
Modifying a Graph Using Vertex Elimination?

Petr A. Golovach1, Pinar Heggernes1, Pim van ’t Hof1, Fredrik Manne1,
Daniël Paulusma2, and Micha l Pilipczuk1

1 Department of Informatics, University of Bergen, Norway
{petr.golovach,pinar.heggernes,pim.vanthof,fredrik.manne,michal.pilipczuk}@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University, UK
daniel.paulusma@durham.ac.uk

Abstract. Vertex elimination is a graph operation that turns the neighborhood of a
vertex into a clique and removes the vertex itself. It has widely known applications
within sparse matrix computations. We define the Elimination problem as follows: given
two graphs G and H, decide whether H can be obtained from G by |V (G)| − |V (H)|
vertex eliminations. We show that Elimination is W[1]-hard when parameterized by
|V (H)|, even if both input graphs are split graphs, and W[2]-hard when parameterized
by |V (G)| − |V (H)|, even if H is a complete graph. On the positive side, we show that
Elimination admits a kernel with at most 5|V (H)| vertices in the case when G is
connected and H is a complete graph, which is in sharp contrast to the W[1]-hardness
of the related Clique problem. We also study the case when either G or H is tree. The
computational complexity of the problem depends on which graph is assumed to be a
tree: we show that Elimination can be solved in polynomial time when H is a tree,
whereas it remains NP-complete when G is a tree.

1 Introduction

Consider the problem of choosing a set S of resilient communication hubs in a network, such
that if any subset of the hubs should stop functioning then all the remaining hubs in S can
still communicate. Such a set is attractive if the probability of a hub failure is high, or if the
network is dynamic and hubs can leave the network. We can formulate this as a graph problem
in the following way: Given a graph G and an integer k, is there a set S of k vertices, such
that if any subset of S is removed from G, then every pair of remaining vertices in S are still
connected via paths in the modified graph? Obviously, choosing S to be a clique of size k would
solve the problem, but only allowing for cliques is overly restrictive. A necessary and sufficient
condition on S is that for each pair u, v ∈ S, either u and v are adjacent or there is a path
between u and v in G not containing any vertex of S except for u and v. Thus we can view
the described problem as a relaxation of the well-known Clique problem.

The above problem can be restated using a well-known graph operation related to Gaussian
elimination: vertex elimination [18]. The elimination of a vertex v from a graph G is the
operation that adds edges to G such that the neighbors of v form a clique, and then removes
v from the resulting graph. With this operation, the above problem can be defined as follows:
find a set S of size k such that eliminating all vertices of V (G) \ S leaves S as a clique. In
fact, we state a more general problem: the Elimination problem takes as input two graphs G

? This work is supported by EPSRC (EP/G043434/1) and Royal Society (JP100692), by the Research
Council of Norway (197548/F20), and by the ERC grant “Rigorous Theory of Preprocessing”, refer-
ence 267959. An extended abstract of this paper was presented at the 38th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2012) [9].

and H, and asks whether a graph isomorphic to H can be obtained by the elimination of
|V (G)|− |V (H)| vertices from G. If this is possible, then we say that H is an elimination of G.

The vertex elimination operation described above has long known applications within linear
algebra, and it simulates in graphs the elimination of a variable from subsequent rows during
Gaussian elimination of symmetric matrices [18]. The resulting Elimination Game [18] is an
algorithm that takes as input a graph G and an ordering α of its vertices, and eliminates the
vertices of G one by one, in the order defined by α, until the graph becomes empty. Finding
an ordering α that minimizes the amount of edges added during this process, called the fill-
in, is crucial for sparse matrix computations, and a vast amount of results have appeared on
this subject during the last 40 years [8, 10, 18, 21]. Our problem Elimination is equivalent to
stopping Elimination Game after |V (G)| − |V (H)| steps to see whether the resulting graph at
that point is isomorphic to H. A crucial aspect of Elimination Game is the order in which
the vertices are chosen, as this influences the fill-in. Note however that, for our problem, only
the set of |V (G)| − |V (H)| vertices chosen to be eliminated is important, and not the order in
which they are eliminated.

Graph modification problems resulting from operations like vertex deletion, edge deletion,
edge contraction, and local complementation are well studied, especially within parameterized
complexity [1, 3, 6, 11, 13, 15–17, 19, 24]. Given the wide use of the vertex elimination operation,
we find it surprising that this operation has not been studied in the context of graph modifica-
tion problems before. The only related study we are aware of is by Samdal [22], who generated
all eliminations of the n× n grids for n ≤ 7.

Our Contribution. In this paper we study the computational complexity of Elimination. In
particular, we show that Elimination is W[1]-hard when parameterized by |V (H)| even when
both input graphs are split graphs, and W[2]-hard when parameterized by |V (G)|−|V (H)| even
when H is a complete graph. On the positive side, for the case when H is complete, we show
that Elimination is fixed-parameter tractable when parameterized by |V (H)|, and admits
a kernel with at most 5|V (H)| vertices on connected graphs, which contrasts the hardness
of the related Clique problem. We also study the cases when one of the input graphs is a
tree. It turns out that the complexity of the problem changes completely depending on which
input graph is a tree; we show that if G is a tree then the problem remains NP-complete,
whereas if H is a tree then it can be solved in polynomial time. The mentioned kernel result is
obtained by proving a combinatorial theorem (Theorem 4) on the maximum number of leaves
in a spanning tree of a graph, similar to a proof by Kleitman and West [14]. This result might
be of independent interest.

Notation and Terminology. All graphs in this paper are undirected, finite, and simple. Let
G = (V,E) be a graph. In case V and E are not specified, we use V (G) and E(G) to denote
the vertex set and edge set of a graph G, respectively. The neighborhood of a vertex v ∈ V is
the set of its neighbors NG(v) = {w ∈ V | vw ∈ E}, and the closed neighborhood of v is the set
NG[v] = NG(v) ∪ {v}. The degree of v is dG(v) = |NG(v)|. For any subset A ⊆ V , we define
NG[A] =

⋃
a∈ANG[a], NG(A) = NG[A]\A, and dG(A) = |NG(A)|. For any subset A ⊆ V , G[A]

denotes the subgraph of G induced by A. For a subgraph H of G, we write G\H to denote the
graph obtained from G by deleting all the vertices of H from G, i.e., G\H = G[V (G)\V (H)].

A clique is a set of vertices that are pairwise adjacent. A vertex v is simplicial if NG(v)
is a clique. A graph G is complete if V (G) is a clique. The complete graph on k vertices is
denoted by Kk. An independent set is a set of vertices that are pairwise non-adjacent. If G is
a bipartite graph, where (A,B) is a partition of V into two independent sets, then we denote
it as G = (A,B,E) and we call (A,B) a bipartition of G. A graph is a split graph it its vertex
set can be partitioned into a clique and an independent set.

2

A tree is a connected graph without cycles. A connected subgraph of a tree T is called a
subtree of T . For a tree T with at least two vertices, we denote by L(T) the set of leaves of T .
The remaining set of vertices is denoted by I(T) = V (T) \ L(T), and the vertices in I(T) are
called the inner vertices of T . A vertex is a cut-vertex if the removal of the vertex leaves the
graph with more connected components than before. For a graph G, by C(G) we denote the
set of cut-vertices of G. A connected graph is 2-connected if it does not contain a cut-vertex. A
maximal 2-connected subgraph of G is called a biconnected component (bicomp for short), and
we denote by B(G) the set of bicomps of G. Consider the bipartite graph TG with the vertex
set C(G) ∪ B(G), where (C(G),B(G)) is the bipartition, such that c ∈ C(G) and B ∈ B(G)
are adjacent if and only if c ∈ V (B). This graph TG is a tree if G is connected, and is called
the bicomp-tree of G.

A parameterized problem Q belongs to the class XP if each instance (I, k) can be solved
in |I|g(k) time for some function g that depends only on the parameter k, and |I| denotes the size
of I. If a problem belongs to XP, then it can be solved in polynomial time for every fixed k. If a
parameterized problem can be solved by an algorithm with running time f(k) |I|O(1), then we
say the problem is fixed-parameter tractable. The class of all fixed-parameter tractable problems
is denoted by FPT. Between FPT and XP is a hierarchy of parameterized complexity classes
FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP, where hardness for one of the W-classes is considered
to be strong evidence for the problem not being contained in FPT. Two instances (I, k) and
(I ′, k′) of a parameterized problem are equivalent if they are either both yes-instances or both
no-instances. A parameterized problem is said to admit a kernel if there is a polynomial-time
algorithm (called a kernelization algorithm) that transforms each instance (I, k) of the problem
into an equivalent instance (I ′, k′) of the same problem such that k′ ≤ k and |I ′| ≤ h(k) for
some function h. If h is a polynomial or a linear function in k, then we say that the problem
admits a polynomial kernel or a linear kernel, respectively. We refer to the textbook by Downey
and Fellows [6] for formal background on parameterized complexity.

2 Preliminaries and Hardness of the Elimination Problem

We start this section with an observation that provides a characterization of graphs that have
some fixed graph H as an elimination. Our proofs heavily rely on this observation.

Observation 1 ([21]) Let G and H be two graphs, where V (H) = {u1, . . . , uh}. Then H is
an elimination of G if and only if there exists a set S = {v1, . . . , vh} of h vertices in G that
satisfies the following: uiuj ∈ E(H) if and only if vivj ∈ E(G) or there is a path in G between
vi and vj whose internal vertices are all in V (G) \ S, for 1 ≤ i < j ≤ h.

For two input graphs G and H that form an instance of Elimination, we let n denote the
number of vertices in G. If G and H form a yes-instance, we say that a subset X ⊆ V (G) is a
solution if H is the resulting graph when all vertices in X are eliminated. By Observation 1,
the vertices in X can be eliminated in any order. A vertex which is not eliminated is said to
be saved. The set S = V (G) \X of saved vertices is called a witness.

Since we can check in polynomial time whether a set S ⊆ V (G) of |V (H)| vertices is a
witness, Observation 1 immediately implies the following result.

Corollary 1. Elimination is in XP when parameterized by |V (H)|.

Corollary 1 naturally raises the question whether Elimination is fixed-parameter tractable
when parameterized by |V (H)|. The following theorem shows that this is highly unlikely.

3

Theorem 1. Elimination is W[1]-hard when parameterized by |V (H)|, even if both G and
H are split graphs.

Proof. We give a reduction from the Clique problem, which takes as input a graph G and an
integer k, and asks whether G contains a clique on at least k vertices. This problem is known
to be W[1]-complete when parameterized by k [6]. We assume that G is a connected graph on
at least four vertices, and that k ≥ 4. From an instance (G, k) of Clique, where G = (V,E),
we construct an instance (G∗, H) of Elimination as follows.

We construct a new set of vertices VE = {vuw | uw ∈ E}. Our new graph G∗ has vertex
set V ∪ VE , where each vertex vuw in VE is made adjacent to exactly two vertices in V : u and
w. After this, we make V into a clique by adding all possible edges between the vertices of V .
This completes the construction of G∗, which is a split graph. Observe that every vertex vuw
in VE has degree 2, and that these are the only vertices of degree 2 in G∗, since we assumed
that |V | ≥ 4. Let H be the split graph with vertex set CH ∪ IH , where CH = {x1, . . . , xk} is
a clique and IH = {yij | 1 ≤ i < j ≤ k} is an independent set, and where every vertex yij is
(only) adjacent to xi and xj . We claim that H is an elimination of G∗ if and only if G has a
clique of size at least k.

Suppose G has a clique C ⊆ V of size at least k. Let E′ ⊆ E be the set of edges in G[C], and
let VE′ = {vuw | uw ∈ E′} be the corresponding subset of VE . Note that, in G∗, the vertices
of VE′ have no neighbor in V \ C. Hence the vertices of C, together with the |C|(|C| − 1)/2
vertices in VE′ , induce a subgraph in G∗ that is isomorphic to H. In order to obtain H from G∗,
we first eliminate all the vertices in VE\VE′ in arbitrary order, and then eliminate all the vertices
in V \C in arbitrary order. Note that during this procedure we only eliminate vertices that are
simplicial in the current graph, which is equivalent to deleting those vertices from the graph.
Hence we can obtain H from G∗ by eliminating all the vertices in V (G∗) \ (C ∪ VE′), which
means that H is an elimination of G∗.

For the reverse direction, suppose H is an elimination of G∗, and let X ⊆ V (G) be a
solution. We consider how the graph under consideration changes each time we eliminate a
vertex of X. By Observation 1, we may eliminate the vertices of X in arbitrary order, so let us
first eliminate the vertices of X∩VE before eliminating the vertices of X∩V . Then eliminating
a vertex x ∈ X ∩ VE is equivalent to deleting x from the graph. After we have eliminated all
the vertices in X ∩ VE , we have obtained a graph G′. Note that G′ is a split graph, that some
vertices in the maximum clique of G′ might be simplicial, and that every vertex of VE that had
degree 2 in G∗ still has degree 2 in G′. Every time a vertex x ∈ X ∩V is eliminated, one of two
cases can occur. If x is simplicial, then x is simply deleted from the graph, and the size of the
maximum clique decreases by 1. Otherwise, the neighbors of x in VE become adjacent to all
the remaining vertices in V ; since we assumed that k ≥ 4, this means they will get degree at
least 3 in the final graph. By assumption, we obtain the graph H after eliminating all vertices
in X. Note that the vertices of V that were not eliminated have exactly the same two neighbors
in H as they had in G∗. Let C be this set of neighbors. By the construction of H, we conclude
that the vertices of C form a clique of size k in G. ut

Since Elimination is unlikely to be FPT in general as a result of Theorem 1, it is natural
to ask whether certain restrictions on G or H make the problem tractable. In Section 3, we
restrict H to be a complete graph; note that due to Theorem 1, restricting H to be a split graph
does not suffice to guarantee tractability. In Section 4, we study the variant where either G
or H is a tree.

Another possible way of achieving tractability is to investigate a different parameterization
of the problem. For instance, instead of choosing the size of the witness as the parameter,
we can parameterize Elimination by the size of the solution, i.e., the number of eliminated
vertices. The next theorem shows that the problem remains intractable with this parameter.

4

Theorem 2. Elimination is W[2]-hard when parameterized by |V (G)| − |V (H)|, even if H
is a complete graph.

Proof. We reduce from the Colorful Red-Blue Dominating Set problem. This problem
takes as input a bipartite graph G = (R,B,E) with partition classes R and B, an integer k, and
a coloring function c : R→ {1, . . . , k}. For 1 ≤ i ≤ k, let Ri denote the subset of vertices of R
with color i. The task is to decide if there exists a set D ⊆ R of k distinctly colored vertices such
that D dominates B, i.e., such that B ⊆ NG[D]. This problem is known to be W[2]-hard when
parameterized by k (Lemma 39 in [5]). From the reduction in [5] it is clear that we may assume,
without loss of generality, that none of the sets Ri is empty and hence |R| ≥ k; we make this
assumption below. Given an instance (G, k, c) of Colorful Red-Blue Dominating Set,
where G = (R,B,E), we create an instance (G∗,K|V (G∗)|−k−1) of Elimination as follows.

To construct G∗, we start with a copy of G. For each Ri, we add two vertices xi, yi and
make each of them adjacent to all the vertices in Ri. We also add a vertex z and make it
adjacent to all the vertices in R, as well as a vertex z′ that is made adjacent to z only. This
finishes the construction of G∗; see also Figure 1. We claim that (G, k, c) is a yes-instance of
Colorful Red-Blue Dominating Set if and only if (G∗,K|V (G∗)|−k−1) is a yes-instance
of Elimination, or equivalently, if and only if we can transform G∗ into a complete graph by
eliminating k + 1 vertices.

B

R

x1 y2 x2 y2 xk yk

z

z′

Fig. 1. The graph G∗ constructed in the proof of Theorem 2.

Suppose there exists a set D ⊆ R of k distinctly colored vertices such that D is a dominating
set of B. For 1 ≤ i ≤ k, let di be the vertex in D with color i. Graph G∗ can be transformed
into a complete graph by eliminating the following k + 1 vertices. We first eliminate z. This
turns the vertices of R∪{z′} into a big clique. We then eliminate the vertices of D one by one.
Each time we eliminate a vertex di, the vertices xi and yi both become adjacent to each other,
and to all the (remaining) vertices of the big clique. The same holds for all the vertices of B
that are adjacent to di. Since D dominates B, the resulting graph is complete.

For the reverse direction, suppose there is a subset X ⊆ V (G∗) of k+1 vertices in G∗ whose
elimination results in a complete graph. In order to ensure that the vertices of (Ri∪{xi, yi})\X
are pairwise adjacent in the final complete graph, X must contain at least one vertex from each
of the sets Ri ∪ {xi, yi}. Since none of the k sets Ri is empty and |X| = k + 1, this means
that X contains at most one vertex from B∪{z, z′}. In order to ensure that z′ is adjacent to all
other vertices in the final graph, X must contain either z or z′. If X contains neither z nor z′,

5

or if X ∩ (B ∪{z, z′}) = {z′}, then there will not be any edge between any two distinct sets Ri

and Rj in the final graph. Hence we must have z ∈ X. Eliminating z turns R ∪ {z′} into a big
clique. In order to ensure that all the vertices xi and yi are adjacent to the vertices of B in the
final graph, X contains exactly one vertex, say di, from each of the sets Ri. We claim that the
set D = {d1, . . . , dk} dominates B. For contradiction, suppose there is a vertex b ∈ B that is
not adjacent to any vertex in D. Then b will not be adjacent to any of the vertices xi, yi in the
final graph. This contradiction proves that D dominates B, and thus (G, k, c) is a yes-instance
of Colorful Red-Blue Dominating Set. ut

We point out that the reductions used in the proofs of Theorems 1 and 2 immediately imply
that the unparameterized version of Elimination is NP-complete, even if both G and H are
split graphs, or if H is a complete graph.

3 Eliminating to a Complete Graph

In this section, we consider a special case of the Elimination problem when H is a complete
graph. This corresponds exactly to the problem described in the first paragraph of Section 1.
We define the problem Clique Elimination, which takes as input a graph G on n vertices and
a positive integer k, and asks whether the complete graph Kk is an elimination of G. Recall that
Clique Elimination is W[2]-hard when parameterized by |V (G)| − k due to Theorem 2. In
this section, we study the parameterized complexity of Clique Elimination when we choose
k as the parameter.

If G contains a tree T with k leaves as a subgraph, then Kk is an elimination of G, as
the leaves of T can serve as a witness. It is easy to observe that G contains a tree with k
leaves as a subgraph if and only if G contains K1,k, i.e., a star with k leaves, as a minor.
Moreover, by Observation 1, for any fixed graph H, the property that H is an elimination of a
graph G can be expressed in monadic second-order logic. Since graphs that exclude K1,k as a
minor have bounded treewidth [20], Courcelle’s Theorem [4] implies that Clique Elimination
fixed-parameter tractable when parameterized by k.

Even though fixed-parameter tractability of Clique Elimination is already established,
two interesting questions remain. Does the problem admit a polynomial kernel? Does there
exist an algorithm for the problem with single-exponential dependence on k? We provide an
affirmative answer to both questions below. In particular, we prove the following result.

Theorem 3. Clique Elimination on connected graphs admits a kernel with at most 5k
vertices that can be computed in O(n3) time.

We would like to remark that the assumption that the input graph is connected is probably
necessary: Clique Elimination on general graphs admits a simple composition algorithm
that takes the disjoint union of instances, so the existence of a polynomial kernel in the general
setting would imply that NP ⊆ coNP/poly. We refer an interested reader to the work of
Bodlaender et al. [2] for an introduction to the methods of proving implausibility of polynomial
kernelization algorithms.

As a result of Theorem 3, we can obtain an algorithm with single-exponential dependence
on k, thus outperforming the algorithm obtained from the aforementioned combination of
meta-theorems.

Corollary 2. Clique Elimination can be solved in O(12.21k + n3) time and polynomial
space.

6

Proof. We first observe that Clique Elimination can be solved by in time O
((

n
k

)
n2
)

on any
instance (G, k) with |V (G)| = n as follows: for each subset S ⊆ V (G) such that |S| = k, we
test whether eliminating all vertices in V (G) \ S yields the graph Kk. The latter test can be
performed in time O(n2) by using an algorithm due to Tarjan and Yannakakis [23].

Let (G, k) be an instance of Clique Elimination. The pair (G, k) is a yes-instance if and
only if there is a connected component Gi of G such that (Gi, k) is a yes-instance due to the fact
that for any witness S, all the vertices of S must belong to a single connected component of G.
Hence we may assume that G is connected. We apply the O(n3)-time kernelization algorithm
of Theorem 3 to obtain an equivalent instance (G′, k′) such that k′ ≤ k and G′ is a connected
graph on at most 5k vertices. We then solve the problem on this instance in time

O

((
5k

k

)
(5k)2

)
= O

((
5k

k

)
k2
)

using the brute-force approach described above. It follows from Sterling’s formula that(
5k

k

)
= O

((
5k
e

)5k(
4k
e

)4k · (ke)k
)

= O

((
55

44

)k
)

= O(12.21k) .

Since 55

44 < 12.21, it holds that O
((

5k
k

)
k2
)

= O(12.21k), yielding the claimed overall running

time of O(12.21k + n3). ut

The remainder of this section is devoted to the proof of Theorem 3. Before presenting the
formal proof, we give some intuition behind our approach. Our kernelization algorithm is based
on the observation that the max-leaf number of a graph, i.e., the maximum number of leaves
a spanning tree of the graph can have, is a lower bound on the size of a complete graph that
can be obtained as an elimination. Kleitman and West [14] showed that a connected graph G
with minimum degree at least 3 admits a spanning tree with at least |V (G)|/4+2 leaves. Their
result immediately leads to a linear kernel for Clique Elimination provided that the input
graph G has minimum degree at least 3. Unfortunately, we are unable to get rid of all vertices
of degree at most 2 in our setting. However, we can modify our input graph in polynomial time
such that we either can solve the problem directly, or obtain a new graph G∗ with no vertices
of degree 1 and with no edge between any two vertices of degree 2. We then prove a modified
version of the aforementioned result by Kleitman and West [14], namely that such graphs G∗

admit a spanning tree with at least |V (G∗)|/5 + 2 leaves. This leads to Theorem 3.
We now proceed with the formal proof of Theorem 3. Following Observation 1, we will be

looking for a set S that is a witness of cardinality k, i.e., every two non-adjacent vertices of S
can be connected by a path of which all internal vertices are outside S.

We start by providing four reduction rules, i.e., polynomial-time algorithms that, given an
instance (G, k) of Clique Elimination, output an instance (G′, k′) of the same problem. A
reduction rule is safe if the instances (G, k) and (G′, k′) are equivalent. Since Theorem 3 states
that Clique Elimination admits a linear kernel for connected graphs, we assume the graph G
in every input instance (G, k) to be connected. Moreover, since we only eliminate vertices in
each of the reduction rules and the vertex elimination operation preserves connectivity, the
graph G′ in every output instance (G′, k′) is also connected.

Reduction Rule 1 If k ≤ 3, then output a trivial yes-instance

– if k = 1 and G contains at least one vertex, or
– if k = 2 and G contains at least one edge, or

7

– if k = 3 and either G contains a vertex of degree at least 3 or G is a cycle,

and output a trivial no-instance otherwise.

Lemma 1. Reduction Rule 1 is safe.

Proof. Reduction Rule 1 is trivially safe in case k ≤ 2. Suppose k = 3. If G contains a vertex
u of degree at least 3, then K3 is an elimination of G, as three neighbors of u can serve as a
witness. Recall that G is a connected graph. If G contains no vertex of degree at least 3, then
G is either a cycle or a path. If G is a cycle, then eliminating all but three vertices of G yields
K3, showing that K3 is also an elimination of G in this case. If G is a path, then K3 is not an
elimination of G, since eliminating any vertex in a path results in a shorter path. ut

Reduction Rule 2 If k > 3 and G contains a vertex v of degree 1, then eliminate its sole
neighbor v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 2. Reduction Rule 2 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find a witness S′ of
the same size that does not contain v′. If v′ /∈ S, then we set S′ = S. If v′ ∈ S, then we claim
that v /∈ S. For contradiction, suppose v ∈ S. Since v is adjacent only to v′ and all the vertices
of S form a clique in the graph obtained by eliminating all the vertices in V (G) \ S, we must
have k ≤ 2. This contradicts the assumption that k > 3. We now set S′ = (S \ {v′}) ∪ {v} to
obtain a witness set of the same cardinality that does not contain v′. ut

Reduction Rule 3 If k > 3 and G contains a triangle v′, v1, v2 such that v1, v2 are of degree
2, then eliminate v′ to obtain a graph G′. Output the instance (G′, k).

Lemma 3. Reduction Rule 3 is safe.

Proof. Again, we need to argue that if we can find a witness S, then we can also find a witness S′

of the same size that does not contain v′. If v′ /∈ S, then we set S′ = S. Suppose that v′ ∈ S.
Since k > 3, neither v1 nor v2 belongs to S. We set S′ = (S \ {v′}) ∪ {v1} to obtain a witness
set of the same cardinality that does not contain v′. ut

Reduction Rule 4 If k > 3 and G has a path v0, v1, v2, v3 such that v1, v2 are of degree 2,
then eliminate v0 to obtain a graph G′. Output the instance (G′, k).

Lemma 4. Reduction Rule 4 is safe.

Proof. We need to argue that if we can find a witness S, then we can also find a witness S′ of
the same size that does not contain v0. If v0 /∈ S, then we set S′ = S. Suppose that v0 ∈ S.
Since k > 3, the set S contains at most one vertex from the set {v1, v2, v3}, as otherwise one of
them could be connected to at most two other vertices from S via paths avoiding other vertices
from S. If |S∩{v1, v2, v3}| = 0, then we take S′ = (S\{v0})∪{v1}, while if |S∩{v1, v2, v3}| = 1,
then we take S′ = (S \ {v0, v1, v2, v3}) ∪ {v1, v2}. It is easy to check that S′ defined in this
manner is a witness of the same cardinality that does not contain v0. ut

We are now ready to describe our kernelization algorithm in detail and argue why it runs
in time O(n3). Let (G, k) be an instance of Clique Elimination that is given as input to our
kernelization algorithm. If k ≤ 3, then the algorithm applies Reduction Rule 1 and terminates.
If k > 3, then we exhaustively apply Reduction Rules 2, 3 and 4 as follows; note that the
parameter does not change during the execution of any of these three rules. First, we check

8

in linear time whether G has a vertex of degree 1, and apply Reduction Rule 2 if this is the
case. If G has no vertex of degree 1, then we check, again in linear time, whether G has two
adjacent vertices v1, v2 of degree 2. If so, then we apply Reduction Rule 3 if v1 and v2 have a
common neighbor v′, and we apply Reduction Rule 4 otherwise. Suppose G has no vertices of
degree 1 and no edge between any two vertices of degree 2. If G has at most 5k − 11 vertices,
then we output the current instance (G, k) as the obtained kernel. Otherwise, i.e., if G has at
least 5k− 10 vertices, then we can safely return a trivial yes-instance due to Theorem 4 below,
which is our modified version of the aforementioned result by Kleitman and West [14].

From the description of the algorithm it is clear that deciding which reduction rule to apply
can be done in linear time. Applying any of the reduction rules takes O(n2) time, which is the
time it takes to eliminate a vertex. Since the number of vertices strictly decreases at every step,
the kernelization algorithm has an overall running time of O(n3). This concludes the proof of
Theorem 3.

The proof of Theorem 4 below closely follows the proof of the aforementioned result by
Kleitman and West [14], but requires a more extensive case analysis when picking the initial
tree T that is grown into a spanning tree with the required number of leaves, and we add a
fourth “growing rule” to the three rules that were used by Kleitman and West. Note that we
cannot drop the condition that no two vertices of degree 2 are adjacent in the theorem below,
as no cycle admits a spanning tree with more than two leaves.

Theorem 4. Let G be a connected graph with minimum degree at least 2 such that no two
vertices of degree 2 are adjacent. Then G admits a spanning tree with at least |V (G)|/5 + 2
leaves, and this bound is best possible.

Proof. We gradually grow a tree T in G keeping track of three parameters:

– n, the number of vertices in T ;

– l, the number of leaves in T ;

– m, the number of dead leaves in T , i.e., leaves of T that have no neighbor in G \ T .

The tree will be grown via a number of operations called expansions: by an expansion of a
vertex x ∈ V (T) we mean the adding of all the vertices v ∈ V (G) \ V (T) with xv ∈ E(G) and
all the edges xv ∈ E(G) with v /∈ V (T) to the tree T . We start with a tree T such that only
leaves of T have neighbors in G \ T . Therefore, if we only use expansions to grow the tree, at
each step of the growth process only the leaves of T are adjacent to G \ T . A leaf that is not
dead, is called alive.

For a tree T , we consider the potential φ(T) defined as φ(T) = 4l +m− n. The goal is to:

(a) find a starting tree T with φ(T) ≥ 9;

(b) provide a set of growing rules, such that there is always a rule applicable unless T is a
spanning tree, and φ(T) does not decrease during the application of any rule;

(c) prove that during the whole process the potential increases by at least 1.

If goals (a), (b) and (c) are accomplished, then we can grow T using the rules until it becomes
a spanning tree; in this situation we have l = m and n = |V (G)|. As the potential increased by
at least 1 during the whole process, we infer that 5l ≥ |V (G)|+10, and hence l ≥ |V (G)|/5+2,
as claimed.

Goal (a) can be achieved by a careful case study, the full description of which we give at
the end of the proof.

Having chosen the starting tree T , we can proceed with the growing rules. In order to grow
the tree we always choose the rule that has the lowest number among the applicable ones,
i.e., when applying a rule, we can always assume that the ones with lower numbers are not

9

applicable. The four growing rules are illustrated in Figure 2. We would like to point out that
the first three rules were already used in the original proof of Kleitman and West [14].

x

v

x

v

Growing Rule 3

x

vv
′

x

vv
′

Growing Rule 4

vv

Growing Rule 2

xx

Growing Rule 1

Fig. 2. An illustration of the four growing rules. Black vertices and bold edges belong to the tree T .

Growing Rule 1 If some leaf x of T has at least two neighbors from G \ T , expand x. The
potential φ(T) increases by at least 4 · (d− 1)− d = 3d− 4 ≥ 2, where d ≥ 2 is the number of
the aforementioned neighbors from G \ T .

Growing Rule 2 If some vertex v ∈ V (G \ T) is adjacent to at least two leaves of T , expand
one of these leaves. Observe that, as Rule 1 was not applicable and only leaves of T are
adjacent to G \ T , this expansion results in adding only v to T . Moreover, all the remaining
leaves adjacent to v were alive but become dead, so the potential φ(T) increases by at least
1− 1 = 0.

Growing Rule 3 If there is a vertex v ∈ V (G \ T) of degree at least 3 in G that is adjacent
to a leaf x of T , expand x (which results in adding only v to T , as Rule 1 was not applicable)
and then expand v. The potential increases by at least 4 · (d−2)−d = 3d−8 ≥ 1, where d ≥ 3
is the degree of v, as all the other neighbors of v are added to T as leaves, due to Rule 2 not
being applicable.

Growing Rule 4 If there is a vertex v ∈ V (G \ T) of degree 2 in G that is adjacent to a
leaf x of T , expand x (which results only in adding v as a leaf, as Rule 1 was not applicable),
then expand v, and then expand the second neighbor v′ of v that became a leaf in T during
the previous expansion. Note that v′ could not be already in T , as otherwise Rule 2 would be
triggered on vertex v. Since we assumed that no vertices of degree 2 are adjacent in G, the
degree of v′ is at least 3 and, as Rule 3 was not applicable, none of the neighbors of v′ was
in T . Denote by d the degree of v′; therefore, we have added to the tree T exactly d+1 vertices
(v, v′ and d − 1 other neighbors of v′) and increased the number of leaves by exactly d − 2.
Hence, the increase of the potential is 4(d− 2)− (d+ 1) = 3d− 9 ≥ 0, as d ≥ 3.

10

Let us now argue why goal (c) is achieved. It is clear that if Growing Rule 1 or 3 is applied
at least once, then the potential increases by at least 1. Suppose only Growing Rules 2 and 4
are applied during the whole process. Let x be a vertex of G that was added to T as a leaf
during the very last rule application. Then x is a dead leaf. Since this was not taken into
account when we determined a lower bound of 0 on the increase of the potential, the potential
increases by at least 1. Thus, from the previously described analysis we conclude that using
the presented method we are able to grow a tree with at least |V (G)|/5 + 2 leaves.

We now show that goal (a) can be achieved, i.e., that we can always find a starting tree T
in G such that φ(T) ≥ 9. Recall that G is a connected graph with minimum degree at least 2
such that no two vertices of degree 2 are adjacent. This implies that the maximum degree of G
is at least 3. We distinguish several cases below, and argue how we can find a starting tree T
with φ(T) ≥ 9 in each of these cases (see Figure 3 for guidance along the proof):

Case 1

v

Case 2.1

w t

t′

t′′

s

s′

s′′

Case 2.2

s′
s

w

w′′

s

w

w′′

t

Case 2.3

s t

Case 3.1

vu

Case 3.2

u v

s

t

Case 3.3

w

u v

u′

u′′

v′

v′′

Fig. 3. The trees T chosen to start the growing process, for each of the cases.

1. If the maximum degree of G is at least 4, we start with T being a star consisting of a
vertex v of degree at least 4 as the center and all its neighbors attached as pendants. The
potential of this tree T is equal to at least 4d − (d + 1) = 3d − 1 ≥ 9, where d ≥ 4 is the
degree of v. From now on, we assume that the maximum degree of G is equal to 3.

2. Assume that no vertices of degree 3 are adjacent in G. Take any vertex w of degree 2 and
let s, t be his neighbors. Note that both s and t have degree 3.

2.1. Assume that s and t have exactly one common neighbor, namely w. Denote the re-
maining two neighbors of s by s′, s′′ and the remaining two neighbors of t by t′, t′′.
Obviously, s′, s′′, t′, t′′, w are pairwise distinct. We now take as T the tree consisting of
7 vertices: s, s′, s′′, t, t′, t′′, w, obtained by attaching s′, s′′, t′, t′′ to the path s−w− t as
leaves. This tree T has potential at least 4 · 4− 7 = 9.

2.2. Assume that s and t have exactly two common neighbors w and w′. Let s′ be the
remaining neighbor of s. Since we assumed that no vertices of degree 3 are adjacent,
the degree of s′ is equal to 2. Observe that the neighbors of s′ can have only s′ as their
common neighbor, because the remaining neighbors of s are already adjacent to t,

11

which is distinct from the second neighbor of s′. Thus, we can follow the same choice
of T as in the Case 2.1, but starting with s′ instead of w.

2.3. Assume that s and t have exactly three common neighbors. Then, the whole graph G is
just s and t connected via three internally vertex-disjoint paths of length 2. It is clear
that Theorem 4 holds in this case.

3. Now we can safely assume that G contains two adjacent vertices of degree 3; denote them
by u, v.

3.1. Assume that u and v have no common neighbors. Then we take as T the tree on 6
vertices consisting of the edge uv and all neighbors of u, v attached to either u or v as
leaves. This tree has 4 leaves, so its the potential is equal to at least 4 · 4− 6 = 10 ≥ 9.

3.2. Assume that u and v have exactly two common neighbors s and t. Observe that then
N(u) = {v, s, t} and N(v) = {u, s, t}. Take as T the star having u as the center and
v, s, t as three leaves. Observe that the potential of this tree is at least 4 · 3 + 1− 4 = 9,
as v is a dead leaf.

3.3. Finally, assume that u and v have exactly one common neighbor w. Observe that
if u and w had any common neighbor apart from v, or v and w had any common
neighbor apart from u, then we would be able to proceed with the pair (u,w) or
with the pair (v, w) as in Case 3.2. Therefore, assume that N(u) ∩ N(w) = {v} and
N(v) ∩ N(w) = {u}. Let u′ be the remaining neighbor of u and v′ be the remaining
neighbor of v. By what we assumed so far, we know that u′ 6= v′ and neither u′ nor v′

is adjacent to w. If any of them had degree at least 3, then we would be able to apply
Case 3.1 with the pair (u, u′) or with the pair (v, v′). Therefore, assume that both u′

and v′ have degree 2. Then u′ and v′ are not adjacent, since we assumed that no vertices
of degree 2 are adjacent in G. Denote their second neighbors, different from u and v,
by u′′ and v′′, respectively. As the maximum degree in G is equal to 3, at least one of
them is not adjacent to w; assume without loss of generality that u′′ is not adjacent
to w. Of course, u′′ is also not adjacent to v, as u′′ /∈ {u,w, v′} and has degree 3.
Therefore, we can use the same reasoning as in Case 2.1, starting with the vertex u′ as
the degree-2 vertex.

It remains to show that the bound |V (G)|/5 + 2 in Theorem 4 is best possible. An infinite
family of graphs G satisfying the premises of the theorem and having a spanning tree with
exactly |V (G)|/5 + 2 leaves can be obtained by connecting a number of diamonds in the way
as shown in Figure 4. This completes the proof of Theorem 4. ut

4 The Elimination Problem on Trees

In this section, we study Elimination when G or H is a tree. When H is a tree, we show in
Section 4.1 that the problem can be solved in polynomial time. We then show in Section 4.2
that when G is a tree, the problem is NP-complete.

4.1 Eliminating to a Tree in Polynomial Time

In this subsection, we present a polynomial-time algorithm for solving Elimination on input
pairs (G,H) where H is a tree. We first prove a sequence of lemmas that show that if a
graph G contains a tree H as an elimination, then there exists a witness that satisfies some
nice structural properties. These properties will then be exploited in the proof of Theorem 5,
where our algorithm uses a dynamic programming approach on the bicomp-tree of G to find a

12

Fig. 4. A graph on 30 vertices for which the maximum possible number of leaves in a spanning tree
is exactly 30/5 + 2 = 8; the bold (blue) edges indicate a spanning tree with eight leaves. Generalizing
this example yields an infinite family of graphs showing that the bound in Theorem 4 is tight.

witness with the aforementioned nice properties, or to conclude that H is not an elimination
of G.

Let (G,H) be an instance of Elimination where G is a connected graph and H is a tree
on at least 3 vertices. This implies in particular that L(H) 6= ∅ and I(H) 6= ∅; recall that L(H)
and I(H) denote the sets of leaves and inner vertices of H, respectively. Also recall that C(G)
and B(G) denote the sets of cut-vertices and bicomps of G, respectively, and that TG is the
bicomp-tree of G.

Throughout this subsection, up to the statement of Theorem 5, we assume that (G,H) is
a yes-instance, i.e., that H is an elimination of G. Let S = {vx | x ∈ V (H)} be a witness,
where vx is the vertex of G that corresponds to the vertex x of H, and let X = V (G) \ S be
the corresponding solution yielding H. The witness S satisfies the structural properties given
in the two following lemmas.

Lemma 5. For any bicomp B ∈ B(G) it holds that |V (B) ∩ S| ≤ 2, and if vx, vy ∈ V (B) ∩ S
for x 6= y, then xy ∈ E(H).

Proof. To obtain a contradiction, assume that there is a bicomp B ∈ B(G) that contains
three vertices vx, vy, vz ∈ S. Since any bicomp with at least three vertices is a 2-connected
graph, B has two vertex-disjoint vx, vy-paths. Suppose, for contradiction, that at least one
internal vertex vq of one of these paths belongs to S, i.e., is not eliminated. Then x, y and q
belong to a cycle of length at least 3 in H, contradicting the assumption that H is a tree. Hence,
all internal vertices of these two vx, vy-paths are eliminated, and consequently vx and vy are
adjacent in the graph obtained from G by the elimination of X. By the same arguments, we
conclude that vx, vz and vy, vz are adjacent in this graph, i.e., it has a triangle; a contradiction.
To prove the second claim of the lemma, it is sufficient to observe that V (B) ∩ S = {vx, vy}
and, therefore, B contains a vx, vy-path that avoids other vertices of S. Hence, vx and vy are
adjacent in the graph obtained from G by the elimination of the vertices of X, and xy ∈ E(H).

ut

Lemma 6. For any x ∈ I(H), vx ∈ C(G).

Proof. To obtain a contradiction, assume that there is a vertex x ∈ I(H) such that vx is not a
cut-vertex of G. Let B be the bicomp of G that contains vx. Since x is an inner vertex of H, x
is adjacent to at least two vertices y1, y2. For i = 1, 2, G has a vx, vyi-path Pi that avoids the

13

vertices of S \ {vx, vyi}. Let u1 and u2 be the vertices adjacent to vx in P1 and P2 respectively.
Observe that u1, u2 ∈ V (B), because vx is not a cut-vertex. The 2-connected graph B contains
a u1, u2-path P that avoids vx. Suppose that some vertex vz ∈ S is an inner vertex of P . By
Lemma 5, vz is the unique vertex of S in P . By concatenating the vz, ui-subpath of P and the
ui, vyi

-subpath of Pi, we obtain a vz, vyi
-walk in G that avoids other vertices of S for i = 1, 2.

It follows that z is adjacent to y1 and y2, which would imply a cycle with vertices z, y1, x, y2
in H; a contradiction. Therefore, the set of inner vertices of P does not include any vertex of S.
Then the concatenation of the vy1

u1-subpath of P1, P , and the u2, vy2
-subpath of P2 gives a

vy1
, vy2

-walk in G that avoids S \ {vy1
, vy2
}. This means that y1 and y2 are adjacent in H,

yielding the desired contradiction. ut

Lemmas 5 and 6 exhibit some properties of the witness S, and these properties hold for any
witness. In particular, Lemma 6 shows that for every inner vertex x of H, the corresponding
vertex vx in S is a cut-vertex in G. Lemmas 7 and 8 below imply that there exists a witness S′

such that a similar property holds for the leaves of H. To be more precise, Lemma 8 implies
that there exists a witness S′ such that for every leaf x of H, the corresponding vertex v′x
in S′ is either a cut-vertex of G, or a vertex of a bicomp B of G that contains exactly one
cut-vertex of G. Lemma 7 shows that in the latter case, replacing v′x in S′ by any other vertex
of V (B) \ C(G) yields another witness.

Lemma 7. Let x ∈ L(H) and suppose that vx ∈ V (B) \ C(G) for a bicomp B. Let v′x be an
arbitrary vertex of V (B) \ C(G) and S′ = (S \ {vx}) ∪ {v′x}. Then the graph obtained from G
by the elimination of X ′ = V (G) \ S′ is isomorphic to H, where the isomorphism maps any
vertex y ∈ V (H) \ {x} to vy and maps x to v′x.

Proof. Since the lemma trivially holds when v′x = xx, we assume that v′x 6= vx. First, we observe
that v′x /∈ S. Otherwise, v′x = vz for some leaf z of T , since vz ∈ C(G) for any inner vertex z
due to Lemma 6. Then by Lemma 5, the leaves z and x are adjacent in H; a contradiction.

Let y be the unique inner vertex in H that is adjacent to x. The graph G has a vx, vy-path P
that avoids the vertices of S \ {vx, vy}. By Lemma 6, vy ∈ C(G). The bicomp B contains a
v′x, vx-path P ′. If P ′ has a vertex vz ∈ S distinct from vx, then by Lemma 5, z is adjacent
to x in H. Hence, z = y and the v′x, vy-subpath of P ′ avoids other vertices of S′. If P ′ has
no vertices from S except vx, then the v′x, vy-walk obtained by the concatenation of P ′ and P
avoids other vertices of S′. In both cases we conclude that v′x and vy are adjacent in the graph
obtained from G by the elimination of X ′.

Now suppose that there is a v′x, vz-path P in G that avoids the vertices of S′ \ {v′x, vz} for
a vertex z ∈ V (H) such that z 6= y. If P contains a vertex u ∈ S \ {vz}, then u = vx, since
all other vertices of S′ are also vertices of S. Then the vx, vz-subpath of P avoids the vertices
of S \ {vx, vz}. This implies that vx and vz are adjacent in the graph obtained from G by
eliminating X; a contradiction, as vx is only adjacent to vy in this graph. Hence, P avoids the
vertices of S \ {vz}. The 2-connected graph B has a vx, v

′
x-path P ′ that avoids vy. Since P ′ is

a path in B, P ′ cannot contain any vertex of S except vx. Then the vx, vz-walk obtained by
the concatenation of the path P ′ and P avoids the vertices of S \ {vx, vz}; a contradiction.

We conclude that there is a v′x, vz-path in G that avoids S′ \ {v′x, vz} if and only if z = y.

It remains to prove that replacing x by x′ in the witness S does not influence the adja-
cencies between any other vertices in H. Assume that for two vertices z1, z2 ∈ V (H) \ {x},
there is a vz1 , vz2 -path P in G that avoids the vertices of S′ \ {vz1 , vz2} but includes a vertex
from S \ {vz1 , vz2}. Then P contains vx, and it follows that vx is adjacent to vz1 and vz2 in the
graph obtained from G by eliminating X; a contradiction. Finally, suppose that for two ver-
tices z1, z2 ∈ V (H)\{x}, there is a vz1 , vz2-path P in G that avoids the vertices of S \{vz1 , vz2}

14

but includes a vertex from S′ \ {vz1 , vz2}. Then P contains v′x, and the v′x, vz1 - and v′x, vz2-
subpaths of P avoid the vertices of S′ \ {v′x, vz1} and of S′ \ {v′x, vz2}, respectively. Hence,
y = z1 = z2; a contradiction. ut

Lemma 8. Let x ∈ L(H) and suppose that vx ∈ V (B) \ C(G) for a bicomp B where |V (B) ∩
C(G)| ≥ 2. Then there is a vertex v′x ∈ V (B) ∩ C(G) such that the graph obtained from G by
the elimination of X ′ = V (G) \ S′, where S′ = (S \ {vx}) ∪ {v′x}, is isomorphic to H, where
the isomorphism maps any vertex y ∈ V (H) \ {x} to vy and maps x to v′x.

Proof. For a cut-vertex c ∈ V (B) ∩ C(G), denote by Gc the subgraph of G obtained by the
removal of the vertices of the connected components of G−c that do not contain the vertex vx.
We claim that if |V (B) ∩ C(G)| ≥ 2, then there is c ∈ V (B) ∩ C(G) such that S ⊆ V (Gc).

To prove the claim, assume for contradiction that for each c ∈ V (B)∩C(G), there is vz ∈ S
such that vz /∈ V (Gc). We choose c1, c2 ∈ V (B)∩C(G) as follows. By Lemma 5, B contains at
most two vertices of S, and if B contains vy 6= vx for y ∈ V (H), then y is adjacent to x in H.
By Lemma 6, vy ∈ V (B) ∩ C(G) and we set c1 = vy, the vertex c2 ∈ V (B) ∩ C(G) \ {c1} is
chosen arbitrary. If B has no other vertices of S except vx, then c1, c2 are arbitrary distinct
vertices of V (B) ∩ C(G). The 2-connected graph B has a vx, c1-path P1 and a vx, c2-path P2

that avoid c2 and c1 respectively. By our assumption, for each i ∈ {1, 2}, there is a vertex
vzi ∈ S such that vzi /∈ V (Gci). Then there is a ci, vzi-path P ′i for each i ∈ {1, 2}. Let vyi

be
the first vertex from S \ {vx} on the path Qi obtained by the concatenation of Pi and P ′i , if
we are looking from vx. Then the vx, vyi

-subpath of Qi avoids the vertices of S \ {vx, vyi
} for

each i ∈ {1, 2}. It means that vx is adjacent to vy1 and vy2 in the graph obtained from G by
the elimination of X, contradicting the assumption that x is a leaf of H.

We now use this claim as follows. Let c ∈ V (B)∩C(G) be a cut-vertex such that S ⊆ V (Gc),
and let Y = V (G) \ V (Gc). By our claim, Y ⊆ X, and the elimination of X can be seen as
the consecutive elimination of Y and X \ Y . Observe that the graph obtained from G by the
elimination of Y is the graph Gc, and c is not a cut-vertex of Gc. By Lemma 7, we can replace vx
by c in S. ut

Lemmas 6, 7 and 8 together imply that there exists a witness S′′ that is a subset of C(G)∪U
for any subset U ⊆ V (G) \C(G) containing exactly one vertex of V (B) \C(G) for every block
B with |V (B) ∩ C(G)| = 1 and no vertices of any other block of G; note that a block B
satisfies |V (B) ∩C(G)| = 1 if and only if B corresponds to a leaf of TG. The existence of such
a witness S′′ will be used in the proof of Theorem 5, where our algorithm for Elimination
will use a dynamic programming approach to find such a witness S′′, or to conclude that no
such witness, and hence no witness at all, exists. In order to be able to explain this in more
detail, we need to introduce some additional terminology and prove two more lemmas.

We choose an arbitrary inner vertex z of H and say that it is the root of H. The root defines
the parent-child relation between any two adjacent vertices of H. For any two vertices x, y ∈
V (H), we say that y is a descendant of x if x lies on the unique path in H from y to the root z.
If y is a descendant of x and xy ∈ E(H), then y is a child of x, and x is the parent of y. By
definition, every vertex x ∈ V (H) is a descendant of itself. For a vertex x ∈ V (H), Hx denotes
the subtree of H induced by the descendants of x, and for a vertex x ∈ V (H) with a child y,
Hxy is the subtree of H induced by x and the descendants of y.

Consider r = vz ∈ V (G). We choose r to be the root of the bicomp-tree TG of G. By
Lemma 6, r is a cut-vertex in G. The root r defines the parent-child relation on TG. Each
bicomp B is a child of some inner vertex c in TG, and we say that the vertices of B are children
of the corresponding cut-vertex c in G. A vertex v ∈ V (G) is a descendant of a cut-vertex c if v
is a child of some descendant of c in TG. For a cut-vertex c, we write Gc to denote the subgraph
of G induced by the descendants of c. For a cut-vertex c and a bicomp B such that B is a child

15

of c in TG, GcB is the subgraph of G induced by the vertices of B and the descendants of all
cut-vertices c′ ∈ V (B) \ {c}.

Now consider two vertices p and q in H, such that neither is a descendant of the other, and
let x be their lowest common ancestor. A crucial observation in our algorithm is that vp and vq
are descendants of vx in G, and there are exactly two bicomps B′ and B′′ such that B′ and B′′

are children of vx and such that vp belongs to GvxB′ and vq belongs to GvxB′′ . In particular,
there does not exist a single bicomp B such that B is a child of vx and both vp and vq belong
to the graph GvxB . The following lemma formalizes and generalizes this idea.

Lemma 9. For any inner vertex x ∈ V (H), if y ∈ V (H) is a descendant of x in H, then
vy is a descendant of vx in G. Moreover, if y1, . . . , yl are the children of x in H, then there
are distinct children B1, . . . , Bl of vx in the bicomp-tree for which the following holds: for each
i ∈ {1, . . . , l}, if y ∈ V (Hxyi

), then vy ∈ GvxBi
.

Proof. We prove the first claim of the lemma by induction with respect to the structure of H.
Clearly, for each y ∈ V (H), y is a descendant of z in H and vy is a descendant of r = vz
in G. Suppose that x is an inner vertex of H and let y be the parent of x. We assume that
for any descendant y′ of y in H, vy′ is a descendant of vy in G, and we prove that for any
descendant y′ of x in H, vy′ is a descendant of vx in G. Assume that, contrary to the claim, x
has descendants for which it is not so. Denote by B the bicomp of G such that B is the parent
of the cut-vertex vx in the bicomp-tree. If there is a descendant y′ of the vertex x such that
vy′ ∈ V (B), then vy′ is not a descendant of vx and we consider this vertex. Notice that in this
case y′ is adjacent to x in H and V (B) ∩ S = {vx, vy′} by Lemma 5. Otherwise, we choose an
arbitrary descendant y′ of the vertex x in H such that vy′ is not a descendant of vx in G. In this
case either vx is the unique vertex of S in B or vy ∈ V (B). The graph G has a vx, vy-path P
and a vx, vy′ -path P ′ avoiding the vertices of S \ {vx, vy} and S \ {vx, vy′}, respectively. If P
and P ′ have a common vertex except vx, then vy and vy′ are adjacent in the graph obtained
from G by the elimination of X. This yields a contradiction, since y is the parent of x in the
tree H, and y′ is a descendant of x. Hence, vx is the only common vertex of P and P ′. Let u
and u′ be the vertices adjacent to vx in P and P ′ respectively. Since vx is a descendant of vy,
u ∈ V (B), and u′ ∈ V (B) because vy′ is not a descendant of vx. The 2-connected graph B
has a u, u′-path Q that avoids vx. Notice that if Q contains a vertex of S, then it is either vy
or vy′ . Consider the vy, vy′ -walk obtained by the concatenation of the vy, u-subpath of P , Q,
and the u′, vy′ -subpath of P ′. This walk avoids the vertices of S \ {vy, vy′}. It means that vy
and vy′ are adjacent in the graph obtained from G by the elimination of X; a contradiction.

Now we prove the second claim. Let y1, . . . , yl be the children of an inner vertex x of H. To
obtain a contradiction, suppose that there is a bicomp B that is a child of vx in the bicomp-
tree for which, contrary to our claim, there are two different children yi, yj of x such that
vyi
, vyj

∈ GvxB . By Lemma 5, vys
∈ B for at most one child ys of x. If such a child exists, then

we assume that i = s. Since x is adjacent to yi, yj in H, G has a vx, vyi
-path Pi and a vx, vyj

-
path Pj that avoids the vertices of S \{vx, vyi} and S \{vx, vyj}, respectively. If Pi and Pj have
a common vertex except vx, then vyi and vyj are adjacent in the graph obtained from G by the
elimination of X; a contradiction. Hence, vx is the only common vertex of P and P ′. Let ui
and uj be the vertices adjacent to vx in Pi and Pj respectively. Clearly, ui, uj ∈ V (B). The
2-connected graph B has ui, uj-path Q that avoids vx. Notice that if Q contains a vertex of S,
then it is the vertex vyi . Consider the vyi , vyj -walk obtained by the concatenation of the vyi , ui-
subpath of Pi, Q, and the uj , vyj -subpath of Pj . This walk avoids the vertices of S \ {vyi , vyj}.
It means that vyi

and vyj
are adjacent in the graph obtained from G by the elimination of X.

However, yi and yj are children of x in H, and are therefore not adjacent. This contradiction
completes the proof of Lemma 9. ut

16

We need one more lemma in the correctness proof of our dynamic programming algorithm in
the proof of Theorem 5. Recall that H is an elimination of G with witness S = {vx | x ∈ V (H)},
and that we have rooted H at vertex z and the bicomp-tree TG at vertex r = vz. Let Hx be a
subtree of H for some x ∈ V (H). Informally speaking, the following lemma shows that Hx is
an elimination not only of the subgraph Gvx , i.e., of the subgraph of G corresponding to the
subtree of TG rooted at vx, but also of any subgraph of G corresponding to a subtree of TG
rooted at a vertex c ∈ C(G) appearing “higher” in TG than vx, i.e., a vertex c ∈ C(G) such
that vx is a descendant of c in TG.

Lemma 10. For any inner vertex x ∈ V (H) and any cut-vertex c ∈ V (G) such that vx is
a descendant of c, Hx is an elimination of Gc with witness Sx = {vy | y ∈ V (Hx)}, and
there is a c, vx-path in Gc that avoids Sx \ {vx}. Moreover, for any inner vertex x ∈ V (H)
with a child y, any cut-vertex c ∈ V (G) such that vx is a descendant of c, and any bicomp
B such that B is a child of c in TG and vy ∈ V (GcB), Hxy is an elimination of GcB with
witness Sxy = {vy | y ∈ V (Hxy)}, and there is a c, vx-path in GcB that avoids Sxy \ {vx}.

Proof. First observe that, by Lemma 9, for any p ∈ V (H) \ {x}, p is a descendant of x in H
if and only if vp is a descendant of vx in G. Hence, to prove the lemma it is sufficient to
observe that for any two vertices vp1

, vp2
in Gvx , there is a vp1

, vp2
-path in G that avoids the

vertices of S \ {vp1
, vp2
} if and only if there is a vp1

, vp2
-path in Gvx that avoids the vertices

of S ∩ V (Gvx) \ {vp1 , vp2}, because vx is a cut-vertex in G. Moreover, since vx is a cut-vertex
and Gc is connected, Gc has a c, vx-path that avoids {vy | y ∈ V (Hx) \ {x}}. The second claim
is proved by the same arguments. ut

We now present a polynomial-time algorithm for deciding whether a given tree H is an
elimination of a given graph G.

Theorem 5. Elimination can be solved in time O(n9/2) when H is a tree.

Proof. Let G and H be an instance of Elimination where H is a tree. Since H is a connected
graph, the graph G can be eliminated to H if and only if at least one connected component
of G can be eliminated to this graph. Hence, we assume without loss of generality that G is
connected. Since any graph with at least one vertex can be eliminated to K1, and K2 is an
elimination of any graph that contains at least one edge, we may also assume that H has at
least three vertices. Since we made exactly the same assumptions at the start of Subsection 4.1,
we may now apply all the lemmas that were proved in the subsection.

Clearly, if |V (H)| > n, then we have a no-instance of the problem. Hence, we assume that
|V (H)| ≤ n. For the tree H, we choose an arbitrary inner vertex z and make it the root of H.
For the graph G, we find the set of cut-vertices C(G) and the set of bicomps B, and construct
the bicomp-tree TG. We then construct a set U ⊆ V (G) as follows: for each bicomp B that is a
leaf of TG, we choose an arbitrary vertex u ∈ V (B) \C(G) and include it in U . As we already
pointed out just below Lemma 8, it follows immediately from Lemmas 6, 7 and 8 that H is an
elimination of G if only if G can be eliminated to H with a witness S ⊆ C(G) ∪ U .

Suppose H is an elimination of G with a witness S = {vx | x ∈ V (H)}. Since we chose z
to be an inner vertex of H, the vertex vz is a cut-vertex of G due to Lemma 6. Hence, by
Lemma 9, there is a cut-vertex r in G such that if y is a descendant of x in H rooted at z, then
vy is a descendant of vx in G when we root TG at r. We check all cut-vertices r ∈ C(G), and
for each r, we root TG at r and try to find a witness S ⊆ C(G)∪U that satisfies this condition
using the dynamic programming approach described below. Due to the above arguments, H is
an elimination of G if and only if we find such a witness for some r, and we have a no-instance
of Elimination otherwise.

17

For every possible choice of the root r of TG, i.e., for every cut-vertex r ∈ C(G), we perform
the following dynamic programming algorithm. For each vertex u ∈ C(G) ∪ U , the algorithm
will create a set Ru which, informally speaking, consists of those vertices x of H for which the
subtree Hx is an elimination of the subgraph of G corresponding to the subtree of TG rooted
at u. Formally, for every u ∈ C(G) ∪ U , the algorithm constructs a set Ru ⊆ V (H) such that:

• for any u ∈ U , Ru = L(H);

• for any u ∈ C(G), Ru is the set of all vertices x of H such that Hx is an elimination of Gu

with witness {vy | y ∈ V (H)} such that for any y, y′ ∈ V (Hx), if y′ is a descendant of y in
Hx, then vy′ is a descendant of vy in Gr.

The algorithm returns “yes” if the set Rr contains z, and proceeds to the next choice of r
otherwise. If the algorithm has not returned “yes” after all the vertices r ∈ C(G) have been
considered, then it returns “no”.

The sets Ru are constructed in a bottom-up manner, i.e., for every u ∈ C(G) ∪ U , the
set Ru is constructed only when the set Rw has been constructed for every w ∈ C(G)∪U that
is a descendant of u. If u ∈ U , then there is no w ∈ C(G) ∪ U that is a descendant of u, and
Ru = L(H) by definition. Suppose u ∈ C(G). Denote by B1, . . . , Bk the bicomps of G that are

children of the cut-vertex u in the bicomp-tree TG. Let Du = ((C(G)∪U) \ {u})∩
⋃k

i=1 V (Bi),
i.e., Du is the set of all vertices w ∈ C(G) ∪ U other than u that are descendants of u and are
contained in some bicomp together with u. From the sets Rw for all w ∈ Du, the set Ru is
created in two steps as follows:

Step 1. For every w ∈ Du, all the vertices of Rw are included in Ru.

Step 2. For every i ∈ {1, . . . , k}, let Ti = ∪w∈Du∩V (Bi)Rw. A vertex x ∈ V (H) with chil-
dren y1, . . . , yl is included in Ru if there is a set {i1, . . . , il} ⊆ {1, . . . , k} such that yj ∈ Tij
for every j ∈ {1, . . . , l}. Checking if such a set exists is equivalent to solving a matching
problem on an auxiliary bipartite graph, for which we can use the well-known Hopcroft-Karp
algorithm [12].

Let us prove the correctness of the algorithm. We observe that by Lemma 6, if H is an
elimination of G with witness {vy | y ∈ V (H)}, then vx ∈ U only if x is a leaf of H. Recall
that any graph can be eliminated to an isolated vertex. Hence, each set Ru includes all the
leaves of H, and Ru = L(H) for any u ∈ U . For any cut-vertex u in G, u is either saved or not;
recall that a vertex is saved if and only if it is not eliminated. Step 1 is applied to construct all
elements of Ru that correspond to the partial solutions where u is not saved. The correctness
of Step 1 follows from Lemma 10. We use Step 2 to find all elements of Ru that correspond
to the partial solutions where u is a saved vertex. The correctness of this step follows from
Lemmas 9 and 10.

Finally, we analyze the running time. It is well-known that for a connected graph G, the
set of cut-vertices C(G) and the set of bicomps B can be found and the bicomp-tree can be
constructed in linear time. There are at most n cut-vertices that can be chosen as the root of G.
For each choice, we run our dynamic programming algorithm. The initial assignment of Ru for
each u ∈ U can be done in O(n) time, and we have at most n vertices in U . For each u ∈ C(G),
Step 1 can be done in O(n · |Du|) time. For Step 2, for each x ∈ V (H) we use the Hopcroft-
Karp algorithm [12] to check existence of a system of distinct representatives y1, . . . , yl from
the sets T1, . . . , Tk. Observe that we can omit running the algorithm if l > k; thus we can
assume that l ≤ k ≤ |Du| and a single test runs in O(|Du|5/2) time. Hence, for vertex u, Step 2
can be done in O(n · |Du|5/2) time. In total, performing Step 1 and Step 2 takes O(n · |Du|5/2)
time for each u ∈ C(G). Observe that each vertex u′ ∈ C(G) ∪ U appears in the set Du for
at most one u, so

∑
u∈C(G) |Du| ≤ n. As function f(t) = t5/2 is increasing and convex, we

18

infer that
∑

u∈C(G) |Du|5/2 ≤ n5/2. Therefore, the whole dynamic programming routine runs

in O(n7/2) time. Since we run the dynamic programming algorithm for O(n) choices of the
root r, it follows that the total running time is O(n9/2). ut

4.2 Eliminating from a Tree is NP-complete

In this subsection, we consider the case when G is a tree and H is an arbitrary graph. First,
we make the following observation. A connected graph is called a block graph if each of its
bicomps is a complete graph. Observe that if G is a block graph, then elimination of any
vertex v results in another block graph, because this operation unites all maximal cliques that
contain v into a single clique and then removes v. Since trees are block graphs, it gives us the
following proposition.

Proposition 1. If H is an elimination of a tree G, then H is a block graph.

Despite the fact that graphs that are eliminations of trees have relatively simple structure,
it turns out that Elimination remains NP-complete when G is assumed to be a tree. In order
to prove this result (Theorem 6 below), we first prove three auxiliary results.

For a graph G, the distance distG(u, v) between a pair of vertices u and v of G is the
number of edges on a shortest path between them. The diameter of G is defined as diam(G) =
max{distG(u, v) | u, v ∈ V (G)}. Our first auxiliary result follows directly from Observation 1.

Lemma 11. Let H be a graph that is obtained by the elimination of a set of vertices X of a
graph G, and let S = V (G) \ X. Then for any u, v ∈ S, distH(u, v) ≤ distG(u, v) and hence
diam(H) ≤ diam(G).

Let G be a tree, let k ≥ 2 be an integer, and let Q = {v1, . . . , vk} be a subset of the vertices
of G such that no vi is an inner vertex of a path between any two vertices in Q. Then G
contains a (unique) maximal subtree, denoted by TQ, that contains all the vertices of Q as
leaves. We point out that although the set of leaves of TQ contains the set Q by definition, TQ
might have other leaves as well. To see this, note that if we take G to be a star with s ≥ 3
leaves and Q to be any subset of exactly s− 1 leaves, then the tree TQ = G has s > |Q| leaves.

Lemma 12. Let H be a graph on at least two vertices that is obtained from a tree G by the
elimination of a subset X of vertices of G. Let Q = {v1, . . . , vk} be a maximal clique of H.
Then k ≥ 2 and no vertex of Q is an inner vertex of a path in G between any two vertices
of Q. Moreover, V (TQ) \Q ⊆ X. In particular, Q is obtained by the elimination of V (TQ) \Q.

Proof. Because H is a graph on at least two vertices that is obtained from a connected graph,
namely the tree G, we find that H is connected. Hence, k ≥ 2. As Q forms a clique in H, for
every two vertices vi, vj ∈ Q, the unique path between vi and vj in G does not contain other
vertices from Q. This implies that the subtree TQ of G, as defined just above Lemma 12, exists.
We now prove that V (TQ) \Q ⊆ X.

For contradiction, suppose there is a vertex u ∈ V (TQ) \Q such that u /∈ X. Let T ′ be the
unique subtree of TQ whose leaves are exactly the vertices of Q. Note that u is not a vertex
of T ′, as otherwise Q would not form a clique in H. Also note that u is not adjacent to any
of the vertices in Q. Now let u′ be the neighbor of u on the unique path in G from u to a
vertex of T ′. We may assume that u′ ∈ X, as otherwise we can choose u′ instead of u. We
first eliminate all vertices of T ′ not equal to u′. Afterward, Q is a clique and u′ is adjacent to
all vertices of Q. Then eliminating u′ makes u adjacent to all vertices of Q. Because u /∈ X,
this implies that H contains a clique Q′ = Q ∪ {u}. This contradicts the maximality of Q.
Hence V (TQ) \Q ⊆ X, and consequently Q is obtained by the elimination of V (TQ) \Q. This
completes the proof of Lemma 12. ut

19

We now state the third auxiliary result that will be used in the proof of Theorem 6 below.

Lemma 13. Let H be a graph on at least two vertices that is obtained from a tree G by the
elimination of a subset X of vertices of G. For a vertex v /∈ X, let {Q1, . . . , Qr} be the set
maximal cliques of H that contain v. Then dG(v) ≥ r.

Proof. Because H is a graph on at least two vertices that is obtained from a connected graph,
namely the tree G, we find that H is connected. Hence, each Qi contains at least two vertices.
By Lemma 12, the trees TQi

exist, and the elimination of TQi
yields Qi for i = 1, . . . , r. This

means that the sets V (TQi
) \ Qi are mutually disjoint. If V (TQi

) \ Qi is empty, then Qi is
an edge incident with v and some other vertex vi, which is not contained in some Qh with
h 6= i, because the cliques Q1, . . . , Qr are maximal. We conclude that v must have at least r
neighbors. ut

We are now ready to present the main result of this subsection.

Theorem 6. Elimination is NP-complete, even if G is restricted to be a tree.

Proof. We reduce from Exact 3-Cover, which is an NP-complete problem (cf. [7]). It has as
input a finite set X with 3n elements and a collection C of subsets of X, each of which contains
exactly three elements, and the goal is to test whether C contains an exact cover of X, i.e., a
subcollection C′ ⊆ C such that each element of X occurs in exactly one subset in C′. Clearly,
|C′| = n (if it exists).

Let X = {x1, . . . , xk}, where k = 3n, and C = {C1, . . . , Cm} be an instance of Exact
3-Cover. We assume that m > n ≥ 2.

First, we construct an auxiliary gadget Fi(u, v) for i ∈ {1, . . . , k} as follows (see Figure 5
for an illustration):

• take two vertices u, v;
• join u and v by a path v0 · · · vk+3 of length k + 3, where u = v0 and v = vk+3;
• introduce a pendant vertex x and make it adjacent to vi.

We say that x is the index vertex of Fi(u, v).

u = v0 v1 v2 vi

x

vk vk+1 vk+2 vk+3 = v

Fig. 5. The graph Fi(u, v) with index vertex x.

Now, we construct a tree G as follows (see Figure 6):

• for all j ∈ {1, . . . ,m}, if Cj = {xp, xq, xs} then construct copies of Fp(u
(1)
j , v

(1)
j), Fq(u

(2)
j , v

(2)
j),

Fs(u
(3)
j , v

(3)
j) that we denote by T

(p)
j , T

(q)
j , T

(s)
j respectively, and introduce a vertex wj and

make wj adjacent to u
(1)
j , u

(2)
j , u

(3)
j ;

• introduce a vertex r and make it adjacent to w1, . . . , wm;
• introduce a vertex r′ and join it with r by a path P of length k + 6.

Finally, we construct a graph H as follows (see Figure 6):

20

a1 ak

f

f ′

c1 cj cm−n

b1 bk d
(1)
j d

(3)
j

Q

H

v
(1)
j v

(2)
j v

(3)
j

w1
wj wm

u
(1)
j u

(3)
j

r

P

r′
G

Fig. 6. The graphs G and H.

• for each i ∈ {1, . . . , k}, construct a copy of Fi(ai, bi);

• for each j ∈ {1, . . . ,m − n}, introduce a vertex cj as well as three vertices d
(1)
j , d

(2)
j , d

(3)
j ,

and join them with cj by paths of length k + 4;

• introduce two vertices f, f ′ and join them by a path of length k + 5;

• join the vertices a1, . . . , ak, c1, . . . , cm−n, f by edges to form a clique; denote this clique
by Q.

We claim that C contains an exact cover C′ of X if and only if H is an elimination of G.
First suppose that C′ = {Cj1 , . . . , Cjn} is exact cover of X. We eliminate the vertex r and the
vertices wj1 , . . . , wjn . Then for j ∈ {1, . . . ,m} \ {j1, . . . , jn}, we eliminate the index vertices

of T
(p)
j , T

(q)
j , T

(s)
j . It is straightforward to check that the obtained graph is isomorphic to H.

Hence, H is an elimination of G.

Now suppose that H is an elimination of G. Denote by X the set of eliminated vertices, and
let S = V (G) \X. Let also h be an isomorphism between H and the graph obtained from G
by the elimination of X.

Any subtree of G that does not contain r as an inner vertex has at most 7 leaves. The size of
the clique Q is k+ (m−n) + 1 > 7, because m > n ≥ 2. Hence, by Lemma 12, r ∈ X. Observe
that the graph G′ obtained from G by the elimination of r has diameter 2k + 10 = diam(H).
By Lemma 11, V (P) \ {r} ⊆ S, since the elimination of any vertex of V (P) \ {r} results in
a graph of diameter less that 2k + 10. The vertex r′ is the unique vertex of G′ that has at
least two vertices at distance 2k + 10, and f ′ is the unique vertex of H with this property. By
Lemma 11, we conclude that h maps f ′ to r′.

For j ∈ {1, . . . ,m}, consider the unique shortest r′, v(1)j , r′, v(2)j and r′, v(3)j -paths in G′.
Observe that they have length 2k + 10, and that the set of the last two vertices of such paths
is the set of all vertices that are at distance at least 2k + 9 from r′ in G′. Also note that
we have 3m such paths in total. Consider now the unique shortest f ′, bi-paths and f ′, d(1)j ,

f ′, d(2)j , f ′, d(3)j -paths in H for i ∈ {1, . . . , k} and j ∈ {1, . . . ,m − n}. They have length at
least 2k + 9, and the union of the sets of the last vertices of the f ′, bi-paths and the set of the

last two vertices of the f ′, d(1)j , f ′, d(2)j , f ′, d(3)j -paths is the set of vertices at distance at least
2k + 9 from f ′ in H. The total number of the paths is k + 3(m − n) = 3m. Hence, for each

21

j ∈ {1, . . . ,m}, at most one vertex of each shortest r′, v(1)j -path, r′, v(2)j -path and r′, v(3)j -path
in G′ is included in X, due to Lemma 11.

Only w1, . . . , wm and r have degrees at least four in G, and we already proved that r ∈ X.
For each j ∈ {1, . . . , n − m}, the vertex cj is included in four maximal cliques of H. By
Lemma 13, we then find that the isomorphism h maps the vertices c1, . . . , cm−n to the vertices
from the set {w1, . . . , wm}. Hence, at least m− n vertices from {w1, . . . , wm} are in S.

Let K be the set of vertices in G that are mapped to the vertices of Q by h. By Lemma 12,
the tree TK exists in G, and K is obtained by the elimination of V (TK) \K. By the definition
of TK , we find that TK has at least |K| = |Q| = k + m − n + 1 = 2n + m + 1 leaves. We will
use this lower bound on the number of leaves of TK in our reasoning below.

Because for each j ∈ {1, . . . ,m}, at most one vertex of each shortest r′, v(1)j -path, r′, v(2)j -

path and r′, v(3)j -path in G′ is included in X and wj belongs to each of these three paths, we

deduce that if wj ∈ X, then u
(1)
j , u

(2)
j , u

(3)
j ∈ S. Hence, when we denote the number of vertices of

{w1, . . . , wm} in X by `, we find that TK has 3`+(m−`)+1 leaves. We already deduced that TK
has at least 2n+m+ 1 leaves. This means that we have found that 2`+m+ 1 ≥ 2n+m+ 1,
which is equivalent to ` ≥ n. Recall that at least m − n vertices from {w1, . . . , wm} are in S,
which means that ` ≤ n. Hence, ` = n. Then exactly n vertices of {w1, . . . , wm} are included
in X, and consequently, exactly m− n vertices of this set are in S. Let wj1 , . . . , wjn be the n
vertices from {w1, . . . , wm} that are in X.

We let G′′ be the graph obtained from G by the elimination of r and wj1 , . . . , wjn . We note

that G′′ has 3(m−n) vertices at distance 2k+10 from r′, and these are the vertices v
(1)
j , v

(2)
j , v

(3)
j

for j ∈ {1, . . . ,m}\{j1, . . . , jn}. Then hmaps d
(1)
i , d

(2)
i , d

(3)
i for i ∈ {1, . . . ,m−n} to v

(1)
j , v

(2)
j , v

(3)
j

for j ∈ {1, . . . ,m} \ {j1, . . . , jn} due to Lemma 11. Therefore, the index vertices of the gad-

gets T
(p)
j , T

(q)
j , T

(s)
j for j ∈ {1, . . . ,m} \ {j1, . . . , jn} are in X.

We have now that X contains the vertex r, exactly n vertices wj1 , . . . , wjn from the

set {w1, . . . , wm}, as well as the index vertices of the gadgets T
(p)
j , T

(q)
j , T

(s)
j for every j ∈

{1, . . . ,m} \ {j1, . . . , jn}. Because the graph obtained after eliminating X contains the same
number of vertices as H, we find that X contains no other vertices. We set C ′ = {Cj1 , . . . , Cjm}.
Because H and the graph obtained from G by the elimination of X are isomorphic, for each

i ∈ {1, . . . , k}, the isomorphism h maps Ti to exactly one gadget T
(p)
j , T

(q)
j , T

(s)
j for some

j ∈ {j1, . . . , jn}. This means that C ′ is an exact cover for X, and we have completed the
proof. ut

Acknowledgements. We would like to thank Lukasz Kowalik for an inspiring discussion on
the theorem of Kleitman and West. We also thank the two anonymous referees for their useful
comments and suggestions that helped us to improve the presentation of our paper.

References

1. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indifference: Unit interval
vertex deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 232–243 (2010)

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties.
Inform. Process. Lett. 58(4), 171–176 (1996)

4. Courcelle, B.: The monadic second-order logic of graphs III: Tree-decompositions, minor and com-
plexity issues. ITA 26, 257–286 (1992)

22

5. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed
parameter tractable in claw-free graphs. Theor. Comput. Sci. 412, 6982–7000 (2011)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY, USA (1990)
8. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-

Hall Inc. (1981)
9. Golovach, P.A., Heggernes, P., van ’t Hof, P., Manne, F., Paulusma, D., Pilipczuk, M.: How to

eliminate a graph. In: Golumbic, M.C., Stern, M. (eds.) WG 2012. LNCS, vol. 7551, pp. 320–331.
Springer (2012)

10. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306, 297–317
(2006)

11. Heggernes, P., van ’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity
of vertex deletion into perfect graph classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 240–251. Springer (2011)

12. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
J. Comput. 2, 225–231 (1973)

13. Kawarabayashi, K., Reed, B.A.: An (almost) linear time algorithm for odd cycles transversal. In:
Charikar, M. (ed.) SODA 2010. pp. 365–378. SIAM (2010)

14. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99–106
(1991)

15. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)
16. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822

(2012)
17. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification prob-

lems. Discrete Appl. Math. 113, 109–128 (2001)
18. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)
19. Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex deletion. In:

Thilikos, D.M. (ed.) WG 2010. Lecture Notes in Computer Science, vol. 6410, pp. 196–207 (2010)
20. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory

B 62, 323–348 (1994)
21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM

J. Comput. 5, 266–283 (1976)
22. Samdal, E.: Minimum Fill-in Five Point Finite Element Graphs. Master’s thesis, Department of

Informatics, University of Bergen, Norway (2003)
23. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing
13(3): 566–579 (1984)

24. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10, 297–309 (1981)

23

