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Abstract 

The microtopography of a gravel bed river has been shown to generate turbulent flow 

structures that originate from shear flow generated in the near bed region. Although field and 

laboratory measurements have shown that such flows contain a range of coherent flow 

structures (CFS), the origin, evolution and characteristics of the turbulent structures are 

poorly understood. Here, we apply a combined experimental methodology using planar Laser 

Induced Fluorescence and Particle Imaging Velocimetry (LIF-PIV) to measure 

simultaneously the geometric, kinematic and dynamic characteristics of these CFS. The flow 

structures were analysed by applying standard Reynolds decomposition and Lagrangian 

vortex detection methods to understand their evolution, propagation and growth in the 

boundary layer, and characterize their internal dynamical complexity. The LIF results 

identify large, individual, fluid packets that are initiated at the bed through shear that generate 

a bursting mechanism. When these large individual fluid packets are analysed through direct 

flow measurement, they are found to contain several smaller scales of fluid motion within the 

one larger individual fluid parcel. These flow measurements demonstrate that near-bed shear 

control the initiation and evolution of these CFS through merging with vortex chains that 

originate at the bed. These vortex chains show both coalescence in the formation of the larger 

structures, but also the shedding of vortices from the edges of these packets, which may 

influence the life-span and mixing of CFS in open channels. The lifespan and geometric 

characteristics of such CFS are critical in influencing the duration and intensity of near-bed 

stresses that are responsible for the entrainment of sediment. 
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1. Introduction 

One key feature that determines the characteristics of river flow is its interaction with a 

heterogeneous sedimentary bed, which creates shear instabilities in the boundary layer that 

are often invoked as the mechanism in the formation of macroturbulent (i.e. flow-depth scale) 

flow structures [e.g. Kostaschuk and Church, 1993; Bennett and Best 1995; Venditti and 

Bennett, 2000; Best and Kostaschuk, 2002; Jessup et al., 2013]. These shear instabilities are 

generated by flow separation induced by boundary layer flow over multi-scale bed 

topography [Wiberg and Smith, 1991; Dinehart, 1992; Robert et al., 1992; Buffin-Bélanger 

and Roy, 1998; Lacey and Roy, 2006; Hardy et al., 2007, 2009], and through the wakes of 

individual topographic protrusions and jetting of higher-velocity flow between such 

bedforms. These turbulent flows are characterized by the interactions and coalescence 

between flow structures of different sizes and origin, which are formed by several 

superimposed means of turbulence production [Roy et al., 1999; Nikora and Roy, 2012]. 

River turbulence is therefore not a random field, and it has been shown that it is possible to 

decompose complex, multi-scaled, quasi‐random flow fields into elementary organized 

structures that possess both spatial and temporal coherence [Adrian, 2007]. These structures 

are inherently three-dimensional, where at least one fundamental flow component exhibits 

correlation with itself, or with another flow component (or product of), over a range of spatial 

and/or temporal scales [Robinson, 1991; Roy et al., 2004; Adrian, 2007; Nikora and Roy, 

2012]. These turbulent structures are known as eddies [Townsend, 1976] but are more 

commonly referred to as coherent flow structures (CFS) [Cantwell, 1981; Adrian, 2007, 

2013; Venditti et al., 2013], and it is their make-up that ultimately control the structure of 

turbulent flows. 

CFS in shallow geophysical flows over rough surfaces have been previously studied [e.g. 

Vendetti et al., 2013], and appear similar to flow structures observed over smooth boundaries. 

As such, definitions proposed in classical boundary layer hydraulics [Cantwell, 1981; 

Robinson, 1991; Adrian, 2007; Adrian and Marusic 2012] have been widely adopted. In 

general, CFS are defined as elementary organized motions that are considered as individual 

entities if they exist for long enough to be observed using flow visualization, and as such they 
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possess temporal coherence [Adrian, 2007] and/or contribute significantly to the mean flow 

and other properties, including turbulent kinetic energy and Reynolds stresses [Adrian and 

Marusic, 2012]. These flow structures may contain ir/rotational parts [Adrian and Marusic, 

2012], but spatial coherence is not a sufficient characteristic to define an organized motion 

[Adrian, 2007]. As such, CFS are the building blocks of turbulent flows; they are detectable 

by a common topological pattern and they are recurring [Adrian and Marusic, 2012]. 

Macroturbulent motions in rivers have regularly been identified [Jackson, 1976; Babakaiff 

and Hickin, 1996; Muller and Gyr, 1982; Best, 2005b; Horner-Devine et al., 2013; Marquis 

and Roy, 2013]. They have a quasi-cyclic pattern, with ejected low-momentum fluid from a 

burst in the bed region growing until a size equal to the flow depth, while high-momentum 

fluid moves from the outer flow down to the bed which influences the entire flow field 

[Grass, 1971; Talmon et al., 1986; Yalin, 1992; Shen and Lemmin, 1999; Best 2005a]. These 

turbulent motions generate rolling structures [e.g., Klaven, 1966; Klaven and Kopaliani, 1973; 

Imamoto and Ishigaki, 1986 a&b] that scale with the flow depth (h) in the vertical and in the 

order of 2h in the lateral direction [Zaitsev, 1984]. In gravel bed rivers, the downstream scale 

of these structures scale with both the hydraulic roughness and flow conditions: the greater 

the flow Reynolds number, the more pronounced the development of the CFS [Shvidchenko 

and Pender, 2001] that scale between 4 to 7h in the downstream direction, with this scale 

inversely proportional to the bed roughness [Klaven, 1966; Klaven and Kopaliani, 1973; 

Shvidchenko and Pender, 2001]. The average frontal angle of the CFS has been shown to be 

between 36 and 45 [Buffin-Belanger et al., 2000; Hardy et al., 2009] with the upstream 

slope of the structures increasing with flow Reynolds number. This process occurs over a 

distance of 6h [Shvidchenko and Pender, 2001] as these structures are not permanent. The 

eddies become unstable with the shedding of smaller vortices which changes and redefines 

the boundaries of the large-scale structures [Hardy et al., 2011].  

Although CFS have frequently been observed, a complete understanding of both their 

generation and evolution is limited, even though they ultimately form the nature of turbulent 

river flows. Furthermore, these structures contribute to both the Reynolds stresses and 

turbulence intensity [Vendetti et al., 2013], which implies the initiation of movement and 

transport of sediment will be linked to such structures [Drake et al., 1988; Hardy, 2005; 

Garcia et al., 2007; Diplas and Dancy, 2013; Singh and Foufoula-Georgiou, 2013] and they 

will also influence both suspended sediment [Heathershaw, 1974; Bai et al., 2013] and bed 

load [Jackson, 1976; Schmeeckle et al., 2007] transport. This incomplete understanding thus 
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impedes our ability to predict the boundary layer dynamics at the micro-scale. It is suggested 

herein that part of this underdeveloped understanding of CFS stems from our inability to 

measure and detect the origin and evolution of these structures. The aim of the present work 

is to apply a combined visualisation and measurement methodology to examine the evolution 

and growth of CFS in the near bed region, and then subsequently quantify their internal 

dynamical complexity and temporal characteristics.  

 

2. Previous studies to understand coherent flow structures in gravel bed rivers 

Flow visualization has often been applied to improve our understanding of turbulence [Van 

Dyke, 1982] as it provides a description of the flow by tracking individual turbulent 

structures. Flow tracers have been applied in natural rivers to understand turbulent flow over 

gravel surfaces [Roy and Buffin-Belanger, 2001; Paiement-Paradis et al., 2003] and such 

studies have provided considerable insight into the geometric characteristics and the size and 

spacing of these CFS. However, critically, this approach does not allow the measurement of 

the flow within individual CFS and the surrounding fluid. 

The flow velocity measurements required to understand CFS are practically more 

complicated than flow visualization. One approach has been the use of multiple flow meters 

to provide an Eulerian measurement of the flow. These studies have identified large-scale 

flow structures formed by interaction with the bed [MacVicar and Roy, 2007a&b; Lacey and 

Roy, 2008], which were detected through turbulent wake statistics [Lacey and Roy, 2008]. 

These data confirm flow visualisation analyses, showing a spatial scaling of the CFS with 

flow depth [Marquis and Roy, 2006], while time series analysis has shown that these flow 

structures follow a power function that equates to a bursting cycle [Paiement-Paradis et al., 

2003].  

Whole flow field measurements at millimetre scale spatial resolution and Hertz scale 

temporal resolution may be obtained through particle imaging velocimetry (PIV) in flume 

experiments [e.g. Best, 2005a; Cooper and Tait, 2008; 2010 a&b; Hardy et al., 2009, 2010]. 

Analysis of this type of data has typically been accomplished through standard Reynolds 

decomposition [Hardy et al., 2009; 2011] or double-averaging to quantify both the spatial 

patterns in the mean flow quantities [e.g. Cooper and Tait, 2010a] and the contribution of 

these CFS to the Reynolds-averaged statistics [Adrian, 2007]. However, the identification of 

individual structures is subjective [e.g. Hardy et al., 2009].  
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Although flow visualisation, single-point and whole flow field measurements have all led to a 

new understanding of CFS, there has necessarily been a degree of subjectivity in these 

interpretations. It is suggested herein that in order to understand fully the characteristics of 

CFS, it is necessary to simultaneously visualize and quantify the flow characteristics. Herein, 

we employ a methodology, originally reported in Hardy et al. [2011], to quantitatively and 

simultaneously examine the flow characteristics of CFS over a gravel surface. This approach 

applies a combined particle imaging velocimetry (PIV) and laser induced fluorescence (LIF) 

methodology that enables measurement at a temporal resolution of 50Hz and a spatial 

resolution of millimetres. This approach allows us to examine the propagation and evolution 

of CFS while quantifying the full details of the overall flow characteristics. These data 

provide a whole flow field insight into the localised flow structures that are present through 

the evolution of the CFS, and how these structures evolve and finally break up. Such a 

process understanding provides insight into the boundary layer dynamics and an indication of 

the forces acting on the river bed morphology.  

 

3. Experimental methodology 

The experiments were conducted in a flume 10 m in length (lc) and 1 m in width (w). The 

slope of the flume was adjusted to achieve a constant flow depth along the test section, which 

was located 5.5 m downstream from the channel inlet. A bulk sample of gravel (D50 = 0.044 

m, D84 = 0.064 m) was water worked to form a stable bed (Figure 1a). The bed topography 

was measured using a terrestrial laser scanner (Figure 1b) that provided a digital elevation 

model (DEM) at a 5 mm resolution (accuracy ± 1 mm). The effective roughness 

characteristics of the surface were calculated from the DEM following the approach of Hardy 

et al. [2010], which derives a scale-dependent roughness value determined from the 84
th

 

percentile (R84) of the elevation differences between points as a function of horizontal scale. 

To maximise the sample size, a distance of w/2 was used, which yielded a constant R84 of 

0.04 m over a search distance of 0.2 m. 

A water depth of 0.3 m above the flume bed was used for two principal reasons. Primarily, 

flow in gravel bed rivers is shallow, with the ratio of mean depth to effective roughness 

height (h:D50) often being less than 10–20 in flood conditions and less than 5 during base 

flow conditions [Charlton et al., 1978; Bathurst, 1978]. Secondly, this water depth was used 

to ensure that the flow width to depth ratios were high enough to reduce possible turbulence 
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anisotropy and stream-wise secondary circulation [Colombini, 1993], although streamwise 

secondary circulation has been observed under similar hydraulic conditions [e.g. Rodríguez 

and García 2008; Tamburrino and Gulliver 1999; Tominaga at al. 1989]. Four different flow 

velocities were investigated (Table 1) to provide a range of Reynolds numbers between 19 

000 and 132 000 and Froude numbers between 0.04 and 0.44, thus the flow was fully 

turbulent and subcritical. These hydraulic conditions were used for theoretical and practical 

reasons. Theoretically, flow in a river is unsteady and it is therefore necessary to assess how 

turbulence characteristics change under different flow conditions, while practically it was 

necessary to ensure that sediment was not entrained to prevent damage to the experimental 

facility.  

 

3.1. Velocity measurements 

Velocity measurements were collected using a two-dimensional time-resolved PIV. The PIV 

methodology and post-processing applied herein are identical to that previously reported by 

Hardy et al. [2005; 2009; 2010; 2011]. The laser was mounted underneath the flume and 

orientated vertically, with the flume illuminated through a window 2 mm wide and 0.3 m 

long in the base of flume. A Litron Nano laser was used in single-pulse mode to maximize 

field-of-view illumination and the system was set to collect data at a temporal resolution of 

50 Hz (each laser pulse providing ~100 mJ at 50 Hz). The PIV camera (pixel resolution of 

1280x1024) was located perpendicular to the flume walls, so flow could be imaged to 

quantify the downstream (u-) and vertical (w-) components of flow velocity. To derive the 

velocity vector map, an interrogation region (1616 pixels, where 1 pixel  2.510
-4

m) was 

overlain over the images. For each interrogation region, in each pair of images, the 

displacement of groups of particles between the first and second image was measured using a 

fast Fourier transform (FFT) based spatial cross-correlation technique and a velocity vector 

was determined [see Westerweel, 1997]. This methodology allowed data collection at a 

spatial resolution of 2×10
-3

 m. In order to maximize the signal-to-noise ratio of the particle 

cross-correlations in the PIV analysis, a sequence of six quality checks [see Hardy et al., 

2005] was undertaken. Applying this methodology, the estimated precision of the derived 

velocities was greater than 1/10th of a pixel [Wilbert and Gharib, 1991] and the uncertainty 

in the velocity measurements was therefore less than ± 0.08 mm s
-1

. The field of view 

interrogated by the PIV covered a region of 0.3 m x 0.25 m in the downstream and vertical 

planes, with the region of flow interrogated demonstrated in Figure 1b. 
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The PIV set-up provides a view of the whole flow field view as demonstrated by the 

downstream (u-) component for the Re 132 000 experiment (Figure 1c). The time-averaged 

flow field shows the influence of the bed topography on the near-bed flow, with a large 

region of recirculation in the wake of protruding clast similar to the results reported 

previously by Hardy et al. [2009]. Above this clast, the average flow velocity increases with 

depth and, although individual CFS are not identified in this time-averaged plot, the effect of 

the topographic protrusion is seen to influence the near bed flow. In addition, when a 

turbulence intensity profile is studied (calculated using the RMS value of each velocity 

component) for the Re 132 000 experiment (Figure 1d), a region of highly turbulent flow in 

the near-bed region (<0.3 z/h) is detected. This is in agreement with previous work on flows 

over gravel beds at high-flow Reynolds numbers that has shown a region of higher turbulence 

intensity between 0.2 and 0.5 z/h [Hardy et al., 2009; 2010], which is formed through 

skimming flow [Grass, 1971; Grass et al., 1991; Krogstad et al., 1992] generated over the 

largest clast and wake flapping [Nowell and Church, 1979].  

 

3.2. Measuring the flow structures 

In order to visualise and subsequently measure the CFS, Laser Induced Fluorescence (LIF) 

was applied, with the full methodology being reported in Hardy et al. [2011]. In the present 

study, a fluorescent tracer, Rhodamine 6G (Rh6G) diluted in de-ionized water, was fed 

through a 4 mm tube using a peristaltic pump, and introduced through the bed and entrained 

into the flow (Figure 1e). The peristaltic pump ensured the flow of the Rhodamine dye was 

the same as that of the flow at the bed in order to prevent any added momentum that may 

influence the characteristics of the CFS [Roy et al., 1999]. The laser illuminated the tracer 

within the measurement field of view and allowed visualization of the turbulent structures 

within the flow (Figure 1 e&f) and measurement of flow. Care was taken not to add too much 

Rhodamine, as over-illumination affected the quality of structure detection and PIV 

measurement. Through the use of a second camera, the LIF was run concurrently with the 

PIV, although a square-notch green filter was installed on the PIV camera lens to remove 

light of the LIF wavelength (450–575 nm for Rhodamine 6G) from the PIV images. This 

provided a simultaneous two-dimensional (downstream (l) and vertical (h)) visualization and 

flow measurement of the CFS.  
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Here, the LIF image was used as a structure mask. Standard image processing techniques 

were used to convert the LIF image (Figure 1f) into a binary image (Figure 1g). This was 

achieved by applying the algorithm of Otsu [1979] so that the large-scale geometric 

characteristics were identified. This process provided a binary mask for detection and 

delineation of coherent flow structures (Figure 1g) that initially enabled the geometric 

characteristics of individual flow structures to be investigated, but subsequently was overlain 

on the PIV data to allow extraction of the flow data. 

It must be recognized that there is an inherent limitation with this approach in that we are 

applying a static two-dimensional technique to try to capture a dynamic complex three-

dimensional structure that grows over space and time. Since the technique is thus reliant on 

the CFS passing through the laser sheet ( 2mm wide), there is a probability that the CFS 

originates outside the field of view and there may be a degree of lateral interaction with 

adjacent CFS. We sought to minimize this effect as much as possible by feeding the 

Rhodamine in front of the most protrusive roughness element (Figure 1e, PCl) in order to 

minimize such concerns. 

 

4. Methods of Analysis  

The analysis methodology was designed following the definition of a CFS outlined above, in 

which such structures possess both temporal and spatial coherence, contribute to the mean 

flow, and contain turbulent kinetic energy and ir/rotational components (vorticity) [Adrian 

and Marusic, 2012; Venditti et al., 2013]. The LIF data also provided a structure mask to 

distinguish the flow structure from the surrounding flow. Flow data collected with PIV was 

analysed in several ways. Firstly, quadrant analysis was applied [e.g. Lu and Willmarth, 

1973; Bogard and Tiederman, 1986; Bennett and Best, 1995] to discriminate the boundary 

layer turbulent events that initiate and cause growth of the CFS. This approach was applied 

once stationarity in the velocity times series had been determined using the cumulative 

variance approach [e.g. Sukhodolov and Rhoads, 2001], thus allowing time averaged means 

to be calculated. Secondly, the turbulent kinetic energy was calculated to evaluate flow 

within the CFS and how this compared to the surrounding flow. Thirdly, two-dimensional (x-

z) vorticity was calculated to assess the ir/rotation of the structures, and to detect coalescence 

or vortex shedding. Vortex detection was then extended by application of the Finite-Time 

Lyapunov Exponent (FTLE) method [Haller, 2001; Green et al., 2006]. Lyapunov exponents 
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have previously been used to study the chaotic nature of a dynamical system [Sprott, 2003], 

and have also been used in identifying vortices within flows as they calculate trajectories 

either forwards or backwards in time. When projected backwards, as they are in the present 

study, the FTLE detects regions of the flow that act as attractors within the flow [Haller and 

Yuan, 2000]. Regions of high FTLE identify vortices that have been classified as Lagrangian 

coherent structures (LCS) [Haller, 2000; Haller and Yuan, 2000]. Thus, the FTLE method 

has been applied in this study to detect the evolution point and growth of the flow structure, 

and by applying backward projection over different time periods provide an indication of its 

temporal coherence. 

In the next section, each experiment is referred to with reference to the Reynolds number of 

the flow conditions; i) 19 000; ii) 46 500; iii) 87 000 and iv) 132 000. Initially, a time series 

of an evolving structure is analysed in order to understand the evolution and growth of these 

structures. This time series is taken from the Re 132 000 experiment as previous work has 

shown CFS are more pronounced as the Reynolds number increases [Shvidchenko and 

Pender, 2001; Hardy et al., 2009]. For the other three Reynolds numbers, a different 

approach is applied where five structures are identified for each flow condition that display 

similar geometric characteristics to those previously observed [e.g. Lacey and Roy, 2006; 

Hardy et al., 2011]. This approach has been applied to assess the range of different structures 

that have entrained Rhodamine and follows the observation of Adrian and Marusic [2012] 

that CFS are recognizable, despite randomness, by their common topological patterns. 

 

5. Results 

5.1. A time series of an evolving flow structure.  

A series of five images, each 0.06 seconds apart, were identified from within the Re 132 000 

experiment (Figure 2, labelled T1 to T5, in increasing time). Initially, the flow structures 

characteristics are identified (Figure 2, row 1) and then the flow dynamics are analysed 

through quadrant analysis (Figure 2, row 2), and then by examining both turbulent kinetic 

energy (Figure 2, row 3) and vorticity (Figure 2, row 4).  

The geometric characteristics identified in the LIF image T1 show that the Rhodamine is 

entrained into the shear flow generated by the topographic protrusion (labelled A). This lifts 

the structure into the flow with a leading edge at approximately 45˚ (labelled with a white 

dashed line). The structure does not fill the whole field of view in this short time period, 
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although the entire length of observation is less than 0.5 seconds. This leading edge decreases 

in angle with time as the structure moves through the field of view ( 35˚ in T4, labelled with 

a white dashed line), although the ability to detect the structure appears to decrease due to the 

dilution / oxidation of the Rhodamine. Finally, the periodicity associated with this process 

can be estimated in T5 where the next structure is starting to generate over the topographic 

protrusion (A) behind the initial structure (both marked with yellow dotted lines).  

The PIV measurements allow the internal flow dynamics of the structures detected by LIF to 

be characterised. The most apparent observation is that although the LIF detects an individual 

fluid parcel through space and time, the PIV measurements identify several smaller units of 

fluid exist within the one larger individual fluid parcel. The instantaneous non-thresholded 

(i.e. by any mean Reynolds stress hole size [Lu and Willmarth, 1974]) quadrant plots are 

shown (Figure 2, row 2). Just upstream of the detection region of the LIF, Q1 (outward 

interaction) events are detected over the topographic protrusion A (circled, in T1), which 

have previously been shown to be the most efficient, although least common, structure in 

entraining sediment [Nelson et al., 1995]. However, in the immediate leeside of the 

protrusion, where the flow structure is detected, the flow is dominated by Q4 (sweep) events, 

and as such the majority of the structure (>80%) consists of Q4 events. The secondary flow 

structure, in terms of total spatial coverage, contained within these structures is Q1 events 

that are located both at the base and the top front (tip) of the structure. This observation is 

consistent for all five time images. Directly above the flow structure, a packet of Q2 

(ejections) events exist from T2 onwards (circled in T2 column). This suggests flow is 

initially suppressed in the near-bed region and this would agree with the flattening of 

structure observed in the LIF images. However, since the parcel of fluid above the structure is 

moving (lifting) away from the bed, this implies that the local pressure is reduced, thus 

allowing the structure to lift and develop, as has been shown previously in the shear layer 

through absolute and convective instabilities [Socolofsky and Jirka, 2004].  

When the turbulent kinetic energy (TKE) is analysed (Figure 2, row 3), high TKE can be 

observed in the base of the structure as it passes over topography (marked with a box). 

Within this box just along the top edge of the structure high TKE (> 0.005 m
2
s

-2
) is detected 

as well as a chain of higher TKE ( 0.003 m
2
s

-2
) between the source of the structure and the 

structure which leaving the box. This is potentially generated through shear, although the 

intensity of the TKE appears to diminish with distance away from the bed (marked with arrow 

(Figure 2, row 3, column 2). This same mechanism can be observed to be occurring again 
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(Figure 2, row 3, column 2, behind arrow) although on this occasion no Rhodamine is 

entrained. However, the CFS does appear to follow certain trends. Initially, the LIF dye 

appears to have been entrained at the end of a large structure that has passed through that 

point. In Figure 2 (T2), a region of high TKE is marked (dotted ellipse) that has a 

geometrically similar shape to the large structure (extending up to 0.5 z/h) that the LIF 

appears to be following (T2 marked with upper arrow). Secondly, as demonstrated in column 

T3, a region of high TKE that is moving towards the bed is located downstream of the 

structure, as demonstrated by the quadrant analysis.  

The vorticity plots (Figure 2, row 4) show regions of either very strong negative or positive 

rotational components within the structure. The most obvious observation, and one that is 

also in agreement with the quadrant analysis, is that the flow structure is not a single unit of 

homogenous flow but has several localised packets of flow. Furthermore, the top of the 

structure appears in some cases to contain packets of fluid of negative vorticity 

(anticlockwise rotation), while at the bottom of the structure there is a prominence of 

structures with a positive vorticity (clockwise rotation) (see T3, labelled with 2 arrows). This 

implies that smaller vortices are shearing off the back of the larger structures, while at the bed 

smaller vortices are also being sheared through shear interaction with the bed.  

Vortex detection is undertaken by applying FTLE with structures tracked backwards in time 

for 0.05, 0.5, 1 and 2 seconds for time frames T1, T3 and T5 (Figure 3). In these images, the 

structure is coloured black to analyse the flow surrounding the structure, whilst white regions 

show a non-calculation. This non-calculation occurs where the temporal track-back time were 

too great and would have required velocity measurements outside of the field of view to 

make a successful calculation. At the shortest track-back period (0.05 second, row 2), high 

FTLE values identify a series of vortex chains. These structures all originate at the bed and 

have a similar trajectory (lead angle of  45˚) to those structures identified with the 

Rhodamine. Furthermore, high FTLE values exist throughout the flow (an example is marked 

with a dashed line, row 2 on T5), and detect vortex chains that may have been generated from 

topographic protrusions outside the field of view. However, the high FTLE values with a 

track-back time of 0.05 seconds do not coincide with the structure, but there appears to be a 

high FTLE band on either side of the structure (labelled in T3 with two dashed lines). 

Following the observations made from the analysis of vorticity (Figure 2, row 4), these bands 

potentially depict the vortices shearing off the back of the structure or being sheared off 

through interaction with the bed.  
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When a 0.5 second track-back time is applied, high FTLE values again detect several vortex 

chains that can be seen to have a trajectory with a lead angle of 45˚. With an increase in the 

temporal track back period, the high FTLE values and spatial locations of the LIF structure 

appear to correspond with the structures following defined paths (marked with a line in T3 ), 

with the LIF being entrained by vortex chains originating at the bed. This observation is 

confirmed when a 1-second track-back time is applied (Figure 3, row 4, T1, & 3 marked with 

dashed line) with the flow moving away from the bed. By image T5, the gradient of the front 

angle has increased as it moves further into the boundary layer. The pattern is more difficult 

to detect when a 2-second track-back time is applied. This is a function of the size of the field 

of view and the speed of flow. However, there does appear to have some spatial connection, 

with the high FTLE attractors within the structure contained within a parcel of flow (in front 

of the structure in T1 and overlapping the structure in T3 marked with dashed oval). 

Complete overlap with high attractors may be a function of entrainment but does potentially 

show both the spatial location of the origin of the structure and, as a factor of the track back 

periods, an indication of the temporal coherence.  

The FTLE demonstrates that all the vortex structures start at the bed following a lead angle of 

35˚ to 45˚. For shorter track-back periods, the flow structure appears to sit on high FTLE 

attractors, which could either imply that small structures, as identified in the vorticity, are 

spinning off, or secondly that the structures follow predefined flow paths from topographic 

protrusions from the bed.  

 

5.2. Analysing individual structures 

In the following section, CFS from the other three Reynolds numbers are examined. 

However, instead of analysing a time sequence, individual structures have been analysed to 

assess whether they possess similar geometric or kinematic characteristics.  

 

5.2.1. Geometric characteristics of flow structures. 

The individual CFS elucidated at the three Reynolds numbers through LIF are presented in 

Figure 4 as post-processed images (as discussed in section 3.2). The first observation for all 

these identified flow structures across the three Reynolds numbers is, as with the Re 132 000 

experiment, that none of the CFS grow to their full size within the field of view, with the 
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maximum height of any structure identified in the flow  0.4 z/h. Furthermore, no classical 

geometric structure can be identified that clearly scales with the flow Reynolds numbers. It is, 

however, suggested that the structures are not the size of the flow depth due to the 

experimental methodology employed. In particular, the location of the LIF infeed was likely 

too close to the PIV field of view, and thus the structures into which the dye was entrained 

did not have the spatial distance to evolve fully. However, this limitation was necessary for 

two experimental reasons: i) these structures are fully three-dimensional and herein a two-

dimensional PIV/LIF measurement technique is being applied. It is therefore necessary to 

ensure that the Rhodamine dye passes through the PIV laser sheet for illumination and thus 

the feeder tube needs to be close to the field of view; ii) the concentration of Rhodamine 

needs to be carefully monitored to prevent either over-illumination, and thus a reduction in 

the quality of the PIV data, or the oxidation or dilution of the Rhodamine that would reduce 

the possibility of detection.  

For the Re 19000 experiment (Figure 4, column 1), a series of trends can be observed. 

Primarily, the CFS can be seen to be entrained in the near-bed region (Figure 4a, i) with the 

body of the structure moving higher in the flow, and with some positive rotation of the 

structure at its front underside (see arrow in Figure 4a in front of structure). A similar CFS 

which has moved further into the field of view (Figure 4b, marked with arrow), appears to 

have been squeezed into a narrower shape with smaller structures (vortices) being shed from 

the bed. This squeezing of the CFS is likely associated with the main shear layer formed from 

the largest protruding clasts, as previously discussed by Hardy et al. [2010]. These CFS are 

not found in isolation but rather a sequence of structures can be identified, such as in Figure 

4c where two similar CFS are found in sequence (separated by a dotted line ii). Finally, as 

more dye enters the field of view (a problem encountered at lower flow velocities), these 

similar structures are identified in the left hand side but structures with a streaky nature 

appear above the shear layer (Figure 4e, arrow iii).  

The CFS identified for the Re 46 500 experiment show similar geometric characteristics to 

those identified for the Re 19 000 experiment, with a sequencing of small structures (Figure 

4g), located in the near bed region and experiencing shear flow. However, larger structures 

are also detected (Figure 4i & j) that are clearly generated in the near-bed region and appear 

to be ejected low-momentum fluid (Figure 4i, arrow iv). Here, the CFS initially appears to be 

supressed below the shear layer and then moves up and through the shear layer (0.5 x/l in 

Figure 4i), with a frontal angle of approximately 45, and potentially with vortices shedding 
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off the back of the structure. Behind this CFS, a streaky structure is observed as identified 

previously. This type of structure is again identified as the Reynolds number increases in the 

Re 87 000 experiment (Figure 4 k-o were similar geometric structures are identified. The 

structures are supressed within the near-bed region and move upwards at a shallow angle of 

25 (Figure 4k, marked with arrow). In all these visualizations, none of the detected 

structures are an isolated closed entity, but rather are comprised of several CFS identified by 

the LIF structures, that appear to either shear off the back of, or be entrained into, the 

principal CFS.  

 

5.3. Flow within individual structures and surrounding flow 

The same analysis sequence detailed above was applied where the flow within the structure 

and in the surrounding flow is analysed. As with the Re 132 000 experiment, the most 

apparent observation is that although the LIF detects an individual fluid parcel through space 

and time, there are several smaller parcels of fluid within the one larger individual CFS. 

 

5.3.1. Quadrant Analysis 

The non-thresholded instantaneous quadrant plots for the Re 19 000, 46 500 and 87 000 

experiments (Figure 5) are shown with the quadrants contained within the structure in bold 

and the surrounding flow translucent. If the overall flow field is considered first, for Re 19 

000, the majority (70%) of the field of view is comprised of Q2 (ejection) and Q3 (inward 

interaction) events (with the exception of Fig. 5d), although there is no real defined spatial 

pattern. Q4 (sweep) and Q1 (outward interaction) events are also observed, although they are 

fewer and are typically found lower in the flow. However, the Q4 structures do detect a flow 

structure that is geometrically similar (Figure 5c, marked with eclipse) to the previously 

identified structures (e.g. Figure 1g) (i.e. the lead angle of the structure is  45˚ located in the 

near bed (z/h < 0.4)), although they are not detected by the entrained Rhodamine. As the 

Reynolds number increases, there is a clear increase in Q4 events. For the Re 46 500 

experiment, these Q4 events are contained in small packets of fluid with the size of the fluid 

packets increasing, and possibly becoming more coherent, as the Reynolds number increases 

in the Re 87 000 experiment. However, across all Reynolds numbers, , the majority of the 

flow contained within the CFS detected by the Rhodamine consists of Q4 events with Q1 

events located both at the base and the top front (tip) of the structure. 
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5.3.2. Flow within individual flow structures 

The turbulent kinetic energy (TKE) is calculated for every image and shown in Figure 6. The 

results are presented in an identical manner to the quadrant analysis where the structure is 

shown in bold while the turbulent kinetic energy in the surrounding flow is translucent. It is 

evident that, over the range of Reynolds numbers investigated, the macro turbulent structures 

identified in the LIF are generally located in regions of low turbulent kinetic energy, 

although, as in the Re 132 000 experiment, there are units of high TKE within these 

structures. The region of low TKE where CFS are detected is shown by two parallel dashed 

lines on Figure 6 for the 3 examples (Figure 6 a,b,l). 

A consistent pattern is found for the Re 19 000 experiment (Figure 6 a-e). The CFS detected 

by the Rhodamine dye is located within a region of low TKE (Figure 6 a & b (marked within 

a pair of parallel dashed lines) and Figure 6e (within ellipsoid)). It is clear that on either side 

of this region, the TKE is higher than that contained within the flow structure. A similar 

observation can be made for the Re 87 000 experiment (Figure 6l marked with parallel 

dashed lines) or in Figures 6n and 6o, where the structure is located within a region of low 

TKE. The opposite of this pattern appears for the Re 46 500 experiment, where the structure 

is generated from, and moving above, the shear layer (labelled in Figures 6g and 6i with an 

arrow and the parcel of fluid above shear layer marked on Figure 6h with an ellipse). It is also 

apparent that the TKE is lower in magnitude than the surrounding fluid (Figure 6h) as the 

structure has already moved out of the shear layer. This highlights that these CFS are being 

generated by localised shear, where they are potentially entrained into, or coalesce with, other 

turbulent structures that are moving upwards out of the flow.  

 

5.4. Two dimensional (x-z) vorticity 

Two dimensional (x-z) vorticity for each image is shown in Figure 7. In general, all the CFS 

across the range of Reynolds numbers possess weak positive vorticity, showing a rolling 

motion generated from shear with the bed. However, closer inspection shows that each 

structure is not a single homogeneous flow structure, but rather comprises several vortices of 

both rotating and counter-rotating flow. When the Re 19 000 experiment is considered, the 

general positive vorticity demonstrates that the structure is lifting up into the flow. However, 

localised packets of high intensity vorticity can be observed (Figure 7a, region i & Figure 7d, 

region ii). At this low Reynolds number, these packets do not visually occupy more than 10% 
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of the whole structure, although there is an apparent sequencing of events with the high 

positive motion directly next to values of high negative vorticity. A similar pattern is 

observed for the Re 46 500 experiment (Figure 7f, region iii and Figure 7h, region iv) where 

regions of positive rotating flow are mixed with anticlockwise-rotating flow. These local 

units become more dominant at this Reynolds number, cover a greater spatial area 

(approximated to be 20% of the structure) and are located close to the top front of the 

structure. Here, the tip of the structure is rotating forward and lifting into the flow, but 

directly behind this the flow is rotating in the opposite direction, with smaller structures 

either shearing off the back of the structure or being entrained into the structure. However, 

this characteristic is not apparent in the Re 87 000 experiment.  

The vorticity analysis demonstrates that the CFS have a positive rotational structure, but are 

not single homogenous units and are comprised of both ir- and rotational parts, thus agreeing 

with the observations of Adrian and Marusic [2012]. It is unclear from the present analysis 

whether the localised high intensity vorticity within the CFS is either entrained from the shear 

layer as the structures grow, or whether the structures are becoming unstable and transferring 

their energy to smaller eddies. This latter behaviour would follow the model of Falco [1991], 

where the shedding of smaller vortices reforms and redefines the boundaries of the large-

scale motions on which they develop [Hardy et al., 2011].  

 

5.5. Vortex detection through Finite-Time Lyapunov Exponents (FTLE) 

In the application of FTLE herein, the starting time frames to track back the flow structures 

are those images displayed in Figure 4. In order to capture all the flow structures three 

different track-back periods were applied (0.5, 1, and 2 s). A 0.05s track back period was not 

applied as this has been demonstrated to be too short a period in the observations made in 

Figure 3. Furthermore, in order to demonstrate the results, only 1 image for each Reynolds 

number is presented in Figure 8.  

When the Re 19 000 experiment is examined (Figure 8, row 1), the vortex chains that 

originate from the bed are apparent, as are some flow structures higher in the flow that are 

suggested to originate at the bed, but upstream of the field of view. Again, high FTLE values 

correspond spatially with the LIF (marked Ai and Aii on Figure 8, row 1) as the flow 

structure moves downstream. Although the geometry of the CFS used for the Re 46 500 

analysis is different, (Figure 8, row 2), for the three track-back periods (0.5, 1 and 2 seconds), 
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high FTLE values can be observed in the flow, although the best agreement in terms of 

spatial location between the FTLE and the CFS detected in the image is for the 2-second 

period. There is a strong band of FTLE (labelled Bi) which shows a vortex chain that has 

entrained the region of LIF. Agreement with a 1-second track-back is poorer, although there 

is a region of high FTLE at the front of the structure where the LIF is slightly below a band of 

high FTLE (Bii). The same characteristic can be seen for in the Re 87 500 experiment where 

the CFS corresponds with a region of high FTLE (marked Ci), but again weak agreement is 

present with the 1-second FTLE. A second observation that can be made for the 2-second 

track-back period is that a secondary band of high FTLE is present over the topographic 

protrusion (labelled Cii), perhaps demonstrating a periodicity in the processes. Again several 

small vortices are detected in the 0.5-second FTLE. 

 

6. Discussion and Conclusions 

This study has examined the nature of turbulent flow over a gravel bed at four different 

Reynolds numbers by applying a combined measurement and flow visualisation technique. 

This has enabled the geometric and dynamic characteristics of the CFS to be measured at a 

millimetre-Hertz spatio-temporal scale. This technique allows us to improve our 

understanding of the contribution of CFS to the turbulent flow, the generation of bed shear 

stresses and transport of sediment over gravel beds. From this analysis, a new conceptual 

model of flow structure evolution, growth and decay over a gravel bed is presented (Figure 

9).  

The LIF analysis identifies flow structures that are individual entities and similar to the field 

observations of Roy et al. [2004]. These CFS persist for a sufficient temporal period to be 

observed in flow visualization and therefore fulfil one of the criteria proposed by Adrian 

[2007]. Furthermore, these structures are reoccurring and are identifiable, despite 

randomness, by their geometric characteristics [Adrian and Marusic, 2012]. These results 

also confirm that the CFS are generated by a process akin to the ‘bursting’ cycle (Figure 9a) 

[e.g. Grass 1971; Grass et al., 1991; Nezu and Nakagawa, 1993] where ejections force 

relatively low-momentum fluid away from the bed, although these upwellings are linked to 

shear layers formed by flow over protruding topography. These CFS have similar geometrical 

characteristics to those previously deduced from flow measurements, with frontal angles 

between 36 and 45 [Buffin-Belanger et al., 2000; Hardy et al., 2009], and thus appear 
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similar in nature to roller vortices formed in a classical boundary layer [Adrian, 2000]. 

However, previous work has suggested that such structures grow until they are nearly equal 

to the flow depth [Grass, 1971; Shvidchenko and Pender, 2001], which is not observed in the 

present experiments. Three reasons may be forwarded to explain this anomaly. First, if the 

experimental conditions are compared with previous experimental work (Table 1), it is clear 

that both the bed particle size and flow depth used herein are an order of magnitude greater 

than previous experiments, although the relative submergence of clasts (D50/h) is the smallest. 

Furthermore, although the Reynolds numbers are comparable the Froude numbers are low 

compared to the previous experiments. Thus the processes observed previously may not scale 

with these extremely rough beds under these flow conditions. Secondly, this lack of 

correspondence between past work and the present results may be associated with the fact 

that the field of view is too small to view the complete cycle, as in the present experiments 

the field of view is  1h. Finally, there is the possibility that inrushing fluid into the top of the 

CFS may dilute the Rhodamine making the detection of the top of the structure problematic.  

The bursting cycle revealed by the LIF was quantified by applying direct flow measurement. 

Although the LIF identified individual fluid packets moving through space and time, these 

structures were found to comprise several smaller parcels of fluid within the one larger CFS 

(Figure 9). This nesting of different scale flow structures may reflect either the process by 

which the structures are formed (e.g. coalescence) or the fact that these structures are not 

permanent and a cycle occurs over a distance of 6h [Shvidchenko and Pender, 2001] with 

vortices being shed off the back of the CFS [Falco, 1991]. The instantaneous, non-

thresholded, quadrant analysis demonstrates that as the flow Reynolds number increases there 

is an increase in the percentage of the flow field containing Q4 events (Figure 9). At lower 

Reynolds numbers, these Q4 events are contained within small packets of fluid, with the size 

of these fluid packets increasing, and possibly becoming more coherent, as the Reynolds 

number increases and where the majority of the structure consists of either Q1 or Q4 events. 

The flow structure is subordinated, in terms of spatial coverage within these CFS, by Q1 

events, which are located both at the base and the top front (tip) of the CFS. Directly above 

the CFS, a packet of Q2 events is also frequently detected. These observations agree with 

previous boundary layer studies where magnitude Q4 events tend to dominate [Nelson et al., 

1995], with Q2 and Q4 events extracting turbulent energy from the mean and they contribute 

to the bed shear stress.  
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When the turbulent kinetic energy (TKE) is analysed, several characteristics are identified. 

Firstly, high TKE can be observed within the CFS when it is close to the bed, potentially 

generated through shear, but the TKE diminishes with distance away from the bed. 

Furthermore, the location of the CFS follows defined trends. Primarily, the LIF dye is 

entrained at the end of a large structure that has passed through that region (Figure 2, T2, 

marked with dotted circle). This structure, detected by its high TKE, extends further into the 

flow (up to 0.5 z/h). These structures, especially those identified in the Re 46 500 experiment, 

appear to be generated by localised shear, where they entrain / coalesce with other turbulent 

structures moving upwards into the flow. However, as these CFS move away from the shear 

layer, they lose energy through entrainment and growth. These results may at first appear 

counterintuitive, as one of the definitions of a CFS given by Adrian and Marusic [2012] is 

that it contributes significantly to the hydraulic properties of a flow. However, the proposed 

mechanism which generates the CFS is ejected low-momentum fluid from a burst in the near-

bed region [e.g. Grass et al., 1971] and subsequently the products of the velocity components, 

namely the turbulent kinetic energy, contained with the flow structure will also be low. 

Finally, a region of high TKE is located behind the structure (Figure 2, T3), as demonstrated 

by quadrant analysis, and moves towards the bed, a characteristic that agrees with previous 

work that suggests Q2 events are replaced by an inrush of high velocity fluid from above [e.g. 

Grass 1971; Grass et al., 1991; Nezu and Nakagawa, 1993; Best, 2005 a&b] (Figure 9).  

The two dimensional (x-z) vorticity for all the CFS across the range of Reynolds numbers 

investigated herein generally shows weak positive vorticity, indicating a rolling motion 

generated from shear with the bed. However, as with the other flow components, closer 

inspection shows that each structure is not a single homogeneous flow structure, but rather 

comprises several vortices of both rotating and counter-rotating flow. This bears similarity to 

roller vortices formed in a classical boundary layer [e.g. Adrian, 2000] and is in agreement 

with the quadrant analysis presented herein. This observation provides insight into the 

potential formation and destruction mechanism of these CFS. Initially, positive vorticity 

suggests bed-shear induced processes for formation of these structures. However, as these 

flow structures do not form from a single topographic protrusion, such as a dune crest, but 

rather a multitude of three-dimensional topographic peaks, then consistently-sized vortices 

are not identified. Instead, a coalescence of several different scale vortices into the principal 

CFS is present. Additionally, these results provide insight into the dissipation of such CFS 

that are not permanent features and rarely stable: a small percentage of negative vorticity 
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suggests the CFS are already unstable and there is a transfer of energy to smaller eddies (e.g. 

the model of Falco, [1991]). The present results also confirm the criteria of Adrian and 

Marusic [2012] that these structures have regions that are ir/rotational.  

 

The present study has also demonstrated that, independent of flow Reynolds number or track-

period applied, the FTLE method can identify vortex chains originating at the bed and with a 

trajectory of between 35 to 45˚, similar to those structures identified by the LIF. 

Furthermore, a series of vortex chains are present higher in the flow that are reasoned to have 

been generated from topographic protrusions outside of the field of view. For all flow 

conditions, the greatest spatial agreement between the location of LIF and the high FTLE 

values corresponds with the longest (2s) track-back time following defined paths, with the 

LIF being entrained by vortex chains originating at the bed. For shorter track-back periods 

(0.5, 1s), the flow structure sits on high FTLE attractors that could either imply: i) that small 

structures, as identified in the vorticity, are spinning off a larger feature, or ii) that shear flow 

structures follow predefined flow paths from topographic protrusions in the bed and coalesce 

into these larger structures as they grow.  

 

The PLIF-PIV technique detailed herein now permits future work that should investigate 

whether the generative mechanism for these bed-generated coherent flow structures is similar 

to the model proposed by Wark and Nagib [1991] They suggest merging hairpin vortices 

form around the bed clasts, and generate large ‘roller-type’ structures [Townsend, 1976; Wark 

and Nagib, 1991] or Kelvin-Helmholtz, roller-type, instabilities generated along the 

separation zone shear layer [e.g., Rood and Hickin, 1989; Bennett and Best, 1995; Best, 2005 

a&b; Hardy et al., 2009] that are formed around several anchor clasts in the bed. 

Furthermore, there is a need for such findings to be extended to examine how these turbulent 

flow structures influence the sediment transport dynamics [e.g. Nikora and Goring, 2000; 

Shvidchenko and Pender, 2001; Maddux et al., 2003; Nelson et al., 2005; Yager and Schott, 

2013] and influence subsurface hyporheic flows [e.g. Blois et al., 2014]. The relation between 

local turbulence and forces acting on the sediment grains is not understood and as such and 

there is still little agreement as to which turbulence statistic is the best descriptor to predict 

sediment entrainment [Rennie and Millar, 2004; Schmeeckle et al., 2007; Wren et al., 2007; 

Coleman and Nikora, 2008; Paiement-Paradis et al., 2011]. The mechanism which causes 
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sediment to be entrained is dominated by drag, lift or a product of both forces [Vollmer and 

Kleinhans, 2007; Schmeekele et al., 2007; Yager and Schott, 2013] although the contribution 

from each component has yet to be fully quantified. The drag force can be correlated with the 

downstream velocity fluctuations, or near-bed Reynolds stresses [Yager and Schott, 2013], 

however, no such relation exists for the lift force which does not correlate with the local 

instantaneous vertical (w-) velocity [Schmeeckle et al., 2007]. There is a better agreement 

between the localised pressure field, induced from flow around topographic protrusions and 

spatial accelerations, and the lift force [Smart, 2005; Schmeeckle et al., 2007]. However, 

sustained fluctuations of turbulence may generate the forces needed for entrainment [Yager 

and Schott, 2013], and as such bursts (Q2), sweeps (Q4) and inward (Q3) and outward 

interactions (Q1) can cause significant sediment entrainment [Grass, 1970; Nelson et al., 

1995], with observations suggesting that Q4 and Q1 cause the most sediment transport 

because of their frequency [Nelson et al., 1995]. Recent work [e.g. Diplas et al., 2008; Diplas 

and Dancy, 2013] has also shown how sediment entrainment is a function of both the 

magnitude and duration of a turbulent event impacting on a bed surface, and thus highlights 

how the size, form and stacking of CFS into larger flow structures may be critical in sediment 

entrainment. For instance, the results presented herein demonstrate that high TKE is present 

in the flow structure when it is close to the bed, thus potentially providing the necessary 

energy for grain entrainment. The current analysis has also shown that as the flow Reynolds 

number increases, there is an increase in the percentage of the CFS containing Q4 events 

(>80%), with the next most dominant flow structures being Q1 events, which are located both 

at the base and front tip of the CFS. Even though all the flow conditions used in the current 

experiments were below the bed shear stresses required for sediment entrainment, the results 

imply that these structures may generate high instantaneous bed shear stresses that are the 

causal mechanism for sediment entrainment.  

 

7. Acknowledgements  

The experiments were funded through UK NERC grant NE/F010060/1. The DANTEC PIV 

system was funded by NERC JREI grant GR3/JE140 to JLB whilst he was at Leeds, and a 

HEFCE SRIF2 award to the SEFDL, Leeds University. Data presented in this manuscript can 

be obtained by contacting RJH (r.j.hardy@durham.ac.uk). We are grateful to the Associate 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Editor Bruce MacVicar and three anonymous referees for providing helpful comments that 

have led to significant improvements in this manuscript. 

 

8. References 

Adrian, R. J. (2007), Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 

041601. 

Adrian, R. J. (2013), Structure of Turbulent Boundary Layers, In: Coherent Flow Structures 

at Earth’s Surface, First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael 

Church and Richard J. Hardy. John Wiley & Sons Ltd,17-24 

Adrian, R. J. and I. Marusic, (2012), Coherent structures in flow over hydraulic engineering 

surfaces, J. Hydraul. Res., 50, 451–64. 

Babakaiff, C. S. and E. J. Hickin, (1996), Coherent flow structures in the Squamish River 

estuary, BC, Canada, In: P.J. Ashworth, S.J. Bennett and S.J. McLelland (Eds), Coherent 

Flow Structures, Wiley, Chichester, 312-342 

Bai J., H. Fang and T. Stoesser T. (2013), Transport and deposition of fine sediment in open 

channels with different aspect ratios, Earth Surface Processes and Landforms, 38 (6), 591-

600. 

Bathurst, J. C. (1978), Flow resistance of large scale roughness, J. Hydraul. Div., ASCE, 

104(HY12), 1587–603. 

Bennett, S. J. and J. L. Best (1995), Mean flow and turbulence structure over fixed, two 

dimensional dunes: implications for sediment transport and dune stability, Sedimentology, 

42, 491-513. 

Best, J. L. (2005), The fluid dynamics of river dunes: A review and some future research 

directions, J. Geophys. Res., doi:10.1029/2004JF000218. 

Best, J. L. and R. A. Kostaschuk (2002), An experimental study of turbulent flow over a low-

angle dune, J. Geophys. Res., 107(C9), 3135, 

Best, J. L. and A. G. Roy, (1991), Mixing layer distortion at the confluence of different 

depths, Nature, 350 (6317), 411-13  

Blois, G., J. L. Best, G. H. Sambrook Smith, and R. J. Hardy (2014), Effect of bed 

permeability and hyporheic flow on turbulent flow over bed forms, Geophys. Res. Lett., 

41, doi:10.1002/ 2014GL060906. 

Bogard, D. G. and W. G. Tiederman (1986), Burst detection with single-point velocity 

measurement, J. Fluid Mech., 162, 113-135. 

Buffin-Bélanger, T. and A. G. Roy (1998), Effects of a pebble cluster on the turbulent 

structure of a depth-limited flow in a gravel-bed river, Geomorphology, 25, 249–67 

Buffin-Belanger, T., A. G. Roy and A. D. Kirkbride (2000), On large scale flow structures in 

a gravel bed river, Geomorphology, 32, 417–35. 

Cantwell, B. J. (1981), Organized motion in turbulent flow, Ann. Rev. Fluid Mech., 13, 457. 

Charlton, F. G., P. M. Brown, and R. W. Benson (1978), The hydraulic geometry of some 

gravel rivers in Britain, Report IT180, Hydraulics Research Station, Wallingford, England. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Coleman, S.E. and V.I. Nikora, (2008), A unifying framework for particle entrainment. Water 

Resour. Res., 44 (4), W04415. 

Colombini, M. (1993), Turbulence driven secondary flows and the formation of sand ridges, 

J. Fluid Mech., 254, 701– 19. 

Cooper J. R. and S. J. Tait, (2008), The influence of spatial variability in the near-bed flow 

field on 1-D calculations of fluvial bedload transport. In: River, Coastal and Estuarine 

Morphodynamics : RCEM 2007, Vols 1 and 2 Eds. Dohmen Janssen CM and Hulscher 

SJMH Proceedings and Monographs in Engineering, Water and Earth Sciences, 437-42  

Cooper J. R. and S. J. Tait, (2010a), Spatially representative velocity measurement over 

water-worked gravel beds, Water Resourc. Res., 46, W11559  

Cooper J. R. and S. J. Tait, (2010b), Examining the physical components of boundary shear 

stress for water-worked gravel deposits, Earth Surfaces Process. Landforms, 35(10), 

1240-6.  

Crimaldi, J. P. and Koseff, J. R. (2001), High-resolution measurements of the spatial and 

temporal scalar structure of a turbulent plume, Exp. Fluids, 31, 90–102. 

Dinehart, R. L. (1992), Evolution of coarse gravel bed forms – Field measurements at flood 

stage, Water Resourc. Res., 28(10), 2667–89. 

Drake, T. G., R. L. Shreve, W. E. Dietrich, P. J. Whiting, and L. B. Leopold (1988), Bedload 

transport of fine gravel observed by motion‐picture photography, J. Fluid Mech., 192, 

193–217. 

Diplas, P., Dancey, C.L., Celik, A.O., Valyrakis, M., Greer, K., and Akar, T., (2008), The 

role of impulse on the initiation of particle movement under turbulent flow conditions. 

Science, 322: 717-720,doi:10.1126/science.1158954.  

Diplas, P. and C.L. Dancy, (2013), Coherent flow structures, initiation of motion, sediment 

transport and morphological feedback in rivers, In: Coherent Flow Structures at Earth’s 

Surface, First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael Church and 

Richard J. Hardy. John Wiley & Sons, Ltd, 289-308. 

Falco, R.E. (1977), Coherent motions in the outer region of a turbulent boundary layers, 

Physics of Fluids, 20, s124–s132. 

Falco R.E. (1991), A coherent structure model of the turbulent boundary layer and its ability 

to predict Reynolds number dependence, Philosophical Transactions of the Royal Society 

of London Series-A Mathematical Physical and Engineering Sciences, 336 (1641), 103-

129.  

Garcia, C., H. Cohen, I. Reid, A. Rovira, X. Ubeda, and J. B. Laronne (2007), Processes of 

initiation of motion leading to bed load transport in gravel bed rivers, Geophys. Res. Lett., 

34, L96403. 

Grass, A. J. (1971), Structural features of turbulent flow over smooth and rough boundaries, 

J. Fluid Mech., 50, 233–55. 

Grass, A. J., R. J. Stuart, and M. Mansour-Tehrani (1991), Vortical structures and coherent 

motion in turbulent flow over smooth and rough boundaries, Philos. Trans. R. Soc., Ser. A, 

336, 35 – 65. 

Green M. A., C. W. Rowley and G. Haller (2006), Detection of Lagrangian coherent 

structures in three-dimensional turbulence, J. Fluid Mech., 572, 111–20 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=9&SID=1Flj4Jegiecnlpo3NEB&page=4&doc=40
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=9&SID=1Flj4Jegiecnlpo3NEB&page=4&doc=40
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=9&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=10
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=9&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=10
http://dx.doi.org/10.1126/science.1158954


 

 
© 2016 American Geophysical Union. All rights reserved. 

Haller, G. (2001), Distinguished material surfaces and coherent structures in 3D fluid flows. 

Physica D, 149, 248–77. 

Haller, G. and G. Yuan (2000), Lagrangian coherent structures and mixing in two-

dimensional turbulence, Physica D, 147(3–4), 352-70. 

Hardy, R. J., S. N. Lane, M. R. Lawless, J. L. Best, L. Elliott, and D. B. Ingham (2005), 

Development and testing of a numerical code for treatment of complex river channel 

topography in three-dimensional CFD models with structured grids, J. Hydraul. Res., 43, 

468–80. 

Hardy, R. J., S. N. Lane, R. I. Ferguson, and D. R. Parsons (2007), Emergence of coherent 

flow structures over a gravel surface: A numerical experiment, Water Resourc. Res., 43, 

W03422, doi:10.1029/2006WR004936. 

Hardy, R. J., J. L. Best, S. N. Lane, and P. E. Carbonneau (2009), Coherent flow structures in 

a depth-limited flow over a gravel surface: the role of nearbed turbulence and influence of 

Reynolds number, J. Geophys. Res., 114, F01003. 

Hardy, R. J., J. L. Best, S. N. Lane, and P. E. Carbonneau (2010), Coherent flow structures in 

a depth- limited flow over a gravel surface: the influence of surface roughness, J. 

Geophys. Res., 115, F03006 

Hardy, R.J., J. L Best, D .R. Parsons, and G. M Keevil, (2011)On determining the geometric 

and kinematic characteristics of coherent flow structures over a gravel bed: a new 

approach using combined PLIF-PIV, Earth Surface Process. Landforms, 36( 2) 279-84  

Heathershaw, AD (1974) Bursting phenomena in the sea, Nature, 248(5447), 394-5  

Horner-Devine A. R., C. Chickadel, and D.G. MacDonald, (2013) Coherent Structures and 

Mixing at a River Plume Front, In: Coherent Flow Structures at Earth’s Surface, First 

Edition. Edited by Jeremy G. Venditti, James L. Best, Michael Church and Richard J. 

Hardy. John Wiley & Sons, Ltd, 359-70. 

Hunt, J. C. R., A. A. Wray, and P. Moin, (1988), Eddies, stream, and convergence zones in 

turbulent flows, Centre for Turbulence Research Rep. CTR-S88. 

Imamoto, H., and T. Ishigaki (1986a), The three dimensional structure of turbulent shear flow 

in an open channel, paper presented at Fifth Congress of the Asian and Pacific Regional 

Division of the International Association for Hydraulic Research, Seoul.  

Imamoto, H., and T. Ishigaki (1986b), Visualization of longitudinal eddies in an open channel 

flow, in Flow Visualization IV: Proceedings of the Fourth International Symposium on 

Flow Visualization, edited by C. Veret, pp. 333– 337, Hemisphere, Washington, D.C. 

Jackson, R. G. (1976), Sedimentological and fluid-dynamic implications of the turbulent 

bursting phenomenon in geophysical flows, J. Fluid Mech., 77, 531–60. 

Jessup A.T., C. Chickade S.A. Talke and A.R. Horner-Devine, (2013) COHSTREX: 

Coherent Structures in Rivers and Estuaries Experiment, In: Coherent Flow Structures at 

Earth’s Surface, First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael 

Church and Richard J. Hardy. John Wiley & Sons, Ltd, 215-30.  

Klaven, A. B. (1966), Investigation of the flow turbulent structure (in Russian), Trans. State 

Hydrol. Inst., 136, 65–76. 

Klaven, A. B., and Z. D. Kopaliani (1973), Laboratory investigations of the kinematic 

structure of turbulent flow over a rough bed (in Russian), Trans. State Hydrol. Inst., 209, 

67–90. 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=AU&value=Hardy,%20RJ&ut=3201422&pos=%7b2%7d
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=AU&value=Keevil,%20GM


 

 
© 2016 American Geophysical Union. All rights reserved. 

Kline S. J., W.C. Reynolds, F.A .Schraub,  and P.W. Runsstadl, (1967), Structure of turbulent 

boundary layers, J. Fluid Mech., 30, 741.  

Kostaschuk, R. A. and M. A. Church, (1993), Macroturbulence generated by dunes: Fraser 

River, Canada. Sedimentary Geology, 85, 25–37. 

Krogstad P.A., R.A. Antonia and L.W.B. Browne (1992), Comparison between rough- and 

smooth-wall turbulent boundary layers. J. Fluid Mech., 245, 599-617. 

Lacey R. W and A. G. Roy (2006), Turbulent wake region of large roughness elements: 

Combining flow visualization and high frequency velocity measurements, In: River Flow 

2006, Vols 1 and 2 Eds Ferreira, RML; Alves, CTL; Leal, GAB; Cardoso, AH 

Proceedings and Monographs in Engineering, Water and Earth Sciences 125-34  

Lacey, R. W. J., P. Legendre and A. G. Roy (2007), Spatial scale partitioning of in situ 

turbulent flow data over a pebble cluster in a gravel-bed river, Water Resourc. Res., 43, 

W03416. 

Lacey R. W. and A. G. Roy (2008), The spatial characterization of turbulence around large 

roughness elements in a gravel-bed river, Geomorphology, 102(3-4), 542-53  

Lamarre H. and A. G. Roy, (2005), Reach scale variability of turbulent flow characteristics in 

a gravel-bed river, Geomorphology, 68(1-2), 95-113  

Lu, S. S., and W. W. Willmarth (1973), Measurements of structure of Reynolds Stress in a 

turbulent boundary layer, J. Fluid Mech., 60, 481-511. 

MacVicar B. J. and A. G. Roy (2007a), Hydrodynamics of a forced riffle pool in a gravel bed 

river: 1. Mean velocity and turbulence intensity,  Water Resourc. Res., 43(12) 

MacVicar B. J. and A. G. Roy (2007b), Hydrodynamics of a forced riffle pool in a gravel bed 

river: 2. Scale and structure of coherent turbulent events, Water Resourc. Res., 43(12), 

W12402  

Maddux, T. B., J. M. Nelson, and S. R. McLean (2003), Turbulent flow over three-

dimensional dunes: 1. Free surface and flow response, J. Geophys. Res., 108(F1), 6009.  

Marquis, G. A., and A. G. Roy (2006), Turbulent processes at the entrance of a pool using 

flow visualization, in River Flow 2006, edited by R. M. L. Ferreira, pp. 109–17, Taylor 

and Francis, London. 

Marquis G. P. and A .G. Roy (2011), Effects of turbulence on the transport of individual 

particles as bedload in a gravel-bed river, Earth Surface Process. Landforms, 36(1), 107-

16.  

Marquis G.A. and A. G. Roy, (2013), From Macroturbulent Flow Structures to Large-Scale 

Flow Pulsations in Gravel-Bed Rivers, , In: Coherent Flow Structures at Earth’s Surface, 

First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael Church and Richard J. 

Hardy. JohnWiley & Sons, Ltd, 261-274. 

Mejia-Alvarez, R., J. M. Barros and K.T. Christensen, (2013), Structural attributes of 

turbulent flows over a complex topography, In: Coherent Flow Structures at Earth’s 

Surface, First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael Church and 

Richard J. Hardy. JohnWiley & Sons, Ltd, 25-42. 

Müller, A., and A. Gyr (1982), Visualisation of the mixing layer behind dunes, in Mechanics 

of Sediment Transport edited by B. M. Summer and A. Müller, pp. 41-45, Balkema, 

Rotterdam.  

http://apps.webofknowledge.com.ezphost.dur.ac.uk/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16aGpgln89Pa7b46Fc&field=AU&value=KLINE,%20SJ&ut=12206397&pos=%7b2%7d
http://apps.webofknowledge.com.ezphost.dur.ac.uk/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16aGpgln89Pa7b46Fc&field=AU&value=REYNOLDS,%20WC&ut=1811407&pos=%7b2%7d
http://apps.webofknowledge.com.ezphost.dur.ac.uk/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16aGpgln89Pa7b46Fc&field=AU&value=SCHRAUB,%20FA&ut=14277531&pos=%7b2%7d
http://apps.webofknowledge.com.ezphost.dur.ac.uk/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16aGpgln89Pa7b46Fc&field=AU&value=RUNSTADL.PW
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=ED&value=Ferreira,%20RML
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=ED&value=Alves,%20CTL
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=ED&value=Leal,%20GAB
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=1Flj4Jegiecnlpo3NEB&field=ED&value=Cardoso,%20AH
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=OneClickSearch&qid=7&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=OneClickSearch&qid=7&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=8&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=5
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=8&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=5
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=2
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=2
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=1Flj4Jegiecnlpo3NEB&page=1&doc=1


 

 
© 2016 American Geophysical Union. All rights reserved. 

Nelson J. M., R. L. Shreve, S. R. McLean and T. G. Drake (1995), Role of near-bed 

turbulence structure in bed load transport and bed form mechanics, Water Resourc. Res., 

31, 2071-2086. 

Nelson, J., A. R. Burman, Y. Shimizu, S. R. McLean, R. L. Shreve, and M. W. Schmeeckle 

(2005), Computing of and sediment transport over bedforms, Proc. of Int. Conf. On Riv. 

Coast. and Est. Morph., RCEM, 861-868. 

Nezu, I., and H. Nakagawa (1993), Turbulence in Open Channel Flows, A. Balkema, 

Rotterdam, Netherlands. 286 pp 

Nikora, V. I. and D. G. Goring (2000), Flow turbulence over fixed and weakly mobile gravel 

beds, J. Hydraul. Div., ASCE, 126(9), 679-90. 

Nikora, V. and Roy, A.G. (2012) Secondary Flows in Rivers: Theoretical Framework, Recent 

Advances, and Current Challenges In Gravel Bed Rivers: Processes, Tools, Environments 

Eds M Church, P. Biron and A.G., Roy, Wiley. 3-22 

Nowell, A. R. M., and M. Church (1979), Turbulent flow in a depth limited boundary layer, 

J. Geophys. Res., 84 (C8), 4816-4824. 

Otsu N. (1979), A threshold selection method from gray-level histograms, IEEE 

Transactions, Systems, Man and Cybernetics, 9, 62–6 

Paiement-Paradis G., T. Buffin-Belanger A.G. Roy (2003), Scalings for large turbulent flow 

structures in gravel-bed rivers, Geophys. Res. Lett., 30, 1773. 

Rennie, C. D. and R.G.Millar, (2004), Measurement of the spatial distribution of fluvial 

bedload transport velocity in both sand and gravel. Earth Surface Processes and 

Landforms, 29, 1173-93.  

Robert, A., A. G. Roy, and B. De Serres (1992), Changes in velocity profiles at roughness 

transitions in coarse grained channels, Sedimentology, 39, 725–35 

Robinson, S. K. (1991) Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid 

Mech., 23, 601–39 

Rodriguez, J.F. and M.H. Garcia, (2008), Laboratory measurements of 3-D flow patterns and 

turbulence in straight open channel with rough bed. J. of Hydraulic Res., 46(4), 454-45. 

Roy A. G, P. M. Biron, T. Buffin-Belanger , M. Levasseur M. (1999), Combined visual and 

quantitative techniques in the study of natural turbulent flows. Water Resourc. Res., 35, 

871–77 

Roy A. G., and T. Buffin-Bélanger (2001), Advances in the study of turbulent flow structures 

in gravel-bed rivers, in Gravel-Bed Rivers V, Ed M.P. Mosley, pp. 375-404, NZ 

Hydrological Society. 

Roy, A. G., P. M. Biron, T. Buffin-Bélanger, and M. Levasseur (1999), Combined visual and 

quantitative techniques in the study of natural turbulent flows, Water Resourc. Res., 35, 

871-7. 

Roy, A.G, T. Buffin-Belanger, H. Lamarre, A.D. Kirkbride (2004), Size, shape and dynamics 

of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech., 500, 1–27. 

Roy, M. L., A.G. Roy, and P. Legendre, (2010), The relations between ‘standard’ fluvial 

habitat variables and turbulent flow at multiple scales in morphological units of a gravel 

bed river, River Research and Applications, 26, 439-55.  



 

 
© 2016 American Geophysical Union. All rights reserved. 

Schmeeckle, M.W., J. M., Nelson and R. L Shreve, (2007), Forces on stationary particles in 

near-bed turbulent flows. J. Geophys. Res., 112(F2), F02003 

Shen, C., and U. Lemmin (1999), Application of an acoustic particle flux profiler in particle 

laden open channel flow, Journal of Hydraul. Res., 37, 407–19. 

Shiono K. T. and Feng, (2003), Turbulence measurements of dye concentration and effects of 

secondary flow on distribution in open channel flows, J. Hydraul. Div., ASCE, 129(5), 

373–84. 

Shvidchenko, A., and G. Pender (2001), Macroturbulent structure of open channel flow over 

gravely beds, Water Resourc. Res., 37, 709–19. 

Simpson, R. L. (1989), Turbulent boundary layer separation, Annu. Rev. Fluid Mech., 21, 

205–34. 

Singh, A. and E. Foufoula-Georgiou, (2013), Effect of Migrating Bed Topography on Flow 

Turbulence: Implications for Modelling Sediment Transport, In: Coherent Flow Structures 

at Earth’s Surface, First Edition. Edited by Jeremy G. Venditti, James L. Best, Michael 

Church and Richard J. Hardy. by JohnWiley & Sons Ltd, 323-40.  

Socolofsky, S. A., and G. H. Jirka (2004), Large scale flow structures and stability in shallow 

flows, Journal of Environmental Engineering and Science, 3(5), 451–62. 

Sukhodolov, A. N., and Rhoads, B. I. (2001), Field investigation of three dimensional flow 

structure at stream confluences, Water Resourc. Res., 37, 2411-24. 

Talmon, A. M., J. M. G. Kunen, and G. Oooms (1986), Simultaneous flow visualization and 

Reynolds stress measurement in a turbulent boundary layer, J. Fluid Mech., 163, 459–78. 

Tamburrino and J. S. Gulliver, (1999), Large flow structures in a turbulent open channel 

flow, Journal of Hydraul. Res., 37(3), 363-80.  

Tominaga, A., I. Nezu and S. Kobatake, (1989), Flow measurements in compound channels 

with a fiber optic laser Doppler anemometer. LA.H.R. Workshop on Instrumentation for 

Hydr. Laboratories, Canada Centre for Inland Waters, Burlington, Ontario, Canada, 45-

59. 

Townsend A.A. (1976), The structure of turbulent shear flow, 2nd eds. Cambridge University 

press. 

Van Dyke, M., (1982), An Album of Flow Visualisation1, Parabolic, Stanford, Calif. 76 pp. 

Venditti, J.G., and S.J. Bennett, (2000), Spectral analysis of turbulent flow and suspended 

sediment transport over fixed dunes, J. Geophys. Res.,105, 22035–47 

Vendetti J.G., R.J.Hardy, M. Church, M and J.L Best, (2013), What is a Coherent Flow 

Structure in Geophysical Flow?, In: Coherent Flow Structures at Earth’s Surface, First 

Edition. Edited by Jeremy G. Venditti, James L. Best, Michael Church and Richard J. 

Hardy. JohnWiley & Sons Ltd, 1-16 

Vollmer, S. and M.G. Kleinhans, (2007), Predicting incipient motion, including the effect of 

turbulent pressure fluctuations in the bed, Water Resourc. Res., 43 W05410. 

Wark, C.E., and H.M. Nagib, (1991), Experimental Investigation of Coherent Structures in 

Turbulent Boundary Layers, J. Fluid Mech., 230, 183-208. 

Webster, D. R, S. Rahman and L. P. Dasi (2003), Laser-Induced Fluorescence Measurements 

of a Turbulent Plume, J. Engin. Mech., 129(10), 1130-1137, 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Westerweel, J. (1997), Fundamental of digital particle image velocimetry, Meas. Sci. 

Technol., 8, 1379–92. 

Wilbert, C. and M. Gharib (1991), Digital particle image velocimetry, Exp.Fluids, 10, 181–

93. 

Wiberg, P. L. and J. D. Smith (1991), Velocity distribution and bed roughness in high-

gradient streams, Water Resourc. Res., 27, 825 –38 

Wren D.G., R.A. Kuhnle and C.G. Wilson (2007) Measurements of the relationship between 

turbulence and sediment in suspension over mobile sand dunes in a laboratory flume, J. 

Geophys. Res., 112, F03009. 

Yalin, M. S. (1992), River Mechanics, 219 pp., Pergamon Press, Oxford, U.K. 

Zaitsev, N. I. (1984), Large-scale structure of turbulent flow in a rectangular flume (in 

Russian), Trans. State Hydrol. Inst., 318, 3–17 

Zhou, J., R. J. Adrian, S. Balachandar and T. M. Kendall, (1999), Mechanisms for generating 

coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 385–96. 

 

  

http://www.sciencedirect.com/science/article/pii/S1001627909600044#bib25


 

 
© 2016 American Geophysical Union. All rights reserved. 

Table 1: Summary of the experimental conditions calculated from the range of variables 

presented in the present and three previous studies. Where D50 is the median size, h is the flow 

depth used in the experiments, Re is the Reynolds number and Fr is the Froude number. The 

abreviations for the sources refer to; PS the present study; S&P [2001] to Shvidchenko and 

Pender [2001]; K&K [1973] to Klaven and Kopaliani [1973]; and I&I [1986a] to Imamoto 

and Ishigaki [1986a]. 

 

  

Source D50 (mm) h (m) D50/h Velocity 

(ms
-1

) 
Re (×10

3
) Fr 

PS 44 0.3 0.15 0.08-0.58 19-132 0.04-0.4 

S&P [2001] 2.14-7.15 0.025-0.107 0.22-0.286 0.41-0.98 8-80 0.4-0.95 

K&K 

[1973] 

3-14 0.05-0.052 0.58-0.27 0.54-0.56 20-22 0.8 

I&I [1986a] 12 0.04 0.3 0.19 6 0.3 
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Figure 1: The experimental set up: a) the gravel in the flume. The grain size distribution has 

a D50 of 44 mm and a D84 of 66 mm; b) A DEM collected through Terrestrial Laser Scanning. 

The red shaded area demonstrates the area illuminated by laser; c) The mean downstream 

(u-) velocity component for the Re 132 000 experiment demonstrating the whole flow 

measurement with the PIV; d) An example of a mean velocity (solid line) and turbulence 

intensity (dotted line) profile extracted from the Re 132 000 experiment e) a side on view of 

the flume where the flow is illuminated by the laser, PIV seeding is illuminated and the 

coherent flow structures can be identified by the Rhodamine 6G dye; f) a raw LIF image. 

Length of abscissa axis is equal to 0.35 metres whilst the ordinate axis is equal to 0.285 

meters. g) An example of the conversion of a raw LIF image into a binary image using the 

Otsu (1979) image conversion algorithm, which determines the mask for the coherent 

turbulent flow structure PIV data. PCl in c and f identify the protruding clast. 
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Figure 2: A time series of images 0.06 seconds apart taken from the flow conditions of Re 

132 000. The identified flow structure is shown through processed (binary) images in row 1. 

Flow is analysed through i) Instantaneous non-threholded quadrants (Q1 (Outward 

Interactions) blue; Q2 (Ejections) green; Q3 (Inward Interactions) yellow; & Q4 (sweeps) 

red), (Row 2); ii) Turbulent Kinetic Energy (TKE), (Row 3) and; iii) Vorticity (x-z) (Row 4) 

where the flow structure is in full colour and the surrounding flow has been plotted with 70% 

translucency. The lines, arrows, and ellipses identify regions of the flow discussed in detail in 

the text. The flow is from left to right.  
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Figure 3: Finite-time Lyapunov exponents (FTLE) plots for T1, T3 and T5 (as shown in 

Figure 2) for the Re 132 000 experiment. The identified flow structure is shown through 

processed (binary) images in row 1. The FTLE is shown with a track back of 0.05 s (row2), 

0.5 s (row3), 1 s (row3) and 2s (row4). The CFS is shown in black in the FTLE images, while 

the blank area shows either areas where no significant structures are identified. The lines 

and ellipse identify regions of the flow discussed in detail in the text. The flow is from left to 

right.  
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Figure 4: A series of CFS detected by the LIF for the Re 19 000 (a-e), the Re 46 500 (f-j) and 

the Re 87 000 experiment (k-o). The images have been converted into binary using the Otsu 

(1979) algorithm. The lines and arrows identify regions of the flow discussed in detail in the 

text. The flow is from left to right.  
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Figure 5: Quadrant plot for the Re 19 000 (a-e), the Re 46 500 (f-j) and the Re 87 000 

experiment (k-o). The full illumination is the identified flow structure, while the 70 % 

translucent image is the rest of the flow field. The flow structures used are those identified in 

Figure 4. Quadrant 1 (Outward Interactions) = Blue; Quadrant 2 (Ejections)= Green; 

Quadrant 3 (Inward Interactions)= Yellow; Quadrant 4 (Sweeps)= Red. The ellipse identifies 

regions of the flow discussed in detail in the text. The flow is from left to right.  
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Figure 6: Turbulent Kinetic Energy for the Re 19 000 (Column 1), the Re 46 500 (Column 2) 

and the Re 87 000 experiment (Column 3). The full illumination is the identified flow 

structure, while the 70% translucent image is the rest of the flow field. The flow structures 

used are those identified in Figure 4. z/h and x/l represents the dimensional height and length 

of the field of view. The lines, arrows, and ellipses identify regions of the flow discussed in 

detail in the text. The flow is from left to right.  
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Figure 7: The two dimensional (x-z) vorticity contained within each flow structure for the Re 

19 000 (a-e), the Re 46 500 (f-j) and the Re 87 000 experiment (k-o). The flow structures used 

are those identified in Figure 4. The images have been cropped in order to identify local 

vorticity and the relative scale of the structure can be seen in Figure 4. The arrows, and 

ellipses identify regions of the flow discussed in detail in the text. The flow is from left to 

right.  
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Figure 8: Vortex detection using FTLE for selected flow structures. The structure is shown 

(Column 1) and then tracked back using FTLE for 0.5 seconds (Column 2), 1 second 

(Column 3) and 2 seconds (Column 4) for the Re 19 000 experiment (Row 1), Re 46 500 

experiment (Row 2) and Re 87 500 experiment (row 3). The images chosen (column 1) have 

been previously analysed and correspond to: Re 19 000 (Figure 4b); Re 46 500 (Figure 4i) 

and; Re 87 500 (Figure 4l). The blank area shows either areas where no significant 

structures are identified. z/h and x/l represents the dimensional height and length of the field 

of view. The lines, arrows, and ellipses identify regions of the flow discussed in detail in the 

text. The flow is from left to right.  
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Figure 9: A conceptual model for the initiation (A), growth (B) and decay (C) of a large-

scale coherent flow structure over a gravel bed. The black line represents the topography 

used in the experiments, while the black dashed line represents the shear layer formed 

through the interaction with the large topographic protrusion to the left of the cartoon, and 

as previously observed in Hardy et al. [2009]. The CFS detected by the LIF is coloured blue; 

red arrows represent clockwise vorticity; blue arrows represent anticlockwise vorticity; black 

arrows represent vortex chains, with their diameter being a schematic indication of their size. 

Q refers to the dominant quadrant structure identified following the definition of Lu and 

Willmarth [1972]. Initiation of the structure (A) occurs through generation of horseshoe-
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shaped vortices in the shear flow linked to flow separation over the topographic protrusion. 

High turbulent kinetic energy is generated through shear in the near-bed region, although the 

flow structure does not lift away from the bed instantaneously. The dotted lines behind 

individual clasts show localized separation cells in the near bed region. The CFS grows (B) 

and moves away from the bed, with turbulent kinetic energy being fed to the structure 

through vortex chains originating at the bed. However, the life span of these structures is 

short in space and time and high frequency small vortices are sheared off the large structure 

as it breaks up and decays (C). Note that vortex evolution from only one topographic 

protrusion is highlighted, and in reality the bed will contain many such zones and their flow 

fields will interact creating a feedback between upstream-generated structures and 

downstream CFS initiation, evolution and decay. 
 


