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Introduction 

In order to gain an understanding of the economic basis of prehistoric communities, the 

identification of dairying is essential, particularly in northwest Europe, where a high 

degree of lactose tolerance suggests that fresh milk has long been a significant dietary 

component. Currently, prehistoric dairying is investigated using a variety of techniques. 

The two techniques that have been most widely applied are the examination of faunal 

remains and compound-specific stable isotope analysis of lipids in pottery residues. 

Examination of faunal remains to determine age-at-death slaughter patterns (mortality 

profiles) and female to male ratios (Higham 1968; Payne 1973) allows the economic 

role of a particular species (e.g. for meat, wool, milk or traction) to be inferred (e.g. 

Legge 1981), whilst lipid analysis is effective at identifying the presence of milk 

products in the archaeological record (e.g. Dudd and Evershed 1998; Copley et al. 

2005a). Recent developments in the detection of archaeological proteins have allowed 

the identification of milk proteins to species in both organic residues and human dental 

calculus (e.g. Hong et al. 2012; Buckley et al. 2013; Warinner et al. 2014). 

An additional approach to identify cattle (Bos taurus) dairying in prehistoric 

communities is explored in this paper: a possible relationship between calving 

seasonality, i.e. the distribution of births throughout the year, and economic focus. For 

economies focussed on the year-round production of fresh milk as a staple food product, 

it has been postulated that multiple-season calving would have been necessary (Towers 

et al. 2011; Balasse et al. 2012a; Gron et al. 2015). In contrast, a strategy of single-

season calving, probably in spring, may have been favoured for meat-based economies 

or economies focussed on storable milk products. Increasingly, birth seasonality of 

domestic herbivores has been investigated using intra-tooth isotope ratio analysis of 

molar enamel (e.g. Balasse et al. 2003; Balasse and Tresset 2007; Blaise and Balasse 

2011; Towers et al. 2011; Balasse et al. 2012a; Balasse et al. 2012b; Tornero et al. 

2013; Towers et al. 2014; Buchan et al. 2015; Gron et al. 2015).  

Each of the aforementioned techniques to identify prehistoric dairying has its 

limitations: faunal remains may be misinterpreted due to equifinality (Halstead 1998), 

potentially relevant to both mortality profiles and birth seasonality estimations, whilst 

neither lipid nor protein analyses provide information on the intensity of milk 

production and, consequently, its significance to ancient economies.  However, a multi-
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proxy approach that combines evidence from a range of different techniques has the 

potential to produce a more accurate and nuanced understanding of the economic basis 

of a prehistoric site or, at the very least, will act to generate a fresh series of 

archaeological questions, thus contributing to the debate on dairying in the past.    

In this paper, we estimate calving seasonality at Pool, Orkney (Fig. 1), during the Iron 

Age/Scandinavian Interface period (c. AD 800 – c. AD 950) by analysing both oxygen 

and carbon isotope ratio data collected from cattle molars. Three different methods have 

been applied in order to interpret the data. Two of the methods use the positioning of the 

seasonally varying δ
18

O signal recorded in molar enamel (Balasse et al. 2012a; Towers 

et al. 2014) whilst the third uses the timing of the onset of rumen functionality as 

evidenced in the δ
13

C data (Towers et al. 2014). Our aims are twofold: to compare the 

calving seasonality results for Pool obtained using the three different methods, and to 

discuss the possible economic role of cattle at Pool with respect to both calving strategy 

and mortality profile. Although most of the isotopic data included in this study have 

been published previously (Towers et al. 2014), that particular publication did not 

estimate or discuss calving seasonality for any of the sites included. Instead, it focussed 

exclusively on method, combining data from a range of British sites to attempt to 

identify and quantify the principal sources of uncertainty involved in the estimation of 

calving seasonality. 

Background 

Manipulation of calving seasonality 

The feasibility of manipulating the birth seasonality of sheep and cattle by prehistoric 

communities and the constraints on achieving this by various physiological and 

environmental factors have been discussed previously (Balasse and Tresset 2007). 

Biologically it is certainly possible for domestic cattle to produce offspring throughout 

the whole year (King 1978, 124). Thus, theoretically, it would have been feasible for 

prehistoric cattle farmers to manipulate calving seasonality to achieve calving during a 

particular season, over an extended period or all year round. To determine whether these 

options would have been readily achievable in practice it is informative to consider the 

reproductive behaviour of feral or semi-feral cattle living in temperate regions. Several 

examples are summarised in Table 1. All but one of these herds exhibit seasonal calving 

with the majority of births occurring during the season of spring, suggesting a strong 
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relationship between calving and the spring flush of grass as temperatures rise after the 

winter (Reinhardt et al. 1986).  

Only one herd included in Table 1, the Chillingham cattle, calve year-round. They are 

given hay in winter and have access to 130 ha of extremely well-managed mixed 

permanent grassland and open woodland, the number of individuals having risen from 

13 in 1947 (Hall and Hall 1988) to approximately 100 strong at the beginning of 2012 

(Chillingham Wild Cattle Association 2012). Most of the other herds, with more 

restricted calving periods (Table 1), do not receive supplementary food during the 

winter (Hall and Moore 1986; Berteaux and Micol 1992; Lazo 1995; Gómez et al. 1997) 

or, if they do, live in a region with harsh winters (Reinhardt et al. 1986).  

The suggestion from this small number of feral and semi-feral herds is that nutrition and 

climate are important factors influencing calving seasonality. It is supported by studies 

of farmed cattle which have demonstrated the influence of nutrition on the oestrous 

cycling of cows (e.g. Joubert 1954; Durrell 1955; Wiltbank et al. 1962; Richards et al. 

1986; Louw et al. 1988). Food energy tends to be prioritised for survival rather than 

reproductive functions, the order of priority from greatest to lowest being: 1) basal 

metabolism, 2) activity, 3) growth, 4) basic energy reserves, 5) pregnancy, 6) lactation, 

7) additional energy reserves, 8) oestrous cycles and initiation of pregnancy and 9) 

excess reserves (Short and Adams 1988). Thus, when food becomes limited, the 

oestrous cycle will be one of the first physiological functions to become inactive (ibid.). 

Whether this happens depends on the quantity and quality of the available food (i.e. the 

energy input), the competing energy demands of other physiological functions such as 

lactation, how much activity is required to forage for food and water, whether the 

animal is growing and how much body fat is present as a stored energy supply (ibid.). In 

temperate winters under certain conditions, maintenance of body temperature may 

require heat production through shivering. Food energy would be prioritised for this 

vital body function (McDonald et al. 1988, 293-5).  

The implication for prehistoric farmers is that spring-calving would have required the 

least amount of effort. Such a strategy, mimicking feral herd reproductive behaviour by 

maximising the use of spring and summer vegetation, has several advantages for meat 

production: a) calves are at least six months old before winter and therefore better able 

to withstand harsh conditions, b) milk yield is maximised for the calf, c) grass quality is 

at its highest as the calf begins to graze, d) fertility is maximised in time for summer 
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mating, and e) cows are able to lay down body reserves during the latter part of the 

grazing season in time for winter (Younie 2001). Thus, spring calving effectively 

maximises calf growth while minimising effort/cost. For a prehistoric dairy-based 

economy, calving strategy would have been influenced by both the duration of lactation 

and the shelf lives of the dairy products. If multiple-season calving was necessary, then, 

unless climatic conditions allowed plentiful natural grazing all year round, a high degree 

of effort and management would have been required to provide cattle feed of both 

sufficient quantity and quality throughout the year and perhaps shelter during the 

winter. 

The archaeological site of Pool, Orkney 

Located on the south-western peninsular of Sanday, Orkney, Pool is a multi-period 

settlement with evidence of occupation in the Neolithic period and from the Iron Age 

through to the Late Norse period (Bond 2003). The cattle molars analysed in this study 

are from deposits exhibiting the earliest signs of Scandinavian influence (Phase 7, the 

Iron Age/Scandinavian Interface period, c. AD 800 – c. AD 950). This influence is 

evident in new artefact types such as worked-bone implements and steatite vessels and a 

new sub-rectangular building style (Hunter 2007, 121). The mortality profile 

constructed from tooth eruption and wear data for Phase 7 shows a high level of 

juvenile mortality (Fig. 2, data from Serjeantson and Bond 2007a). The resemblance to 

Payne’s (1973) milk model has led to the interpretation of a dairy-based economy 

(Serjeantson and Bond 2007a). An estimated female: male ratio of between 4:1 and 7:1, 

determined from measurements of metacarpal width, also supports a focus on dairying 

rather than meat (Bond 2007a). The number of older animals in the assemblage is lower 

than might be expected, possibly indicating that old milk cows ended their working 

lives elsewhere. Bond (2007a) has suggested that Pool may have been a producer 

settlement in a network of several interdependent settlements. 

Oxygen and carbon stable isotope ratio analysis of cattle molar enamel 

Cattle molars are high-crowned (hypsodont) teeth, the crowns forming sequentially over 

a period of several months from the cusp at the occlusal surface to the cervix, where the 

crown and root meet (Brown et al. 1960; Hillson 2005, 8-15). Enamel mineralization 

follows two phases: matrix formation and maturation, the organic matrix being 

deposited ahead of maturation (Suga 1982). Most of the mineralization occurs during 

the maturation stage and is a complex process both spatially and temporally (Suga et al. 
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1979; Suga 1982; Robinson et al. 1995; Hoppe et al. 2004; Tafforeau et al. 2007; see 

Towers et al. 2014 for a summary of the process). According to isotopic studies, cattle 

molar enamel at any position on the crown takes at least 6-7 months to mineralize 

(Balasse 2002; Zazzo et al. 2005). 

Isotope ratio mass spectrometry may be employed to measure the oxygen and carbon 

isotope ratios of the carbonate fraction of enamel bioapatite (the mineral component of 

enamel). Isotope ratios are expressed in the δ notation and units are per mil (‰) (Sharp 

2007, 17-18). It is possible to obtain time-related isotopic data from enamel samples 

extracted at a number of positions along the length of a hypsodont crown (Fricke and 

O’Neil 1996). The intra-tooth δ
18

O profiles recorded in cattle molar enamel generally 

follow a sinusoidal-like pattern, reflecting the seasonal variation in the δ
18

O value of 

precipitation (Longinelli 1984; Luz et al. 1984; Fricke et al. 1998) with maxima 

corresponding to summer and minima to winter, due to a number of climatic variables 

including air temperature (Dansgaard 1964). Because of the lengthy mineralization 

process of cattle enamel, the intra-tooth δ
18

O profile recorded along a molar crown is 

attenuated and temporarily shifted relative to the δ
18

O of the drinking water (Passey and 

Cerling 2002; Kohn 2004). In addition, the δ
18

O profile recorded in enamel forming 

early in life may be influenced by the ingestion of water via milk. δ
18

O values of milk, 

derived from the mother’s body water, tend to be more positive than those for drinking 

water by several per mil (Lin et al. 2003; Renou et al. 2004; Camin et al. 2008).  

The δ
13

C values measured in tooth enamel are influenced by both whole diet and 

digestive physiology (Sullivan and Krueger 1981; Hedges 2003; Passey et al. 2005). 

For cattle in first millennium AD Orkney, diet would have consisted of C3 vegetation, 

possibly supplemented by seaweed, which has been used as cattle fodder in Orkney in 

the past (Fenton 1997, 428).  The δ
13

C value of C3 vegetation is influenced by growing 

environment, species and plant part (Tieszen 1991; Heaton 1999) and tends to vary 

seasonally due to factors such as water availability, irradiance and the seasonally 

varying δ
13

C value of atmospheric CO2 (Farquhar et al 1989; Ciais et al 1995; Smedley 

et al 1991; Dungait et al 2010). If seaweed was a significant dietary component for the 

cattle at Pool, the δ
13

C values measured in enamel would be elevated compared to a C3-

only diet, as has been demonstrated for sheep from Orkney:  modern seaweed-eating 

sheep from North Ronaldsay and prehistoric sheep from the Neolithic sites of Holm of 
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Papa Westray and Point of Cott, and from Iron Age Mine Howe (Balasse et al. 2005; 

Balasse et al. 2006; Balasse et al. 2009). 

Towers et al. (2014) have proposed that first molar enamel δ
13

C patterning indicates the 

transition from non-ruminant (lower δ
13

C values) to ruminant digestion (higher δ
13

C 

values) that a calf undergoes within the first three months of life. At birth, a calf’s 

rumen is undeveloped and digestion of milk takes place in its fourth stomach 

compartment, the abomasum, which digests food in a similar manner to the stomach of 

a non-ruminant (Davis and Drackley 1998, 13). However, by the age of two weeks, a 

calf will begin to consume dry food if available (Lengemann and Allen 1959; Godfrey 

1961a), which stimulates the rumen to develop quickly, anatomically, microbially and 

physiologically, so that at 6-10 weeks of age, it is usually able to digest food like an 

adult ruminant (Bryant et al. 1958; Swanson and Harris 1958; Godfrey 1961b; 

Anderson et al. 1987). Rumen digestion involves the fermentation of food which 

produces methane, depleted in 
13

C, and carbon dioxide, enriched in 
13

C. Thus, any of 

this 
13

C-enriched carbon dioxide entering the bloodstream and becoming incorporated in 

the mineralizing enamel of a ruminating calf will raise the δ
13

C value of the enamel with 

respect to non-ruminant digestion (Cerling and Harris 1999; Passey et al. 2005).  

Materials and Methods 

First, second and third molars from five cattle mandibles and first and second molars 

from a sixth mandible, all different individuals, were selected for this study. For each 

molar, the crown was fully formed and the root either complete or still forming at death. 

Powdered intra-tooth enamel samples were obtained from the cusp to the cervix of a 

single lingual lobe from each molar. The distance from the cervix was measured for 

each sample. Mesial lobes were preferred, although distal lobes (for first and second 

molars) and central lobes (for third molars) were selected if mesial lobes were damaged 

or their enamel was of an inferior quality.   

Sample preparation and analysis were carried out at the Stable Light Isotope Facility at 

the University of Bradford, following a protocol modified after Sponheimer (1999) and  

detailed elsewhere (Towers 2013, 107-9; Towers et al. 2014). Analytical precision was 

± 0.2 ‰ for δ
18

OVSMOW (1σ) and ± 0.1 ‰ for δ
13

CVPDB (1σ), determined using an 

internal enamel laboratory standard (45 normalised measurements obtained over a 23 

month period). 
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In this paper, three methods for estimating calving seasonality using intra-tooth isotope 

ratio analysis are applied to the Pool data-set. More than one method is used because it 

is not currently known which method is the most accurate in estimating the distribution 

of births. Analysis of material from modern animals with known early-life histories 

would be hugely beneficial in this respect.  

Method 1 

The first method assesses how the timings of the second molar δ
18

O minima relative to 

birth vary between the cattle and requires that the intra-tooth δ
18

O data are plotted 

versus time rather than distance from the cervix as outlined below. The timing of each 

δ
18

O minimum may be calculated through differentiation of a second-order polynomial 

fitted by Excel to the surrounding data points (Towers 2013, A32). 

Method 2 

The distribution of births may also be estimated using a method first developed by 

Balasse et al. (2012b) for sheep, and then applied to Neolithic cattle (Balasse et al. 

2012a), which involves plotting the δ
18

O data versus distance from the cervix, fitting a 

cosine curve to each δ
18

O profile and normalising to period. Fitting the cosine function 

is carried out by the method of least squares through the adjustment of four parameters: 

X (period of the curve in mm), A (amplitude), xo (distance in mm between the cervix 

and the feature of the curve selected for inter-animal comparison) and M (mean δ
18

O 

value) (Balasse et al. 2012a). For the Pool data, the feature selected for inter-animal 

comparison is the second molar δ
18

O minimum. The method has been modified such 

that A and M are derived from the magnitudes of the second molar δ
18

O minima and 

maxima. δ
18

O minima and maxima magnitudes are calculated by fitting second-order 

polynomials in Excel to the surrounding data points in the plots of δ
18

O versus time 

constructed for method 1 (Towers 2013, A32). Each cosine curve may then be fitted to 

the second molar data by the method of least squares through iterative adjustment of the 

remaining parameters, xo and X. Assuming that distance X represents 12 months, the 

number of months represented by xo may be calculated for each animal and the variation 

in xo will then produce an estimate of birth seasonality. 

Method 3 

The third method is based upon the changes in digestive physiology occurring during 

the first few months after birth, as reflected in the δ
13

C profiles recorded in first molar 
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enamel (Towers et al. 2014). First molar δ
13

C values tend to be low in the earlier, cuspal 

part of the tooth, rise steeply and then, at a point in the cervical half of the tooth, display 

a reduction in gradient. The reduction in gradient is believed to indicate the completion 

of rumen functionality 6-10 weeks after birth (Towers et al. 2014). If true, this 

inflection in the first molar δ
13

C profile may serve as an indicator of an animal’s birth, 

albeit displaced by several weeks. The relationship between the reduction in first molar 

δ
13

C gradient and the seasonal cycle of the δ
18

O profile, when considered for all the 

cattle included in the study, may then be used to estimate cattle birth seasonality. 

Plotting the δ
13

C and δ
18

O data versus time is beneficial for this method. 

Preliminary data handling: plotting intra-tooth data versus time 

Conversion between distance from the cervix and time is achieved using a method 

detailed by Towers et al. (2014). Briefly, third molar unworn crown heights are 

predicted using incremental corrections calculated from plots of wear stage versus 

crown height for a collection of cattle third molars from Mine Howe, Orkney (data from 

Davis 2010, Appendix V). The unworn second and first molar crown heights are then 

assumed to be 97 % and 81 % of the predicted unworn third molar crown height 

respectively, based on measurements by Legge (1992, 21), Jones (2007) and Towers 

(2013, Appendix 1). For an animal with only first and second molars, the unworn 

second molar crown height may be predicted using the incremental correction obtained 

from the Mine Howe third molars since the size and morphology of the two molar types 

are similar. The timing of each intra-tooth sample relative to the cervix is calculated 

using the distance from the cervix measurement (as a proportion of unworn crown 

height) and the chronology of cattle molar crown formation published by Brown et al. 

(1960) (Table 2). Crown formation (i.e. matrix progression) is assumed to occur 

between -4.7 and 2.5 months (M1), 1 and 12.5 months (M2) and 10 and 23.5 months 

(M3) relative to birth (Brown et al. 1960; Soana et al.1997). A uniform rate of 

formation is also assumed, which may be reasonable for second and third molars 

(Hillson 2005, 163) but unlikely to be true for first molars; according to Brown et al. 

(1960), only one third of the first molar crown is formed before birth (i.e. during the 

first 4.7 months of the 7.2 month period of formation). 
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Results 

Intra-tooth oxygen and carbon isotope results for the cattle molars from Pool are 

presented in Table 3. The position along the tooth lobe (distance from the cervix) is 

given for each sample. Results for five of these animals (PL0278, PL0330, PL0339, 

PL0344 and PL0386) have been published previously (Towers et al. 2014). The data are 

also shown in Figure 3, in which intra-tooth δ
18

O and δ
13

C values from first, second and 

third molars are combined onto a single plot versus time. Although the first molar 

isotopic data are plotted in Figure 3, the x-axis time scale is removed for times earlier 

than 2 months because of the known non-uniformity of first molar matrix progression. 

The timing of each data point (x-axis value) relates to the initial deposition of the 

enamel matrix, whilst the δ
18

O and δ
13

C values (y-axis values) are for the completed 

enamel which would have taken at least 6-7 months to mineralize following matrix 

deposition (Balasse 2002; Zazzo et al. 2005).  

Intra-tooth δ
18

O values vary between 23.3 ‰ and 27.4 ‰ whilst intra-tooth δ
13

C values 

vary between -16.2 ‰ and -11.0 ‰. All δ
18

O profiles clearly show seasonal variation 

and the position of this sinusoidal pattern along the x-axis varies between cattle.  

Estimating calving seasonality 

Applying the three different methods to estimate calving seasonality leads to the 

following results: 

Method 1 

The timings of the second molar δ
18

O minima relative to birth for the six Pool cattle, 

derived from the plots in Figure 3, are presented in Table 4. They range from 2.4 

months for PL0386 to 10.3 months for PL0339. Thus, the distribution of births is 

calculated to be 7.9 months using this method. 

Method 2 

Figure 4 shows the fitted cosine and the magnitudes of the various parameters for each 

second molar. Value xo/X varies from 0.16 for PL0444 to 0.94 for PL0386. If X 

represents 12 months, then the timings of the δ
18

O minima relative to the second molar 

cervix vary between 1.9 and 11.3 months. The distribution of births is estimated to be 

9.4 months using this method. 

Method 3 
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For five of the six Pool cattle, first molar δ
13

C values are very low in the cuspal part of 

the tooth, rise steeply and then display a reduction in gradient (indicated by the dashed 

lines in Figure 3). The profile of PL0444 is different to those of the other cattle: a 

reduction in first molar δ
13

C gradient is not as clearly identifiable. There is a noticeable 

change in gradient in the second molar data at approximately six months of age but, at 

that age, this is unlikely to represent the completion of rumen functionality (Fig. 3). In 

order to investigate calving seasonality, it is necessary to determine the relationship 

between the reduction in first molar δ
13

C gradient and the seasonal cycle of δ
18

O. For 

PL0330, it appears to occur at a δ
18

O maximum, for PL0344 just after a δ
18

O maximum, 

for PL0278 midway between a δ
18

O maximum and a δ
18

O minimum, for PL0386 just 

before a δ
18

O minimum and for PL0339 between a δ
18

O minimum and a δ
18

O maximum 

(Fig. 3). The seasonal cycle of δ
18

O is shown schematically as a sinusoidal curve in 

Figure 5. The position on the δ
18

O cycle at which the first molar δ
13

C profile changes 

gradient is indicated for each Pool animal together with an equivalent data-point from a 

modern Dexter of known birth date (Towers et al. 2014). Assuming that one complete 

δ
18

O cycle represents 12 months, it may be estimated that the difference between 

PL0339 and PL0386 is approximately ¾ of a cycle, i.e. approximately 9 months. If the 

reduction in δ
13

C gradient indicates completion of rumen functionality then 9 months is 

also an estimate of the distribution of births. Comparison with the data-point of the 

modern Dexter (Fig. 5), which was born in late winter, suggests that calving occurred 

during spring, summer and autumn for the Pool cattle included in this study, although 

more modern comparison data are required to confirm this conclusion. PL0444 was 

probably born at a similar time of year to PL0339 given the similarity of their second 

molar δ
18

O minima timings (Table 4) and xo/X values (Fig. 4). 

Discussion 

Comparison of the different methods for estimating calving seasonality 

For each of the methods described above, there will be some uncertainty associated with 

the estimated distribution of births. The first method assumes that second molar crown 

formation occurs at a uniform rate and the ages at which formation starts and finishes 

are the same for all cattle. The second method assumes that second molar cervix 

formation occurs at the same age and that the period of the seasonal variation in 

precipitation δ
18

O (the input signal) is always exactly 12 months. All of these 

assumptions are open to question. For example, start and finish times for cattle molar 
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crown formation are given as ranges and described as “approximations” by Brown et al. 

(1960), although inter-animal differences in second molar formation do appear to be 

much less pronounced than for third molars (Towers et al. 2014). In addition, 

precipitation δ
18

O data can show varying periodicity from year to year (Towers 2013, 

176-8). 

The third method to determine birth seasonality eliminates sources of uncertainty due to 

inter-animal variability in molar formation through direct comparison of the δ
13

C and 

δ
18

O profiles. However, it comes with its own uncertainties. Firstly, identification of the 

reduction in first molar δ
13

C gradient is somewhat subjective. For PL0278, PL0339, 

PL0344 and PL0386 this feature is clearly identifiable (Fig. 3) and may be defined to 

within one data point, equivalent to a timing error of approximately ± 3 weeks (see 

Towers et al. 2014 for further discussion on sources of error). For PL0330, the feature is 

not as straightforward to pinpoint (Fig. 3). It is possible that it could occur later in the 

first molar profile, although this would not alter the conclusion that these Pool cattle 

were born during three seasons. Secondly, the age at which the rumen becomes fully 

functional is variable, occurring between 6 and 10 weeks (Bryant et al. 1958; Swanson 

and Harris 1958; Godfrey 1961b; Anderson et al. 1987). Thirdly, there may be 

unaccounted errors. For example, ingestion of water via milk is expected to raise the 

δ
18

O values of enamel mineralizing during early life and, thus, distort the sinusoidal-like 

δ
18

O profile, which could lead to misinterpretation regarding season of birth. It is also 

possible that, for some animals, completion of rumen functionality is wrongly identified 

or not visible in first molar δ
13

C profiles because it is obscured or distorted by 

significant shifts in dietary δ
13

C values. The likely severity of these effects is currently 

unknown. 

Despite their different approaches and sources of uncertainty, all three methods applied 

to estimate calving seasonality for the Pool cattle have produced the same conclusion, 

that the animals were born during at least three seasons, which increases the level of 

confidence in that conclusion. 

Possible indication of weaning strategy 

For PL0278, PL0330, PL0344 and PL0386, the reduction in first molar δ
13

C gradient 

occurs at a δ
13

C value that is similar to the mean δ
13

C value of third molar enamel, 

which would have mineralized after the animal was fully weaned. A possible 
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explanation is that these cattle were weaned early through human intervention such that 

their diet included a high proportion of vegetation at 6-10 weeks of age. If they had still 

been drinking a significant amount of milk when their rumens became fully functional 

and weaned several months later, the reduction in first molar δ
13

C gradient might be 

expected to occur at a value lower than the mean third molar value because milk is 

digested in the abomasum rather than the rumen (McDonald et al. 1988, 142). The δ
13

C 

profile might then have shown a further rise in δ
13

C after completion of rumen 

functionality as the proportion of milk in the diet decreased (abomasum digestion, 

similar to non-ruminant digestion) and the proportion of vegetation increased 

(methanogenetic rumen digestion). It is possible that such patterning is seen to some 

extent in the profile of PL0339 (Fig. 3), although any interpretation in terms of weaning 

age may be complicated by varying vegetation values. A reduction in first molar δ
13

C 

gradient is not clearly identifiable in the profile of PL0444 but may occur at around the 

fifth intra-tooth sample (Fig. 3). The subsequent rise in δ
13

C values until approximately 

six months of age perhaps implies an even greater reliance on milk at the age of rumen 

completion and becoming fully weaned later in life than PL0278, PL0330, PL0344 and 

PL0386. A more detailed discussion of the possible influence of weaning on cattle 

molar enamel δ
13

C profiles is found elsewhere and includes profiles from maternally 

weaned modern Chillingham cattle that do show a subsequent rise in δ
13

C after the 

reduction in first molar δ
13

C gradient (Towers 2013, 158-62). More analysis of modern 

material from cattle with known early-life histories would be beneficial in the 

interpretation of such data. 

The economic focus of cattle husbandry at Pool 

A strategy of multiple-season calving at Pool during the Interface period is more likely 

to have been adopted for an economy focussed on dairying rather than meat production, 

for which spring-calving would have been more efficient. The possibility that some of 

the Pool cattle were weaned early through human intervention would also support the 

conclusion that the economy at Pool was dairy-focussed.  

If the continuous provision of fresh milk was a principal goal of cattle husbandry at 

Pool, calving strategy would have been largely determined by the duration of lactation. 

Although it is not possible to predict the duration of lactation for Orcadian cattle during 

the first millennium AD with any degree of accuracy, an estimate may be made from 

historical sources. For example, Sinclair (1813, 115) wrote that Ayrshire cows in 
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Scotland produced 5 gallons per day for the first 90 days after calving, 3 gallons per day 

for the next 90 days and finally 1½ gallons per day for 120 days. Petty (1719, 51) 

similarly observed that “in Ireland a Milch-Cow, if English breed, may be fed upon two 

Acres of Pasture, and with as much Hay as will grow upon half an Acre of Meadow, 

will yield præter propter 3 Gallons of Milk for 90 days, one with another, and one 

Gallon at a Medium for 90 more, and for 90 more scarce 1 quarter of a Gallon one day 

with another, and for 90 more dry”. These rates of decline, whereby more than 80 % of 

the total yield is produced during the first six months, are similar to those for modern 

dual and beef breeds (Jenkins and Ferrell 1992). Since there is no reason to assume that 

the duration of lactation was shorter for prehistoric cattle given the evidence for a long 

tradition of dairying in Britain from the Neolithic period (Copley et al. 2005b), it is 

likely that two calving seasons, in spring and autumn, or an extended period of calving 

through spring, summer and autumn would have been required to achieve an adequate 

supply of fresh milk throughout the year. 

The advantage of an extended calving period was acknowledged by 18
th

 century scholar 

Richard Bradley (1732, 132), who recommended that “so as that they may have Plenty 

of Milk, let your Kine go to Bull from the Spring to Winter, whereby you may always 

milk some”. Similarly, the French agronomist Olivier de Serres (1617, 251) suggested 

that farmers should choose the time of year for breeding their cattle according to factors 

such as climate, quality of grass and the continuation of milking in winter. Even in the 

early to mid-20
th

 century, Scottish farmers producing milk on a small scale for home use 

staggered the calving of their milk cows throughout the year to ensure a continuous milk 

supply (James Foubister and John Mainland, Orkney farmers, pers. comm.). In a 

description of her childhood on the island of Eilean nan Ròn, lying off the north coast of 

Scotland, Mina MacKay Stevens recalled that “Most families had two cows. One cow 

would calve in the spring, for milk through the summer, and one would calve in the 

autumn, to give milk through the winter” (Neat 2000, 67). A prehistoric community that 

manipulated its calving strategy for the continuous provision of fresh milk may have 

valued it for immediate use in porridge or broth, or as a drink; early Irish texts contain 

numerous references to the drinking of fresh milk (Kelly 1997, 324). Alternatively, 

fresh milk may have been converted to products with a shelf life of a few days such as 

curds or soft cheese (Fenton 2007, 245).  
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Calving strategy for the production of storable dairy products would have depended on 

shelf life. Long term preservation would have necessitated the removal of liquid, the 

source of microbial activity. Columella, the Roman writer of the first century AD, 

described a method of making hard cheese suitable for export overseas that employed 

both pressing and salting in order to dry and preserve the product (Millar 1745, 324-5). 

The early Irish diet included cheeses described variously as soft, hard, dry and pressed 

(Kelly 1997, 328-30). Descriptions from the 17
th

 and 18
th

 centuries suggest that cheese 

making changed little before the advent of refrigeration and mass production (e.g. 

Markham 1668, 149-53; Bradley 1736, 78-84) and that pressed cheeses were ready to 

eat after at least eight months or a year of storage (Bradley 1736, 81-3). It was also 

possible to preserve butter for several months: Markham (1668, 147-8) described the 

process of salting and storing butter in pots or barrels for consumption in the winter, 

recommending May as the best time of year to do this. Defoe (1742, 40) also 

commented that “ I have known a Firkin of Suffolk Butter sent to the West-Indies, and 

brought back to England again, perfectly good and sweet, as at first”. It is highly likely 

that shelf lives of more than six months were also achievable in prehistoric Britain. As a 

result, single-season calving would have been feasible assuming a lactation period of 

approximately six months. Spring calving would have maximised the quantity of milk 

and storable dairy product for the least amount of effort in terms of both fodder 

provision and manpower, as explained by Markham (1668, 142): “The best time for a 

Cow to Calve in for the Dairy, is in the later end of March and all April: for then grass 

beginneth to spring to its perfect goodness, which will occasion the greatest increase of 

Milk that may be”. 

The conclusion derived from isotope ratio analysis of cattle molar enamel, that calving 

occurred during at least three seasons at Pool, supports the interpretation by Serjeantson 

and Bond (2007a) of a dairy-focussed economy, as inferred from the mortality profile 

(Fig. 2). It also suggests an emphasis on the year-round provision of fresh milk or dairy 

products with short shelf lives rather than the manufacture of products for long term 

storage, which may be achieved by spring-only calving. 

Multiple-season calving implies a high level of organisational competence in cattle 

husbandry at Pool, ensuring that feed of sufficient quantity and quality was available 

throughout the year. Further support for the idea of a plentiful supply of food, at least 

for the human population, comes from faunal evidence from Pictish and Norse Orkney 
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that suggests an under-utilisation of wild resources such as birds and shellfish (Bond 

1998), although under-utilisation of wild resources may also be indicative of a labour-

intensive farming system. 

As might be expected, it is not possible to identify particular C3 dietary sources for the 

Pool cattle from their δ
13

C profiles. There is no clear co-variation between the δ
13

C and 

δ
18

O profiles that would suggest year-round grazing of vegetation in one location, as 

observed in the profiles of modern sheep from Rousay, Orkney (Balasse et al. 2009). 

The δ
13

C profiles of the Pool cattle may therefore be reflecting changes in diet through 

fodder provision or movement between grazing areas. Cultivated oats, probably 

introduced to the Northern Isles during the first few centuries AD (Bond et al. 2004), 

were a major crop by the Interface period and would have provided a highly nutritious 

addition to other possible sources of cattle fodder such as barley stubble and straw, hay, 

weeds and seaweed (Serjeantson and Bond 2007b). Oats have the advantage that, unlike 

barley, they do not require much in the way of manuring and can be grown on poor 

land, which is particularly true for black oats (Avena strigosa) (Bond 2003), a variety 

grown in the Northern Isles in historical times up until today. Limited diagnostic 

evidence suggests that black oats were also grown at Interface period Pool (Bond 

2007b). Hence, the production of oats could have been achieved with a relatively 

modest amount of effort. Third molar δ
13

C values for the six Pool cattle (≤ -11 ‰) are 

comparable to those measured for cattle enamel from Neolithic Knap of Howar, 

Orkney, interpreted as consuming C3 terrestrial vegetation all year round (Balasse et al. 

2006), suggesting that seaweed was not a significant dietary component.  

Conclusions 

Calving seasonality for the archaeological site of Pool, Orkney, has been investigated 

through intra-tooth isotope ratio analysis of cattle molars from the latter half of the first 

millennium AD. The isotopic data-set was interpreted using three different methods of 

data analysis and all three methods produced the same conclusion, that the animals were 

born during at least three seasons, which increases the level of confidence in that 

conclusion and provides evidence that first molar δ
13

C patterning may also be used to 

estimate calving seasonality. 

Since multiple-season calving requires considerable effort, particularly in the provision 

of good quality grazing and fodder throughout the year, there must have been a 
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significant benefit to the community to adopt such a strategy. Year-round availability of 

fresh milk would have been the consequence of multiple-season calving and the likely 

impetus. Thus, the distribution of births found for Pool not only supports the 

interpretation of a dairy-focussed economy, as suggested by a high level of juvenile 

mortality, but also suggests an emphasis on the consumption of fresh milk or dairy 

products with short shelf lives. 

During the Atlantic Iron Age, the Northern and Western Isles are characterised by cattle 

mortality profiles which, as at Pool, demonstrate high death rates in the earliest wear 

stages representing calves which died at or around birth (Mulville et al. 2005).  Similar 

trends are evident in the subsequent Viking and Norse periods, both in the Northern and 

Western Isles (Mulville et al. 2005) and across the North Atlantic islands (Mainland and 

Halstead 2005).  The interpretation of these assemblages has been the subject of 

considerable debate after McCormick (1998) argued that high infant mortality in these 

regions was a consequence of  agricultural marginality (i.e. fodder shortages, poor 

grazing) and was not necessarily an outcome of economic practice, while suggesting 

that the culling of calves would have actually hindered milk production in the largely 

unimproved Iron age and Norse breeds of cattle because they would not let down milk 

in the absence of their calves. This debate has polarised opinion within zooarchaeology 

on the validity of Payne- (1973) and Legge- (1981) based models for identifying 

milking and/or specialised dairying in cattle and other species, and has highlighted in 

particular the difficulty of separating natural deaths, which will occur in most herds, 

from deliberate culling of infants (Halstead 1998; Mulville et al. 2005; Balasse and 

Tresset 2007; Davis 2010). The methodology presented here provides an alternative 

way to approach this question which overcomes some of these issues. Furthermore, in 

identifying year-round milking and the high nutritional input from fodder crops or good 

pasture management that this implies, these results demonstrate once again that farming 

in the North Atlantic region is not by definition ‘marginal’ and impoverished because of 

its latitude but can support specialised or intensive production with appropriate cultural 

management practices, such as foddering and manuring (Bond et al. 2004).   

Finally, previous assumptions that prehistoric domestic cattle would have always calved 

seasonally in spring at northern latitudes (e.g. Serjeantson and Bond 2007b) appear not 

to be supported by the conclusions drawn in this study. This has implications for 
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seasonality studies using tooth eruption and wear in this species, which rely on an 

assumed birth season in spring (Jones and Sadler 2012). 
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Figure 1.  Outline map of Orkney showing the location of Pool (outline images from 

http://d-maps.com/m/europa/europemax/europemax32.pdf and http://d-

maps.com/m/europa/uk/ecosse/ecosse12.pdf, with additions). 

 

Figure 2. Mortality profile for Pool cattle from the Iron Age/Scandinavian Interface 

period (Phase 7). Data source: Serjeantson and Bond (2007a), age stages defined by 

Halstead (1985). 

 

Figure 3. Plots of δ
18

OVSMOW and δ
13

CVPDB versus time of matrix formation for first, 

second and third molar enamel for six cattle from Pool. Dashed lines indicate the 

change of gradient in δ
13

C and the corresponding δ
18

O data-point. Analytical precision 

is ± 0.2 ‰ for δ
18

OVSMOW (1σ) and ± 0.1 ‰ for δ
13

CVPDB (1σ). 

 

Figure 4. Second molar intra-tooth δ
18

O values with best fit cosine curves. Analytical 

precision is ± 0.2 ‰ for measured values of δ
18

OVSMOW (1σ). xo and X/2 are illustrated 

in the plot for PL0444. Amplitude A = (δ
18

Omax - δ
18

Omin)/2 and mean M = (δ
18

Omax + 

δ
18

Omin)/2. 

 

Figure 5. A schematic diagram of the seasonal cycle of δ
18

O showing the positions on 

the cycle that correspond to the change in gradient of δ
13

C for PL0278, PL0330, 

PL0339, PL0344 and PL0386. Also included is an equivalent data-point for a modern 

Dexter of known birth date (data from Towers et al. 2014). 

 

http://d-maps.com/m/europa/europemax/europemax32.pdf
http://d-maps.com/m/europa/uk/ecosse/ecosse12.pdf
http://d-maps.com/m/europa/uk/ecosse/ecosse12.pdf
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Table 1. Seasonality of calving for seven feral or semi-feral herds living in temperate 

regions. Information from Hall and Moore 1986 (Swona), Reinhardt et al. 1986 (Rhein-

Taunus), Vitale et al. 1986 (Maremma), Hall and Hall 1988 (Chillingham), Berteaux 

and Micol 1992 (Amsterdam Island), Lazo 1995 (Doñana), Gómez et al. 1997 (Basque 

Country), Annal, pers comm (Swona). 

 

Table 2. Development chronology of mandibular cattle molars. Data source: Brown et 

al. (1960). * A foetal age of 140 days according to Soana et al. (1997) (~4.7 months 

before birth). 

 

Table 3. Oxygen and carbon isotope composition values from Pool cattle tooth enamel. 

Mandibular 1
st
 and 2

nd
 molars are designated M1 and M2. Wear stages after Grant 

(1982). Results for PL0278, PL0330, PL0339, PL0344 and PL0386 were first published 

in Towers et al. (2014). 

 

Table 4. Timings of second molar δ
18

O minima, calculated for each animal by 

differentiation of a second order polynomial fitted to the surrounding data points.  
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Table 1. 

 

 

Herd location and breed Supplementary food? Seasonality of calving 

Swona, Orkney, UK 

(mixed breeding) 

No March and April 

Chillingham, Northumberland, UK 

(Chillingham cattle) 

Hay in winter Year round 

Rhein-Taunus Naturpark, Hesse, Germany 

(Highland cattle) 

Hay, straw and silage 

in winter 

91 % births in March and 

April 

Basque Country, Navarre and Pyrénées 

Atlantiques 

(Betizu cattle) 

No Around March 

Doñana National Park, Andalusia, Spain 

(Mostrenca cattle) 

No February – August 

(60% births March – May) 

Maremma National Park, Tuscany, Italy 

(Maremma cattle) 

Not mentioned in 

publication 

March – June  

Amsterdam Island, southern Indian Ocean 

(mixed breeding) 

No 90 % births between 

September and January 

 

 

 

 

 

Table 2. 

 

 

Development 

First molar 

(age in months) 

Second molar 

(age in months) 

Third molar 

(age in months) 

Crown formation starts in utero* 1 9 - 10 

Crown formation complete 2 - 3 12 - 13 23 - 24 
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Table 3. 

 

 

 

 

Sample number 

 

Distance 

from cervix 

(mm) 

 


18

OVSMOW 

(
0
/00) 

normalised 

 


13

CVPDB 

(
0
/00) 

normalised 

    

PL0278 (M3), from left mandible, wear stage a, lingual mesial lobe, cusp to cervix 49.0 mm 

1 45.0 25.1 -11.3 

2 41.0 24.7 -11.5 

3 37.0 24.2 -11.7 

4 33.0 23.9 -11.8 

5 29.5 24.1 -11.8 

6 25.5 24.5 -11.9 

7 22.0 24.6 -12.0 

8 19.0 25.0 -12.0 

9 16.0 25.6 -12.0 

10 13.0 25.9 -11.9 

11 10.0 26.3 -11.6 

    

PL0278 (M2), from left mandible, wear stage e/f, lingual mesial lobe, cusp to cervix 43.0 mm 

1 39.0 23.8 -11.4 

2 35.0 23.8 -11.2 

3 31.0 24.0 -11.1 

4 27.5 24.1 -11.2 

5 24.0 24.4 -11.2 

6 20.5 25.3 -11.3 

7 16.5 25.8 -11.5 

8 12.5 26.3 -11.5 

9 8.5 26.0 -11.5 

10 4.5 25.1 -11.3 

    

PL0278 (M1), from left mandible, wear stage j, lingual mesial lobe, cusp to cervix 31.5 mm 

1 28.5 26.4 -14.5 

2 24.5 26.2 -14.0 

3 21.0 26.4 -13.6 

4 17.0 26.5 -12.9 

5 13.5 25.8 -12.4 

6 9.5 25.3 -11.9 

7 5.5 25.1 -11.6 

8 2.5 24.7 -11.4 

    

PL0330 (M3), from right mandible, wear stage a/b, lingual central lobe, cusp to cervix 51.0 mm 

1 45.0 25.1 -11.3 

2 39.5 24.4 -11.3 

3 33.5 24.2 -11.4 

4 28.0 24.1 -11.6 

5 22.0 24.3 -11.9 

6 16.5 25.3 -12.2 

7 11.0 26.0 -12.3 

8 6.0 26.0 -12.0 

    

PL0330 (M2), from right mandible, wear stage ?, lingual distal lobe, cusp damaged 

1 34.0 23.7 -11.8 

2 28.0 24.0 -11.9 

3 24.5 24.6 -11.9 

4 21.0 25.1 -11.8 

5 17.5 25.5 -11.9 
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6 13.5 25.5 -12.1 

7 10.0 26.0 -12.0 

8 6.5 26.3 -11.8 

9 3.0 25.6 -11.5 

    

PL0330 (M1), from right mandible, wear stage g, lingual mesial lobe, cusp to cervix 35.5 mm 

1 33.0 24.5 -13.6 

2 28.5 25.5 -13.6 

3 24.5 26.1 -13.4 

4 21.5 26.4 -13.1 

5 15.5 26.5 -12.5 

6 12.0 27.0 -12.4 

7 9.0 26.5 -12.4 

8 6.0 26.1 -12.1 

9 2.5 25.4 -12.1 

    

PL0339 (M2), from left mandible, wear stage f, lingual mesial lobe, cusp to cervix 44.0 mm 

1 36.0 26.8 -12.0 

2 31.5 26.8 -11.8 

3 27.0 26.0 -11.7 

4 22.5 24.9 -11.9 

5 18.0 24.5 -11.9 

6 14.0 24.0 -12.2 

7 9.5 24.1 -12.3 

8 6.0 23.9 -12.5 

9 2.5 24.5 -12.6 

    

PL0339 (M1), from left mandible, wear stage h, lingual mesial lobe, cusp to cervix 33.5 mm 

1 27.0 23.5 -14.5 

2 23.0 23.8 -13.7 

3 18.5 24.2 -13.3 

4 14.5 24.7 -13.0 

5 11.0 25.6 -13.1 

6 6.5 26.5 -13.0 

7 3.5 27.1 -12.8 

    

PL0344 (M3), from right mandible, wear stage b, lingual central lobe, cusp to cervix 48.0 mm 

1 46.5 25.7 -12.0 

2 43.5 25.5 -12.0 

3 40.5 25.4 -11.8 

4 37.0 24.8 -11.7 

5 34.0 24.6 -11.7 

6 31.0 24.4 -11.8 

7 28.0 24.1 -11.9 

8 25.0 24.0 -12.0 

9 22.0 23.7 -12.1 

10 19.0 23.4 -12.1 

11 16.5 23.6 -12.3 

12 13.5 23.8 -12.4 

13 10.5 24.1 -12.5 

14 7.5 24.6 -12.4 

15 4.0 25.1 -12.1 

    

PL0344 (M2), from right mandible, wear stage f, lingual distal lobe, cusp to cervix 44.0 mm 

1 41.0 24.9 -12.6 

2 38.0 24.5 -12.3 

3 35.0 24.1 -12.3 

4 32.0 23.9 -12.4 

5 29.0 23.9 -12.5 

6 26.0 23.7 -12.4 
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7 23.0 23.5 -12.4 

8 20.5 23.3 -12.2 

9 17.0 23.3 -12.2 

10 13.5 24.1 -12.2 

11 10.5 24.5 -12.2 

12 7.5 24.9 -12.2 

13 4.0 26.0 -12.2 

    

PL0344 (M1), from right mandible, wear stage g, lingual distal lobe, cusp to cervix 35.0 mm 

1 30.0 24.1 -14.7 

2 26.0 25.0 -14.5 

3 22.5 25.7 -14.4 

4 18.5 26.3 -14.4 

5 15.0 27.4 -13.9 

6 11.5 27.3 -13.2 

7 6.5 26.8 -12.5 

8 3.0 26.4 -12.4 

    

PL0386 (M3), from right mandible, wear stage a/b, lingual mesial lobe, cusp to cervix 57.5 mm 

1 55.0 25.3 -11.1 

2 52.0 24.6 -11.2 

3 49.0 24.3 -11.0 

4 46.5 24.1 -11.2 

5 43.5 23.7 -11.3 

6 40.0 24.0 -11.4 

7 36.5 24.1 -11.6 

8 33.0 24.1 -11.7 

9 29.0 24.7 -11.8 

10 25.5 25.2 -11.9 

11 22.5 25.5 -12.0 

12 19.5 25.7 -12.0 

13 16.5 25.6 -12.0 

14 13.5 25.6 -11.9 

15 10.5 25.2 -11.8 

16 7.0 25.2 -11.6 

17 3.5 25.1 -11.6 

    

PL0386 (M2), from right mandible, wear stage f, lingual mesial lobe, cusp to cervix 51.5 mm 

1 49.5 23.9 -11.9 

2 47.0 23.8 -11.7 

3 44.0 23.8 -11.6 

4 41.0 24.2 -11.5 

5 38.0 24.5 -11.6 

6 34.5 25.1 -11.5 

7 31.0 26.1 -11.6 

8 28.0 26.6 -11.7 

9 25.5 26.7 -11.8 

10 22.0 26.9 -11.7 

11 19.0 26.8 -11.6 

12 16.0 26.3 -11.5 

13 13.5 25.7 -11.5 

14 10.5 25.3 -11.4 

15 7.5 24.7 -11.3 

16 4.5 24.5 -11.2 

    

PL0386 (M1), from right mandible, wear stage g, lingual mesial lobe, cusp to cervix 39.0 mm 

1 36.0 26.3 -15.3 

2 32.5 26.3 -15.0 

3 29.5 26.6 -14.6 

4 26.0 26.4 -14.3 
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5 22.5 26.0 -13.8 

6 19.0 25.8 -13.3 

7 15.5 25.3 -13.0 

8 12.5 24.5 -12.7 

9 9.0 23.9 -12.3 

10 6.0 23.6 -12.0 

11 3.0 23.5 -11.9 

    

PL0444 (M3), from left mandible, wear stage b, lingual mesial lobe, cusp to cervix 47.0 mm 

1 44.0 24.1 -12.7 

2 41.0 24.6 -12.6 

3 38.0 25.1 -12.3 

4 34.0 25.3 -12.4 

5 31.5 26.0 -12.4 

6 28.0 26.3 -12.3 

7 24.5 26.6 -12.1 

8 21.0 26.8 -11.9 

9 17.0 26.5 -11.6 

10 13.5 26.1 -11.5 

11 6.5 25.3 -11.6 

12 2.5 24.1 -11.5 

    

PL0444 (M2), from left mandible, wear stage f, lingual mesial lobe, cusp to cervix 41.0 mm 

1 38.0 26.7 -14.0 

2 35.5 26.7 -13.4 

3 32.5 26.3 -13.1 

4 29.0 25.9 -12.8 

5 26.0 26.2 -12.4 

6 23.0 25.5 -12.4 

7 19.5 25.0 -12.4 

8 16.0 24.2 -12.7 

9 12.5 24.2 -12.8 

10 9.0 24.1 -12.8 

11 5.5 24.3 -12.8 

    

PL0444 (M1), from left mandible, wear stage j, lingual distal lobe, cusp to cervix 33.5 mm 

1 30.0 23.9 -16.2 

2 26.5 24.2 -16.1 

3 23.5 23.9 -16.0 

4 20.0 24.0 -15.7 

5 16.5 24.8 -15.5 

6 12.5 25.1 -15.4 

7 9.0 25.7 -15.2 

8 6.0 26.2 -15.0 

9 3.0 26.3 -14.8 

 

 

 

 

 

 

 



 39 

 

Table 4. 

 

Animal ID Timing of M2 δ
18

O minimum (months after birth) 

PL0278 4.5 

PL0330 4.9 

PL0339 10.3 

PL0344 6.7 

PL0386 2.4 

PL0444 9.9 

 


