeding melanoma cells onto the dermal equivalent prior to the incorporation of 

primary human keratinocytes, rather than implanting melanoma spheroids directly 

into the dermis (21), or suspending melanoma cells in hydrogel (22), places the 

melanoma cells in their original micro-environmental niche within the skin, resulting 

in subsequent proliferation and nest formation at the epidermal-dermal junction prior 

to invasion through the basement membrane. We demonstrate that active invasion 

of melanoma cells results in breakdown of basement membrane components type IV 

and VII collagens, accurately recapitulating the pattern of early melanoma invasion 

observed in human cutaneous tumours in vivo, thus providing a valuable tool to 

investigate mechanisms mediating melanoma initiation and early stages of disease 

progression. 

 

Materials and Methods 

Cell culture 

Primary human neonatal foreskin fibroblasts (CellnTec; Stauffcherstr, Switzerland) 

were cultured in Media A (Table 1) for up to 7 passages. Immortalised mouse 

embryonic 3T3 fibroblasts (ATCC-CCL-92) were cultured in Media D. Following 



7 
 

informed consent, primary human keratinocytes derived from surplus skin obtained 

from patients (aged between 20 and 55) undergoing routine surgery (for which full 

ethical approval was obtained; National Research Ethics reference, Newcastle and 

North Tyneside 1 08/H0906195 for all studies with human tissue) were isolated by 

incubating the skin in dispase (Scientific Laboratory Supplies, Nottingham, UK) for 

12-18 h at 4oC to separate the epidermis from the dermis before dissociating the 

epidermis with trypsin/EDTA (Scientific Laboratory Supplies) (23) for 5 min at 37oC 

and subsequently cultured in Media E for up to 2 passages. Keratinocytes were then 

further co-cultured with mitomycin C (Sigma-Aldrich, Poole, UK) treated 3T3 feeder 

cells (24) at 1:1 ratio in Media B (based on (25)) for up to 3 passages, changing the 

media every day. Following detachment with trypsin/EDTA, keratinocytes were 

subsequently incubated with an equal volume of soybean trypsin inhibitor (Sigma-

Aldrich) and centrifuged at 300 g for 5 min prior to re-suspension in fresh culture 

media and subsequent culture. Human metastatic melanoma cell line, SK-mel-28 

(LGC Standards; ATCC-HTB-72,) and the primary human melanoma cell line, WM35 

(Coriell Cell Repositories, Philadelphia) were obtained in 2011, and are tested every 

6 months for Melan-A expression by immunofluorescence, with BRAF mutational 

status confirmed by real time polymerase chain reaction (26), and cultured in Media 

A as previously described (27). All cells were cultured at 37oC in a humidified 

atmosphere with 5% CO2 in air. 

Human skin equivalent preparation  

12-well format Alvetex® scaffold (Reinnervate Ltd, Reprocell group) were pre-treated 

with 70% ethanol in a 6-well plate according to the manufacturer’s instructions. 2.0 x 

106 primary human neonatal foreskin fibroblasts were seeded onto Alvetex® in 100 l 
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Media A and incubated at 37oC, in a humidified atmosphere of 5% CO2 in air for 1.5 

hours. 9 ml of Media A + 100 g/ml ascorbic acid (Sigma-Aldrich) were subsequently 

applied to the bottom of each well to gently flood the insert prior to incubation for a 

further 18 days, changing media every 3.5 days, to allow the formation of a dermal 

equivalent. Dermal equivalents were subsequently washed with 10 ml phosphate 

buffered saline (PBS; Sigma-Aldrich) prior to the addition of 4 ml Media B to the 

outer side of the insert such that the bottom of each dermal equivalent was in contact 

with the media. To establish a melanoma 3D equivalent, 2.0 x 104 melanoma cells 

were applied to the dermal equivalent in 100 l Media B and incubation at 37oC 

continued for a further 3 hours. In the meantime, primary human keratinocytes were 

harvested by differential trypsinisation, discarding the 3T3 feeder cells, and 2.0 x 106 

keratinocytes seeded onto dermal equivalents (with or without melanoma cells) in 

100 l Media B and incubation continued for a further 3 hours. 5ml of Media B was 

then applied to the outer side of each well to gently flood the inside of the insert prior 

to further incubation at 37oC for 3 days, changing the media every day. On day 21, 

the insert was removed from the 6-well plate and placed into a well insert holder in a 

deep petri dish (Reinnervate Ltd, Reprocell group) on the middle rung of the stand. 

30 ml of Media C was then added to the dish such that the bottom of the equivalent 

was in contact with the media but the upper surface remained exposed to the air and 

incubation continued at 37oC in 5% CO2 for 14 days, changing the media every 3.5 

days, to allow the formation of a full-thickness skin equivalent. 

Scanning electronmicroscopy (SEM) 

Skin equivalent or primary tissue samples of normal human skin were fixed in a 1:1 

mix of DMEM media and double strength fixation buffer (16% PFA (Sigma-Aldrich), 
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25% glutaraldehyde (Agar Scientific, Stansted, UK), 0.2 M sodium cacodylate (Agar 

Scientific)) for 5-10 mins at room temperature. Samples were then transferred to a 

new tube and incubated in single strength fixation buffer (8% PFA, 12.5% 

glutaraldehyde, 0.1 M sodium cacodylate) at 4oC for 1 hour prior to washing in PBS 

three time for 5 minutes each. Samples were subsequently cut into 2-3 mm2 squares 

and immersed in post-fixation buffer (1% osmium tetroxide (Agar Scientific)) in 0.1M 

sodium cacodylate) at 4oC for 60 minutes before washin in 0.1M sodium cacodylate 

buffer twice for 10 minutes each. Following dehydration though a series of ethanol 

washes (30%, 50%, 70%, 80%, 90%, 95% and 100%) each for 15 minutes, samples 

were then dried using a critical point dryer (Baltec CPD030, Pfäffikon ZH, 

Switzerland), coated in 5 nm of platinum using a Cressington Coating System 328 

(Cressington Scientific Instruments, Watford, UK) and visualised using a Leica 

S5200 scanning electron microscope (Leica Microsystems, Milton Keynes, UK). 

Immunofluorescent analysis of skin biomarkers 

Formalin-fixed, paraffin-embedded primary human tissue samples derived from an in 

situ melanoma or an AJCC stage IV metastatic melanoma were used as a 

comparative to 3D human melanoma skin equivalents. All samples were processed 

for haematoxylin and eosin staining or immunohistochemistry as previously 

described (28, 29). 5 M sections were incubated with 1:1000 mouse anti-human 

type III collagen (kindly supplied by Dr Rachel Watson, Manchester University) 

(Abcam, Cambridge, UK; ab23445), 1:1000 mouse anti-type IV collagen (Abcam; 

ab6586), 1:400 rabbit anti-type VII collagen (kindly supplied by Dr Mei Chen (30)), 

1:1000 rabbit anti-cytokeratin 1 (Abcam; ab93652), 1:1000 mouse anti-cytokeratin 14 

(Abcam; ab7800), 1:1000 mouse anti-involucrin (Abcam; ab68), or 1:250 mouse anti-
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Melan-A (Abcam; ab731) primary antibodies diluted in PBS + 5% BSA overnight at 

4oC. Primary antibody binding was detected with secondary Alexa Fluor 488 goat 

anti-mouse (Life Technologies, Paisley, UK) or Alexa Fluor 488 goat anti-rabbit 

antibodies (Life Technologies) and cell nuclei counter stained with DAPI (1 g/ml; 

Life Technologies) diluted in PBS + 5% BSA for 1 hour at room temperature. 

Sections were finally mounted under glass coverslips in Vectorshield mounting 

media (Vector Laboratories, Peterborough, UK) and visualised using either a Leica 

DMI3000B (Leica Microsystems) or an Axioimager Z2 (Carl Zeiss Ltd, Cambridge, 

UK). 

 

Results  

Generation of a full-thickness human skin equivalent  

Alvetex® porous polymer scaffolds were used to create a full-thickness human skin 

equivalent in the absence of any animal matrix components (Figure 1). Pre-treatment 

of Alvetex® by immersion in 70% ethanol rendered it hydrophilic allowing media and 

cells to enter the 3D matrix. Alvetex® scaffolds were subsequently washed with 

culture media to remove the ethanol and seeded with primary human neonatal 

foreskin fibroblasts, prior to culture for 18 days in Media A (Table 1) supplemented 

with ascorbic acid to promote synthesis of collagen polypeptides through the 

processing of pro-collagens to collagen α-chains (17). Primary human keratinocytes 

isolated from the epidermis of normal human skin were then seeded onto the upper 

surface and cultured for 3 days in Media B. The upper surface was subsequently 

exposed at the air/liquid interface for 14 days to induce keratinocyte differentiation, 
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while the lower surface remained in contact with Media C, resulting in the formation 

of a full-thickness human skin equivalent. 

Cell numbers, media components and time intervals for each step of the protocol 

were optimised to allow full scaffold colonisation by dermal fibroblasts (Figure 2a) 

and the establishment of an intact, fully stratified epidermis with key morphological 

features of a stratum basale, stratum spinosum and stratum corneum (Figure 2b, 20x 

magnification; Figure 2c, 10x magnification). Electron micrographs indicate the 

structure and porosity of the Alvetex® scaffold membrane (Figure 2d) supporting 

fibroblast growth in three dimensions and facilitating the establishment of a full-

thickness human skin equivalent (Figure 2e) with clear morphological similarities to 

normal human skin (Figure 2f). 

Primary human keratinocytes and fibroblasts in organotypic culture form a 

humanised skin microenvironment 

Normal human skin comprises a dermal layer and a multi-layered epidermis, each 

layer of which displays a distinct protein expression profile (Figure 3a). The dermis 

contains extracellular matrix components, including type I and III collagen, while the 

epidermis is characterised by the expression of various cytokeratins that are 

differentially regulated within different layers of the epidermis, reflecting the 

progressive stages of normal human keratinocyte differentiation. Histological 

analysis of our established 3D skin equivalent (Figure 3b) demonstrated 

morphological similarities to that of normal human skin (Figure 3c), and a 

comparative commercially available model (Mattek EpidermFT; Figure 3d); in 

particular the presence of a fully developed stratum corneum was evident indicating 

keratinocyte differentiation and barrier formation. 
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Immunofluorescent staining also revealed the expression of human type III, IV and 

VII collagen, cytokeratin 1 and 14 as well as involucrin (Figure 3), to varying degrees 

in the 3D skin equivalent, normal human skin and the Mattek EpidermFT.  Dermal 

fibroblasts contained within the 3D skin equivalent for 35 days clearly expressed type 

III collagen (Figure 3t), which albeit not as abundant as expression observed in 

normal human skin (Figure 3u) nevertheless indicated the production of human 

extrcellular matrix, critical to the long-term maintenance of the skin equivalent. In 

contrast however, less human type III collagen expression was observed in the 

Mattek EpidermFT (Figure 3v), likely due to their construction mainly being based on 

the use of bovine type I collagen that may suppresses further ECM production by the 

dermal fibroblasts. The 3D skin equivalent model also demonstrated production of 

human type I collagen (data not shown). 

The basement membrane components type IV and VII collagens were clearly 

expressed at the epidermal-dermal junction of both the 3D skin equivalent (Figure 

3n,q) and normal human skin (Figure 3o,r), indicating interaction between fibroblasts 

and keratinocytes and synthesis of a de novo basement membrane. However, while 

expression of type IV collagen was partially observed between the epidermal and 

dermal layers within the Mattek EpidermFT model, there was no evidence for the 

organised expression of type VII collagen (Figure 3p,s). It is possible however, that 

the Mattek EpidermFT model may not have been cultured for sufficient time to 

enable type VII collagen organisation and the formation of a basement membrane 

comparable  to normal skin (31).   

Expression of cytokeratin 14 by keratinocytes within the 3D skin equivalent also 

indicated the formation of a stratum basale (Figure 3k), resembling that of normal 

human skin (Figure 3l). Keratinocytes within the 3D skin equivalent appeared to 
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undergo normal differentiation as demonstrated by the expression of cytokeratin 1 

and involucrin in suprabasal and terminal layer keratinocytes, indicative of stratum 

spinosum and stratum granulosum formation respectively (Figure 3h,e), and again 

indicative of the pattern of epidermal differentiation observed in normal human skin 

(Figure 3i,f). Furthermore, while expression of cytokeratin 14 (Figure 3m) was 

observed in Mattek EpidermFT, cytokeratin I (Figure 3j) and involucrin (Figure 3g) 

expression was less well defined, indicating formation of a stratum basale but 

ineffective keratinocyte differentiation in this model. The establishment of an 

organotypic skin equivalent on Alvetex® scaffolds therefore accurately recreates the 

microenvironment of normal human skin. This was subsequently used to investigate 

melanoma cell behaviour in vitro.  

Melanoma cell invasion through the basement membrane of fully humanised 

3D skin equivalents recreates the progressive histopathological features of 

melanoma invasion in human skin 

The potential for human melanoma cell lines derived from either primary or 

metastatic tumours to invade the pore structure of Alvetex® scaffolds was verified in 

the absence of primary fibroblasts (data not shown). To model melanoma invasion, 

metastatic melanoma cells were applied to pre-established fibroblast-containing 

Alvetex® dermal equivalents prior to the incorporation of keratinocytes at a slightly 

lower ratio (100:1) to the physiological ratio of keratinocytes to melanocytes in 

normal human skin (36:1) (32), in order to prevent tumour cell over growth within the 

epidermis prior to the observation of dermal invasion. Histological staining of a 3D 

skin equivalent 2 weeks post-incorporation with metastatic SK-mel-28 melanoma 

cells demonstrated the development of melanoma nests at the epidermal/dermal 

junction (Figure 4a), verified by the expression of the melanocyte lineage-specific 
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marker Melan-A (Figure 4e). Immunofluorescent staining for the human basement 

membrane components type IV collagen (Figure 4i) and type VII collagen (Figure 5a) 

2 weeks after the incorporation of melanoma cells into the skin equivalent revealed 

intact expression of both markers and clear localisation of melanoma cells above 

both type IV (Figure 4m,q) and type VII collagen (Figure 5e,i). However, culture for a 

further 2 weeks resulted in the invasion of Melan-A-positive melanoma cells into the 

dermal component (Figure 4b,f), accompanied by disruption of type IV collagen 

(Figure 4j) and loss of type VII collagen (Figure 5b). Furthermore, co-staining for 

Melan-A and either type IV collagen (Figure 4n,r) or type VII collagen (Figure 5f,j) 

demonstrated disruption of these basement membrane components coincided with 

melanoma invasion, indicating SK-mel-28 melanoma cells actively invade from the 

epidermis into the dermis of the skin equivalent through the basement membrane. 

Similar results were also obtained with skin equivalents incorporating Melan-A-

positive primary WM35 melanoma cells, where again tumour invasion through the 

basement membrane, albeit less than metastatic SK-mel-28, was observed with a 

concurrent disruption of type IV collagen at 4 weeks (Supplementary Figure 1). 

To validate whether invasion of melanoma cells within a 3D skin equivalent 

accurately reflects the progressive stages of clinical disease, the effect of melanoma 

cells on type IV and VII collagen were investigated in a formalin-fixed paraffin 

embedded in situ melanoma or in a primary tumour derived from a patient with 

metastatic disease. Histological staining and Melan-A immunostaining of the 

melanoma in situ (Figure 4c,g) confirmed a minimally invasive tumour accompanied 

by continuous and intact expression of both type IV (Figure 4k) and type VII collagen 

(Figure 5c) at the epidermal/dermal junction. Co-immunostaining demonstrated that 

in pre-invasive melanomas, cells are located above type IV (Figure 4o,s) and type 
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VII collagen (Figure 5g,k) indicating an intact basement membrane, which reflects 

the histopathological features observed in 3D skin equivalents after 2 weeks post-

incorporation with melanoma cells. Conversely, histology and immunostaining for the 

expression of Melan-A in the metastatic melanoma (Figure 4d,h) revealed highly 

invasive tumour cells with disrupted type IV (Figure 4l) and VII collagen (Figure 5d) 

expression. Active invasion of this advanced metastatic melanoma, resulting in loss 

or disruption of type IV collagen (Figure 4p,t) and type VII collagen (Figure 5h,l), 

similarly reflected the histopathological features observed in 3D skin equivalents 4 

weeks after incorporation of SK-mel-28 metastatic melanoma cells. Collectively, 

these data indicate our novel 3D skin equivalent accurately recreates the 

progressive histopathological features of melanoma invasion in human skin and the 

applicability of this novel organotypic skin model as a valuable tool for the 

investigation of early melanoma invasion. 

 

Discussion 

The present study demonstrates the generation of a novel full-thickness human skin 

equivalent bearing morphological and structural similarity to normal human skin 

within 35 days. We have optimised and validated a protocol for the construction of an 

organotypic skin model from primary human fibroblasts and keratinocytes that 

accurately recreates the microenvironment of normal human skin, as demonstrated 

by the production of human extracellular matrix component type III collagen, as well 

as the distinct expression profile of basement membrane proteins type IV and VII 

collagen, and epidermal differentiation markers cytokeratin 14, and involucrin. 

Incorporation of melanoma cells into their original environmental niche at the 
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epidermal/dermal junction demonstrates tumour cells retain their proliferative and 

invasive potential, forming melanoma clusters before invading though the basement 

membrane into the dermis. 

Comparative histopathological features observed in primary melanomas derived 

from differing American Joint Committee on Cancer (AJCC) disease stages (33), 

confirm the 3D skin equivalent model is physiologically representative of clinical 

disease. Conversely, while Mattek EpidermFT expressed type IV collagen, the lack 

of human type III and VII collagen expression suggests the reduced longevity of this 

model will limit its use for the investigation of less invasive melanoma cells. 

Interestingly, our data demonstrate that while invasion of both SK-mel-28 and WM35 

melanoma cells through the basement membrane of the 3D skin equivalent resulted 

in the breakdown and disruption of type IV collagen there appeared to be an 

increase in type IV collagen surrounding invading tumour cells, consistent with 

previous observations showing increased type IV collagen expression parallels 

melanoma progression (34, 35) and which is directly required for melanoma 

metastasis (36). However, increased type IV collagen in this context is likely 

independent of its function as a basement membrane component as it does not form 

a continuous membrane structure. Collectively these data support the validity of the 

3D skin equivalent as a representative model of early melanoma invasion in vivo.  

Furthermore, since chemokines and growth factors including IGF-1 (37) are known 

to drive melanoma invasion, the present model may also offer a means through 

which to study the effect of modulating such factors within melanoma cells on early 

tumour invasion.  
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In addition to confirming the presence of distinct skin layers within the skin 

equivalent, our data demonstrate the presence of regular compacted areas within 

the epidermis (Figure 2b), which may represent important microenvironmental niche 

areas of the skin where skin stem cells may reside (38-41). Importantly these data 

confer the additional potential utility of our 3D skin equivalent model for the 

investigation of dermal stem cell and hair follicle biology. 

Furthermore, while the model presented is an allogeneic skin equivalent specifically 

developed for the investigation of melanoma invasion, it may be readily adapted into 

an autologous setting for the investigation of immunological pathologies, or adapted 

through the addition of endothelial cells to the lower surface for studies of 

angiogenesis within the skin or development of tumour neovasculature. Grafting the 

3D skin equivalent onto immunocompromised mice, in line with studies in alternative 

skin equivalent models (42), may also represent a useful means through which to 

investigate tumour cell dissemination from the skin to secondary sites. 

In summary, the 3D skin equivalent model presented represents a robust and 

reproducible assay that is widely applicable to dermatological research, mimicking 

the morphology and microenvironment of normal human skin more accurately than 

previous assays. The demonstration of the applicability of this model for the 

investigation of the early stages of human melanoma invasion therefore renders it a 

valuable tool for defining and evaluating urgently required novel drug targets and 

personalised therapies. 

References  

1. Sandru A, Voinea S, Panaitescu E, Blidaru A. Survival rates of patients with 

metastatic malignant melanoma. Journal of medicine and life. 2014;7:572-6. 



18 
 

2. Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural 

determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 2011;12:565-80. 

3. Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal 

melanocytes and melanoma cells. Journal of clinical pathology. 2013;66:644-8. 

4. Fleischmajer R, Utani A, MacDonald ED, Perlish JS, Pan TC, Chu ML, et al. 

Initiation of skin basement membrane formation at the epidermo-dermal interface 

involves assembly of laminins through binding to cell membrane receptors. J Cell 

Sci. 1998;111 ( Pt 14):1929-40. 

5. Boyce ST. Design principles for composition and performance of cultured skin 

substitutes. Burns : journal of the International Society for Burn Injuries. 

2001;27:523-33. 

6. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas 

V, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. 

Cancer Cell. 2009;15:294-303. 

7. Kumasaka MY, Yajima I, Hossain K, Iida M, Tsuzuki T, Ohno T, et al. A novel 

mouse model for de novo Melanoma. Cancer Res. 2010;70:24-9. 

8. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WEJ, et 

al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat 

Genet. 2009;41:544-52. 

9. Khavari PA. Modelling cancer in human skin tissue. Nat Rev Cancer. 

2006;6:270-80. 

10. Walker GJ, Soyer HP, Terzian T, Box NF. Modelling melanoma in mice. 

Pigment Cell Melanoma Res. 2011;24:1158-76. 



19 
 

11. Li L, Fukunaga-Kalabis M, Herlyn M. The Three-Dimensional Human Skin 

Reconstruct Model: a Tool to Study Normal Skin and Melanoma Progression.  

Journal of Visualized Experiments2011. 

12. Monteiro-Riviere NA, Inman AO, Snider TH, Blank JA, Hobson DW. 

Comparison of an in vitro skin model to normal human skin for dermatological 

research. Microscopy research and technique. 1997;37:172-9. 

13. Berking C, Herlyn M. Human skin reconstruct models: a new application for 

studies of melanocyte and melanoma biology. Histol Histopathol. 2001;16:669-74. 

14. Meier F, Nesbit M, Hsu MY, Martin B, Van Belle P, Elder DE, et al. Human 

melanoma progression in skin reconstructs : biological significance of bFGF. Am J 

Pathol. 2000;156:193-200. 

15. Eves P, Layton C, Hedley S, Dawson RA, Wagner M, Morandini R, et al. 

Characterization of an in vitro model of human melanoma invasion based on 

reconstructed human skin. Br J Dermatol. 2000;142:210-22. 

16. Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA. Novel cell culture 

device enabling three-dimensional cell growth and improved cell function. Biochem 

Biophys Res Commun. 2007;354:1095-100. 

17. Peterkofsky B. The effect of ascorbic acid on collagen polypeptide synthesis 

and proline hydroxylation during the growth of cultured fibroblasts. Archives of 

biochemistry and biophysics. 1972;152:318-28. 

18. Nusgens BV, Humbert P, Rougier A, Colige AC, Haftek M, Lambert CA, et al. 

Topically applied vitamin C enhances the mRNA level of collagens I and III, their 

processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human 

dermis. J Invest Dermatol. 2001;116:853-9. 



20 
 

19. Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ. 

Effects of fibroblasts and microenvironment on epidermal regeneration and tissue 

function in long-term skin equivalents. Eur J Cell Biol. 2007;86:731-46. 

20. El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R. 

Replacement of animal-derived collagen matrix by human fibroblast-derived dermal 

matrix for human skin equivalent products. Biomaterials. 2009;30:71-8. 

21. Vorsmann H, Groeber F, Walles H, Busch S, Beissert S, Walczak H, et al. 

Development of a human three-dimensional organotypic skin-melanoma spheroid 

model for in vitro drug testing. Cell Death Dis. 2013;4:e719. 

22. Leight JL, Tokuda EY, Jones CE, Lin AJ, Anseth KS. Multifunctional 

bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and 

migration with BRAF kinase inhibition. Proc Natl Acad Sci U S A. 2015;112:5366-71. 

23. Sharpe GR, Gillespie JI, Greenwell JR. An increase in intracellular free 

calcium is an early event during differentiation of cultured human keratinocytes. 

FEBS Lett. 1989;254:25-8. 

24. Vollmers A, Wallace L, Fullard N, Hoher T, Alexander MD, Reichelt J. Two- 

and three-dimensional culture of keratinocyte stem and precursor cells derived from 

primary murine epidermal cultures. Stem cell reviews. 2012;8:402-13. 

25. Stark HJ, Baur M, Breitkreutz D, Mirancea N, Fusenig NE. Organotypic 

keratinocyte cocultures in defined medium with regular epidermal morphogenesis 

and differentiation. J Invest Dermatol. 1999;112:681-91. 

26. Hiscutt EL, Hill DS, Martin S, Kerr R, Harbottle A, Birch-Machin M, et al. 

Targeting X-linked inhibitor of apoptosis protein to increase the efficacy of 

endoplasmic reticulum stress-induced apoptosis for melanoma therapy. J Invest 

Dermatol. 2010;130:2250-8. 



21 
 

27. Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-

Valero I, et al. Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive 

Melanoma Cell Death. J Invest Dermatol. 2015. 

28. Knight E, Murray B, Carnachan R, Przyborski S. Alvetex(R): polystyrene 

scaffold technology for routine three dimensional cell culture. Methods in molecular 

biology (Clifton, NJ). 2011;695:323-40. 

29. Ellis RA, Horswell S, Ness T, Lumsdon J, Tooze SA, Kirkham N, et al. 

Prognostic impact of p62 expression in cutaneous malignant melanoma. J Invest 

Dermatol. 2014;134:1476-8. 

30. Chen M, Petersen MJ, Li HL, Cai XY, O'Toole EA, Woodley DT. Ultraviolet A 

irradiation upregulates type VII collagen expression in human dermal fibroblasts. J 

Invest Dermatol. 1997;108:125-8. 

31. Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R, et al. The time-

dependent rearrangement of the epithelial basement membrane in human skin 

wounds--immunohistochemical localization of collagen IV and VII. International 

journal of legal medicine. 1992;105:93-7. 

32. Hoath SB, Leahy DG. The organization of human epidermis: functional 

epidermal units and phi proportionality. J Invest Dermatol. 2003;121:1440-6. 

33. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et 

al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 

2009;27:6199-206. 

34. Rotte A, Martinka M, Li G. MMP2 expression is a prognostic marker for 

primary melanoma patients. Cellular oncology (Dordrecht). 2012;35:207-16. 

35. Hofmann UB, Westphal JR, Waas ET, Zendman AJ, Cornelissen IM, Ruiter 

DJ, et al. Matrix metalloproteinases in human melanoma cell lines and xenografts: 



22 
 

increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates 

with melanoma progression. Br J Cancer. 1999;81:774-82. 

36. Shaverdashvili K, Wong P, Ma J, Zhang K, Osman I, Bedogni B. MT1-MMP 

modulates melanoma cell dissemination and metastasis through activation of MMP2 

and RAC1. Pigment Cell Melanoma Res. 2014;27:287-96. 

37. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape 

mechanisms. Nat Rev Cancer. 2003;3:362-74. 

38. Ghazizadeh S, Taichman LB. Organization of stem cells and their progeny in 

human epidermis. J Invest Dermatol. 2005;124:367-72. 

39. Wong VW, Levi B, Rajadas J, Longaker MT, Gurtner GC. Stem cell niches for 

skin regeneration. International journal of biomaterials. 2012;2012:926059. 

40. Bickenbach JR. Identification and behavior of label-retaining cells in oral 

mucosa and skin. Journal of dental research. 1981;60 Spec No C:1611-20. 

41. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular 

stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451-

61. 

42. Kiowski G, Biedermann T, Widmer DS, Civenni G, Burger C, Dummer R, et al. 

Engineering melanoma progression in a humanized environment in vivo. J Invest 

Dermatol. 2012;132:144-53. 

 

 

 

 



23 
 

 



24 
 

Figure legends 

Figure 1: Schematic protocol for the formation of full-thickness human skin 

equivalents. Pretreat inert Alvetex® polymer scaffold in 70% ethanol before 

thoroughly washing in Media A, then seed with 5.0 x 105 human dermal fibroblasts. 

Culture fibroblast-seeded Alvetex® in Media A for 18 days to create a dermal 

equivalent. If establishing a melanoma full thickness skin equivalent, seed 2.0 x 104 

metastatic melanoma cells onto the dermal equivalent and culture in Media B for 3 

hours prior to the addition of primary human keratinocytes. Alternatively, to create a 

full thickness skin equivalent, add 2.0 x 106 keratinocytes directly onto the dermal 

equivalent. Culture the (melanoma) equivalent fully submerged in Media B for 3 days 

before exposing the upper surface of the equivalent to the air–liquid interphase and 

continuing culture for 14 days with the lower surface in contact with Media C (See 

methods for full protocol). 

Figure 2: Validation of dermal and epidermal structure in full-thickness human 

skin equivalents. a) Representative photomicrographs of haematoxylin and eosin 

(H&E) stained Alvetex® seeded with human dermal fibroblasts after culture in Media 

A for 18 days. b&c) Representative photomicrographs showing H&E stained 35 day 

full-thickness human skin equivalents at 20x and 10x magnification respectively. d) 

Representative electronmicrographs of a non-cellularised Alvetex® scaffold, e) 35 

day full-thickness human skin equivalent or f) normal human skin. a-c scale bars, 

100 m; d-f scale bars, 75 m; Epi, epidermis; Der, dermis. 

Figure 3: Expression of epidermal, dermal or basement membrane markers in 

full-thickness human skin equivalents compared to human skin and Mattek 

EpiDermFT. a) Schematic illustrating dermal and epidermal protein marker 
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expression. b-d) Representative photomicrographs showing an H&E stained full-

thickness human skin equivalent (b), normal human skin (c) or  a  Mattek EpiDermFT 

(d). e) Representative fluorescent photomicrographs for the expression of  involucrin 

(e-g), cytokeratin I (CK 1, h-j), cytokeratin XIV (CK 14, k-m), type IV collagen (n-p), 

type VII collagen (q-r) or type III collagen (t-v) in full-thickness human skin 

equivalents, normal human skin or Mattek EpiDermFT. b-d & t-v scale bars, 75 m; 

e-s scale bars, 25 m.  

Figure 4: Early cutaneous melanoma invasion in full-thickness human skin 

equivalents results in disruption of basement membrane component type IV 

collagen. Representative photomicrographs showing H&E stained full thickness 

melanoma skin equivalents (MSE) at 2 weeks (a) or 4 weeks (b) post-inoculation 

with melanoma cells, highlighting clusters/nests of melanoma cells at the 

dermal/epidermal junction at week 2, which subsequently invade through the 

basement membrane at week 4 (black arrow heads); and H&E stained sections of a 

melanoma in situ (c) or a primary superficial spreading malignant melanoma (d; 

invasive melanoma) (black dotted lines illustrate the tumour boundary). 

Representative fluorescent photomicrographs for the expression of Melan-A (red; e-

h) or type IV collagen (green; i-l) in 2 week (e and i) or 4 week (f and j) MSEs, 

melanoma in situ (g and k), or an invasive melanoma (h and l) (Red arrows illustrate 

intact type IV collagen while white arrows illustrate where type IV collagen is lost). m-

p) Overlay fluorescent photomicrographs showing relative expression of Melan-A 

and type IV collagen in 2 week (m) and 4 week (n) MSEs, melanoma in situ (o), and 

an invasive melanoma (p; note melanoma cells have invaded from right to left) with 

white boxes highlighting area magnified in panels q-t (blue = DAPI). q-t) 63x 

magnification of Melan-A and type IV collagen in 2 week (q) and 4 week (r) MSEs, 
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melanoma in situ (s), and an invasive melanoma (t). a-p scale bars, 100 m; q-t 

scale bars, 25 m. 

Figure 5: Early cutaneous melanoma invasion in full-thickness human skin 

equivalent results in disruption of basement membrane component type VII 

collagen. a-d) Representative fluorescence photomicrographs of type VII collagen 

(green) expression in 2 week (a) and 4 week (b) melanoma skin equivalents (MSE), 

melanoma in situ (c), and a primary superficial spreading malignant melanoma (d; 

invasive melanoma). e-h) Overlay fluorescence photomicrographs showing relative 

expression of Melan-A (red) and type VII collagen in 2 week (e) and 4 week (f) 

MSEs, melanoma in situ (g) and an invasive melanoma (h) with white boxes 

highlighting area magnified in panels i-l (blue = DAPI). i-l) 63x magnification of 

Melan-A and type VII collagen in 2 week (i) and 4 week (j) MSEs, melanoma in situ 

(k), and an invasive melanoma (l). a-h scale bars, 100 m; i-l scale bars, 25 m. 
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Supplementary Figure Legends 

Supplementary Figure 1: Early cutaneous invasion of WM35 melanoma cells in 

full-thickness human skin equivalents results in disruption of basement 

membrane component type IV collagen. Representative fluorescent 

photomicrographs for the expression of Melan-A (red; a and b) or type IV collagen 

(green; c and d) and overlay images (e and f) in 2 week (a, c and e) or 4 week (b, d 

and f) MSEs containing the melanoma cell line WM35 derived from a primary radial 

growth phase melanoma. Scale bars, 100 m.  
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