
Reduction of wasted energy in a volunteer computing
system through Reinforcement Learning

A. Stephen McGougha,∗, Matthew Forshawb

aSchool of Engineering and Computing Sciences, Durham University, DH1 3LE, U.K.
bSchool of Computing Science, Newcastle University, NE1 7RU, U.K.

Abstract

Volunteer computing systems provide an easy mechanism for users who wish

to perform large amounts of High Throughput Computing work. However, if

the Volunteer Computing system is deployed over a shared set of computers

where interactive users can seize back control of the computers this can lead to

wasted computational effort and hence wasted energy. Determining on which

resource to deploy a particular piece of work, or even to choose not to deploy the

work at the current time, is a difficult problem to solve, depending both on the

expected free time available on the computers within the Volunteer computing

system and the expected runtime of the work – both of which are difficult to

determine a-priori. We develop here a Reinforcement Learning approach to

solving this problem and demonstrate that it can provide a reduction in energy

consumption between 30% and 53% depending on whether we can tolerate an

increase in the overheads incurred.

Keywords: Volunteer Computing, Energy, Reinforcement Learning, Task

Scheduling

2014 MSC: 00-01, 99-00

∗Corresponding author
Email addresses: stephen.mcgough@durham.ac.uk (A. Stephen McGough),

m.j.forshaw@newcastle.ac.uk (Matthew Forshaw)

Preprint submitted to Journal of Sustainable Computing:Informatics and SystemsJuly 8, 2014

1. Introduction

Volunteer computing represents a powerful paradigm allowing organisations

to exploit existing computational power, either owned by themselves or others,

in order to solve large computational problems. It makes use of the idle time on

computers in order to progress the computation, relinquishing control back to5

the normal user when they require it. Examples of volunteer computing systems

include HTCondor (formerly known as Condor) [1], which is most often used

by organisations who wish to exploit the idle time of computers which they

already own, or BOINC [2], which is commonly used in situations where the

organisation wishes to exploit computer power not owned by the organisation.10

All volunteer computing systems need to handle the eviction of work due

to a computer’s user requiring the computational power back for their own use

or due to system crashes and reboots. In the best case scenario the pieces of

computational work distributed out are small enough that control can be passed

back without the loss of any significant amount of work. If the interruption15

is expected to be short it may be possible to suspend the work – removing

processing time from the work – subject to a threshold after which the work is

evicted, thus saving energy from re-execution. This is not possible in the case of

system crashes or reboots and if the user’s active period is long can significantly

increase the overheads on the execution time of the work. A third option is to20

use checkpoint and migration of work [3], though this is only possible for some

types of work and on certain types of operating systems and may not lead to

energy-efficient use of the system [4, 5]. It is also possible to develop your own

checkpoint and migration mechanism bespoke to a particular application. More

often than not, unless the organisation wishing to perform the work is willing to25

expend effort, the work will just be terminated and the current execution lost,

thus directly leading to wasted energy. This can be exacerbated further if the

work is repeatedly evicted.

Thus our problem can be summarised as determining the most appropriate

time and best computer on which to schedule a particular piece of work in30

2

order to maximise the chances of it running to completion. Given that we

are not able to determine a-priori the next time a user will wish to make use

of their computer, nor the execution time of a particular piece of work, this

is a non-trivial problem to solve. As a secondary problem we aim to minimise

energy consumption thus steering work towards more energy efficient computers35

where appropriate. We investigate this problem in the context of a volunteer

computing system based within a single large organisation – such as a university

HTCondor system.

In previous work [6] we have shown that it would not be feasible to restrict

the execution times of submitted work in order to minimise evictions – showing40

that work execution times would need to be less than two minutes to ensure

95% of work would complete without eviction. Here we seek to better place

work onto resources, or potentially choose not to deploy work onto a resource

at a given time, to minimise the chance of eviction whilst at the same time

attempting to place work on the most energy efficient computers.45

In a large organisation there will be general trends for the times that com-

puters will be used and when work will be submitted to the Volunteer computer

system. However, the patterns which emerge are likely to be complicated and

bespoke to the particular organisation. Detailed analysis could be performed in

order to determine these pattern, though this would have little benefit for other50

organisations and would be quickly invalidated if usage patterns change – which

is to be expected.

Reinforcement Learning [7] is a machine learning technique which is capable

of adapting behaviour in order to maximise a given reward function. It has

the advantages that it does not require initial training data and can constantly55

re-train itself to the changing environment. At each decision epoch one of two

polices can be used. The first policy, often referred to as exploitation, is to select

the action to perform which given previous evidence would seem to maximise the

return. Continual use of this policy would lead to a non-adaptive solutions as

actions which previously gave poor return would not be considered. Therefore60

the second policy, often referred to as exploration, is used to allow adaption

3

to the changing environment by selecting the action randomly. This does have

the disadvantage that sub-optimal actions may be selected, however, it has

the advantage that an action which may now gives good rewards can be tried

allowing it to be used through exploitation in the future. It is therefore essential65

to get the right balance between these two polices – too greedy will lead to poor

adaption to a changing environment whilst too explorative will lead to many

bad action choices. On completion of an action a reward value is computed

indicating how good the choice was to select this action and the action history

is updated with this reward, increasing the reward history if the chosen action70

was good and decreasing the reward history if bad.

In this work we propose and evaluate the use of a Reinforcement Learning

technique in order to ‘learn’ the patterns of the system. By employing a Rein-

forcement Learning technique which allows for both exploration and exploitation

we are able to develop a system which is capable of both learning the particular75

patterns of a given Volunteer Computer system but also to adapt as the system

changes.

The rest of this paper is set out as follows. We formally describe our Vol-

unteer Computing model in Section 2 before performing an analytical analysis

of historical trace-logs from our University based HTCondor system in Section80

3. In Section 4 we discuss how we use a Reinforcement Learning approach to

reduce the energy consumption for scheduling jobs within this system. Section

5 describes the environment which we will be simulating along with the Cluster

simulation software used. We discuss related work in Section 6. Results from

our simulation are presented in Section 7 before we present conclusions and85

future directions in Section 8.

2. Cluster Model

We explore the use of Reinforcement Learning for resource selection within a

shared use computer system in which High Throughput Computing (HTC) jobs

(we equate jobs with work and adopt this term hereafter) are run on the same90

4

computers as comprise a set of open access clusters. Each cluster comprises

of a set of computers geographically located within the organisation. Figure 1

illustrates the overall architecture of the computer system we are modelling.

Computers within a cluster are assumed to be under their own power man-

agement. In previous work we have shown how we can modify this policy in95

order to effect the energy consumption of the computers [8]. However, for this

work we assume that the energy policy of the computers is not under our con-

trol. Instead we focus on how we can effect the energy consumption of the High

Throughput Computing jobs. The High Throughput Computing System is un-

der its own policy controlling such factors as how long after a user logs out of100

a computer it can be used for jobs and the selection policy for which computer

to use. Our system also provides a mechanism by which the HTC system can

wake up sleeping computers if required to perform work.

Interactive users, who are assumed to be able to log into any computer within

the organisation, can arrive at any time that a particular cluster room is open105

and log into the computer of their choice. By contrast, high-throughput jobs are

submitted through one centrally controlled access point with the system itself

determining the computers that will be used. We possess trace data for both

user types. We assume computers may go to sleep based on a pre-defined policy

and that interactive users can always wake up a computer. Policies also allow110

WOL

Z
ZZ

High-Throughput
Users

Interactive Users

High-Throughput
Management

Z
ZZ

Policy

Cluster Policy

Cluster Policy

Figure 1: Overall architecture of multi-use Cluster

5

the high-throughput jobs to wake up the computers when needed.

Computers within the organisation can be in one of four states, those of

sleeping, idle, User and HTC (Figure 2). The sleeping state equate to the

Advanced Configuration and Power Interface (ACPI) specification [9] state S3,

whilst all other states equate to ACPI state S0. It is assumed that computers115

will consume energy at a set rate in each state with User and HTC consuming

energy at the same rate. We acknowledge that the rate of energy consumption

would vary based on the individual workload in each state, however, as our

intention here is to determine if energy could be saved by using Reinforcement

Learning we can safely ignore this effect as it would become a scaling factor to120

our actual results.

As interactive users are the primary reason for the computers they take

precedence. A user is able to log into a sleeping computer or an idle computer

and if they log into a computer servicing a HTC job then the job will be evicted.

Slight delays while a computer resumes from sleep or while a high-throughput125

job terminates are considered tolerable. Only idle computers can be used for

HTC jobs. If it is desired to use a sleeping computer for a HTC job it first

Idle

HTC

UserSleep

User
Login

Inactive

User activation

HTC job
assigned

HTC
wake up

User
Logout

User
Login

HTC
job

finish

Computer
reboot

Figure 2: States and state transitions for computers

6

transitions into the idle state before it can be assigned a HTC job. This simplifies

the wakeup procedure for computers which cannot determine if they are woken

due to a computer reboot or HTC request. Computers are rebooted nightly130

from all states apart from User in which case the user remains active and the

reboot is cancelled. All reboots return the computer to the idle state.

By contrast HTC jobs can be in one of two states, active or queued. Active

jobs are being processed on a computer whilst queued jobs are inactive and

waiting for a computer. In the event of a job being evicted from a computer135

due to a reboot or user login then it is placed back into the queue of pending

jobs for re-scheduling to a computer. Thus a job may be stated and evicted

from a computer several times before it completes execution. This situation is

exacerbated by the fact that a HTC user may submit broken jobs which never

complete.140

We do not concern ourselves here with broken jobs which fail immediately

or ones which finish in a short time. The first case have little if any energy

requirements whilst it is not possible to distinguish the second case from non-

broken jobs. For the purpose of this work all jobs which terminate within a finite

amount of time are considered to be good. The difficulty is in distinguishing145

between bad jobs which are not going to terminate and good jobs which have

just been unfortunate in their allocation to resources. In previous work [6]

we identified these ambiguous jobs as ‘miscreant’ and investigated techniques

which could be used to classify these miscreant jobs as either good or bad. This

allowed us to mark the jobs as bad and cease attempting to run them thus saving150

energy. However, this approach did not take into account the time and energy

spent running a miscreant job before either good job completion of identifying

it as a bad job. This work could also lead to false-positives where good jobs

were identified as bad leading to a loss of productive work.

7

3. Analysis of a real HTC system155

In this section we analyse the characteristics of our HTCondor system, based

on our logs from 2010, in order to identify potential scenarios under which it

would not be appropriate to run a job. We can bin jobs by the number of

hours execution they require to complete. Figure 3 shows the percentage of

jobs each day which required y hours of execution time – ignoring any time160

wasted through evictions. Note that this does not include jobs which failed to

terminate as these jobs do not have a meaningful execution time. Most ‘good’

jobs have an execution time less than three hours. However, there are a number

of anomalies. Thus it is not safe to assume any job which has received over y

hours of service will automatically be a ‘bad’ job.165

Although we do not have a prediction on the amount of time a job will take

to execute we can use historical information from previous evicted executions

in order to provide a lower bound for the execution time of a job. Figure 4

shows the probability that a job of length x hours will complete given that it is

submitted during hour y of the day. Note that this is assuming that no other jobs170

are running at the time and should therefore be considered as an overestimate of

the probability. As all computers are rebooted at 3am this leads to the diagonal

cut-off within the heat map going from a 50% chance of completion to 0% in the

lower right hand side of the figure. There is only one hour slot under which a

Day of Year

Pe
rc

en
ta

ge
 o

f j
ob

s
co

m
pl

et
in

g
in

 h
ou

r b
in

s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

14
13
12
11
10
9
8
7
6
5
4
3
2
1

0

0.2

0.4

0.6

0.8

1

Figure 3: Breakdown of Job durations per day

8

Job Length (hours)

H
ou

r o
f d

ay

5 10 15 20

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: Probability job duration per hour of the day

24 hour job can complete – when started immediately after a computer reboot175

at 3am. The highest chance of short jobs completing successfully being between

3am and 8am. By using Figure 4 along with largest prior execution time for an

evicted job we can determine with some degree of confidence the chances that

the job will complete at the time of submission.

Although Figure 4 provides great insight into the best times to run jobs on180

the HTCondor system this analysis is highly specific to the system at Newcastle

University and is a static snapshot of the system as it was in 2010. Ideally we

would wish to produce a dynamic version of this information which could adapt

to any similar volunteer computing system.

4. Reinforcement Learning Approach185

Reinforcement Learning (RL) [7] is a machine learning technique in which

an agent can learn without the aid of supervision a set of actions in response to

a given set of states. RL has the advantage of not requiring a training data set

and can adapt its behaviour to a changing environment. RL has been previously

used to solve control problems such as elevator scheduling or resource allocation190

9

within a data centre [10].

In order to use Reinforcement Learning to reduce the energy consumption for

our system we use the approach of an n-armed bandit [7]. Under this assumption

each action – the resource on which to run the job – is independent of all other

resource selections. An extra action allows a job to remain in the queue and not195

receive service at this time. Each job j ∈ {1, 2, ...} to be scheduled will observe

the system in a given state s ∈ S. For simplicity we assume here that a job

which is evicted becomes a new job within the system when it is re-scheduled.

An action a ∈ A then needs to be determined as to which resource the job

should be allocated:200

a = f(Q(s,A)), (1)

where Q(s,A) is the set of all reward values for the actions A available whilst in

state s and f() is the selection policy. Although we do not know Q(s,A) we can

estimate Q′(s,A) from prior decisions and rewards and use this as an estimator:

Q′j(s,A) = {q′j(s, a)} ∀a ∈ A, (2)

and:

q′j(s, a) = Ri(s, a′) ∀i ≤ j, a′ = a, (3)

where Ri ∈ [−1, 1] is the reward function for job i. A value, for Ri(s, a), of −1205

indicating that this was the worst possible choice of action whilst +1 indicates

the best choice of action. Before defining the reward function we need first to

define the four possible outcomes when an action is applied to a job. These are:

• Job i ran to completion on resource a: The job i was submitted to

resource a and ran to completion. In this case the action was good and we210

would wish to reward it well (+1). However, we may not wish to give this

a reward of +1 if there exists a more energy-efficient resource on which

the job could have been placed.

10

• Job i was allocated to a resource and was either evicted or killed:

This is the counter-case to the first item. In this case the resource selection215

was bad (−1). We may however not wish to fully punish this with a value

of −1 if there are other resources which have worse energy consumption

which could have been chosen.

• Job i was queued but there exists a resource a′ which could have

run it to completion: In this case the job was placed into the queue but220

it was later determined that another resource a′ which was idle at the time

could have serviced the job to completion. Thus the decision to queue was

a bad one (−1). In order to determine if there exists a resource a′ we must

track all resources which were free at the selection time and determine if

any remain free until the completion time of the job. Note that we only225

penalise a queue action once even if there are multiple resources which

could have serviced the job.

• Job i was queued and no resource could have run it: This is the

counter-case to the one listed above. In this case no resource can be found

which was free at the time of selection and remained free long enough to230

service the job. In this case the choice to queue was the best choice.

We can now define the reward function as follows for job i:

Ri(s, a) =

+1− σEa i ran to completion on resource a

−1 i was queued but there exists a resource

a′ which could have run it to completion

+1 i was queued and no resource could have

run it

−1 + σ(1− Ea) i was allocated to a resource and

was either evicted or killed,

(4)

where the first term in the reward function is used to indicate that the chosen

action was good or not and the second term (if present) helps to steer jobs

11

towards more energy efficient resources. The value σ ∈ [0, 1] is the ratio of235

how important energy conservation is over not wasting energy through badly

placed jobs and Ea ∈ [−1, 1] is a scaled value indicating how energy efficient

the selected computer is in comparison to the most and least energy efficient

computers available:

Ea =
ea − eb
ew − eb

, (5)

where ea is the energy rate of the resource used, eb the energy rate of the most240

power efficient computer and ew the energy rate of the worst computer available.

In all cases the active energy rate is used.

We can now define the selection policy f() which is used to determine the

action to perform given the prior history reward Q′(s,A). We define two ap-

proaches here, those of a greedy selection and an explorative selection policy:245

f(Q′(s,A)) =

 maxa(Q′(s,A′)) with probability 1 - ε (exploitative)

selectRandom(A′) with probability ε (explorative)

(6)

where A′ ⊂ A is the set of all actions which are currently available. Thus A′ is

the set of resources which are currently free along with leaving the job in the

queue. maxa() selects the action a with the highest expected reward, whilst

selectRandom(A′) will select an action uniformly at random from A′.

If we select a greedy policy then we are exploiting prior knowledge to use the250

action with the greatest expected reward, whilst an exploitive policy allows us to

search for potentially better actions. This is particularly important due to the

dynamic state of our system. Being too greedy can lead to poor energy saving

as the agent will keep using sub-optimal actions, whilst being too explorative

can lead to wasted energy whilst trying different actions. A careful selection of255

ε is therefore required.

12

4.1. Computer level approach

For the above RL approach we can define the state set as the hour during

the day which the job arrives along with the maximum number of hours that the

job has consumed on a previous evicted executions (if any, otherwise zero). This260

gives us a state space of 242 states as our computers reboot every day at 3am

leading to a maximum execution time of 24 hours. The set of possible actions

can be to allocate jobs to specific computers within the whole system along

with an action to place the job into the queue. In this case there are 242(n+ 1)

possible state-action combinations, where n is the number of computers.265

4.2. Cluster level approach

The potential search space for the Computer based RL could potentially be

too great and lead to drawbacks of time to compute the best action to take,

memory footprint for storing the state-action combinations or the time taken

for the RL algorithm to converge on a good policy. One way to alleviate these270

problems is to reduce the search-action space. We can exploit here the fact that

sets of computers are co-located within clusters. We can keep the state space

the same here and have actions which select which cluster to send a job to, or

leave the job in the queue. This reduces the state-action space to 242(c + 1)

combinations, where c is the number of clusters. Alternatively we can increase275

the state space by looking at the hour within a week that the job arrives. Thus

allowing the weekly patterns of the system to be taken into account. This gives

a state-action space of 24 × 168(c + 1) combinations. Allocation of jobs to

computers within a cluster is then performed at random over those computers

currently available. It should be noted that a cluster which had no computers280

free at the time of scheduling would not have been considered.

4.3. System level approach

In this degenerative case we use RL only to select between running a job

and placing it onto the queue. It can be seen as a dynamic implementation of

the heat map presented in Section 3. We have 242 states and only two actions285

13

(run job, queue job). If the action is to run the job then a computer is selected

at random from all of those available within the system. This is presented as

a quick and low-memory version of RL and to validate if computer or cluster

selection RL can outperform a simple hour of day / prior job execution time

policy.290

4.4. Optimisation of RL approaches

Here we discuss a number of approaches taken to optimise the efficiency of

the RL approaches discussed above.

4.4.1. Varying the reward history for RL

The usage patters of a volunteer computing system can show great variation295

and seasonal patterns – see Section 5 for a discussion of the patterns for our

HTCondor system. As such taking all prior history into account when comput-

ing the expected reward can make the RL slow to respond to changes. In order

to overcome this limitation we investigate the use of limiting the history that

we take into account. For each state-action combination we may choose to only300

take the n most recent rewards into account when computing the average pre-

vious reward. This helps reduce the impact caused by events happening much

earlier in the system, especially when there is significant variation within the

system.

The approach of limiting the history used when computing the average re-305

ward can be extended to give higher weights to more recent rewards than rewards

further into the past. Here we use a gaussian weighting of the rewards to replace

equation 3:

q′j(s, a) =

∑j−1
i=j−nRi(s, a)wi−j+n+1∑j−1

i=j−n wi−j+n+1

, (7)

where wi is the gaussian weight function:

wi = e
−8(n−i)

n (8)

and all other parameters are as defined for equation 3. The gaussian weight310

function is chosen to give a weight of 1 to the most recent reward and a weight

14

of almost zero to the nth most recent reward. All rewards prior to this are

assumed to have a weight of zero and have no effect on the weighted average.

4.4.2. Vary ε

An alternative approach to modifying the history is to modify ε to make the315

RL approach more explorative when the rewards become less favourable. We

use two complementary approaches here:

• Initially high ε: Here the initial value ε1 is set high, for each state, until

the first n rewards have been observed. After this it reverts back to a

lower value ε2. This allows the RL to be initially more explorative.320

• Vary ε when the new rewards diverge from the best seen so far:

Here the average of the last n rewards, for a given state, are compared with

the best reward seen so far. If the ratio falls below a set threshold then

the value of ε is increased. This allows the RL to become more explorative

when the rewards move away from the best seen so far.325

4.4.3. Preventing known bad actions

Under certain circumstances the set of all available actions may not be a

sensible set to select from. Rather than waiting for the RL approach to learn

these patterns we can instead remove these from the possible search space before

selecting the action. We present here three approaches we have implemented to330

prevent bad actions:

• Removing full Clusters / Computers: At the time of action selection

the current state of the HTC system is evaluated. If the RL policy is

based on individual computers then the action space is reduced to only

those computers which could currently accept a job and enqueueing the335

job. Likewise for the cluster-based RL policy only those clusters capable

of running the job (and enquiring) are used. In the degenerative case –

system level – if all computers are currently in use then the job will just be

15

enqueued. This prevents the RL from allocating jobs to resources which

would not be able to handle them.340

• Favour untried actions when all tried actions are bad: If RL is

being exploitative at a given time then this can lead to bad action choices.

This is especially the case at the start when only a few of the actions may

have been tried and if these have all given poor rewards. In order to reduce

this effect we artificially give all untried actions a reward value of zero.345

Thus if all previous actions from this state have lead to bad (negative)

rewards then the RL approach will select an untried action as giving the

best reward. As all good rewards will give a positive value this would not

prevent a previously identified good action from being selected.

• Using local system knowledge: We can exploit here information we350

know about our particular HTC setup in order to remove action combi-

nations which are known a-priori not to lead to good rewards. In the case

of the HTCondor setup at Newcastle University as all the computers are

rebooted at 3am there is no point in selecting an action which would mean

a job is active at this time. Thus any job which has a start hour and previ-355

ous (evicted) run-time which would lead to the job being active at 3am is

only ever placed into the queue. This can be seen as an implementation of

the harsh cut-off shown in Figure 4. Note that this does not prevent jobs

from being evicted at 3am due to a reboot – when the previous run-time

of the job did not indicate that it would run past 3am.360

5. Experimental environment

The HTCondor installation at Newcastle University makes use of 1,359 stu-

dent access computers, which were running Microsoft Windows XP in 2010.

These computers were distributed around 37 ‘clusters’ based in different loca-

tions around the University. Computer clusters may share the same room, with365

each room having its own opening hours. These hours vary between clusters

16

that are predominantly for teaching purposes and open during teaching hours

(normally 9am till 5pm) through to 24-hour access computer clusters. The lo-

cation of clusters has a significant impact on throughput of interactive users,

from clusters buried deep within a particular school to those within busy thor-370

oughfares such as the University Library.

Computers within the clusters are replaced on a five-year rolling programme

with computers falling into one of three broad categories as outlined in Table 1.

The University has had a policy to minimise energy consumption on all com-

putational infrastructure for a number of years. Hence the ‘Normal’ computers375

have been chosen to be energy efficient. ‘High End’ computers are provisioned

for courses requiring large computational and/or rendering requirements such as

CAD or video editing, as such they have higher energy requirements. ‘Legacy’

computers pre-date the policy of purchasing energy efficient computers and are

also the oldest equipment within the system. All computers within a cluster are380

provisioned at the same time and will contain equivalent computing resources.

Thus there is a wide variance between clusters within the University but no

significant variance within clusters.

Whilst we expect casual use to migrate onto user owned portable devices

and virtual desktops, the demand for compute/graphic intensive workstations385

running high-end software is, if anything, increasing. Further, these high-end

applications are unlikely to migrate to virtual desktops or user owned devices

due to hardware and licensing requirements, so we expect to need to maintain

Table 1: Computer Types

Type Cores Speed Power Consumption

Active Idle Sleep

Normal 2 ~3Ghz 57W 40W 2W

High End 4 ~3Ghz 114W 67W 3W

Legacy 2 ~2Ghz 100-180W 50-80W 4W

17

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Date

N
u

m
b

e
r

o
f

u
s
e

r
lo

g
in

s
 p

e
r

d
a

y
 (

T
h

o
u

s
a

n
d

s
)

Figure 5: Interactive user logins showing seasonality

a pool of hardware that will also be useful for HTCondor for some time.

By default computers within the cluster will enter the sleep state after a390

given interval of inactivity. This time will depend on whether the cluster is

open or not. During open hours computers will remain in the idle state for

one hour before entering the sleep state whilst outside of these hours the idle

interval before sleep is reduced to 15 minutes. This policy was originally trialled

under Windows XP where the time for computers to resume from the shutdown395

state was considerable (sleep was an unreliable option for our environment).

Likewise the time interval before a HTCondor job could start using a computer

was set to be 15 minutes during cluster opening hours and zero minutes outside

of opening hours. The latter was possible as computers would only have their

states changed at these times due to HTCondor waking them up or a scheduled400

reboot.

We have trace logs generated from interactive user logins and HTCondor

execution logs for 2010. Figure 5 illustrates the interactive logins for this period

showing the high degree of seasonality within the data. It is easy to distinguish

between week and weekends as well as where the three terms lie along with the405

vacations. This represents 1,229,820 interactive uses of the computers. It would

therefore seem reasonable to expect that jobs which are run during quieter times

would have a greater chance of successful completion than those run during the

most busy weekdays.

18

Figure 6 depicts the profile for the 532,467 job submissions made to HTCon-410

dor during this period. As can be seen the job submissions follow no clearly

definable pattern. Note that out of these submissions 131,909 were later killed

by the original HTCondor user or the system administrator as the jobs were

not completing and wasting resources. In order to handle these killed jobs the

simulation assumes that these will be non-terminating jobs and will keep on415

submitting them to resources until the time at which the high-throughput user

(or system administrator) terminates them. However, the RL approach should

identify these and keep them in the queue until their termination time. It is

worth noting that on Thursday 03/06/2010 there were approximately 93,000

job submissions.420

Through previous work [8] we are able to wake up sleeping computers when

required using Rooster [11]. This capability is replicated within the simulation.

5.1. Simulation Software

We have been developing a trace driven simulation model of a shared resource

High Throughput Computing system, based around the HTCondor software,425

since 2010 [6, 8, 12]. This simulation software allows us to rapidly evaluate

different policy ideas and scheduling ideas without the need to alter the live

HTCondor environment or requiring lengthy deployment of a test environment.

Once an idea has shown good potential within the simulation environment we

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
1

10

100

1000

10000

100000

Date

N
u

m
b

e
r

o
f

S
u

b
m

is
s
io

n
s

Figure 6: HTCondor job submission profile

19

have been able to deploy the ideas out into the real HTCondor environment [8].430

The simulation software consumes three files, the first describing the policy

configuration to use for the simulation, the second a trace log of user access

patterns to the computers and the third file a trace log of HTCondor workload.

The user trace data indicates login and logout time for the user, and the specific

computer that the user occupied. In this paper we do not simulate alterations435

to this usage pattern. The high-throughput trace data, by contrast, contains

only the time that the jobs were submitted and their duration as changes to the

policy will change the computers used and the time at which the jobs complete.

By interplaying these two log files under the defined policy we are able to com-

pare different policy and scheduling decisions. Although the approach has been440

developed with the HTCondor system in mind it could be easily be adapted to

other high-throughput clustering systems.

We have extended our cluster-based simulation for HTCondor [12] to take

account of the data transfer times. The iperf bandwidth testing software [13]

was used to compute the maximum bandwidths available between computers445

for different payload sizes. Although bandwidth for small (less than 1Kb) of

data exceeded 100MBits/s this quickly capped out at 94.75MBits/s. It should

be noted that these are maximum bandwidth potentials, real use is likely to be

less. Thus these are lower estimates of transfer times.

6. Related Work450

A number of scheduling approaches have adopted the use of Reinforcement

Learning. Bod́ık et al. [10] proposed the use of Machine Learning, and Reinforce-

ment Learning in particular for machine allocation within a Data Centre under

defined Quality of Service requirements. Galstyan et al. [14] applied Reinforce-

ment Learning in the context of resource allocation in grid environments, using455

Q-learning with an ε-greedy selection rule, applying the technique to a synthetic

workload comprising 1000 agents and 250 resources, showing the mechanism to

outperform both ‘random’ and ‘least loaded’ allocation approaches. Tesauro et

20

al. [15] proposed the Sarsa(0) approach for resource allocation in multiple server

hosting environments for web applications. This was an extension to previous460

work [16]. Das et al. [17] applied Reinforcement Learning to optimise perfor-

mance and energy consumption for a homogeneous group of servers, achieving

25% savings with negligible impact on SLAs. However, these approaches are

focused at more short running tasks on dedicated resources without the need to

deal with job eviction due to other users of higher priority.465

Reinforcement Learning has also been widely used for scheduling at a lower

level within task throughput systems. Bar-Hillel et al. [18] apply Reinforcement

Learning techniques to automatically adapt the number of concurrent tasks run-

ning on a grid workstation, proposing both online and batch approaches, though

the presented results were only for a small deployment. While Vengerov et470

al. [19] used RL for real-time processor core allocation. Whiteson et al. [20] em-

ployed Reinforcement Learning to devise a user request routing policy for multi-

tier applications. Rao et al. [21] applied Reinforcement Learning in VCONF, an

agent for dynamic reconfiguration of virtual machines. Kephart et al. [22] used

RL to develop powercap policies for performance and power management of a475

single chassis of blade servers. As these approaches work at a different level to

our work we see them as being complementary.

A number of Grid and Cluster level simulators exist including SimGrid [23],

GridSim [24], and OptorSim [25] though these focus more at the resource selec-

tion process both within clusters and between clusters and lack the modelling480

of energy. More recently Cloud simulators have been proposed which are ca-

pable of modelling tradeoff between not only cost and Quality of Service, but

also energy consumption. These include CloudSim [26], GreenCloud [27], and

MDCSim [28]. However, these do not allow modelling of multi-use clusters with

interactive user workloads.485

A number of studies [29, 30] leverage resource heterogeneity and devise

power management and workload distribution schemes to achieve near energy-

proportional [31] cluster power profiles. Due to the long-running nature of

the tasks comprising our workload, such approaches would incur significant job

21

overheads and reduction in overall system throughput.490

Berten and Jeannot [32] performed a numerical analysis of resubmissions in a

fault prone Grid environment. Their approach studies the effect of bounded and

unbounded reallocation polices. However, energy consumption is not considered

and tasks are assumed not to be faulty.

Checkpointing and migration [33] does not reduce task reallocation but re-495

moves the need to re-start the task after each reallocation. However, to allow

checkpoint and migration the task and the environment needs to support this

process, something which is currently unavailable in the Windows implementa-

tion of HTCondor which makes up the majority of the Newcastle pool. Users

can ‘roll’ their own checkpoint and migration mechanism, however this is often500

a non-trivial task to perform.

Estimates of task execution times can be used as a criteria for selecting when

to deploy a job to a resource. However, the use of estimates, provided by users

at submission, have been widely criticised by the scheduling community for their

inaccuracy [34]. With many papers reporting the majority of task taking less505

than 30% of their requested allocation [35, 36, 37]. This may be due to tasks

misconfiguration causing immediate termination [38] but is often due to wide

variation in execution times [39] – especially if the cluster is heterogeneous – or

since tasks are often terminated at the end of their estimated time interval users

‘pad’ their estimate to increase the chance of completing. The use of estimates510

could be added into our system to help during the initial runs of the job.

7. Simulations and Results

Here we present the results of comparing the different Reinforcement Learn-

ing approaches we have defined in Section 4. We also evaluate the effect of the

two parameters we defined within our RL algorithm – specifically ε and σ. Here515

ε indicates how exploitative or explorative we wish to be and σ indicates our

priority towards selecting the most energy efficient computer.

We compare the different approaches and parameters through the average

22

overheads (measured in minutes) observed within the simulation and the energy

consumed in processing the HTC jobs. We define the overhead of a job to be520

the difference between the true execution time of a job and the wall-clock time

between job submission and job completion. For energy we will report on the

total power consumed (in MWh) for high-throughput jobs in the period. We

do not concern ourselves with the energy consumed via the interactive users, as

this is assumed to be constant, except to say that this equates to approximately525

202MWh. For the HTC energy consumed we break this down into ‘good energy’

– energy expended in running jobs to completion – and ‘wasted energy’ – energy

wasted on jobs which are evicted or terminated by the user / administrator. It

should be noted that running HTCondor jobs on different hardware may lead

to variations in execution times. It would however be difficult to determine how530

this would be affected without knowing whether the particular job was memory-

CPU- or IO-dominant. As such the simulations ignore this effect and assume

the job will require the same time to execute.

As a point of reference we present here the overheads and energy consumed

by our simulation acting under the policy which is currently in place at Newcas-535

tle University – computers power managing themselves as described in Section

5 and using the default HTCondor resource selection policy (effectively a ran-

dom resource selection policy). The average overhead within the system was

13.5 minutes and a total energy consumption of 121MWh. The total energy

consumption comprised of 37.4MWh of good energy and 83.6MWh of wasted540

energy.

7.1. Effect of ε and σ

We present here only results for the RL cluster approach as these are in-

dicative for all other cases. Figure 7 shows the effect of ε and σ on the average

overheads observed. There is no apparent impact on overheads due to σ, this545

is consistent with the RL and our assumption that the execution time for a job

remains constant irrespective of the computer used.

There is a significant impact on overheads for small values of ε (<0.1). This

23

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

Sigma
Epsilon

A
v
e

ra
g

e
 o

v
e

rh
e

a
d

 (
m

in
u

te
s
)

Figure 7: Average overhead on RL jobs

is a consequence of the RL approach being too exploitative and not identifying

the best resources to use. This is bourn out within the simulation by resources550

being selected which fail to run the job to completion requiring resubmissions.

However, once ε is greater than 0.1 there is little if any effect on the overheads

seen within the system.

Looking at the total energy consumed for the HTCondor workload (Figure

8) reducing the value of ε reduces the energy consumed. However, unlike the555

overheads the effect is more graduated over the range of ε starting from ε = 5.

With energy consumptions ranging from ˜114MWh down to ˜57MWh. This

equates to an overall energy saving between 6 and 53% in comparison to the

current non-RL approach taken. Thus choosing a low value of ε would seem

to give the most energy efficient solution. However, given that values of ε less560

than 0.1 lead to an increase in overheads if the desire is to maintain the same

overheads then ε should be set to 0.1. This will give a total energy consumption

24

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

120

Sigma
Epsilon

T
o
ta

l
e
n
e
rg

y
 (

M
W

h
)

Figure 8: Total Energy consumed for RL jobs

of ˜87MWh, which is a saving of 28%.

Although not clearly visible within Figure 8 σ has an effect on the energy

consumed by the system. This effect is a consequence of the savings which can565

be made on the good energy used within the system and can be seen a little

easier in Figure 9. The effect is most pronounced for small ε where the difference

is ˜7MWh (6%) whilst at large values of ε this falls to just ˜1MWh (0.8%). At

an ε value of 0.1 the difference is still ˜7MWh. Therefore selecting a large value

of σ, with the minimum value being seen with σ = 0.8, would give the largest570

energy saving.

The effect on useful energy by ε ranges between ˜4MWh and ˜10MWh (3-

8%) with an ε value of 0.1 only increasing the energy consumed by ˜1MWh.

By contrast the wasted energy (Figure 10) shows no impact from varying σ.

Although σ does play a role in equation 4 it is apparent that the wasted energy575

equation is dominated by the two other cases which do not have a σ component.

The wasted energy (Figure 10) is significantly impacted by the value of ε

25

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

Sigma
Epsilon

U
s
e

fu
l
e

n
e

rg
y
 (

M
W

h
)

Figure 9: Useful Energy consumed for RL jobs

with low values of ε exhibiting the lowest wasted energy values. This provides

a potential energy saving of ˜47MWh (39%).

Thus if the overall concern is to minimise overheads choosing ε = 0.1 would580

give the best value. Whist if the overall concern is to minimise energy consump-

tion then ε = 0.01 and σ = 0.8 would provide a reduction of ˜57MWh (53%).

Given that we wish to maintain the overhead at a reasonable level choosing

ε = 0.1 and σ = 0.8 would reduce energy consumption by ˜34MWh (28%).

Figure 11 illustrates the relationship between overhead and total energy585

consumed when we vary ε and σ. The different colours within the graph each

represent a different value of ε whilst the spread of points represents the impact

of σ. The major impact here is from ε whilst the the effect of σ is much less –

though increasing as ε decreases. Choosing lower values of ε will minimise energy

consumption, though at the expense of increasing overheads. Whilst increasing590

ε will increase the energy consumed and decrease the overheads. However,

26

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

Sigma
Epsilon

W
a

s
te

d
 e

n
e

rg
y
 (

M
W

h
)

Figure 10: Wasted Energy consumed for RL jobs

increasing ε beyond 0.6 will increase the overheads whilst still increasing the

energy consumption providing no benefit for overheads nor energy. Thus the

maximum value of ε which should be selected is 0.6.

7.2. Comparison of different RL approaches595

Here we compare the four identified RL strategies: Computer, Cluster, Clus-

ter Week and System. These are discussed in Sections 4.1, 4.2, 4.2 and 4.3

respectively. For each approach we select three combinations of ε and σ which

give the lowest overhead, lowest energy and the closest overhead in comparison

to our non-RL approach.600

Figure 12 shows the overheads observed for each of these approaches. The

minimum overheads are observed for the Computer RL approach (9.9 minutes)

though these are closely followed by cluster week and cluster, only being 0.4

and 0.7 minutes longer on average respectively. The system level approach is

unable to compete being some six minutes longer than the best RL approach and605

27

0 5 10 15 20 25
0

20

40

60

80

100

120

Average overhead (minutes)

T
o
ta

l
e
n
e
rg

y
 (

M
W

h
)

0.01

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11: Overhead and Energy compared

some 2.3 minutes slower than the current non-RL approach. However, none of

these approaches show good energy reductions (Figure 13, where LO is Lowest

Overheads, LE is Lowest Energy and RC is matching the overhead from our

non-RL selection policy). The largest reduction is for the cluster week approach

which achieves a ˜21MWh (17%) reduction. This is achieved through the lowest610

values of good energy and wasted energy.

For the case where we wish to minimise energy consumption the cluster

approach is the best to select, this reduces the consumed energy by ˜64MWh

(53%). However, this does lead to the highest overheads (30.7 minutes). By

contrast the cluster week approach has the lowest overheads for any of the615

lowest energy choices (13 minutes). However this is at the expense of raising

energy consumption by ˜24MWh (20%).

All approaches, apart from the system level approach, are capable of match-

ing the non-RL policy. The cluster level approach manages the best energy

28

Computer Cluster Cluster Week System
0

5

10

15

20

25

30

35

Av
er

ag
e

ov
er

he
ad

 (m
in

ut
es

)

Lowest overhead
Lowest energy
Overhead = Overhead from Random Case

Figure 12: Comparison of the overheads for the different RL approaches

LO LE RC LO LE RC LO LE RC LO LE RC
0

20

40

60

80

100

120

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

Good energy
Wasted energy

&RPSXWHU &OXVWHU &OXVWHU�:HHN 6\VWHP

Figure 13: Comparison of the energy consumed for the different RL approaches

consumption here reducing it by ˜36MWh (30%).620

In all cases the dominant energy usage is on wasted work. However, this is

still significantly reduced in comparison to the non-RL approach, ranging from

˜5MWh (4%) for the system level approach to ˜51MWh (42%) for the best

energy cluster approach. By contrast the good energy reduction varies between

˜12MWh (10%) for the cluster approach and ˜0.3MWh (0.2%) for the system625

level approach.

Thus if our primary concern is saving energy we should adopt a cluster

approach. Whilst for minimising overheads we should choose the computer

level approach. If we wish to maintain the overheads seen in our current system

we should use the cluster level approach. In general the system level approach630

29

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

Date

Pr
op

or
tio

n
of

 jo
bs

 e
vi

ct
ed

Cluster RL
Random
Whole
Week

Figure 14: Proportion of jobs which are evicted each week

seems to have little benefit. This is likely due to the fact that it lacks the fidelity

required for the RL approach to learn the underlying patterns. The cluster level

approach appears to be in general the best approach as it comes out on top for

two of the three scenarios. For the other scenario (minimising overheads) it

is only 0.7 minutes slower (with better energy consumption). Given that the635

state-action storage for this approach is also significantly smaller, leading to

quicker searching, it would appear to be the best approach.

7.3. RL performance

Figure 14 shows the proportion of jobs launched in a given week which end

up being evicted. As expected the number of evictions for the non-RL case640

(random) fluctuates widely during the year and still reaches high values at the

end of the year. Whilst all RL approaches all start high early in the year and

then become smaller as the year progresses. Both whole system and cluster-

based RL manage the lowest number of evictions in the latter part of the year.

Whilst the cluster-week RL approach fails to remain as low after September.645

This is likely to be a consequence of the fact that the larger state space receives

fewer rewards per action thus taking longer to adapt to the changes in the

underlying system.

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

1.2

Date

R
at

io

Computer
Cluster
ClusterWeek
System

Figure 15: Ratio of energy used over the year when optimising for Energy

7.4. Comparison of energy savings

Here we investigate how the different approaches compare over the course650

of the year. We define here the ratio between energy consumed per month

for the non-RL policy in comparison with the energy used by each of the RL

approaches.

Figure 15 shows how the four different RL approaches compare over the

entire of 2010 when comparing the most energy efficient combination. The655

cluster approach has the best energy saving, as is bourn out in the previous

results, however it looses out from September onwards. This is due to the low

value of ε (0.01) meaning that the system is slow to react to changes. The

computer approach is much better at reacting to change despite having the

same value of ε. This is most likely due to the fact that as the reward value is660

computed as the average of all previous reward values (R) then as the number

of reward values increases then the effect of each individual R value on the mean

becomes less. As the computer approach has a larger state-action space than the

cluster approach the number of values for any given state-action combination is

likely to be less.665

A comparison of the different approaches in the case of keeping the overheads

the same as the non-RL approach is presented in Figure 16. Here the cluster

level approach works best, having ε = 0.05 is enough to make it reactive to

changes in the system but still maintain a good exploitation of the already

31

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

1.2

Date

R
at

io

Computer
Cluster
ClusterWeek
System

Figure 16: Ratio of energy used over the year when keeping overheads the same

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

1.2

Date

R
at

io

Computer
Cluster
ClusterWeek
System

Figure 17: Ratio of energy used over the year when optimising for overheads

determined actions. The computer and cluster week approaches are close to the670

cluster approach. The computer approach also having ε = 0.05 whilst the cluster

week approach having ε = 0.01. The two approaches are close though when the

underlying interactive logins increase in September-October the cluster week

approach is affected more. The system level approach is not optimal across the

year, again suggesting that this lacks the fidelity required for the RL approach.675

The case where we optimise for overheads is shown in Figure 17. As we are

not taking the energy consumption of the system into account here the energy

saving is small (only around 20%). Thus showing that when optimising for

overheads we are sacrificing most if not all of the potential energy savings.

32

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 s

a
v
in

g
 (

m
in

u
te

s
)

h

0.01

0.05

0.1

0 500 1000 1500 2000 2500 3000 3500 4000
−10

−8

−6

−4

−2

0

2

E
n
e
rg

y
 s

a
v
in

g
 (

M
W

h
)

h

0.01

0.05

0.1

Figure 18: Effect of limiting History of Rewards

7.5. Optimisation of RL680

7.5.1. Varying the reward history for RL

Figures 18 and 19 show the impact of limiting the history used when deter-

mining the expected reward for a given action. In each case we vary the size of

the history h and observe its impact on the overheads observed and the energy

consumed. In all cases the overhead (energy) saved is in comparison to the case685

when the entire history is taken into account and all lines will tend towards one

as h tends to infinity – the case of taking all history into account.

For both the un-weighted average (Figure 18) and the gaussian weighted

average (Figure 19) using this approach will save overhead whilst increasing

energy consumption. Apart from very small values of h the un-weighted average690

increases the energy consumption less than the gaussian weighted average and

in general seems to offer a greater saving of overhead. Thus the un-weighted

average would appear to be the most sensible option.

7.5.2. Initially high ε

Having a higher value of ε at the start of the simulation has shown no695

statistical difference in the energy consumed or the overheads observed by jobs.

This is consistent for n rewards between 50 and 1,000. We expect this to be a

consequence of the fact that jobs tend to arrive in bursts which quickly exceed

n for certain states. As these then become the dominant states in the system

33

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

O
v
e
rh

e
a
d
 s

a
v
in

g
 (

m
in

u
te

s
)

h

0.01

0.05

0.1

0 500 1000 1500 2000 2500 3000 3500 4000
−10

−8

−6

−4

−2

0

2

E
n
e
rg

y
 s

a
v
in

g
 (

M
W

h
)

h

0.01

0.05

0.1

Figure 19: Effect of limiting History of Rewards using a gaussian function

the added benefit of a more explorative approach for other states is lost.700

7.5.3. Vary ε when the new rewards diverge from the best seen so far

Here we have investigated increasing the value of ε by 0.1 when the ratio of

rewards falls below a threshold. However, this has not shown any significant

statistical change to either the energy consumed by the system or the overheads

observed by the user. This is likely to be a consequence of the low utilisation of705

our HTC system allowing jobs to receive service quite quickly.

7.5.4. Using local system knowledge

The effect of using local knowledge on the system – preventing jobs from

starting which would run over the reboot time – shows no statistical advantage.

Jobs which would have been run before the reboot time would still have received710

service once the reboot had taken place and thus will in general receive the same

overhead time. Whilst for the energy saved through not running the jobs before

the reboot will be small as the system seems to learn that this is a bad option

quickly.

8. Conclusions715

In this paper we have shown that for a multi-use volunteer computing system

the time of the day at which a job is submitted directly influences the chances

34

of the job completing without being evicted due to an interactive user with

higher priority or a computer reboot. We argue that a static analysis of such a

volunteer computing system will not be able to adapt to the changing nature of720

the interactive users.

We therefore develop four Reinforcement Learning approaches, based on a

computer-by-computer action approach, an approach where actions are based

on a collection of computers co-located within a cluster, an adapted cluster

approach which takes the day of the week into account and a course grained725

Reinforcement Learning approach which only selects between allocating work

to a computer and queueing the work up for future deployment.

Through simulation results we demonstrate that the cluster based approach,

with ε = 0.1 and σ = 0.8 gives the best results. We go further to show that

such a Reinforcement Learning approach could save between 30% and 53% of730

the energy used by the volunteer computing system depending on whether we

wish to maintain the overheads on work execution times currently observed.

The choice of an averaging of reward values within the Reinforcement Learn-

ing approach seems to lead to a reduction in sensitivity to change as the total

number of pieces of work increases. This would suggest that discarding old735

reward values would help when running this approach for a long time.

The approach of Reinforcement Learning is a powerful mechanism for identi-

fying complex patterns within a system and allowing decisions to be made over

these patterns. We anticipate that this approach could be effective within other

parts of our system and are currently investigating the use of Reinforcement740

Learning in the selection of times to perform checkpointing of jobs.

References

[1] M. Litzkow, M. Livney, M. W. Mutka, Condor-a hunter of idle workstations,

in: 8th International Conference on Distributed Computing Systems, 1998,

pp. 104–111.745

[2] D. P. Anderson, Public Computing: Reconnecting People to Science, Pre-

35

sented at the Conference on Shared Knowledge and the Web, Residencia

de Estudiantes, Madrid, Spain.

[3] M. Litzkow, T. Tannenbaum, J. Basney, M. Livny, Checkpoint and mi-

gration of UNIX processes in the Condor distributed processing system,750

Computer Sciences Department, University of Wisconsin, 1997.

[4] M. Forshaw, A. S. McGough, Energy-efficient checkpointing in high-

throughput cycle-stealing distributed systems, Electronic Notes in Theo-

retical Computer Science accepted for.

[5] M. Forshaw, A. S. McGough, N. Thomas, On energy-efficient checkpointing755

in high-throughput cycle-stealing distributed systems, in: 3rd International

Conference on Smart Grids and Green IT Systems (SMARTGREENS)

2014, 2014.

[6] A. McGough, M. Forshaw, C. Gerrard, S. Wheater, Reducing the number

of miscreant tasks executions in a multi-use cluster, in: Cloud and Green760

Computing (CGC), 2012 Second International Conference on, 2012, pp.

296–303. doi:10.1109/CGC.2012.111.

[7] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, A Bradford

book, Bradford Book, 1998.

[8] A. S. McGough, P. Robinson, C. Gerrard, P. Haldane, S. Hamlander,765

D. Sharples, D. Swan, S. Wheater, Intelligent power management over large

clusters, in: International Conference on Green Computing and Communi-

cations (GreenCom2010), 2010.

[9] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,

Phoenix Technologies Ltd and Toshiba Corporation, ACPI Specification,770

http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[10] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan, D. Patterson, Statis-

tical machine learning makes automatic control practical for internet dat-

acenters, in: Proceedings of the 2009 Conference on Hot Topics in Cloud

36

http://dx.doi.org/10.1109/CGC.2012.111
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545

Computing, HotCloud’09, USENIX Association, Berkeley, CA, USA, 2009.775

URL http://dl.acm.org/citation.cfm?id=1855533.1855545

[11] The HTCondor Team, HTCondor manual, http://research.cs.wisc.

edu/htcondor/manual/, May 2013, University of Wisconsin.

[12] A. S. McGough, C. Gerrard, J. Noble, P. Robinson, S. Wheater, Analysis

of power-saving techniques over a large multi-use cluster, in: International780

Conference on Cloud and Green Computing (CGC2011), 2011.

[13] Sourceforge project, The iperf project, http://iperf.sourceforge.net/.

[14] A. Galstyan, K. Czajkowski, K. Lerman, Resource Allocation in the Grid

Using Reinforcement Learning, in: Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems-Volume785

3, IEEE Computer Society, 2004, pp. 1314–1315.

[15] G. Tesauro, N. K. Jong, R. Das, M. N. Bennani, A hybrid reinforcement

learning approach to autonomic resource allocation, in: Autonomic Com-

puting, 2006. ICAC’06. IEEE International Conference on, IEEE, 2006, pp.

65–73.790

[16] G. Tesauro, et al., Online resource allocation using decompositional rein-

forcement learning, in: AAAI, Vol. 5, 2005, pp. 886–891.

[17] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, H. Chan,

Autonomic multi-agent management of power and performance in data

centers, in: Proceedings of the 7th international joint conference on Au-795

tonomous agents and multiagent systems: industrial track, International

Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.

107–114.

[18] A. Bar-Hillel, A. Di-Nur, L. Ein-Dor, R. Gilad-Bachrach, Y. Ittach, Work-

station capacity tuning using reinforcement learning, in: Supercomputing,800

2007. SC’07. Proceedings of the 2007 ACM/IEEE Conference on, IEEE,

2007, pp. 1–11.

37

http://dl.acm.org/citation.cfm?id=1855533.1855545
http://research.cs.wisc.edu/htcondor/manual/
http://research.cs.wisc.edu/htcondor/manual/
http://research.cs.wisc.edu/htcondor/manual/
http://iperf.sourceforge.net/

[19] D. Vengerov, N. Iakovlev, A reinforcement learning framework for dynamic

resource allocation: First results., in: Autonomic Computing, 2005. ICAC

2005. Proceedings. Second International Conference on, IEEE, 2005, pp.805

339–340.

[20] S. Whiteson, P. Stone, Adaptive job routing and scheduling, Engineering

Applications of Artificial Intelligence 17 (7) (2004) 855–869.

[21] J. Rao, X. Bu, C.-Z. Xu, L. Wang, G. Yin, Vconf: a reinforcement learning

approach to virtual machines auto-configuration, in: Proceedings of the810

6th international conference on Autonomic computing, ACM, 2009, pp.

137–146.

[22] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, F. L. Raw-

son III, C. Lefurgy, Coordinating multiple autonomic managers to achieve

specified power-performance tradeoffs., in: ICAC, Vol. 7, 2007, p. 24.815

[23] A. Legrand, L. Marchal, Scheduling distributed applications: The simgrid

simulation framework, in: In Proceedings of the Third IEEE International

Symposium on Cluster Computing and the Grid, 2003, pp. 138–145.

[24] R. Buyya, M. Murshed, Gridsim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for grid computing,820

Concurrency and Computation: Practice and Experience 14 (13) (2002)

1175–1220.

[25] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, F. Zini,

Optorsim - a grid simulator for studying dynamic data replication strate-

gies, International Journal of High Performance Computing Applications.825

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,

Cloudsim: a toolkit for modeling and simulation of cloud computing en-

vironments and evaluation of resource provisioning algorithms, Software:

Practice and Experience 41 (1) (2011) 23–50. doi:10.1002/spe.995.

URL http://dx.doi.org/10.1002/spe.995830

38

http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995

[27] D. Kliazovich, P. Bouvry, Y. Audzevich, S. U. Khan, Greencloud: A packet-

level simulator of energy-aware cloud computing data centers, in: GLOBE-

COM, 2010, pp. 1–5.

[28] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, C. Das, Mdcsim: A multi-tier

data center simulation, platform, in: Cluster Computing and Workshops,835

2009. CLUSTER ’09. IEEE International Conference on, 2009, pp. 1–9.

doi:10.1109/CLUSTR.2009.5289159.

[29] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, R. Katz, Nap-

sac: Design and implementation of a power-proportional web cluster, ACM

SIGCOMM computer communication review 41 (1) (2011) 102–108.840

[30] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, X. Zhu,

Delivering energy proportionality with non energy-proportional systems–

optimizing the ensemble (2008).

[31] L. A. Barroso, U. Holzle, The case for energy-proportional computing,

Computer 40 (12) (2007) 33–37.845

[32] V. Berten, E. Jeannot, Modeling Resubmission in Unreliable Grids: the

Bottom-Up Approach, in: Seventh International Workshop on Algorithms,

Models and Tools for Parallel Computing on Heterogeneous Networks -

heteroPar’09, Delft, Netherlands, 2009.

[33] M. Litzkow, T. Tannenbaum, J. Basney, M. Livny, Checkpoint and mi-850

gration of UNIX processes in the Condor distributed processing system,

Computer Sciences Department, University of Wisconsin, 1997.

[34] C. Bailey Lee, Y. Schwartzman, J. Hardy, A. Snavely, Are user runtime

estimates inherently inaccurate?, in: Job Scheduling Strategies for Parallel

Processing, Springer, 2005, pp. 253–263.855

[35] W. Cirne, F. Berman, A comprehensive model of the supercomputer work-

load, in: Proceedings of the Workload Characterization, 2001. WWC-4.

39

http://dx.doi.org/10.1109/CLUSTR.2009.5289159

2001 IEEE International Workshop, WWC ’01, IEEE Computer Society,

Washington, DC, USA, 2001, pp. 140–148.

[36] W. A. Ward, Jr., C. L. Mahood, J. E. West, Scheduling jobs on parallel860

systems using a relaxed backfill strategy, in: Revised Papers from the 8th

International Workshop on Job Scheduling Strategies for Parallel Process-

ing, JSSPP ’02, Springer-Verlag, London, UK, UK, 2002, pp. 88–102.

[37] S.-H. Chiang, A. C. Arpaci-Dusseau, M. K. Vernon, The impact of more

accurate requested runtimes on production job scheduling performance, in:865

Revised Papers from the 8th International Workshop on Job Scheduling

Strategies for Parallel Processing, JSSPP ’02, Springer-Verlag, London,

UK, UK, 2002, pp. 103–127.

[38] A. Mu’alem, D. Feitelson, Utilization, predictability, workloads, and user

runtime estimates in scheduling the ibm sp2 with backfilling, Parallel and870

Distributed Systems, IEEE Transactions on 12 (6) (2001) 529 –543.

[39] J. P. Jones, B. Nitzberg, Scheduling for parallel supercomputing: A his-

torical perspective of achievable utilization, in: Proceedings of the Job

Scheduling Strategies for Parallel Processing, IPPS/SPDP ’99/JSSPP ’99,

Springer-Verlag, London, UK, UK, 1999, pp. 1–16.875

40

	Introduction
	Cluster Model
	Analysis of a real HTC system
	Reinforcement Learning Approach
	Computer level approach
	Cluster level approach
	System level approach
	Optimisation of RL approaches
	Varying the reward history for RL
	Vary
	Preventing known bad actions

	Experimental environment
	Simulation Software

	Related Work
	Simulations and Results
	Effect of and
	Comparison of different RL approaches
	RL performance
	Comparison of energy savings
	Optimisation of RL
	Varying the reward history for RL
	Initially high
	Vary when the new rewards diverge from the best seen so far
	Using local system knowledge

	Conclusions

