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Abstract

Generating a realistic model of subsurface stratigraphy that fits data from multi-

ple well locations is a well-established problem in the field of aquifer character-

ization. This is particularly critical for the alluvial fan-hosted aquifers in north-

western India, as they have some of the highest rates of groundwater extraction

in the world and spatially limited subsurface observations. The objective of this

study is to develop a reduced-complexity model that generates probabilistic es-

timates of aquifer body occurrence within a sedimentary fan, based loosely on

the northwestern Indian aquifer system. We propose a parsimonious, inverse-

weighted random walk model that reconstructs potential channel belt pathways

within a discrete depth range or slice by (i) connecting known aquifer locations
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with the fan apex, (ii) filling adjacent cells with non-aquifer material based on es-

timated channel-body dimensions, and (iii) random filling of the remaining cells

until the model fraction of aquifer material is comparable to the bulk aquifer frac-

tion observed from well data. Once filled, individual depth slices can be stacked

to produce a three-dimensional representation of aquifer-body geometry, allow-

ing informed inference and testable predictions about the configuration of aquifer

units in the subsurface. A receiver operating characteristic (ROC) curve shows

that the model performs better than fully random filling, both in matching the lo-

cations of aquifer material in the subsurface and in reconstructing the geometry of

relict channel bodies preserved on the fan surface. The model differs from purely

statistical-empirical approaches by incorporating some geomorphic knowledge of

fluvial channel belt geometry within the fan system. In contrast to a fully process-

based approach, the model is computationally fast and is easily refined as new

subsurface data become available.

Keywords: Numerical model, alluvial aquifers, aquifer-body connectivity, fan

system

1. Introduction1

Reconstruction of subsurface stratigraphy based on spatially-limited borehole2

data is a well-established problem in the field of aquifer characterization. This re-3

construction is particularly challenging for alluvial aquifer systems that consist of4

fluvial channel deposits, in which the major aquifer units comprise stacked sand-5

rich channel belts associated with alluvial fans or meandering river channels. Such6

settings are marked by high subsurface heterogeneity in aquifer-body characteris-7

tics and distribution due to frequent avulsion and migration of the active channel8
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during deposition. Information derived from geophysical profiles, cores, well logs9

and well-test data is rarely sufficient (due to limited spatial coverage) to determine10

the three-dimensional geometry, size, and connectivity of aquifer bodies within11

these settings. These aspects of the system are critical, however, because they12

control aquifer volume, potential yield, and flow rates, and thus both aquifer per-13

formance and sustainability (Larue and Hovadik, 2006; Renard and Allard, 2013).14

Connectivity in particular is related to the existence of pathways between aquifer15

bodies that enable fast flow and transport from one location to another (Renard16

and Allard, 2013). There is a pressing need for simple, flexible, and predictable17

models that can simulate or anticipate these pathways. The paucity of subsurface18

data in many alluvial aquifer systems, and the predominance of elongate channel-19

body aquifers, preclude simple lateral correlation between aquifer bodies recorded20

in different wells, while the lack of detailed lithological data, including age con-21

straints, may preclude the use of more sophisticated forward models that could22

simulate aquifer-system deposition and development.23

Previous approaches to this problem can be divided into structure-imitating,24

process-imitating, and descriptive methods (Koltermann and Gorelick, 1996; de Marsily25

et al., 2005). Structure-imitating methods, including spatial statistical and object-26

based methods, rely on spatial patterns in sediments and hydraulic properties,27

probabilistic rules, and deterministic constraints based on geometric relations within28

aquifers (Koltermann and Gorelick, 1996). Statistical structure-imitating methods29

include traditional two-point kriging or conditional methods (e.g., Isaak and Sri-30

vastava, 1990; Journel, 1988) and modern multi-point statistical (MPS) methods31

(e.g., Guardiano and Srivastava, 1993; Caers, 2001; Strebelle, 2002; Wu et al.,32

2008; Comunian et al., 2012; Rezaee et al., 2013; Mariethoz and Lefebvre, 2014).33
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MPS methods offer a way to model complex and heterogeneous geological envi-34

ronments through the use of training images, which represent conceptual statisti-35

cal models of the geology that has to be simulated. While MPS methods are able to36

describe richer and arguably more realistic models than two-point methods, they37

have several shortcomings (Wingate et al., 2015): MPS is a purely statistical ap-38

proach and requires suitable training images, which may provide model outcomes39

that are statistically plausible but physically unrealistic. In contrast, object-based40

methods use geometric or probabilistic rules, such as random walk approaches41

(Price, 1974) or random avulsions (Jerolmack and Paola, 2007), to mimic deposi-42

tional facies seen in nature (Koltermann and Gorelick, 1996). A geological record43

is simulated either through rules-based on conceptual depositional models and44

geologic principles, or through initial conditions, boundary conditions, and inputs45

such as sea level curves, subsidence histories, and sediment supplies (See review46

in Koltermann and Gorelick, 1996).47

Process-imitating methods (e.g., Karssenberg et al., 2001; Pyrcz et al., 2005;48

Sylvester et al., 2011; Nicholas et al., 2016; Van de Lageweg et al., 2016a) are49

algorithms that solve a set of governing equations that mimic the processes of50

sediment transport and deposition in sedimentary basins and build stratigraphy51

(Koltermann and Gorelick, 1996). In contrast to structure-imitating methods,52

process-imitating methods simulate physical processes and therefore have the po-53

tential to predict realistic subsurface geometries and distributions of channel-belt54

sand bodies (Mackey and Bridge, 1995). In process-based models, the deposi-55

tional surface is updated at each time step under the influence of both depositional56

and erosional processes. This makes it difficult to condition the outcome with57

observed data (Karssenberg et al., 2001; Wingate et al., 2015), because initial de-58
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posits may fit the data but are later erased. In addition, full fluid-dynamical sim-59

ulations are too slow for simulating long-term basin development, as they use too60

much computational power to iteratively fit observed data. An important draw-61

back of even simplified process-imitating models is that they still need several62

parameters, which may or may not be either physically-based or independently63

known. Also, process-based models ideally require quantitative stratigraphic in-64

formation, including depositional ages and subsidence rates, in order to make65

systematic comparisons between model outputs and real systems.66

Descriptive methods produce images of subsurface stratigraphy by combining67

site-specific and regional data with conceptual models (e.g., Allen, 1978; Gal-68

loway, 1981; Miall, 1985; Nemec and Steel, 1988) and insights (Koltermann and69

Gorelick, 1996; Van de Lageweg et al., 2016b). Descriptive methods split the70

aquifer into characteristic units that are based equally on hydraulic measurements71

and geologic observations (Fogg, 1986; Anderson, 1989). Characteristic units for72

reconstructing aquifer corridors are often based on the distinction between hetero-73

geneous fluvial deposits such as gravel or sand-rich channel deposits (assumed to74

be aquifer material) and silt or clay-rich floodplain deposits (assumed to be non-75

aquifer material) (Miall, 1988; Jordan and Pryor, 1992; Willis and Tang, 2010).76

In the field of fluvial routing systems, e.g., fans and deltas, hybrid models77

combining elements of structure-imitating and process-imitating approaches have78

also been successfully applied to reconstruct the depositional fan settings. For ex-79

ample, several studies have recognized the connection between avulsion processes80

in fluvial sediment routing systems and the stratigraphy of channel sand bodies in81

the field (e.g., Price, 1974; Leeder, 1978; Allen, 1979; Bridge and Leeder, 1979;82

Bridge and Mackey, 1993). Thus, avulsion processes have been included, partly83
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as probabilistic rules, in several reduced-complexity models (e.g., Price, 1974;84

Mackey and Bridge, 1995; Karssenberg et al., 2001; Jerolmack and Paola, 2007;85

Liang et al., 2015a). Such models have been used to reconstruct channel-belt86

deposits from the apex of the system to downstream locations based on a ran-87

dom walk, the local gradient and an avulsion probability that is dependent upon88

sediment input and changes in base level. Even these simplistic rules can pro-89

duce flow velocities and water surface slopes (Liang et al., 2015b) and subsurface90

stratigraphic records (Karssenberg et al., 2001; Jerolmack and Paola, 2007; Liang91

et al., 2015b) that are comparable to the outputs of more sophisticated process-92

based models of fluvial routing systems. These fan models are, however, rarely93

used to reconstruct fan deposits from actual well log information.94

Robust reconstruction of subsurface stratigraphy has major implications for95

our understanding of the aquifer system in northwestern India, which suffers from96

some of the highest rates of groundwater over-exploitation and water-level decline97

in the world (Rodell et al., 2009; Chen et al., 2014, 2016). Accurate geological98

characterisation of the aquifer system has been hampered by a lack of subsurface99

data; even basic first-order knowledge of aquifer-body dimensions and subsurface100

distribution is lacking at a regional scale. Van Dijk et al. (2016) identified two ma-101

jor fan systems in the region, and provided a descriptive conceptual model for the102

aquifer bodies that inferred the likely aquifer distribution based on some well log103

information and our understanding of fan systems. This conceptual model is insuf-104

ficiently detailed, however, to populate local or regional hydrogeological models,105

and provides only statistical descriptions of the full three-dimensional stratigra-106

phy. Because of the size of the region (44,000 km2) and the spatial variation in107

aquifer body fraction (Van Dijk et al., 2016) there is no suitable geological model108
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or three-dimensional training image that could inform a pure statistical structure-109

imitating approach. The study area is also so large that conditioning of the data is110

difficult and time-consuming, and the lack of suitable constraints on stratigraphic111

geometry and age control make it difficult to apply process-imitating models.112

Here we propose a physically-based heuristic model that predicts the potential113

aquifer body distribution through incorporating our best process understanding of114

how the aquifer system forms into a reduced-complexity model. Our approach115

occupies the ’middle ground’ identified by (Liang et al., 2015b) between detailed116

and physically-explicit simulation on the one hand and abstract simplification on117

the other. The model is based on the deposition of continuous sandy channel ma-118

terial within the sediment fans that comprise the major aquifer systems in north-119

western India, but we do not explicitly simulate channel transport and depositional120

processes. Instead, we use geological and geomorphological information on the121

downstream continuity and lateral discontinuity of the channel bodies, combined122

with a random-walk approach, to reconstruct the most likely aquifer locations in a123

given depth slice. We then show how two-dimensional sediment routing assump-124

tions in a given depth slice can be used to build a three-dimensional picture of the125

subsurface stratigraphy. We compare model predictions of aquifer-body positions126

and connectivity to the null case of random filling of the basin, and consider the127

implications of the model for groundwater exploration and management.128

2. Study Area129

The study area comprises the sediment fans deposited by the Sutlej and Ya-130

muna Rivers within the Himalayan foreland basin. The area is bounded by the131

Himalaya to the north, the Thar Desert to the south, and the incised valleys of132
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the Sutlej and Yamuna to the west and east, respectively (Figure 1). At present,133

sediment flux into the foreland is dominated by the Sutlej and Yamuna Rivers, as134

well as by smaller, foothills-fed and plains-fed river systems such as the Ghaggar135

River (Van Dijk et al., 2016).136

Available data on aquifer-body thickness and location consist of 243 aquifer-137

thickness logs from the Central Groundwater Board (CGWB). These logs make a138

binary division of the subsurface into aquifer and non-aquifer units, and provide139

the depth and thickness of each layer as estimated from electrical logs by the140

CGWB. The logs have a median spacing of 7 km (Van Dijk et al., 2016). All of141

the logs extend to at least 200 m below ground level, and we therefore restrict our142

analysis to the top 200 m of the subsurface, noting that there is no evidence that143

aquifers deeper than 200 m have yet been tapped in this region.144

Van Dijk et al. (2016) mapped different geomorphic units and showed a di-145

rect correlation between these units and the bulk characteristics of the underlying146

aquifer bodies (Figure 1). Van Dijk et al. (2016) showed that, across the Sutlej147

and Yamuna sedimentary fan systems, individual aquifer bodies have a median148

thickness of 6-7 m and a mean thickness of 9 m. The aquifer-body thickness dis-149

tributions are heavy-tailed (Van Dijk et al., 2016), indicating that there is some150

persistence in aquifer location. Over larger stratigraphic intervals of more than151

4-8 times the median thickness, the aquifer thickness logs show evidence of im-152

persistence, perhaps related to avulsion and compensational filling. Van Dijk et al.153

(2016) inferred that the thicker aquifer deposits are formed by stacked, multi-story154

sand bodies, perhaps originating in part as incised-valley fills, that occupied dis-155

tinct corridors originating at the fan apices. Van Dijk et al. (2016) were unable to156

directly observe the widths of these corridors, but inferred a maximum width of157
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5-10 km by analogy with surface channel-belt widths (Van Dijk et al., 2016) and158

thickness-width relations of Gibling (2006). The bulk aquifer fraction ( fobs), or159

ratio between aquifer and non-aquifer material, is about 0.4 for both fan systems.160

A major exception to this occurs in the area between the Sutlej and Yamuna fans161

and adjacent to the Himalayan mountain front; there, aquifer bodies are both thin-162

ner and less abundant, and the bulk aquifer fraction ( fobs) is about 0.3. Van Dijk163

et al. (2016) also showed that the aquifer-body thickness distribution does not164

change significantly with depth, which suggests that the morphodynamics and de-165

positional conditions of the Sutlej and Yamuna sediment routing systems have166

remained consistent over the time required to deposit at least the upper 200 m of167

the subsurface stratigraphy. The bulk aquifer fraction decreases away from the168

Himalayan mountain front in both the Sutlej and Yamuna fan systems, although169

the thickness distribution remains approximately similar, indicating that aquifer170

bodies make up a smaller fraction of the basin fill in the distal parts of the system171

but do not thin appreciably.172

3. Model approach173

Our modelling approach builds on the aquifer-thickness logs from the CGWB,174

which provide information on the presence or absence of aquifer material in the175

upper 200 m at 243 points across the basin. We assume that the aquifer bodies176

in the fan system were mainly deposited by major river channels that avulsed re-177

peatedly across the fan surface during deposition. The likely maximum lateral178

dimensions of the aquifer bodies (less than 5-10 km, Table 1) are comparable to179

or smaller than the median spacing between adjacent logs (7 km), and Van Dijk180

et al. (2016) showed the difficulty of correlating between even closely-spaced181
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boreholes, meaning that simple lateral (across-fan) extrapolation would be un-182

wise. Similarly, while the river channels are continuous down-fan, channel-belt183

sinuosity precludes simple longitudinal correlation or extrapolation as well. For184

simplicity, we do not simulate the formation and filling of incised valleys in our185

model; while this is a plausible mechanism for the creation of stacked aquifer186

bodies like those observed in the study area, we have no data on its relative impor-187

tance, and we note that its inclusion would require more complex process-based188

approach.189

To estimate the likelihood of finding aquifer material within a given depth190

range between our borehole locations, we define a model space and apply a set191

of simple rules derived from our geomorphic understanding of fan depositional192

systems, including aspects such as avulsion sequence (Allen, 1978; Jerolmack193

and Paola, 2007), compensational filling (Sheets et al., 2002; Straub et al., 2009),194

and reoccupation (Stouthamer, 2005). We start by dividing the study area into195

a regular, square grid, with a cell size that is chosen to reflect the typical lateral196

dimensions of the aquifer bodies. This choice introduces an inherent length scale197

into the model, but is made explicitly for two reasons. First, the large median198

spacing between the aquifer-thickness logs means that there is no justification for199

a fine model grid size, as there are no data against which to validate it. Second, a200

relatively coarse grid obviates the need to model progressive deposition and con-201

struction of sand bodies, as would be required by a process-imitating approach.202

We then divide the upper 200 m of stratigraphy into regular depth slices and op-203

erate on each slice in turn. The thickness of the depth slice is chosen to be of the204

same order as both the median aquifer-body thickness of 6 m (Table 2) and the205

median non-aquifer unit thickness of 7.5 m. Each slice is parallel to the present206
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topography, meaning that we assume that the modern basin surface slope is the207

same as the slope throughout deposition. We neglect the local surface relief, as208

this is typically less than 5 m, and assume that deposits at a given depth are ap-209

proximately coeval. We explore the sensitivity of the model results to changes in210

both grid size and depth slice thickness.211

The model carries out five basic operations on each depth slice: (i) identify-212

ing grid cells that contain dominantly aquifer or non-aquifer material, and filling213

them appropriately; (ii) establishing upstream weighted random walks between214

aquifer cells and the fan apex, and filling cells along those routes with aquifer215

material; (iii) establishing downstream weighted random walks to define aquifer216

corridors in both directions; (iv) filling cells adjacent to the aquifer corridors with217

non-aquifer material; and (v) filling the remaining empty cells randomly up to the218

correct bulk aquifer fraction (Figures 2b and c). These steps are then indepen-219

dently repeated for successive depth slices. We then ran multiple realizations of220

the model, and averaged the values in each cell to obtain probabilities of finding221

aquifer bodies in the subsurface.222

3.1. Model setup223

The first underpinning assumption within the model is that thick channel sands224

within a fan must have been deposited by a major river that entered the foreland225

at the fan apex, rather than by smaller foothills-fed and plains-fed river systems226

or reworking of fan material. This assumption is supported by the stacked, multi-227

story character of the aquifer bodies and by their thickness (median 6 m), which is228

much greater than the channel dimensions of smaller foothills-fed rivers like the229

Ghaggar River (Sinha et al., 2013; Van Dijk et al., 2016), and by provenance data230

that show that major channel sediments originate from the Himalayan hinterland231
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(Singh et al., 2016). The fan apices in our study area mark the points where232

the Sutlej and Yamuna Rivers cross the Himalayan Frontal Thrust and enter the233

foreland. While these points may shift over Myr time scales (e.g., Gupta, 1997;234

Malik and Mohanty, 2007), we assume that they have remained fixed in space235

over time needed to deposit the upper 200 m of sediment in the foreland basin.236

Because of the fixed position of the rivers entering the basin and the relatively237

thick sand bodies associated with these large river systems, we also assume that238

aquifer material is continuous within each depth slice between its occurrence at239

a point on the fan (as indicated by its appearance in the aquifer-thickness logs)240

and the fan apex, although not necessarily in a straight line. We then use a ran-241

dom walk approach to construct probable aquifer corridors in the upstream and242

downstream directions from those wells that contain aquifer material in that depth243

slice. The random walk is applied on a 2D plane, and represents the distribution244

of aquifer bodies within that depth slice. For simplicity, we assume that aquifer245

material, once deposited, is not scoured and replaced by non-aquifer deposits; we246

justify this by noting the evidence for stacking and persistence in channel posi-247

tions over stratigraphic intervals of 4-8 times the median aquifer-body thickness248

(Van Dijk et al., 2016). The modelled aquifer body is, therefore, a continuous249

channel deposit that is connected in both the upstream and downstream directions.250

To avoid unreasonably straight channels, we set the weights in the upstream251

random walk, toward the fan apex. We apply unequal weights justified by the252

observed sinuosity of the modern Sutlej and Yamuna Rivers channel belts and253

of elongate, sand-rich ridges on the fan surfaces, interpreted as abandoned river254

palaeochannels by Van Dijk et al. (2016) (Figure 2a). This analysis illustrates255

that, from any given cell on a river or ridge, the highest probabilities of finding an256
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adjacent upstream river or ridge cell occur in the three cells oriented toward the257

fan apex (Figure 2a).258

The weighting factor for the upstream random walk is calculated by the cosine259

of the angle between the azimuth to each neighbouring cell and the fan apex (Fig.260

2c). Thus, the weighted probability P to connect a target aquifer cell with its261

neighbours is defined as:262

P = A+Bcos(Cα) (1)

where α is the angle between a straight line towards the apex and the azimuth263

to the neighbouring cell. The constant A is set to 0.05, representing the minimum264

probability observed from the elongated ridges (0.04 in Figure 2a). The constant265

B is 0.35 so the maximum probability is 0.4 (A + B), which is based on the high-266

est probabilities observed from the adjacent cells of the Sutlej and Yamuna river267

(0.413 in Figure 2a). The constant C is set to 1.4 to limit the span of the ran-268

dom walk to 130 degrees as observed on both the Sutlej and Yamuna fans. The269

weighted probability is calculated for all 8 neighbouring cells. Negative values270

are set to zero, and the probabilities for all directions that fall between alpha val-271

ues of -90 and 90 degrees are set to a small but arbitrary value of at least 0.025,272

so that the random walk has at least four upstream cells to choose. The four di-273

rections are needed as in some cases the three direct upstream grid cells for the274

coarser grids are identified as non-aquifer from the observational data, leaving275

no alternative pathway toward the apex. Because P depends on α and thus on276

location, we rescale the values so that they sum to 1 for each set of neighbours.277

Also, to force connectivity between aquifer-body positions on the fan and the fan278

apex, the weighted random walk uses progressively higher probability values to-279

13



  

wards the apex and P is recalculated after each step. The random walk towards the280

apex is first calculated from well locations that are closest to the apex, and then for281

those that are progressively further away. We terminate each random walk when it282

reaches the apex or when it encounters another previously-identified aquifer cell.283

In the downstream direction, we apply a simplified weighting factor with equal284

probabilities of 0.3 to the three neighbouring cells away from the fan apex, and a285

small probability of 0.05 for the cells parallel to the mountain front (Figure 2d).286

This simplified scheme is used because there is not a fixed location (like the fan287

apex) where the random walk must end. The downstream random walk is applied288

in reverse order, so that well locations furthest away from the fan apex are anal-289

ysed first. Each walk terminates when it encounters another previously-identified290

aquifer cell or when it reaches the model boundary (see boundary in Figure 1).291

Because the order of the random walk may affect the resultant probabilities, we292

also test a model in which the order was reversed, as well as a model that operates293

on well locations in a randomly sequence.294

Our second assumption is that aquifer bodies, while continuous in the down-295

fan direction between the fan apex and points on the fan, are highly discontinuous296

in the across-fan direction. Thus, assuming that our model grid cells are sized297

appropriately, the presence of aquifer material in one cell should mean that there298

is non-aquifer material in adjacent cross-fan cells (i.e., those with alpha values of299

c. ± 90 degrees). This assumption is likely to be true if shifts in the active channel300

system across the fan occur by avulsion near the fan apex. If, instead, the channel301

migrates laterally during fan deposition, then aquifer material would be expected302

in adjacent cells with little vertical separation. The lack of clear correlations be-303

tween aquifer material in adjacent boreholes in our study area, as documented by304
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Van Dijk et al. (2016), appears to argue for a dominance of avulsion over lateral305

migration in this system. Thus, after connecting all aquifer cells to an upstream306

aquifer cell and eventually to the fan apex, all cells adjacent to those continuous307

aquifer corridors are filled with non-aquifer material (Figure 2e).308

After these steps, there remain some unfilled cells within the model grid —309

that is, cells for which we have neither direct observation nor geomorphic rules to310

determine whether they should contain aquifer or non-aquifer material. Our final311

constraint is that the bulk model aquifer fraction must match that of the actual fan312

system, as estimated from the aquifer-thickness logs. Thus, on the fans we fill313

the remaining cells with aquifer material at random until the bulk aquifer fraction314

matches the observed value of 0.4. Randomly-filled cells will not necessarily be315

adjacent or connect to the main channel corridors. Cells in the interfan area, which316

is not supplied by either the Sutlej or Yamuna rivers, are also filled randomly317

to match the observed bulk aquifer fraction of 0.3. Once the observed aquifer318

fraction value of 0.4 has been reached, any final remaining cells that have not319

been identified as aquifer cells are filled with non-aquifer material to complete the320

depth slice.321

3.2. Model parameters and sensitivity322

The model is governed by several parameters: the number of realizations, the323

grid cell size, the slice thickness, and the minimum aquifer thickness. Each model324

realization produces a single solution of the distribution of aquifers in each depth325

slice, which can be thought of as a map of aquifer locations that contains only326

zeros (non-aquifer) and ones (aquifer). We perform Monte Carlo-type iterations327

to produce probabilities in the range [0,1], defined for each cell as the fraction of328

realizations that give rise to aquifer material in that cell. We vary the number of329
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realizations between 1 and 250 to test how that affects the cumulative probability330

distribution.331

Given our assumptions, the grid cell size should be limited to the typical lat-332

eral dimensions of the potential aquifer bodies. Van Dijk et al. (2016) showed that333

both the elongate palaeochannel ridges and the modern channel belts on the fan334

surfaces vary between 2-10 km wide, whereas channel-body thickness-width scal-335

ing relations are likely to be∼1:1000, suggesting a maximum width of about 6 km336

for a median aquifer-body thickness of 6 m (Gibling, 2006). We perform simu-337

lations with variable grid resolutions from 2 km to 8 km grid spacing, related to338

the various channel width interpretations, to understand the resulting differences339

and uncertainties in aquifer distribution. Most of the results shown here are based340

on a cell size of 6 km, which relates to the median aquifer body thickness. While341

it would certainly be possible to allow channel-belt widths to vary in space (e.g.,342

Rongier et al., 2014), we make the simplifying assumption that they are fixed and343

uniform. This is justified for two reasons: we lack any data on channel-width vari-344

ations in space within the subsurface of these fans, making any spatial variations345

arbitrary; and we do not know, a priori, whether the CGWB aquifer-thickness logs346

have penetrated the aquifer bodies near their centres or near their margins, so that347

definition of a true width in space would be very uncertain. An additional reason348

for using a low-resolution grid is that much of the CGWB data on aquifer per-349

formance (including estimated abstraction rate, potential evapotranspiration, and350

recharge) are available on, at most, a block level. The mean block area in Punjab351

and Haryana states is about 360 km2 (10 model grid cells at a 6 km spacing), so352

there is little rationale for a substantially higher model resolution. Conversely,353

model outcomes and predictions can be fairly easily adapted to the block scale if354
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required.355

Likewise, the slice thickness is chosen to scale with the median (or mean)356

aquifer-body thicknesses observed in the Sutlej and Yamuna fan systems, which357

are 6 m and 9 m across the study area, respectively (Van Dijk et al., 2016). Slice358

thicknesses of 5 and 10 m give quantitatively similar simulation results for the359

two-dimensional aquifer network, for simplicity we use 10 m depth slices for360

most tests of model sensitivity and cross-validation. For analysis of the three-361

dimensional representation of subsurface aquifers, in contrast, we use 5 m depth362

slices as this will give a more accurate connectivity measure in the vertical direc-363

tion.364

The accuracy of the model is determined by the number and distribution of365

observations that are used to populate the known aquifer and non-aquifer grid cells366

in the first model step. Because aquifer-thickness logs are not evenly distributed367

and the distance is sometimes smaller than the grid size, multiple logs may occur368

in a single grid cell. For example, for a 6 km grid spacing, several log locations369

fall within the same cell, so that, while there are 208 logs on the fan surface,370

only 59 cells of the 884 cells of the Sutlej fan and 90 cells of the 695 cells in the371

Yamuna fan are known from the observational data. Thus, we assign each cell372

value based on the predominance of either aquifer or non-aquifer material in that373

cell and depth slice. In most cases, we assign the cell as aquifer when at least one374

of the logs is composed predominantly of aquifer material within that depth slice.375

This approach is justified by the limited lateral extent of the aquifer bodies; logs376

near the centre of a body would record its full thickness, but logs near its margins377

would record only a portion of its total thickness and might be dominated by non-378

aquifer material, even in the same cell and depth slice. To test the sensitivity of379
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our results to this approach, we also run an alternative algorithm that classifies a380

cell as non-aquifer if at least one of the logs is composed predominantly of non-381

aquifer material. We also test the extent to which the model results are influenced382

by thin aquifer bodies — that is, units that may reflect terminal (crevasse) splays383

or small plains-fed channels draining the fan surfaces rather than deposits of the384

major rivers, and for which our model assumptions may therefore not be valid. To385

do this, we run alternative model scenarios where we ignore aquifer bodies in the386

input logs that are thinner than the median thickness of 6 m when populating the387

model space.388

3.3. Model analysis389

3.3.1. Cross-validation390

True validation of the model is impossible because the actual aquifer locations391

are unknown. Therefore, we first assess the performance of the model by apply-392

ing it to a test case of a two-dimensional image of a channel network. As the test393

case image, we use the network of ridges on the surface of the Sutlej fan (Fig-394

ure 1), inferred by Van Dijk et al. (2016) to represent a set of abandoned sand-rich395

palaeochannels that radiate from the Sutlej fan apex. We interpolate these ridges396

onto a grid with a spacing of 2 km (similar to the maximum observed 2.3 km397

width of the ridges Van Dijk et al. (2016)) and classify ridge locations as aquifer398

material, which fills about 25% of the grid. The remainder of the grid is classified399

as non-aquifer material, completing the test case (Figure 3a). We then remove a400

subset (80-95%) of the image at random, and use the remaining 5-20% as the start-401

ing point for our model (Figure 3b). We compare the model results (Figure 3c)402

to both the test case (Figure 3a) and to a null model (Figure 3d), created by sim-403

ple random filling of the grid with aquifer material with the same bulk aquifer404
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fraction; both our model and the random filling model are run 100 times. This405

gives a probability map for both our model (Figure 3e) and random filling (Fig-406

ure 3f). Subsequently, the probability maps can be converted back to an aquifer407

location map by applying a probability threshold µ , such that probabilities above408

the threshold are classed as aquifer material and those below as non-aquifer. The409

threshold is inversely proportional to the model-predicted bulk aquifer fraction410

( fµ ); high thresholds will yield low aquifer fractions, and vice versa.411

To quantitatively compare these probability maps, with values in the range of412

[0,1], we calculate receiver operating characteristic (ROC) curves to assess the413

model fit to the reserved subset of palaeochannel positions. The ROC curve is a414

graphical plot that illustrates the performance of a binary classifier system (in this415

case, aquifer and non-aquifer) as the probability threshold µ is varied. The curve is416

created by plotting the true positive rate (TPR), defined as the number of cells that417

are aquifer in both the predictive model and the data divided by number of actual418

aquifer cells, against the false positive rate (FPR), defined as the number of cells419

that are aquifer in the predictive model but non-aquifer in the data divided by the420

number of non-aquifer cells. The TPR and FPR are calculated for various values421

of µ . Increasing µ leads to fewer cells being classified as model aquifers, and422

should lead to a decrease in both TPR and FPR. ROC curves are constructed for423

both the model outputs and random filling of the grid. An effective model should424

show a higher TPR at a given FPR than random filling, and the TPR should also425

improve as a larger fraction of the available data is used to generate the model.426

Comparison of the model results with the test case tests the ability of the model427

to produce aquifer corridors comparable to the elongated ridges in terms of their428

spatial distribution. Testing the ability of the model to generate a realistic distribu-429
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tion of potential aquifer bodies in the subsurface is more complicated, as we lack430

full three-dimensional information on aquifer bodies across the study area. We431

therefore assess the model performance by removing a random subset (10-50%)432

of the CGWB aquifer-thickness logs to use as a test data set before running the433

model. We then compare the model predictions at the test log positions against the434

actual observations. To avoid any potential bias introduced by our choice of test435

logs, we run 50 simulations with different subsets of test logs. The outcomes are436

then compared to a random filling approach using the ROC curves. Furthermore,437

we also construct separate ROC curves for the proximal (< 100 km from the fan438

apex) and distal (> 100 km from the fan apex) parts of the fans, to investigate439

whether the model performance is position-dependent.440

3.3.2. Subsurface stratigraphy and connectivity441

To compare the model outcomes for multiple realizations with the statistical442

analysis of aquifer thickness data of Van Dijk et al. (2016), we need to create443

a three-dimensional representation of the subsurface stratigraphy. Therefore, we444

stack the individual depth slices and apply the probability threshold µ to convert445

aquifer probability to the presence or absence of aquifer material. The value of446

µ is chosen so that the model-predicted bulk aquifer fraction ( fmu of the multiple447

realizations is the same as the bulk aquifer fraction ( fobs) of the CGWB aquifer-448

thickness data. Aquifer-body thicknesses are then calculated for all grid cell loca-449

tions from the stacked depth slices and compared to the aquifer-body thicknesses450

from the original logs. To examine the spatial distribution of potential aquifer451

bodies, we also extract medial and distal cross sections oriented parallel to the Hi-452

malayan mountain front (see Figure 1 for locations). The medial transect includes453

logs that are located 50-110 km from the mountain front, while the distal transect454
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includes logs that are 160-250 km from the mountain front.455

The three-dimensional stack from the multiple realizations also contains in-456

formation about the connectivity of the potential aquifer bodies within the subsur-457

face. Aquifer-body connectivity directly affects pumping or recovery, especially458

in regions with an intermediate proportion of aquifer bodies (Allen, 1978; Renard459

and Allard, 2013) such as our study region. Because the model builds potential460

aquifer bodies that are continuous down-fan and are surrounded by non-aquifer461

material, horizontal connectivity is to an extent hard-wired into the model outputs.462

The vertical connectivity is not pre-determined, however, nor is the connectivity463

between adjacent aquifer corridors. Here, we test model (multiple realizations)464

connectivity for various values of µ , compared to the results of random filling.465

We characterise these by the model-predicted bulk aquifer fraction ( fµ ), which is466

inversely proportional to µ , as this makes it possible to directly compare the out-467

comes from our model with random filling. The range in µ for random filling is468

smaller and is generally lower compared to our model. We characterize connec-469

tivity by applying a commonly-used scalar index Γ that defines the probability of470

connection between two potential aquifer body cells (Larue and Hovadik, 2006;471

Hovadik and Larue, 2007), and is calculated as:472

Γ =

n
∑

i=0
(V 2

i )

(
n
∑

i=0
Vi)2

(2)

where Vi is the volume of an individual body and n is the total number of473

potential aquifer bodies. In the case of a single aquifer body, this probability is474

1, as the volume of the single aquifer is equal to the total aquifer-body volume.475

As the number of aquifers increases, or equivalently as the bulk aquifer fraction476
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increases, the connectivity index is initially low but then increases as clusters of477

connected aquifer bodies are formed (Stauffer and Aharony, 1992; Christensen478

and Moloney, 2005; Hovadik and Larue, 2007). High connectivity implies fewer479

but larger clusters, with a high probability that any two cells are connected within480

a cluster (Hovadik and Larue, 2007). For example, Γ for a system of 10 individual481

aquifer bodies with a volume of 1 cell each will be 0.1, whereas a system with the482

same aquifer fraction but comprising 1 body with a volume of 10 cells will give a483

Γ of 1.484

We allow connectivity between adjacent cells along faces, edges, and vertices485

(26 possibilities), although other rules give qualitatively similar results. We cal-486

culate the connectivity index for various values of µ (or equivalently for different487

fµ ), for both the model output and the case of random filling. We plot poten-488

tial aquifer body connectivity within the subsurface stratigraphy for two down-fan489

sections, normal to the mountain front, and three across-fan sections parallel to490

the mountain front, in order to compare the two models (Figure 4a).491

4. Results492

4.1. Model output493

A single realization of the model produces a map that contains only zeros and494

ones — that is, aquifer and non-aquifer material (Figure 4a). Running multiple495

realizations yields a probability of finding aquifer material (with values in the496

range [0,1]) at every location within the region of interest (Figure 4b). Increasing497

the number of realizations leads to a smoother cumulative probability distribution498

(Figure 4c). There is little difference, however, between the cumulative probabil-499

ity distributions for 100 and 250 realizations (Figure 4d). The model algorithm500
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is coded in MATLAB, and a typical 100-realization run for a 6 x 6 km grid on a501

standard desktop computer takes on the order of 10 seconds per depth slice. The502

aquifer probability values are affected by the processing order of the random walk.503

In the cases of a reversed processing order (i.e., starting with aquifer cells farthest504

from the apex) or a randomly-chosen sequence, aquifer pathways are more likely505

to be parallel toward the fan apex rather than intersecting, because the space near506

the apex is not filled as quickly, so that aquifer probability values are generally507

slightly higher.508

4.2. Sensitivity to channel width509

Most of the model runs were carried for a channel width interpretation of 6510

km represented by 6 x 6 km grid cells. A decrease in the channel width, i.e., the511

grid size to 2 x 2 km, equivalent to the maximum width of the elongated fan sur-512

face ridges (Table 1), shows that the probability of finding aquifer material at any513

given cell generally decreases (Figure 5a), and provides some additional infor-514

mation on the likelihood of finding potential aquifer bodies within the large-scale515

corridors identified on the lower-resolution grid (Figure 4c). Runs for smaller516

channel widths, i.e., higher grid resolutions, yield larger uncertainties for points517

that are well away from the known log locations. Reducing the channel width and518

increasing the number of grid cells also means that a larger area must be randomly519

filled to obtain a bulk aquifer fraction of 0.4 on the fans (Figure 5b). This effect520

is not straightforward, though, because of the geometry of the potential aquifer521

bodies in the model. Although the number of cells is increased by a factor of 9 for522

a 2 x 2 km grid compared to the base configuration, the fraction of empty cells is523

only increased by 4.5 times (Figure 5b). This is because, with a coarser grid, the524

spacing between two adjacent aquifer corridors may be less than 2 grid cells, so525

23



  

that fewer adjacent cells are filled with non-aquifer material compared to the finer526

grid.527

4.3. Sensitivity to the input data528

Reconstruction of aquifer corridors depends on the precedence given to the in-529

put data. When a cell is classified as aquifer material, then a corridor is created and530

propagated upstream and downstream, but when a cell is classified as dominantly531

non-aquifer material, then there are no rules that are used to set the surrounding532

cells. This affects the number of empty cells after applying our model rules and533

eventually the number of cells that are randomly filled. Thus, the number of empty534

cells varies with depth slices, showing fewer empty cells for the top 100 m (Fig-535

ure 5c). Further, there are more empty cells (that must then be randomly filled)536

when non-aquifer material is given precedence for cells with multiple logs (Fig-537

ure 6a). This change causes a decline in the high aquifer probabilities associated538

with connected aquifer corridors on both fans (see the blue colours in Figure 6b).539

Assignment of a cell as aquifer or non-aquifer material is based on aquifer540

bodies that vary in thickness from 1 m up to 80 m. While it is unlikely that541

the thinnest aquifer bodies were deposited by major river systems that were con-542

nected with the fan apex (as required by our model assumptions), simulations that543

ignore aquifer bodies of less than 6 m thickness show no significant changes in the544

number of empty cells left in the model or in the overall pattern of aquifer proba-545

bilities (Figure 5d). This means that the same area is filled by our algorithm, i.e.,546

the model outcome is not greatly affected by the thinnest aquifer bodies, probably547

because they make up a small fraction of each 10 m depth slice.548
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4.4. Model performance cross-validation549

The ROC curves allow us to examine three separate aspects of the model: the550

effect of the threshold µ used to convert aquifer probability into aquifer pres-551

ence or absence, the effect of the removal of an increasing proportion of the input552

logs to validate the model results, and the differences in performance between the553

model and random filling. In the case of random filling, increasing the threshold554

(that is, increasing the probability value needed to assign aquifer material to a cell555

in the final map) causes a proportionate decrease in both TPR and FPR, so that556

the ROC curve is approximately a straight line (Figure 7a). The model, however,557

performs better for increasing threshold values, as shown by the increasing ratio558

of TPR to FPR (Figure 7a-d). Removal of an increasing fraction of the input data559

has little effect on the ROC curves in the case of random filling, as it causes lit-560

tle relative change in the number of cells that are randomly filled (Figure 7a-c).561

For the model, however, removal of an increasing fraction of input data causes562

the ROC curves to shift noticeably towards the random filling curves, because a563

greater number of cells must be filled randomly.564

Overall, the model shows a higher TPR-FPR ratio than the case of random fill-565

ing for high probability thresholds, particularly when used to reproduce the elon-566

gate palaeochannel ridges on the Sutlej fan (Figure 7a). Random filling yields567

a higher TPR than the model, however, for low threshold values, especially for568

the CGWB input logs (Figure 7b-c). A total of 50 simulations including differ-569

ent randomly-chosen subsets of the data shows that the model generally performs570

very well compared to random filling, with a TPR of 0.5 over a FPR of 0.2. How-571

ever, selecting a different subset of the data could lead to a poor solution as well572

(Figure 7c), but overall the model performs better than random filling. Compar-573
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ison of the ROC curves from different parts of the fan shows that the TPR-FPR574

ratio is higher, especially for conservative threshold values, i.e., when FPR is low,575

for the proximal part of the fan (Figure 7d). This means that model performance,576

relative to the case of random filling, is somewhat reduced for distal locations.577

4.5. Sand-body connectivity578

A single realization of the model forms elongate ‘ribbons‘ that are, by design,579

well-connected in the down-fan direction, but less so in the across-fan direction.580

Unfortunately, we cannot compare the connectivity of our model after multiple581

realizations results with independent connectivity estimates. Instead, we examine582

the sensitivity of the connectivity index to the threshold µ (or fµ ), and determine583

the µ value at which the model output behaves as an isotropic aquifer. We compare584

the model results (Figure 8) to results from the case of random filling along several585

different cross sections.586

The potential aquifer bodies created by the model are generally more con-587

nected than those generated by random filling, except at low values of µ , equiva-588

lent to high fµ (Figure 8a). In both cases, the index increases rapidly for moderate589

fµ , as isolated potential aquifer bodies become clustered. This transition occurs at590

fµ of 0.1-0.3 for the model as well as for random filling (Figure 8a). This analysis591

shows that for both approaches, potential aquifer bodies are highly isotropically592

connected for fµ of 0.4 or greater.593

The model predicts that aquifer body connectivity in the down-fan direction594

should be similar to or greater than connectivity in the across-fan direction, as we595

would expect to see in a fan system, especially for fµ values of 0.4 or greater (Fig-596

ure 8b). At lower fµ , the model predicts greater across-fan connectivity, especially597

in proximal and medial sections compared in distal sections (Figures 8b). Thus,598
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we should expect a greater degree of across-fan connectivity near the fan apices,599

because potential aquifer bodies are constrained to converge at the apex and com-600

bine to a big aquifer with high connectivity. The proximal section, however, is less601

connected as expected because of low values in the interfan area between both fan602

systems. In contrast, random filling of aquifer material gives rise, unsurprisingly,603

to connectivity that is essentially isotropic in both the down-fan and across-fan604

directions (Figure 8c), and is unable to reproduce the connectivity patterns that605

we might expect in fan settings.606

5. Discussion607

The model simulations yield probability maps of finding aquifer locations608

within a series of depth slices. Stacking the depth slices together gives informa-609

tion on the likely spatial distribution of high aquifer probabilities in the subsurface.610

We first relate the modelled distribution to our expectation of fan stratigraphy in611

general, and our understanding of the Sutlej-Yamuna fan system (Van Dijk et al.,612

2016) in particular. We also consider the possible uses and limitations of the613

model, and some ideas for how it could be improved.614

5.1. Relation between model results and subsurface stratigraphy of the Sutlej-615

Yamuna fans616

Recall that the model contains no specific rules about sediment transport, de-617

positional processes, or fan construction; instead, it uses some knowledge of the618

lateral and vertical dimensions of individual aquifer bodies along with their spa-619

tial disposition. Because the model rules are focused on individual aquifer units,620

it is not necessarily clear that the model-derived stratigraphy — which consists621
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of a stack of individual aquifer units — will provide a physically-reasonable rep-622

resentation of regional stratigraphy. Thus, it is instructive to compare the model623

stratigraphy with both a theoretical expectation of fan stratigraphy and our obser-624

vations of subsurface aquifer-body distributions in the study area (Van Dijk et al.,625

2016). To do this, the model outputs for each 5 m depth slice are stacked to repre-626

sent the probabilistic aquifer-body distribution for the top 200 m of the subsurface.627

We then apply a threshold µ to transform the probability values to modelled po-628

tential aquifer bodies in a three-dimensional volume. The size and spatial pattern629

of those bodies is dependent on the applied µ , such that potential aquifer bodies630

are both thicker and more numerous for a lower µ (Table 3). For a µ of 0.45,631

meaning that a modelled aquifer cell is simulated as aquifer material in at least632

45% of the iterations, the quantiles of the aquifer thickness distribution (25th, 50th
633

and 75th percentiles) as well as the fµ are closest to their observed values based634

on the aquifer-thickness logs (Table 2, Van Dijk et al., 2016). Interestingly, this µ635

also corresponds to the highest ratio of TPR to FPR within the ROC curve (Fig-636

ure 7b). We therefore apply this µ in our further analysis of the modelled potential637

aquifer bodies below.638

Conceptual fan models often indicate a general decrease in the lateral dimen-639

sions of the sand bodies in downstream direction (e.g., Friend, 1978; Nichols and640

Fisher, 2007; Cain and Mountney, 2009; Weissmann et al., 2013; Owen et al.,641

2015). Near the fan apex, we would expect little preservation of associated fine-642

grained overbank deposits, and channel deposits are likely to be stacked or amal-643

gamated (Friend, 1983). Away from the apex, conceptual models predict that the644

proportion of overbank deposits should increase and the dimensions of channel645

deposits should decrease. In agreement with this expectation, the interpolated646
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aquifer probabilities are generally higher along the medial transect (Figure 9a)647

compared to the distal transect (Figure 9b). Both transects, but especially the me-648

dial one, contain high probabilities of aquifer material along corridors that are649

collectively more than 6 km wide, i.e., more than the grid resolution associated650

with 6 km wide channel belts. These corridors could be due to (i) amalgamation651

of multiple individual potential aquifer bodies, (ii) interpolation onto the tran-652

sect, oblique to the grid direction, or (iii) interpolation of multiple realizations653

creating high probabilities around known well locations. An alternative approach654

that would reduce interpolation effects would be to use an object-based model,655

combining the random walk to define the channel pathways with an assumption656

about channel belt width and thickness at each point. This approach has been suc-657

cessfully applied to construct 3D karst conduits in the subsurface (Rongier et al.,658

2014).659

Conceptual fan models also suggest that a downstream decrease in aquifer-660

body thickness should be expected because of channel termination or bifurca-661

tions (e.g., Friend, 1978; Nichols and Fisher, 2007). Owen et al. (2015) showed,662

however, that for Jurassic fan systems of the Morrison Formation in the western663

U.S.A., the channel size did not significantly change down fan but that the per-664

centage of fines increased. This is also observed in the Yamuna fan but less in the665

Sutlej fan (Van Dijk et al., 2016); the aquifer thickness distribution remains simi-666

lar with distance from the fan apices, but the fraction of aquifer bodies decreases.667

Van Dijk et al. (2016) interpreted this pattern as a simple volumetric consequence668

of the conical fan shape combined with a near-uniform size of the aquifer bodies669

across the study area, perhaps due to stacking of channel belts or filling of incised670

valleys. A similar analysis of the aquifer-body thickness distribution derived from671
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the model results shows no decrease in aquifer-body thickness down fan, similar672

to the observations from the Yamuna fan (Table 4). It must be remembered that673

our model aquifer thicknesses are multiples of 5 m, so that quantitative compar-674

isons with real aquifer-thickness distributions must be made with caution.675

Fan models also encompass the connectivity of sand bodies within the sub-676

surface stratigraphy, which enables fast flow and transport from one location to677

another (Larue and Hovadik, 2006; Renard and Allard, 2013). Horizontal con-678

nectivity is partially set by the model rules, because we assume that individual679

bodies are continuous down-fan, are no more than one grid cell in width, and680

are bounded by finer-grained non-aquifer material, but in practice the horizontal681

connectivity depends also on the density of aquifer cells in the input data. The682

extent of vertical connectivity between the bodies should increase as the proba-683

bility threshold µ (which controls the model-predicted bulk aquifer fraction, fµ )684

is increased. Our analysis shows that sand bodies for both approaches are fairly685

well connected throughout the basin (Figure 8b), but the connectivity differs in686

cross-fan and down-fan direction for our model compared to random filling (Fig-687

ure 8c-d). Our model has reasonably high connectivity in the cross-fan direction,688

despite the fact that the model is actually hard-wired against cross-fan connection.689

There is no difference in connectivity between our model and random filling for690

aquifer systems with a bulk aquifer fraction ( fobs) of more than ∼0.5 (Figure 8c-691

d). This suggests that the model has no additional skill for predicting connectivity692

within a highly sand-dominated system — for example, the Kosi fan in northern693

India, with a bulk aquifer fraction of 0.89 (Sinha et al., 2014).694
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5.2. Potential use and future improvements of the model695

The model provides a tool to estimate the probability of finding aquifer mate-696

rial within a near-surface volume, based on information at known well locations697

and some simplified geological knowledge about the origin, depositional pattern,698

and likely dimensions of aquifer bodies. The model could be used in a generic699

sense to understand the potential variations in subsurface aquifer distribution and700

connectivity in cases of variable bulk aquifer fractions. Because we have popu-701

lated the model with actual data on aquifer-body positions taken from the CGWB702

aquifer-thickness logs, however, it is also useful as a predictive tool to generate703

probabilities of encountering aquifer bodies at any point, and at any given depth,704

across the study region. The model algorithm strikes a balance between purely705

empirical (and computationally simple) approaches on the one hand, and process-706

based but more computationally-intensive approaches on the other. Because of707

its simplicity, it can easily be updated to incorporate new subsurface information708

on aquifer-body positions (e.g., from new boreholes), as that simply increases the709

number of ‘known‘ cells at the start of the model run. There is no need to redefine710

the geometry of potential aquifer bodies or channel pathways in the subsurface, as711

that is done automatically, and because model run times are short the model can712

be quickly re-run to reflect evolving knowledge.713

Encouragingly, the model performs best when compared to random filling at714

low false-positive rates, corresponding to a high value of the probability thresh-715

old µ that is used to convert aquifer probability into the presence or absence of716

model aquifers (Figure 7b-c). A conservative strategy for identifying target ar-717

eas for new wells would seek to minimise false-positives (i.e., locations where718

the model predicts aquifer material at a given depth, but none is found), and un-719
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der those constraints the model substantially outperforms random filling. The720

model could thus be employed as a guide to prioritise the siting of new wells. It721

could be combined with, for example, magnitude-frequency analysis of aquifer-722

thickness data (Van Dijk et al., 2016) to also provide information on the prob-723

ability of encountering an aquifer body of a given thickness at those new well724

locations. The more specific effects of the 3D subsurface stratigraphy generated725

by the model on groundwater flow and transport, and the quantitative differences726

between model stratigraphy and that generated by random filling, would need to727

be tested with regional-scale hydrogeological modelling (e.g., Ronayne and Gore-728

lick, 2006; Burns et al., 2010). It would also be useful to perform groundwater729

flow and transport simulations on the various individual realizations instead of the730

probability maps, which could for example yield information on uncertainty in731

contaminant propagation prediction. This application might need refinement of732

the grid to avoid numerical artefacts. Refinement could be done either for individ-733

ual realizations or by adapting our model algorithm. For example, we could apply734

the algorithm on a finer grid, then fill adjacent cells perpendicular to the random735

walk to obtain an aquifer of 6 km wide before continuing our algorithm.736

There are a number of areas of the model that could be improved or refined.737

The surface test case of the elongated ridges shows that there is good performance738

when 10% of the fan area is covered with data. However, the performance for739

the subsurface is less accurate. The two different data sets are recording differ-740

ent things; the ridges are fluvial, open fan channels, while the reserved logs are741

recording aquifer bodies. We have inferred that the surface ridges are a good ana-742

logue for subsurface channel bodies because of their scale and pattern (radiating743

from the fan apex). The subsurface, however, contains some incised-valley fills,744
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which may not be represented by the surface ridges, and which may have different745

preservation potential in the subsurface (Weissmann et al., 1999).746

While the regional coverage of our aquifer-thickness data is extensive, the logs747

are still relatively sparse, and the model is forced to fill many gaps even on our748

low-resolution 6 x 6 km grid. This grid spacing is based on likely aquifer-body749

widths as inferred from surface observations in the study area (Van Dijk et al.,750

2016). There is substantial uncertainty on those widths, stemming from both the751

range of channel deposit widths visible at the surface and the viability of surface752

features as an appropriate analogue for subsurface aquifer bodies. For example,753

the elongated surface ridges that are used as an analogue for subsurface channel754

deposits are only 500-2500 m wide (Van Dijk et al., 2016), meaning that a 2-3 km755

grid might allow for more precise delineation of potential aquifer bodies. This756

would lead, however, to a dramatic increase in the number of empty cells that757

the model must fill (Figure 5b), and clearly we lack the subsurface data to test758

the advantages of a more precise model result in any quantitative way. The ROC759

curve shows that the distal part of the fan is already less accurately predicted with760

the current data availability (Figure 7d). Poor model performance could also be761

caused by the fact that we neglect the local surface topography and assume that762

the modern basin surface slope is the same as the slope throughout fan deposi-763

tion. An improvement would be to obtain actual local surface topography and764

use a different reference elevation for connecting the various logs. Finally, we765

caution that the model algorithm, while flexible and potentially portable to other766

fan settings, has been designed with the Sutlej-Yamuna fan system in mind. At767

the very least, application to other fans would require some preliminary analysis768

of available aquifer-thickness data and observations of channel-belt dimensions769
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and deposit widths, in order to set both the depth slice thickness and model grid770

size to appropriate values. The model sensitivity to the bulk aquifer fraction (Fig-771

ures 7, 8) also shows that, for systems with a high aquifer fraction, the model772

provides little additional information or skill over simple random filling, because773

the likelihood of finding aquifer material is high everywhere. Thus, application to774

this type of fan system, such as the Kosi fan, does not appear warranted.775

6. Conclusions776

We have shown that the subsurface distribution of aquifer corridors across the777

Sutlej and Yamuna fans in northwestern India can be reconstructed by a reduced-778

complexity probabilistic model that incorporates some degree of geological knowl-779

edge of the depositional system. The model connects known locations of aquifer780

material with the fan apex by a weighted random walk, and uses the assumed781

lateral dimensions of the major aquifer bodies to identify likely locations of non-782

aquifer material to either side of the aquifer corridors. The model is sensitive to783

the type and distribution of input information, and the addition of new subsur-784

face data can cause a substantial decrease in the number of empty cells that must785

be filled by the model. Cross-validation of the model against a subset of input786

CGWB aquifer-thickness logs indicates that the model provides an increase in the787

true-positive rate compared to simple random filling of the basin, especially for788

moderate to high values of the threshold used to convert aquifer probability into789

model aquifer position.790

The model produces a simplified representation of the subsurface stratigraphy791

across the study area that matches key aspects of the spatial distribution of aquifer792

thicknesses (Van Dijk et al., 2016). The results show that aquifer-body probability793
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is highest near the fan apices, as multiple channel systems must be routed through794

a relatively small area, compared with lower probabilities in distal regions. This795

high probability in proximal regions is also reflected in the high connectivity be-796

tween potential aquifer bodies in the across-fan direction, normal to the transport797

direction, despite the fact that the model rules militate against lateral connectivity.798

In general, predicted aquifer connectivity is higher and more anisotropic for the799

model-derived stratigraphy than for the case of random filling, especially at low800

to moderate bulk aquifer fractions like those found in the study area.801

The model could be used to explore variations in aquifer-body distribution802

at different aquifer fractions, or to predict the likelihood of finding aquifer ma-803

terial at a given location and depth across the study region. Importantly, model804

performance increases as more data are incorporated, meaning that information805

from new boreholes could be used to iteratively increase the model accuracy as806

new parts of the system are explored. The model could also be applied to other807

fan-hosted aquifer systems, although some caution is needed in ensuring that the808

geological rule set remains valid and that appropriate model dimensions are cho-809

sen.810
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Table 1: Observed width dimensions from the present surface (Van Dijk et al., 2016).

Basin Feature Width

Sutlej river channel belt 1600-5000 m

Yamuna river channel belt 4000-10000 m

Ghaggar paleochannel 5000-8000 m

Sutlej fan ridges 650-2300 m

Yamuna fan ridges 740-1790 m

Table 2: Observed aquifer body thickness distribution statistics from Van Dijk et al. (2016).

Basin Thickness (m) Total fraction

percentile

25th 50th 75th aquifer non-aquifer

Sutlej 4.73 7.1 12.1 0.42 0.58

Yamuna 4.1 6.6 10.1 0.43 0.57
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  Table 3: Modelled aquifer body thickness distribution statistics for various µ values

5-m interval 10-m interval

Basin µ Thickness (m) fµ Thickness (m) fµ

percentile percentile

25th 50th 75th 25th 50th 75th

Sutlej

0.3 5 15 40 0.79 10 20 70 0.77

0.35 5 15 30 0.68 10 20 60 0.68

0.4 5 10 25 0.51 10 20 50 0.56

0.45 5 10 20 0.34 10 20 40 0.42

0.5 5 10 15 0.21 10 20 40 0.28

0.55 5 10 15 0.13 10 20 30 0.20

Yamuna

0.3 5 15 35 0.75 10 20 50 0.67

0.35 5 15 30 0.64 10 20 40 0.57

0.4 5 10 25 0.48 10 20 40 0.48

0.45 5 10 20 0.34 10 20 40 0.38

0.5 5 10 20 0.23 10 20 40 0.31

0.55 5 10 15 0.15 10 20 40 0.24
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Table 4: fobs with distance from the fan apex for the CGWB data and fµ for the 25th, 50th, and

75th percentiles from the model results.

Basin Distance fobs fµ

fraction 25th 50th 75th

Sutlej

0-50 0.47 0.25 0.53 0.83

50-100 0.45 0.23 0.35 0.53

100-150 0.37 0.20 0.30 0.45

150-200 0.29 0.20 0.30 0.43

200-250 0.34 0.19 0.30 0.48

Yamuna

0-50 0.41 0.38 0.46 0.58

50-100 0.38 0.25 0.50 0.78

100-150 0.42 0.25 0.43 0.65

150-200 0.29 0.15 0.28 0.43

200-250 0.26 0.13 0.21 0.36
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Figure 1: Geomorphological map of the study area (modified after Van Dijk et al., 2016), covering

the Sutlej and Yamuna fans and the interfan area between them (pink). Dots show locations of

CGWB aquifer-thickness logs (Van Dijk et al., 2016), and colours show bulk percentage of aquifer

material in the upper 200 m. The heavy black line indicates the extent of the model space, chosen

to include parts of both fans. Dashed lines show the locations of medial (Figure 9a) and distal

(Figure 9b) transects.
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Figure 2: Details of model algorithm and weighted random walk approach as applied in this

study. a, directional probabilities derived from the courses of the modern Sutlej and Yamuna

channel belts as well as elongate palaeochannel ridges on the Sutlej and Yamuna fans. Numbers

and shading show the probabilities that the next upstream channel or ridge cell, toward the fan

apex, will occur in one of the eight cardinal directions shown. Probabilities are calculated by the

summation of all identified channel or ridge of the adjacent cells for all individual channel or ridge

cell, where the probabilities of the cells mirrored to the three cells towards the fan apex are set

to zero and probabilities of cells NW and SE direction are divided by two. These probabilities

are converted to weights in the random walk used to populate the model with aquifer material. b,

schematic showing how the probabilities in (a) are weighted by the angle of the fan apex, and how

potential aquifer bodies are routed through the cells around known non-aquifer locations. The

probability is modified by a cos(α) term, in which α is zero towards the fan apex. c, routing

of aquifer material upstream toward the fan apex using the weighted probability. d, routing of

aquifer material downstream with equal probabilities in the three down-fan directions. e, filling of

non-aquifer material in the cells that are laterally adjacent to each aquifer corridor.
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95% data removed

single realization

probability map
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fan apexsurface training image
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Figure 3: a) Test case of the elongated ridges, used to assemble a quantitative measure of the

precision of the model in reconstructing the aquifer pathways. b) In the next step, 95% of the

image is removed, leaving 5% of the cells filled with aquifer or non-aquifer. c) Example of a

single realization with our model. d) Example of a single realization of random filling of the cells

up to 25% with aquifer material. e) Probability map based on 100 realizations from our model. f)

Probability map based on 100 realizations from random filling.
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Figure 4: a, results from a single model run for a single depth slice (in this case, 80-90 m below

ground level) and a 6 x 6 km grid. In this and subsequent panels, the colour bar shows the proba-

bility of finding aquifer material in each cell, and the black polygons indicate district borders for

reference. After a single run, the probability is either 1 (aquifer) or 0 (non-aquifer). The colored

boxes indicate the locations for the connectivity analysis shown in Figure 8. b, model results after

25 iterations. ‘Known‘ cells containing aquifer-thickness logs retain 1 or 0 values, but all other

cells contain probabilities in the range [0,1]. c, model results after 100 iterations, showing a some-

what different pattern of probabilities. d, the cumulative distribution of probabilities for all depth

slices after different numbers of iterations. Results with 100 and 250 iterations are indistinguish-

able. Note that the curve does not tend to 0 or 1 because of the presence of known cells with fixed

probability values.
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Figure 5: Controls on the fraction of empty cells that must be filled by the model. a, model

results using a 2 x 2 km grid and 100 iterations. Compared with Figure 4, probabilities are more

distributed, with fewer dominant corridors of high aquifer probability. b, decline in the number of

empty cells that must be filled by the model with increasing grid cell size. Boxes show median,

25th and 75th percentiles, and error bars show ±1 standard deviation for 100 iterations at each cell

size. c, variability in the number of empty cells in each 10 m depth slice for 100 iterations. The

number of empty cells depends on the aquifer percentage in the input data for each depth slice. d,

the fraction of empty cells for runs that ignore aquifer bodies that are less than a given threshold

in thickness. This change has no significant effect on the fraction of empty cells.
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Figure 6: a, the effect of dominance in the input data when multiple well logs occur within a

single grid. For runs marked ’aquifer’, a cell is classified as aquifer if the majority of at least

one input log consists of aquifer material within that depth slice. For runs marked ’non-aquifer’,

a cell is classified as non-aquifer if the majority of at least one input log consists of non-aquifer

material. The cell size is 6 x 6 km, and the model was run for 100 iterations. Note that non-

aquifer precedence results in the assignment of a smaller number of aquifer cells, and thus a

larger number of empty cells that must be filled randomly. b, spatial pattern of changes in aquifer

probability when using aquifer material, rather than non-aquifer material, as the dominant input.

The blue colour illustrates the reduction in aquifer probability when the non-aquifer information

is dominant. Note that the blue colour follows one of the major aquifer pathways in Figure 4c.53
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Figure 7: Quantitative characterization of the performance of the model compared to the case of

simple random filling. a, ROC curves showing the ability of both model (solid lines) and random

filling (dashed lines) to reproduce the positions of elongated ridges on the Sutlej fan surface (the

test case). The true positive rate (TPR) shows the proportion of cells that are aquifer material in

both the simulated output and the test case, while the false positive rate (FPR) shows the proportion

of cells that are aquifer material in the simulation but non-aquifer in the test case. A perfect model

would plot in the upper left-hand corner (TPR = 1, FPR = 0). The curves are derived by increasing

the probability threshold value from 0 (upper right-hand corner, all aquifer material) to 1 (lower

left-hand corner, no aquifers). Different lines show simulations with varying proportions of the

input data included, to compare with the model results. The model consistently has a higher

TPR-FPR ratio than random filling for all threshold values. b, ROC curves showing the ability of

random filling to reproduce a reserved set of input CGWB aquifer-thickness logs. The solid line

shows the median output for 50 simulations and the shaded area shows the range between the best

and worst simulations. Selected probability thresholds are shown on each curve for reference. c,

ROC curves showing the ability of the model to reproduce a reserved set of input logs. Symbols

as in panel (b). Note that the region of low FPR, i.e., corresponding to moderate to high values

of the probability threshold, would be appropriate for a conservative assessment of the model. In

this region, the model has generally a higher TPR-FPR ratio than random filling, especially when

more data are included. d, ROC curves showing the ability of the model to reproduce the reserved

set of input CGWB logs for both proximal locations (solid lines, within 100 km of the fan apex)

and distal locations (dashed lines, more than 100 km from the apex). The TPR-FPR ratio is higher

for the proximal part of the fan systems for the region of low FPR and moderate to high values of

the probability threshold.
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Figure 8: a, smoothed isosurfaces of model potential aquifer bodies for a probability threshold

value of 0.45. The aquifer material forms a set of ’ribbon’-shaped bodies that are elongate down-

fan, away from the Sutlej and Yamuna fan apices. Note that the smoothed isosurfaces are created

for visualisation purposes by interpolation of aquifer cells, and are therefore somewhat thicker

and wider than the actual data that are used for the analysis. Coloured boxes indicate areas used to

evaluate connectivity both parallel to transport (down-fan direction, blue) and normal to transport

(across-fan direction, red). b, variation in the connectivity index with increasing fµ , equivalent

to an increasing probability threshold value. Symbols show connectivity along faces, edges, and

vertices (26 possibilities). Model connectivity (black symbols) is higher than that for random

filling (grey symbols) at low fµ , typical of the study area. c, variations in the connectivity index

along faces, edges and vertices for the model as a function of fµ , taken along the transects shown

in panel (a). Connectivity in the down-fan direction is generally equal to, or greater than, that in

the across-fan direction, and connectivity in proximal parts of the system is greater than that in

distal areas. At high fµ , however, connectivity is high and essentially isotropic. d, as panel (c),

but for the case of random filling. Connectivity is essentially isotropic at all fµ .
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Figure 9: Model probabilities of finding aquifer material along (a) the medial transect and (b) the

distal transect, extracted from a model with a grid size of 6 x 6 km, 5 m depth slices, and 100

iterations. The model yields high probabilities at locations near aquifer-thickness logs, whereas

areas without borehole information are more likely to be classified as non-aquifer material. Prob-

abilities are overall smaller for the distal transect compared to the medial transect. See Figure 1

for transect locations .
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 A new reduced complexity model reproduces simplified fluvial stratigraphy within a fan 

system 

 The model improves forecasting of aquifer body locations compared to random filling 

 The model provides testable predictions of the location and distribution of aquifer bodies in 

the subsurface 
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