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Abstract

I show how improper conditioning of beliefs can reduce contribution in public goods envi-
ronments with interdependent values. I consider a simple model of a binary, excludable
public good. In equilibrium, provision of the public good is good news about its value.
Naïve players who condition expectations only on their private information contribute
too little, despite the absence of free-riding incentives. In a laboratory experiment, con-
tributions indeed fall short of the equilibrium prediction. Using modified games with
different belief-conditioning effects, I verify that subjects fail to condition beliefs prop-
erly. However, improper belief conditioning cannot fully explain the results.
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1 INTRODUCTION

The provision of public goods is a central issue in economics. Research on public goods

has primarily focused on incentives to free-ride and various mechanisms for overcoming

these incentives. In this paper, I demonstrate another force that may impede the pro-

vision of public goods, even in the absence of free-riding. In public goods environments

with common or interdependent values, individuals may fail to correctly condition their

beliefs about the uncertain value of a public good. Many public goods in the real world

may have substantial common-value components, such as dispersed information about

uncertain quality. Real-world public goods such as pollution abatement, national de-

fense, police protection, and flood control may be of uncertain value, and information

about the value may be decentralized. Individual contributors to such public goods

should condition their beliefs about value on not only their private information, but

also the information implicit in the strategic contribution choices of others. Failure to

do so may lead to incorrect expectations about the value of the public good.

To isolate the belief-conditioning effect of interest in the absence of free-riding incen-
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tives, I consider a simple case of a binary, excludable public good (or club good), such as

a toll road or private park. To illustrate, consider the choice of whether to participate

in some costly group activity. The value of this activity is unknown, and information

about the value is dispersed among the potential participants. Such information might

come from individual experiences and knowledge or simply from intuition. Examples of

such activities might include purchasing a membership to a planned recreation facility

or a home in a new gated community, joining a joint business venture or working on a co-

authored research project, or registering as a student in a new course at a university.1 In

order for the group activity to be viable, some minimum threshold of participants must

be reached. If the threshold is not reached, the activity is cancelled and individuals

who chose to participate pay no cost. Potential participants each observe private signals

correlated with the uncertain value, and then simultaneously choose whether or not to

participate. Each individual should consider two possible cases: the minimum threshold

of participants is either reached or it is not. If the threshold is not reached, her decision

to participate is inconsequential, as she will pay no cost. Thus, she should condition

her expectations on the event that the threshold is reached. It is important to note that

this event contains useful information about the value of the activity, since in equilib-

rium it implies that other participants observed relatively favorable signals. Thus, an

individual who correctly conditions her beliefs on this event should expect the value to

be higher than she would conditional on her private signal alone. Failure to properly

condition beliefs would reduce contribution and provision relative to equilibrium.

The ability to share private information might alleviate this problem. However, there

are a number of reasons why it may be difficult to share information. Beyond simple

barriers to communication (such as difficulty sharing technical knowledge or simply not

knowing each other), there may be incentives not to be truthful about private informa-

tion. If there is a private value component so that the total value of the public good is

not purely common to everyone, then there may be an incentive to lie to influence others.

Similarly, if the good is not purely excludable, or if contributions may be unequal, then

some form of free-riding incentive may prevent truthful communication. If the good is

congestible, again it may be in an individual’s interest to misrepresent her private in-

formation. In the simple case I consider in the experiment, incentives are fully aligned

1The last example comes from personal experience as a student registering for new course in game
theory and experimental economics at the University of North Carolina at Charlotte in 2007, which I
feared might be cancelled due to low enrollment.
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so that individuals would have no incentive to lie if they could communicate. However,

incentives to lie may exist in more complex cases.2

In the theoretical portion of this paper, I develop a simple model of excludable public

goods with interdependent values and compare the predictions of Bayesian Nash equi-

librium with naïve strategies, formalized by the cursed equilibrium model of Eyster and

Rabin (2005). In their model, agents believe that, with some probability, others ignore

their private information and choose an action according to the (equilibrium) ex ante

distribution of actions. For this reason, each agent’s belief about the distribution of ac-

tions chosen by others is correct, but agents do not fully account for the link between

others’ actions and their private information. I show that cursed beliefs reduce contribu-

tion relative to Bayesian Nash equilibrium, including the possibility of zero contribution

for some parameter values.

Testing these predictions in the field would be problematic, since individuals’ pri-

vate information is unobservable. Therefore, I design a laboratory experiment to test

whether improper conditioning of beliefs reduces contribution. The main treatment (the

common-value threshold game) has 5 players in a group, with a threshold of 4 contrib-

utors required for provision. I vary the cost of contribution to determine whether con-

tribution levels conform to Bayesian Nash equilibrium or naïve strategies for high, low,

and intermediate costs. Rather than closely mimicking any particular real-world appli-

cation, the experiment is designed to create a stark separation between the Bayesian

Nash equilibrium and fully-cursed equilibrium predictions to examine the degree to

which subjects (fail to) properly condition beliefs in making contribution choices.

Improper belief conditioning has been previously observed in other contexts, most

famously in the winner’s curse in common-value auctions. In common-value auctions,

bidders should update their belief about value downward conditional on winning, while

in my context, contributors should update their belief about value upward conditional

on provision of the public good. In order to compare the results of the main treatment

to the more well-known winner’s curse in common-value auctions, I consider an “anti-

threshold” game with the same environment, except that the public good is provided to

contributors if and only if no more than 2 players contribute. The anti-threshold game

is analogous to a simple common-value, two-unit auction with restricted bids and no

2These barriers to communication are similar to the discussion of Fedderson and Pesendorfer (1998)
about why jury members may be unable to fully share private information.

3



trade in the case of excess demand. This treatment allows for comparison of behavioral

responses to favorable and unfavorable belief conditioning effects, as well as comparison

of how subjects learn to account for these effects over several rounds of play.

Sources of error other than improper belief conditioning might drive behavior away

from equilibrium. To isolate the effect of belief conditioning, I consider a treatment

with uncertain private values. Each subject has an uncertain private value for the ex-

cludable public good and observes a signal correlated with this value. While there is

still uncertainty in this treatment, a given subject’s value is uncorrelated with other

subjects’ signals. Therefore no subject has information about the value of the public

good to others, which is a key difference from the common-value case. Play proceeds as

in the main treatment. In this case, the symmetric Bayesian Nash equilibrium strat-

egy precisely corresponds to the naïve (or fully-cursed) strategy from the common-value

threshold game. Thus, if subjects are naïve, there should be no difference in behavior

between these treatments, while correct conditioning of beliefs should lead to higher

contribution in the common-value setting than the uncertain private values setting.

The experimental results show that contribution falls well below the BNE benchmark

in the main treatment. Despite sharp differences in the Bayesian Nash equilibria of the

games with favorable, unfavorable, and no belief-conditioning effects, actual behavior is

quite similar between games, and in fact indistinguishable between the main treatment

and the uncertain private values treatment. Thus, the results suggest that subjects

completely fail to condition their beliefs in the proper direction. While fully-cursed equi-

librium succeeds in predicting this similarity between treatments, it does not predict

contribution levels very accurately. Moreover, behavior differs substantially from equi-

librium even in the uncertain private values treatment, which cannot be explained by

cursedness. This result highlights the importance of including a baseline without the po-

tential for belief conditioning rather than using only theoretical benchmarks to examine

belief conditioning effects.

The paper is organized as follows. Section 2 explores the related literature. Section 3

describes the model and theoretical predictions. Section 4 details the experimental pro-

cedures. Section 5 shows the results. Section 6 concludes with a discussion of the key

findings. The Appendix contains proofs of the theoretical results from Section 3. Sepa-

rate Online Appendices A and B contain supplementary data analysis and experimental

instructions, respectively.
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2 RELATED LITERATURE

Many previous experiments consider non-excludable, step-level public goods and provi-

sion points, including Van de Kragt et al. (1983), Dawes et al. (1986), Isaac et al. (1989),

Marks and Croson (1999), and Croson and Marks (2000). Provision point or threshold

mechanisms have been generally successful in such environments under complete in-

formation or private values. Several experiments, such as Croson et al. (2006), Kocher

et al. (2005), Swope (2002), and Bchir and Willinger (2013) find that excludability tends

to increase contribution in a variety of linear and step-level public goods environments,

while Czap et al. (2010) find higher contribution to non-excludable projects compared

to excludable projects. Gailmard and Palfrey (2005) compare alternative cost-sharing

mechanisms for excludable public goods and find that a voluntary cost-sharing mecha-

nism with proportional rebates performs best.

Several papers explore uncertain returns in public goods experiments. In a voluntary

contribution, linear public goods game, Dickinson (1998) finds that uncertain provision

of the public good reduces contribution relative to certain returns in early rounds of

play by a small but significant amount. Gangadharan and Nemes (2009) also find re-

duced contribution under uncertain provision of the public good in cases of known and

unknown probability of provision. In a strategy-method public goods game with hetero-

geneous marginal returns, Fischbacher et al. (2014) find that uncertainty about one’s

own marginal return slightly decreases conditional contribution, but not unconditional

contribution. Levati et al. (2009) find a large negative effect of uncertain marginal ben-

efits of contribution, while Levati and Morone (2013) find mixed results depending on

game parameters. Stoddard (2014a) finds that uncertain public good provision reduces

contribution only when subjects are first exposed to the certainty baseline, suggesting

potential order effects. Stoddard et al. (2014) and Stoddard (2014b) and find little dif-

ference between contributions under uncertain group returns compared to certainty.

Results on the effect of uncertainty per se are thus somewhat mixed overall.

To my knowledge, the only prior consideration of interdependent-value public goods

(excludable or non-excludable) is in the literature on leading by example, beginning

with Hermalin (1998), and expanded to charitable giving by Vesterlund (2003), Pot-

ters et al. (2005), Andreoni (2006), and Potters et al. (2007). Unlike my symmetric,

simultaneous-move setting, this literature examines informed and uninformed players

moving sequentially, which is likely to make the information content of the leader’s ac-
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tion relatively transparent compared to simultaneous-move games. Indeed, uninformed

second movers do respond to the the information contained in the contribution choices

of informed first movers in this environment.

This paper contributes to the public goods literature by showing how naïve beliefs

can reduce contribution in public goods environments with common or interdependent

values, even when free-riding incentives are absent. This effect is conceptually related

to the winner’s curse in common-value auctions (Thaler, 1988; Kagel, 1995; Kagel and

Levin, 2002). In these environments, the bidder with the highest value estimate tends

to win the auction, but because her estimate was the highest, it tends to be higher

than the true value. In Bayesian Nash equilibrium, rational agents account for this

adverse selection effect and condition their value expectations on winning the auction.

However, in many experiments such as Kagel and Levin (1986), Kagel et al. (1995), and

Levin et al. (1996), subjects fail to properly condition beliefs, leading to overbidding and

low or negative profits. In my setting, similar naïvety causes subjects to choose not to

contribute, even when their signals are high enough that contributing is optimal.

This paper is also closely related to the literature on strategic voting in common-

value environments. Seminal theoretical analysis of such environments by Fedderson

and Pesendorfer (1996, 1997, 1998) examines the behavior of strategic voters who con-

dition their beliefs on being pivotal. Experiments including Guarnaschelli et al. (2000),

Ali et al. (2008), Battaglini et al. (2008), Battaglini et al. (2010), and Esponda and

Vespa (forthcoming) find evidence that laboratory subjects sometimes behave strate-

gically, though their behavior is not always explained well by symmetric Bayesian Nash

equilibrium.

I am also concerned with comparing behavior under favorable and unfavorable belief

conditioning effects. Holt and Sherman (1994) compare these effects in the context of a

takeover game. They find evidence of a “loser’s curse” as well as a winner’s curse, with

subjects behaving naïvely in both environments.

The concept of naïve behavior in common-value auctions, strategic voting, takeover

games, and related environments is formalized by the cursed-equilibrium model of Eyster

and Rabin (2005). I use Eyster and Rabin’s cursed equilibrium model as an alternative

prediction to Bayesian Nash equilibrium and discuss the extent to which this model can

explain the experimental data. While cursed equilibrium correctly predicts the similar-

ity in behavior between treatments in my experiment, it does not explain the observed

contribution levels.
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3 THEORY

3.1 Bayesian Nash Equilibrium

I first give the basic definitions and assumptions. The set of agents is N = {1, ...,n},

where n ≥ 2. I will use i and j to denote typical agents in N. Each agent observes a

private signal xi, which is a realization of a random variable X i. The private signals are

iid with probability density function f : [x, x] →ℜ+, which is assumed to be continuous

and strictly positive everywhere on the interval [x, x], where 0 ≤ x < x < ∞. Let F :

[x, x] → [0,1] denote the corresponding cumulative distribution function and X denote

an arbitrary random variable distributed according to F.

There is a binary excludable public good, and its uncertain value to agent i is vi,

given by:

vi =αxi + 1−α
n−1

∑
j 6=i

x j, (1)

where α ∈ [ 1
n ,1]. The case of α= 1

n corresponds to pure common value, where the value

of the public good to all agents is the arithmetic mean of the private signals. The case of

α= 1 corresponds to pure private values.

The agents observe their private signals and then simultaneously choose whether or

not to contribute an exogenous amount w ∈ (x, x) toward provision of the public good.

Denote the contribution decision of agent i given the signal xi as ci(xi), where ci(xi) =
1 indicates contribution and ci(xi) = 0 indicates non-contribution. The public good is

provided if at least k ∈ {2, ...,n} agents contribute, otherwise contributions are refunded

and no public good is provided. Any agent who does not contribute is excluded and gets

a utility of zero. Contributors to the public good get a utility of vi −w if the public good

is provided, and zero otherwise. All agents are assumed to be risk neutral.

I consider symmetric Bayesian Nash equilibria (BNE), so that in equilibrium, ci ≡
c for each agent i. That is, all agents have identical contribution decision functions.

Lemma 1 shows that all such BNE involve “cutoff” strategies.

Lemma 1. In any symmetric BNE, there exists x∗ ∈ℜ such that each agent i ∈ N strictly

prefers to contribute to the public good if and only if xi > x∗.

All proofs are contained in Appendix A. Intuitively, Lemma 1 holds because in sym-

metric BNE, each agent’s expected utility of contributing is non-decreasing in the pri-

vate signal, and strictly increasing when others contribute with positive probability.
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Lemma 2 establishes that, conditional on at least k−1 others contributing, agent i’s
expectation of the mean signal of the other n−1 agents is non-decreasing in the cutoff

x∗.

Lemma 2. Let the function G i(x∗) be given by:

G i(x∗)= E

[
1

n−1
∑
j 6=i

X j

∣∣∣∣∣ ∑
j 6=i

c∗(X j)≥ k−1

]
, (2)

where:

c∗(X j)=
{

1 : X j ≥ x∗

0 : X j < x∗.
(3)

Then G i(x∗) is non-decreasing in x∗.

The result in Lemma 2 simply means that the expectation of the mean signal of

the agents other than i conditional on at least k−1 others contributing is higher than

the unconditional expectation, and this conditional expectation is non-decreasing in the

cutoff. This result will be useful in proving the first Proposition.

In symmetric BNE, conditional on observing a signal xi = x∗, agent i must be indif-

ferent between contributing and not contributing. Thus,

n−1∑
l=k−1

(n−1
l

)
(1−F(x∗))lF(x∗)n−1−l

(
αx∗+ (1−α)l

n−1 E[X |X ≥ x∗]+ (1−α)(n−1−l)
n−1 E[X |X < x∗]−w

)
= 0. (4)

Clearly, x∗ = x is a solution, so non-contribution by all agents is a symmetric BNE.3

Proposition 1 gives conditions for the existence of an interior equilibrium.

Proposition 1. There exists a symmetric BNE cutoff x∗ ∈ (x, x) if and only if:

αx+ (1−α)E[X ]< w <
(
α+ (1−α)(k−1)

n−1

)
x+ (1−α)(n−k)

n−1
E[X ] (5)

Moreover, there is at most one such interior symmetric BNE cutoff.

The key to Proposition 1 is to consider agent i’s expected utility of contributing, given

a signal of x∗ and conditional on the public good being provided, treated as a function of

3In some cases, this trivial equilibrium may be weakly dominated. If w < αx then agent i prefers to
contribute conditional on observing xi > w/α.
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the cutoff x∗. If w is within the given bounds, this function crosses zero somewhere in

the interval (x, x). Lemma 2 implies that this function is also strictly increasing in the

cutoff, guaranteeing uniqueness of the interior equilibrium cutoff.

Corollary 1 gives comparative static predictions for changes in the cost of contribution

and the provision threshold.

Corollary 1. Any symmetric BNE cutoff x∗ ∈ (x, x) is increasing in w and decreasing in

k.

Intuitively, a higher cost of contribution makes agents less willing to contribute. A

higher provision threshold strengthens the favorable belief conditioning effect, increas-

ing willingness to contribute.4

3.2 Cursed Equilibrium

In (symmetric) χ-cursed equilibrium, agents fail to fully account for the connection be-

tween the actions of other agents and their private information. Each agent i ∈ N be-

lieves that with probability χ, any given other agent j contributes with ex ante equilib-

rium probability regardless of j’s signal.

Denote the χ-cursed equilibrium cutoff by x∗χ. Proposition 2 establishes a simple con-

dition under which a symmetric interior χ-cursed equilibrium exists and gives a simple

explicit solution for the cutoff in fully-cursed equilibrium, where χ= 1.

Proposition 2. There exists a symmetric χ-cursed equilibrium cutoff x∗χ ∈ (x, x) if and

only if:

αx+ (1−α)E[X ]< w <
(
α+ (1−χ)(1−α)(k−1)

n−1

)
x+

(
χ(1−α)(k−1)

n−1 + (1−α)(n−k)
n−1

)
E[X ] (6)

Moreover, there is at most one such interior symmetric χ-cursed equilibrium cutoff. Fi-

nally, for χ = 1, if there exists an interior symmetric fully-cursed equilibrium cutoff,

denoted by x∗1 , then it is given by:

4This comparative static prediction is not experimentally tested here. However, it guides the experi-
mental design, as choosing k large relative to n increases the strength of the favorable belief conditioning
effect and thus separation between symmetric BNE cutoffs and cursed cutoffs.
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x∗1 = w
α
− 1−α

α
E[X ] (7)

The proof of Proposition 2 is similar to the proof of Proposition 1. Straightforward

manipulation of the expression for the fully-cursed equilibrium cutoff reveals the in-

tuitive interpretation: given a signal equal to the cutoff, the cost of contributing must

equal the (naïve) expected benefit (neglecting belief conditioning).

Corollary 2 establishes that in symmetric cursed equilibrium, agents contribute less

than the symmetric BNE prediction, and gives comparative static predictions for the

cursed equilibrium cutoff.

Corollary 2. The interior symmetric χ-cursed equilibrium cutoff x∗χ is non-decreasing

in χ, increasing in w, and decreasing in k. In particular, x∗χ ∈ [x∗, x∗1 ].

Neglect of the favorable belief conditioning effect causes agent i’s expectation of vi to

be too low, which reduces willingness to contribute. The greater the degree of cursedness

(χ), the more severe is the reduction of contribution relative to the BNE benchmark.

Finally, Corollary 3 shows that, for some parameter values, cursedness may com-

pletely eliminate contribution.

Corollary 3. If α< 1 and(
α+ (1−χ)(1−α)(k−1)

n−1

)
x+

(
χ(1−α)(k−1)

n−1 + (1−α)(n−k)
n−1

)
E[X ]

≤ w <
(
α+ (1−α)(k−1)

n−1

)
x+ (1−α)(n−k)

n−1 E[X ],

(8)

then there is a symmetric BNE such that each agent contributes with positive proba-

bility, but in symmetric χ-cursed equilibrium contribution occurs with probability zero.

Intuitively, symmetric BNE and fully-cursed equilibrium coincide in the case of pure

private values, where other agents’ information does not affect agent i’s expected utility

of contributing conditional on the public good being provided. However, when values are

interdependent, for some range of w contribution breaks down completely in χ-cursed

equilibrium because agents ignore favorable belief conditioning in forming their expec-

tations.
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Figure 1: Expected contribution rates in BNE and fully-cursed equilibrium

3.3 Experimental Special Case

In the common-value threshold game (CVT) treatment, I consider a special case of the

threshold game with n = 5, k = 4, α = 1
5 , and private signals that are uniformly dis-

tributed on [0,100], with w varying across rounds of play. Since α= 1
n , this special case

is one of pure common value. The pure common value case is used in the experiment be-

cause it puts the most weight on the private signals of others and thus gives the greatest

contrast between symmetric BNE and fully-cursed equilibrium. Henceforth I will omit

the word “symmetric,” since symmetric equilibria are the focus of the paper.

Figure 1 shows the expected contribution rates in BNE and fully-cursed equilibrium

for different values of w in the interval [0,100]. The expected contribution rate (or per-

centage of agents who contribute on average) is equal to the ex ante probability that an

individual agent contributes, or equivalently, 100 minus the equilibrium cutoff signal.

The fully-cursed equilibrium contribution rates lie (weakly) below the BNE contribu-

tion rates for all values of w. Furthermore, as in Corollary 3, whenever 60 ≤ w < 90,
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contribution breaks down completely in fully-cursed equilibrium.

This special case illustrates the fact that the BNE is not fully efficient ex post. For

example, for cost level 35, all players contribute for all possible signals in BNE, which

may lead to inefficient provision if signals are low. The opposite problem may also occur:

for example, suppose the cost level is 65 (where players contribute less than half the

time) and there are three signals of 100 and two signals of 50. The common value is

thus 80> 65, but provision will not occur in BNE.

Risk aversion might lead to reduced contribution relative to the risk-neutral BNE

prediction, and thus it is important to check the robustness of the equilibrium predic-

tion. Allowing for risk aversion makes analytical study of the model much less tractable,

but approximate solutions can be found numerically. I use a constant relative risk aver-

sion utility function of the form u(y) = y1−r

1−r and a coefficient of relative risk aversion

of r = 0.67.5 BNE cutoffs change very little with risk aversion, rising only by 1-2 per-

centage points compared to the risk-neutral prediction. Fully-cursed equilibrium cutoffs

rise slightly more. Thus, cutoffs exceeding the BNE prediction by magnitudes shown in

the fully-cursed equilibrium prediction could not be alternatively explained by plausible

risk aversion. Furthermore, the presence of risk aversion does not affect the predicted

treatment effects between CVT and the related games of interest.

3.4 Anti-Threshold Game with Unfavorable Belief Conditioning

To compare the favorable belief conditioning effects in the threshold game to similar

unfavorable conditioning effects, I consider an “anti-threshold” (AT) treatment. The en-

vironment in the anti-threshold game is the same as in the common-value threshold

game, except that the public good is provided if and only if no more than m agents con-

tribute. If more then m contribute, the public good is not provided and contributions

are refunded. The general case of the anti-threshold game is of less interest than the

threshold game, so much of the theoretical analysis of the anti-threshold game is omit-

ted. However, the equation characterizing the BNE cutoff is:

m−1∑
l=0

(n−1
l

)
(1−F(x∗))lF(x∗)n−1−l

(
αx∗+ (1−α)l

n−1 E[X |X ≥ x∗]+ (1−α)(n−1−l)
n−1 E[X |X < x∗]−w

)
= 0 (9)

5This level of risk aversion has been found to be in the upper range of parameters typical of laboratory
subjects by Holt and Laury (2002).
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Figure 2: Anti-threshold game expected contribution rates in BNE and fully-cursed equilibrium

Notice that x∗ = 0 (full contribution) is always a BNE. Under conditions similar to

those in the previous section, interior BNE also exist. The key difference from the

threshold game is that in the anti-threshold game, the public good being provided is

bad news about its value, while in the threshold game it is good news.

In the AT treatment, I consider the special case of n = 5, m = 2, α = 1
5 , and private

signals uniformly distributed on [0,100], with w varying across rounds of play. Figure

2 shows the expected contribution rates in the anti-threshold game in BNE and fully-

cursed equilibrium for varying w. As in the case of CVT, the expected contribution rate

equals 100 minus the equilibrium cutoff signal. Notice that contribution rates in fully-

cursed equilibrium are exactly the same as those from CVT. However, in AT, fully-cursed

agents contribute more than the BNE prediction.

There is a simple symmetry between the AT and CVT. Fixing δ ∈ [−50,50], the ab-

solute difference between the BNE and fully-cursed equilibrium contribution rates in

CVT with w = 50+δ is equal to the absolute difference between BNE and fully-cursed

equilibrium contribution rates in the anti-threshold game with w = 50−δ. Thus, the
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belief conditioning effects in CVT and AT are in this sense comparable in magnitude,

but opposite in direction.

3.5 Private-Value Threshold Game with No Belief Conditioning Effect

In the private-value threshold game (PVT) treatment I consider a game similar to the

one in CVT, except that each agent’s value for the public good is the mean of five agent-

specific iid random draws. One of the five is observed by the agent, while the other

four are not observed by anyone. Thus, the ex ante marginal distribution of each agent’s

value is the same as in CVT, but there is no conditioning effect. In fact, the symmetric

fully-cursed equilibrium in CVT is identical to the symmetric Bayesian Nash equilib-

rium (and any cursed equilibrium) in PVT. Thus, by comparing contributions between

PVT and CVT, the effect of favorable belief conditioning in CVT can be observed.

I also study an individual-choice version of the PVT game, in which the threshold k
is equal to 1 rather than 4. This treatment is denoted PVTk1. Changing k does not

alter the optimal strategies in this case: the predicted cutoffs are the same as the BNE

cutoffs in the PVT game and the fully-cursed cutoffs in the CVT game. However, turning

the PVT game into an individual choice problem steepens incentives, since every player

is always pivotal in this case.6 This treatment was added to explore some anomalous

behavior in PVT, discussed in the Section 5.

4 EXPERIMENTAL PROCEDURES

To avoid negative payoffs, the cost of contributing is implicit, so that each participant

is faced with a choice between a certain payoff of w and an uncertain payoff of v.7 The

conversion rate is $0.20 for each experimental currency unit (or “token”), so that the

maximum possible earnings are $20 per person. Participants also received a $5 show-

up fee.

6In addition to steepening incentives, changing from a game to an individual choice problem could also
alter pro-social motives for contribution. To minimize this potential confound, the framing of the decision
is kept as close as possible to the original PVT treatment. Subjects are matched into groups of five, and
the risky alternative is again referred to as a “group project” despite the contribution threshold of only
one. Subjects are given feedback on other group members choices, which also allows for possible imitation
learning effects which might be present in PVT.

7Framing in terms of explicit rather than implicit costs might affect behavior and learning (Lind and
Plott, 1991). However, in the treatment of primary interest (CVT), the experience from which subjects are
expected to learn is the failure to realize profitable public goods, which is inherently implicit.
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There are two treatment variables. The first, varied between subjects, is the game:

CVT, AT, PVT, and the supplementary treatment PVTk1. Only one of these games ap-

peared in any given session. The second treatment variable, varied within subject, is

the cost of contributing: 35, 45, 55, and 65 experimental currency units, with each value

repeated five times in randomized order. Each session had twenty rounds, one of which

was selected randomly for payment. Subjects in each session were randomly assigned

to groups of five at the start of each round (stranger matching).

In each round, each participant observed the cost of contributing and her own private

signal. Contribution choices were then made simultaneously. At the end of each round,

all participants observed the signals and choices of the other four group members (or-

dered from highest to lowest), the value of the public good and whether it was provided,

and their own earnings in tokens for the round.8

The experiment was programmed and conducted using z-Tree (Fischbacher, 2007).

All sessions were run in the experimental economics laboratory at The Ohio State Uni-

versity. Nine sessions were run (3 CVT, 2 AT, 2 PVT, and 2 PVTk1), each with 20 sub-

jects, except session of PVTk1, with only 15 subjects due to absences.9 Participants

earned approximately $15.50 on average, and each session lasted about 45 minutes.

5 RESULTS

5.1 Hypotheses

To organize the results, I first summarize the key hypotheses to be tested. The main

hypotheses come from the predictions of cursed equilibrium compared to Bayesian Nash

equilibrium.

Hypothesis 1 (Contribution within Games). Under full or partial cursedness, subjects

will choose to allocate tokens to the group project too little in CVT and too much in AT,

relative to BNE.

Hypothesis 2 (Contribution between Games). Under full cursedness, subjects will choose

to allocate tokens to the group project with the same frequency in CVT, PVT, and AT.

8The signals and choices of other group members were displayed in decreasing order by signal to make
it easier to notice any correlation between signals and choices.

9Due to a recruitment system error, two subjects were mistakenly allowed to participate a second time.
The choices made by each of these subjects in their second session of participation have been excluded
from the analysis.
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Hypothesis 1 comes from the neglect of belief conditioning in CVT and AT under full

or partial cursedness. Hypothesis 2 comes from the fact that the fully-cursed equilib-

rium cutoffs in CVT, PVT, and AT are identical.

I will also test whether steeper incentives in PVTk1 relative to PVT reduces non-

equilibrium behavior. Additional questions of secondary interest are concerned with

learning over multiple rounds of play and individual heterogeneity. Subjects might

learn to play closer to BNE, and individuals with greater cognitive or quantitative abil-

ity might play strategies closer to BNE. However, results on learning and ability have

proven negative, and so much of this analysis is omitted from the main body of the paper

and instead discussed in Online Appendix A.

5.2 Contribution Rates

Figure 3 shows aggregate contribution rates (the average percentage of subjects choos-

ing to contribute) in CVT, PVT, and AT. Graphical presentation of PVTk1 is left to Online

Appendix A. Logit regressions reported in Table 1 are used to formally test Hypotheses

1 and 2. The dependent variable is an indicator for contribution to the group project,

and the omitted category for the game indicators is PVT. Standard errors are clustered

by session.10 Notice that in Figure 3, contribution rates in CVT and PVT appear virtu-

ally the same for all cost levels, and indeed the regression results show no significant

difference between contributions in CVT and PVT, consistent with Hypothesis 2. Even

where the difference is greatest (the higher cost levels) it is in the opposite direction

predicted by BNE, with slightly lower contribution in CVT than in PVT. Contributions

are significantly lower in AT than in PVT for higher cost levels, but still appear much

closer to one another than BNE predicts.

The logit regression results in Table 1 can also be used to compare the contribution

10Fréchette (2012) suggests clustering by session as a robust approach to account for possible corre-
lation between subjects interacting with one another in the same session. To adjust for potential bias
in hypothesis tests due to the small number of clusters, I use the t-distribution with degrees of freedom
equal to the number of clusters minus the number of regressors rather than using the standard normal
reference distribution (Donald and Lang, 2007; Cameron and Miller, forthcoming). An alternative ap-
proach to session-level clustering also suggested by Fréchette (2012) is controlling for feedback effects but
assuming independence between subjects conditional on this feedback. A variety of specifications of this
kind show similar results. The results also remain similar simply clustering at the subject level without
such feedback controls. I have also used non-parametric chi-squared proportion tests (using the clustering
adjustment of Rao and Scott 1981, 1984; see also Sribney, 1998). These non-parametric tests show similar
results comparing PVT with CVT and AT, but find no significant difference between PVT and PVTk1.
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Figure 3: Aggregate rates of contribution.

rates in each treatment with theoretical benchmarks.11 Contribution rates in CVT are

significantly lower than the BNE prediction at every cost level. Moreover, contribution

rates in AT are significantly higher than the BNE prediction at every cost level. These

results are consistent with Hypothesis 1. However, cursedness cannot explain contribut-

ing too infrequently in CVT at cost level 35, nor can it explain over-contributing in AT

at cost level 65. In both of these cases, BNE and cursed equilibrium are identical. There

are also statistically significant differences between the contribution rates in the data

and the fully-cursed equilibrium benchmark predictions. Some of these differences can-

not be explained by partial cursedness either, such as above-fully-cursed contributions

in AT at higher cost levels.

Cursed equilibrium also cannot explain contribution rates in PVT, which differ sub-

stantially from the (identical) predictions of BNE and cursed equilibrium. Such devia-

tion from BNE even without the potential for belief conditioning underscores the impor-

tance of studying belief conditioning by comparing the CVT and PVT treatments rather

than only comparing the data to theoretical benchmarks within one treatment. Clearly,

forces other than cursedness must drive behavior away from the BNE prediction.

11I derive such comparisons by computing margins (contribution rates) and cluster-robust standard
errors for each treatment and testing for equality with theoretical benchmarks, using the t-distribution
with degrees of freedom equal to the number of clusters minus the number of regressors.
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w=65 w=55 w=45 w=35
Variable (i) (ii) (i) (ii) (i) (ii) (i) (ii)

signal - 1.025** - 1.033*** - 1.028** - 1.018**
(0.006) (0.004) (0.005) (0.006)

round - 0.963 - 0.992 - 0.986 - 1.054*
(0.017) (0.013) (0.007) (0.019)

CVT 0.748 0.794 0.755 0.662 0.829 0.831 1.023 1.026
(0.141) (0.169) (0.156) (0.129) (0.177) (0.225) (0.499) (0.433)

AT 0.650*** 0.659** 0.668*** 0.582** 0.593* 0.551 0.407 0.329
(0.066) (0.068) (0.071) (0.084) (0.144) (0.167) (0.213) (0.161)

PVTk1 0.527* 0.511* 0.812 0.777 0.948 1.074 0.814 0.845
(0.158) (0.124) (0.107) (0.090) (0.221) (0.295) (0.502) (0.424)

Table 1: Logit regression results. The dependent variable is an indicator for contribution. Odds ratios
are reported with cluster-robust standard errors in parentheses. Each regression includes 865 observations
and 9 session-level clusters. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

In particular, there is a puzzling tendency for subjects to over-contribute in PVT (and

AT) with w = 65. Even with a signal of 100, the expected value of the group project is

no greater than 60 tokens, and thus subjects should never contribute in PVT when the

cost is 65 tokens. As discussed in more detail in Online Appendix A, this result does not

seem to be driven by mathematical errors or risk-seeking preferences, nor is it driven

by only a few subjects. By comparing PVT with PVTk1, I am able to test whether over-

contribution in PVT at the highest cost level might be due to weak incentives caused

by the low probability of provision of the group project. Changing the threshold k does

not alter the optimal strategies in this case: the predicted cutoffs are the same as the

BNE cutoffs in the PVT game and the fully-cursed cutoffs in the CVT and AT games.

However, incentives are steeper in PVTk1, since every player is always pivotal.

For the highest cost level, contributions are lower in PVTk1 compared to PVT. Though

the difference is only marginally significant, this result is consistent with the supple-

mentary hypothesis that over-contribution in PVT at cost level 65 is driven by weak

incentives due to the low probability of provision. No significant differences are ap-
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parent for lower cost levels, where provision in PVT is more frequent.12 More detailed

comparison of PVT and PVTk1 is left to Online Appendix A.

Note that round of play is included in the regressions in Table 1 as a control, showing

a significant effect only for the lowest cost level. However, learning effects may go in

different directions for different treatments, as subjects may, for example, intially con-

tribute too infrequently in CVT and too frequently in AT. Since the number of session-

level clusters is small, I omit round-treatment interactions for the sake of parsimony.

In Online Appendix A, I examine potential learning effects in more detail (and under

stronger assumptions about the nature of intra-session correlation), finding little evi-

dence of consistent learning patterns.

The following main results summarize the findings on Hypotheses 1 and 2.

Result 1 (Contribution within Games). Relative to BNE, subjects contribute to the

group project too infrequently in CVT and too frequently in AT. However, some devi-

ations from BNE cannot be explained by cursedness. In particular, subjects contribute

too often in PVT with cost levels of 55 and 65, which is not predicted by cursedness.

Result 2 (Contribution between Games). Contribution choices in CVT and PVT are

indistinguishable. Contribution choices in AT differ from those in the other games, but

this difference is smaller than predicted by BNE.

5.3 Cutoff Strategies

While the rates of non-contribution (choosing the private account) may provide a rough

estimate of the average cutoff subjects use, perhaps a more appealing method is max-

imum likelihood, similar to the method of El-Gamal and Grether (1995). Under the

assumption that all subjects use the same cutoff (but may make errors), I estimate the

cutoff for each game and cost level by checking all possible cutoffs and finding the one

that explains the most data, or equivalently, minimizes the number of errors. I assume

that with probability 1−ε, an agent makes a contribution choice consistent with the hy-

pothesized cutoff, and with probability ε (the error rate), she makes the opposite choice.

The maximum likelihood cutoff is the cutoff that minimizes the observed error rate.

12The similarity of contribution rates between PVT and PVTk1 at cost levels 55, 45, and 35 suggests
that pro-social motives do not drive the difference between PVT and PVTk1 at cost level 65. If pro-sociality
were the driving force, contributions would likely be lower in PVTk1 at all cost levels.
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Figure 4: Maximum Likelihood Cutoffs

Figure 4 shows maximum-likelihood cutoffs with 95% bootstrap confidence inter-

vals.13 Once again, the estimated cutoffs suggest below-BNE contribution in CVT and

above-BNE contribution in AT. It is also clear that estimated cutoffs are very similar be-

tween CVT and PVT. I find no signficant differences between the CVT and PVT cutoffs

for any cost level using bootstrap hypothesis tests.14 This similarity further suggests

that subjects treat the CVT and PVT games as equivalent, despite the substantial dif-

ferences between their BNE.

While behavior does not appear to be consistent with BNE, it is also of interest how

closely behavior approximates an empirical best response. Figure 5 compares maximum

likelihood cutoffs with empirical best response cutoffs. Empirical best response cutoffs

can be easily computed from equation 1 using the empirical probability of contribution

to the group project, average signal conditional on contribution, and average signal con-

ditional on non-contribution. Maximum likelihood cutoffs are generally not very close

to empirical best response cutoffs where the cutoffs are interior, with the exception of

13To adjust for potential correlation within sessions, I use a two-stage resampling procedure (Davison
and Hinkley, 1997; McCullagh, 2000). Sessions are randomly selected with replacement, and then sub-
jects within the selected sessions are randomly selected with replacement. This procedure yields wider
confidence intervals compared to a naïve bootstrap, but there is little substantive difference in results.

14These tests are not independent of the previous comparisons of contribution rates, but together they
give a clearer description of the similarity between the CVT and PVT data.
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Figure 5: Empirical Best Responses

CVT with w = 65.15 Thus, neither BNE, nor fully-cursed equilibrium, nor empirical best

response appears to explain the aggregate data well.

Assuming some partially-cursed equilibrium holds across all rounds and all cost lev-

els, the cursedness parameter χ can be estimated by maximum likelihood for CVT and

AT.16 For CVT, the maximum likelihood estimate of the cursedness parameter is 0.60,

with a 95% bootstrap confidence interval of [0.54, 0.92]. In fact, the 0.60-cursed equilib-

rium cutoffs are quite close to the previous (unrestricted) maximum likelihood cutoffs

estimates for CVT.

For AT, the maximum likelihood estimate of the cursedness parameter is 0.91 with

a 95% bootstrap confidence interval of [0.48, 1.00]. The 0.91-cursed equilibrium cutoffs

are not particularly close to the unrestricted maximum likelihood cutoff estimates, since

for cost levels 45 and 55 the unrestricted estimates do not fall between the BNE and

fully-cursed equilibrium cutoffs. The data in AT are somewhat noisier than in the other

15Empirical best response cutoffs may be either higher or lower than BNE cutoffs, depending on be-
havior. Using a cutoff above the BNE cutoff tends to drive the empirical best response cutoff downward
in CVT, since the favorable conditioning effect is strengthened. However, the opposite type of “mistake”
(contributing when the signal is too low) has the opposite effect on the empirical best response cutoff.

16This estimation follows the same approach of selecting cutoffs to minimize errors as previously dis-
cussed. However, I add the restriction that cutoffs for each of the four cost levels within a game (CVT or
AT) must be consistent with some partially-cursed equilibrium cutoff.
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games, perhaps due to the less intuitive nature of the game.

Result 3 (Cutoff Strategies). Estimated cutoff signals are above BNE in CVT and below

BNE in AT (consistent with Hypothesis 1), and again show strong similarity between

CVT and PVT (consistent with Hypothesis 2). While partially-cursed equilibrium fits

the estimated CVT cutoffs well, cursedness cannot explain the estimated cutoffs in PVT

and AT, particularly for the highest cost level.

In this subsection, I have assumed that subjects in a particular game use the same

cutoff strategy, as in the BNE and cursed-equilibrium benchmarks. However, this as-

sumption may not hold. In Online Appendix A, I show graphically the estimated proba-

bility of contribution as a function of the signal in CVT, PVT, and AT at each cost level.

If all subjects in a particular game use the same cutoff strategy (but may make errors),

these graphs should resemble step functions. However, the estimated probabilty of con-

tribution appears to increase smoothly with the signal. It is possible that subjects may

employ probabilistic strategies. Another possibility, explored next in Subsection 5.4, is

that subjects choose heterogeneous cutoff strategies.

5.4 Individual Heterogeneity

I next specify several candidate strategies to which individual choices are compared.

The candidate strategies include BNE and fully-cursed equilibrium, as well as several

other possible heuristics. One possibility is that a subject may misperceive the correla-

tion between her own signal and the value of the group project. In the extreme case of

perfect correlation, she would contribute if and only if the signal exceeds w. I denote this

heuristic strategy “Signal Bias.” In the opposite extreme case of perceiving no correla-

tion between the signal and the value of the group project, she would simply contribute

if and only if w < 50, that is, when the cost of contributing is less than the prior expected

value of the group project. I denote this heuristic strategy “Prior.” I also consider the

simple strategies of always contributing and never contributing.

I use a Bayesian approach to estimate the proportion of subjects in each candidate

strategy. I assume that each individual is playing one of the candidate strategies, but

may make errors. In any individual game I assume that with probability 1− εi, player

i follows her chosen strategy, and with probability εi she deviates. First, an individual

subject’s choices over all twenty rounds are compared to the predictions of each candi-

date strategy. The error rate εi for player i is estimated as her smallest observed fre-
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CVT AT
Strategy Proportion Std. Error Proportion Std. Error

Fully-Cursed 0.312 0.047 0.359 0.054
BNE 0.233 0.046 0.130 0.035
Prior 0.219 0.043 0.154 0.035

Signal Bias 0.120 0.034 0.187 0.044
Always 0.108 0.036 0.097 0.036
Never 0.008 0.003 0.073 0.036

Table 2: Estimated strategy proportions in CVT and AT

quency of deviations over all candidate strategies.17 So for example, if player i’s choices

were consistent with the fully-cursed strategy 95% of the time and less frequently con-

sistent with any other strategy, her estimated error rate would be 0.05. Next, I set a

uniform prior over all candidate strategies and update for each observation according to

Bayes’ rule to arrive at a posterior over the candidate strategies for each individual sub-

ject. For each candidate strategy, the posterior probability is averaged across subjects to

estimate the overall proportion of subjects playing that strategy.18

Table 2 shows the estimated proportion of subjects playing each candidate strategy

in CVT and AT. In both games, the fully-cursed strategy is modal, consistent with the

aggregate results showing neglect of belief conditioning. The BNE strategy is second-

most prevalent in CVT with a proportion of nearly one quarter, though the vast majority

appear to play some boundedly-rational strategy. The BNE strategy is less prevalent in

AT than CVT, which might suggest that AT is a more difficult game.

To check for correlations between consistency with the BNE strategy and cogni-

tive/quantitative ability, I have run a number of regressions, reported in more detail in

Online Appendix A. However, the results have been negative, suggesting that some sub-

jects’ behavior may simply appear to closely match BNE by chance rather than strategic

sophistication.19 Furthermore, estimating strategy proportions in the PVT data using

17Very few subjects are always consistent with a single candidate strategy, but 21.7% of subjects in CVT
are at least 95% consistent. Just over half of such subjects closely match the fully-cursed strategy, while
about one quarter closely match BNE. Only 7.5% of subjects in AT are at least 95% consistent.

18The results are reasonably robust to alternative error structures and non-uniform priors. The MLE
partially-cursed strategy is not included as a candidate strategy since it is a free parameter estimated
from the data rather than being specified a priori. However, if it is included, it becomes modal in CVT and
second-most prevalent after the fully-cursed strategy in AT, and the prevalence of BNE falls substantially.

19This finding is similar to Georganas et al. (2013), who found very little correlation between measures
of cognitive ability and playing more sophisticated strategies in undercutting and guessing games.
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the CVT strategies also yields an estimate of approximately one quarter of subjects play-

ing the BNE for the CVT game. However, the BNE strategy from CVT does not have

any particular justification or heuristic intuition in the PVT game. Recall that the ac-

tual BNE strategy in PVT is identical to the fully-cursed equilibrium strategy from CVT.

Thus, there is no reason to expect subjects in PVT to play the BNE strategy from CVT,

except perhaps by chance. The similarity of estimated proportions in CVT and PVT

playing the BNE strategy from CVT further suggests that strategic sophistication does

not drive consistency with the BNE strategy in CVT. Therefore, it appears that very few,

if any, subjects are able to properly condition beliefs in this setting.

Result 4 (Individual Heterogeneity). Estimated proportions of strategic types show

that fully-cursed behavior is modal, and that the great majority of subjects play some

boundedly-rational or heuristic strategy.

6 DISCUSSION

In this paper, I have demonstrated that a severe neglect of belief conditioning can im-

pede the provision of common-value excludable public goods. In the CVT game, a fa-

vorable conditioning effect arises in Bayesian Nash equilibrium because the expected

value of the public good conditional on sufficiently many others contributing is higher

than this expectation conditional on the private signal alone. However, subjects fail to

account for this effect, consistent with cursed equilibrium. Furthermore, behavior in

this game is indistinguishable from behavior in the closely-related PVT game, in which

conditioning effects are absent. There is also a surprising similarity in behavior be-

tween the CVT game (with a favorable conditioning effect) and the AT game (with an

unfavorable conditioning effect). The fully-cursed equilibria of CVT, PVT, and AT are

identical, while there are sharp differences in their Bayesian Nash equilibria. Thus, the

similarity in behavior between games is consistent with cursedness.

However, cursed equilibrium cannot explain the observed contribution rates. In par-

ticular, the level of contribution in PVT with the highest contribution cost is unexplained

by cursed equilibrium or Bayesian Nash equilibrium. The decrease in contribution in

PVTk1 (the individual-choice version of PVT) suggests that weak incentives partially

drive contribution in this case, since the probability of provision is low. Such weakness

of incentives is also present in CVT with the highest contribution cost, and may have

also driven some contributions in this case.
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This paper contributes to the the literature on public goods by identifying a novel im-

pediment to contribution that is distinct from free-riding. While this experiment is de-

signed to provide a clear separation between equilibrium and naïve contribution choices,

the behavioral phenomenon found here may also be important in field environments. In

a number of applications within public economics and industrial organization, such as

the provision of gated communities and the formation of joint ventures, naïve contribu-

tion choices may cause a failure to coordinate on efficiency-enhancing outcomes. Future

research might examine the design of optimal mechanisms for information aggregation

in such environments. In the simple case that I consider, the incentives of individual

agents are aligned under pure common value, so that agents would truthfully reveal

their signals if they could. However, incentives to lie may exist in closely-related cases

in which some form a free-riding is possible. Private value components, unequal con-

tributions, or lack of excludability all lead to the possibility of free-riding in some form,

which may give individual players an incentive to misrepresent their private informa-

tion.

This paper also contributes to the literature on cursedness in related contexts such as

common-value auctions and voting games by examining cursed equilibrium in a novel

game and showing a potentially important consequence of this type of bounded rational-

ity. Importantly, my experimental design demonstrates the failure to properly condition

beliefs by the comparison of the CVT and PVT treatments. While comparing behavior

to theoretical benchmarks within a treatment is also useful, the treatment comparison

controls for other potential sources of decision error while varying only the presence of

belief conditioning effects. The treatment comparison suggests that subjects not only

fail to fully condition beliefs, but actually fail to condition at all.
I have focused on the case of excludable public goods (such as gated communities

and private parks) to isolate the neglect of belief conditioning in the absence of free-

riding incentives. Future research might explore the idea of pure public goods with

interdependent values.20 Examples include pollution abatement and flood control, for

which values are likely to be strongly correlated, but uncertain. This study provides a

first step toward a promising line of inquiry on coordination and information aggregation

in environments with common-value public goods.

20The neglect of belief conditioning in a pure public goods context might be called a “Free-Rider’s Curse,”
though in the current excludable context, there is no free-riding.
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APPENDIX: PROOFS

Proof of Lemma 1. In symmetric BNE, agents contribute with equal probability p =Pr(c(X )=
1). Given a signal xi, agent i’s expected payoff of contributing is given by:

Ui(xi)=
n−1∑

l=k−1

(n−1
l

)
pl(1− p)n−1−l

(
αxi + (1−α)l

n−1 E[X |c(X )= 1]+ (1−α)(n−1−l)
n−1 E[X |c(X )= 0]−w

)
(A.1)

Differentiating with respect to the xi, it is straightforward to verify that agent i’s
expected payoff is non-decreasing in xi, and is strictly increasing whenever p > 0.

Suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi) > 0} = ;. Then simply let x∗i = x+1.

Next, suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi) > 0} = [x, x]. Then let x∗i = x−1.

Now suppose in symmetric BNE, {xi ∈ [x, x] | Ui(xi)> 0} is a non-empty, proper subset of

[x, x]. Take xi ∈ {xi ∈ [x, x] | Ui(xi)> 0}. Then since the expected payoff of contributing is

non-decreasing in the signal, whenever x′i > xi, it must be that Ui(x′i)≥Ui(xi)> 0. Since

{xi ∈ [x, x] | Ui(xi)> 0} is bounded below by x, it has an infimum. Let x∗i = inf {xi ∈ [x, x] |
Ui(xi)> 0}. By continuity, Ui(x∗i )= 0. By symmetry x∗i = x∗ for each agent i ∈ N.

Given a signal x′′i ≤ x∗, it must be that Ui(x′′i )≤ 0, by definition of x∗ and continuity of

Ui.

Proof of Lemma 2. Take r 6= i. Then:

E

[
Xr

∣∣∣∣∣ ∑
j 6=i

c∗(X j)≥ k−1

]

=Pr

( ∑
j 6=i

c∗(X j)− c∗(Xr)< k−1

∣∣∣∣∣ ∑
j 6=i

c∗(X j)≥ k−1

)
E[Xr|Xr ≥ x∗]

+Pr

( ∑
j 6=i

c∗(X j)− c∗(Xr)≥ k−1

∣∣∣∣∣ ∑
j 6=i

c∗(X j)≥ k−1

)
E[Xr]

(A.2)

Intuitively, it is possible to partition the event where at least k−1 signals other than

xi exceed x∗ into two cases. In the first, exactly k−1 signals other than xi exceed x∗,

one of which is xr. In the second case, at least k−1 signals other than xi and xr exceed

x∗, in which case the expectation of Xr is simply the prior expectation.
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As x∗ increases, E[Xr|Xr ≥ x∗] weakly increases by first-order stochastic dominance.

In particular, E[Xr|Xr ≥ x∗] ≥ E[Xr]. Since the expression in equation A.2 is a convex

combination of these two expectations, it suffices to show that the first probability in

equation A.2 is also non-decreasing in x∗.

Pr

( ∑
j 6=i

c∗(X j)− c∗(Xr)< k−1

∣∣∣∣∣ ∑
j 6=i

c∗(X j)≥ k−1

)

= (n−2
k−2)(1−F(x∗))k−1F(x∗)n−k

n−1∑
l=k−1

(n−1
l )(1−F(x∗))lF(x∗)n−1−l

= (n−2
k−2)

n−1∑
l=k−1

(n−1
l )

(
1−F(x∗)

F(x∗)

)l−k+1

(A.3)

It is straightforward to verify that 1−F(x∗)
F(x∗) is non-increasing in x∗, which implies that

the probability in equation A.3 is non-decreasing in x∗. Thus the expectation in equation

A.2 is non-decreasing in x∗, which implies the result.

Proof of Proposition 1. Let w belong to the given interval. First, this interval is

non-empty since: (
α+ (1−α)(k−1)

n−1

)
x+ (1−α)(n−k)

n−1 E[X ]−αx− (1−α)E[X ]

=α(x− x)+ (1−α)(k−1)
n−1 (x−E[X ])> 0

(A.4)

Morever, the interval is contained in [x, x] since the lower bound is a convex combina-

tion of x and E[X ] while the upper bound is a convex combination of x and E[X ].

Restricting to x∗ < x, equation 4 can be rewritten as H(x∗)= 0 where:

H(x∗)=
n−1∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l
(
αx∗+ (1−α)l

n−1 E[X |X≥x∗]+ (1−α)(n−1−l)
n−1 E[X |X<x∗]−w

)
n−1∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l

=αx∗−w+
n−1∑

l=k−1
(n−1

l )(1−F(x∗))lF(x∗)n−1−l
(

(1−α)l
n−1 E[X |X≥x∗]+ (1−α)(n−1−l)

n−1 E[X |X<x∗]
)

n−1∑
l=k−1

(n−1
l )(1−F(x∗))lF(x∗)n−1−l

=αx∗−w+ (1−α)G i(x∗)

(A.5)
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Intuitively, H(x∗) is the expected utility of contributing given a signal of x∗ condi-

tional on the public good being provided, where each other agents’ strategy is contribu-

tion whenever their signal is at least x∗.

Notice that H(x∗) is strictly increasing in x∗ because the final term is non-decreasing

in x∗ by 2. Thus, H(x∗) can cross zero at most once, guaranteeing that there is at most

one interior equilibrium cutoff.

Consider the behavior of H(x∗) as x∗ → x. The key term of interest is the probability

that exactly k−1 agents other than i contributed given that at least k−1 contributed.

lim
x∗→x

Pr

( ∑
j 6=i

c(X j)= k−1

∣∣∣∣∣ ∑
j 6=i

c(X j)≥ k−1

)
= lim

x∗→x

(n−1
k−1)(1−F(x∗))k−1F(x∗)n−k

n−1∑
l=k−1

(n−1
l )(1−F(x∗))lF(x∗)n−1−l

= lim
x∗→x

1

1+
n−1∑
l=k

(k−1)!(n−k)!
l!(n−1−l)!

(
1−F(x∗)

F(x∗)

)l−k+1 = 1

(A.6)

Since lim
x∗→x

1−F(x∗)
F(x∗) = 0. Therefore, taking the limit of H(x∗) as x∗ → x yields the follow-

ing:

lim
x∗→x

H(x∗)=αx−w+ (1−α)(k−1)
n−1

x+ (1−α)(n−k)
n−1

E[X ] (A.7)

Which is positive if and only if w <
(
α+ (1−α)(k−1)

n−1

)
x+ (1−α)(n−k)

n−1 E[X ]. Now consider

x∗ = x.

H(x)=αx−w+ (1−α)E[X ] (A.8)

The right-hand side is negative if and only if w >αx+ (1−α)E[X ]. Thus, since H(x∗)

is clearly continuous, there exists x∗ ∈ (x, x) such that H(x∗)= 0, thus satisfying equation

4.

Now suppose w is not within the specified bounds. Since H(x∗) is strictly increasing

in x∗, it is either positive everywhere or negative everywhere. Thus, no symmetric BNE

cutoff exists.

Proof of Corollary 1. H(x∗) in equation A.5 is clearly decreasing in w. Therefore, when

w increases, H becomes negative at the previous value of x∗. Since H is increasing in
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x∗, the value of x∗ at which this function is zero must be higher. Similarly, G i(x∗) in

equation 2 is clearly increasing in k, which implies that H(x∗) is also increasing in k.

Therefore, when k increases, the value of x∗ at which H(x∗)= 0 must decrease.

Proof of Proposition 2. As in Lemma 1, in symmetric χ-cursed equilibrium, the ex-

pected utility of contributing is non-decreasing in the signal. Thus by the same argu-

ment as in Lemma 1, attention can be restricted to cutoff equilibria. The equilibrium

condition in equation 4 becomes:

n−1∑
l=k−1

(n−1
l

)
(1−F(x∗χ))lF(x∗χ)n−1−l

[
αx∗χ+ (1−α)l

n−1

(
χE[X ]+ (1−χ)E[X |X ≥ x∗χ]

)

+ (1−α)(n−1−l)
n−1

(
χE[X ]+ (1−χ)E[X |X < x∗χ]

)
−w

]
= 0

(A.9)

As in the proof of Proposition 1, define a function Hχ(x∗χ) as follows:

Hχ(x∗χ)=
n−1∑

l=k−1
(n−1

l )(1−F(x∗χ))l F(x∗χ)n−1−l
[
αx∗χ+ (1−α)l

n−1

(
χE[X ]+(1−χ)E[X |X≥x∗χ]

)
+ (1−α)(n−1−l)

n−1

(
χE[X ]+(1−χ)E[X |X<x∗χ]

)
−w

]
n−1∑

l=k−1
(n−1

l )(1−F(x∗χ))l F(x∗χ)n−1−l

=αx∗χ−w+ (1−α)χE[X ]+ (1−α)(1−χ)G i(x∗χ)
(A.10)

As in Proposition 1, a zero of this function in (x, x) corresponds to an interior symmet-

ric equilibrium cutoff. As in Proposition 1, it can be shown that limx∗χ→x Hχ(x∗χ) > 0 and

Hχ(x)< 0 given the bounds on w. Thus, by continuity, an interior zero exists. By Lemma

2, Hχ(x∗χ) is strictly increasing in x∗χ, and so it has at most one zero. Furthermore, as in

Proposition 1, if w lies outside the given interval, Hχ(x∗χ) has no interior zero.

For χ= 1 (fully-cursed equilibrium), equation A.9 becomes:

(
αx∗1 + (1−α)E[X ]−w

) n−1∑
l=k−1

(
n−1

l

)
(1−F(x∗1 ))lF(x∗1 )n−1−l = 0 (A.11)

If x∗1 < x, then solving for the cutoff yields equation 7.

Proof of Corollary 2. From equation A.10 it is clear that Hχ is non-increasing in χ,

since by Lemma 2, G i(x∗χ) ≥G i(x) = E[X ]. Thus, as χ increases, the zero of Hχ (weakly)
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increases. The proof of the comparative statics with respect to w and k is the same as

the proof of Corollary 1

Proof of Corollary 3. The bounds on w in Propositions 1 and 2 imply the result, as

long as:

(
α+ (1−α)(k−1)

n−1

)
x+ (1−α)(n−k)

n−1 E[X ]−
(
α+ (1−χ)(1−α)(k−1)

n−1

)
x−

(
χ(1−α)(k−1)

n−1 + (1−α)(n−k)
n−1

)
E[X ]

= χ(1−α)(k−1)
n−1 (x−E[X ])> 0

(A.12)

Which holds if α< 1.
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Online Appendix to Accompany:

Cursed Beliefs with Common-Value Public Goods

Caleb A. Cox

ONLINE APPENDIX A SUPPLEMENTARY RESULTS

A.1 Repeated Trials and Learning

Figure OA.1 shows contribution rates over repeated trials of each of the four cost levels

and for each of CVT, PVT, and AT. Recall that each of the four cost levels is encountered

five times in each session, with the order randomized for each session. The BNE and

fully-cursed benchmarks represent the expected contribution rates under each equilib-

rium concept, given the signals realized in the experiment. Few clear trends are ap-

parent. Contributions do appear to decline in PVT with w = 65, which is somewhat

reassuring given that no contribution should occur in that case. Only in CVT and PVT

with w = 35 (where everyone should always contribute) does behavior seem to approach

BNE. Overall, only in these few simple cases, where subjects should always or never

contribute, do the data seem to suggest learning patterns.

Figure OA.2 shows the proportion of choices consistent with several equilibrium con-

cepts over repeated trials. The particular partially-cursed equilibrium used here is for

the maximum likelihood values of χ for CVT and AT (0.6 and 0.91 respectively). Again,

there is little evidence of significant learning or convergence toward BNE, except in

the simpler cases where subjects should always or never contribute. The clearest dif-

ferences in consistency of contribution choices with the equilibrium concepts are in the

cases of greatest contrast between BNE and cursed cutoffs (CVT with w = 65 and AT

with w = 35). However, less differentiation is apparent for cost levels where there is less

contrast between cutoffs under each equilibrium concept.1

I explore potential learning effects more formally in the logit regressions in Table

1Relatively few observations in these cases fall in the range where the equilibrium concepts make
different predictions.



Figure OA.1: Contribution Rates Over Repeated Trials

OA.1. To study behavior within each treatment in more detail, I impose stronger as-

sumptions about the nature of intra-session correlation than in logit regressions in the

main body of the paper. I model session effects by including indicators for sessions and

a (lagged) feedback variable equal to the contribution rate of other players in a given

subject’s group in the previous trial at the same cost level. I assume that conditional on

session indicators and lagged feedback, observations of different subjects in the same

session are independent. Standard errors are clustered by subject.

2



Figure OA.2: Equilibrium Match Over Repeated Trials

Consistent with the previous graphs, the results in Table OA.1 show little evidence of

consistent learning patterns. In CVT at the lowest cost level, the is an upward trend to-

ward the equilibrium prediction of full contribution. However, there is also a (marginally

significant) upward trend in contribution in AT at the lowest cost level, moving farther

away from the BNE prediction. No other significant trends are apparent. Thus it ap-

pears that very little learning takes place, or if it does, that it is very slow.
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CVT
Variable w=65 w=55 w=45 w=35
signal 1.035*** 1.033*** 1.031*** 1.008

(0.009) (0.007) (0.008) (0.012)
round 0.968 1.018 0.991 1.087**

(0.031) (0.033) (0.035) (0.042)
feedback 0.782 0.897 0.448 0.476

(0.523) (0.473) (0.316) (0.629)

PVT
Variable w=65 w=55 w=45 w=35
signal 1.034*** 1.039*** 1.029*** 1.009

(0.011) (0.010) (0.011) (0.011)
round 1.010 1.020 0.946 1.036

(0.050) (0.049) (0.049) (0.049)
feedback 2.433 0.301* 1.454 2.877

(2.356) (0.205) (1.349) (4.376)

AT
Variable w=65 w=55 w=45 w=35
signal 1.017* 1.041*** 1.026*** 1.023**

(0.010) (0.008) (0.007) (0.009)
round 1.149** 0.954 0.998 1.092*

(0.069) (0.041) (0.034) (0.055)
feedback 1.479 0.296 1.470 2.632

(1.179) (0.241) (0.848) (2.819)

Table OA.1: Logit regression results for CVT, PVT, and AT and each cost level. The dependent variable is
an indicator for contribution. Session indicators included but not reported. Odds ratios are reported with
standard errors in parentheses, clustered at the subject level. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively.

A.2 Over-Contribution in PVT

As shown in the main body of the paper, there is a puzzling tendency for subjects to

over-contribute in PVT (and AT) with w = 65. Even with a signal of 100, the expected

value of the group project is no greater than 60 tokens, and thus subjects should never

contribute in PVT when the cost is 65 tokens. Interestingly, subjects do not frequently

make similar mistakes in PVT with w = 35, where contribution is always optimal for

any signal. Thus, there is an asymmetry in behavior between cases in which subjects

should always or never contribute.
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This finding is not driven by a small subset of subjects. Rather, a majority of subjects

contributed at least once in this case. This behavior is clearly not driven by cursedness,

because in PVT full or partial cursedness yields the same prediction as BNE. Rational-

izing this behavior through risk preferences would require many subjects to be implau-

sibly risk-loving, with coefficients of relative risk aversion less than −5. This behavior

might represent some form of altruism, as subjects may simply view contributing as a

pro-social act. However, such motivations would be misguided, since the group project

is a bad bet for other players as well.

Another possibility is that subjects are simply bad at calculating expected values. To

investigate this possibility, a surprise bonus question was added at the end of the second

session of PVT and the second session of AT. In this question, subjects were asked to

calculate the expected value of the group project given a signal of 100. Answers within

plus or minus 5 of the correct answer (60) were rewarded with a $1 bonus payment on top

of any earnings from the main part of the experiment. If subjects can correctly perform

this calculation, they should see that contributing at a cost of 65 is never optimal. Of

the forty subjects in these two sessions, 45% got the answer exactly right (which was

also the modal response), and 65% answered within plus or minus 5. I ran logistic

regressions similar those in Table OA.1 at cost level w = 65 in these two sessions, using

an indicator for an exactly correct answer as an explanatory variable. As shown in

Table OA.2, I did not find any significant correlation between a over-contribution and

the answer given on the bonus question. This negative result is robust to alternative

specifications such as using an indicator for an answer with plus or minus 5 or using the

Variable PVT w=65 AT w=65
signal 1.086*** 1.014

(0.025) (0.012)
round 0.991 1.134*

(0.083) (0.076)
feedback 4.833 2.615

(7.574) (2.710)
Correct 0.683 1.291

(0.546) (1.192)

Table OA.2: Logit regression results for PVT and AT at the highest cost level. The dependent variable is
an indicator for contribution. Odds ratios are reported with standard errors in parentheses, clustered at
the subject level. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Figure OA.3: Contribution in PVT v. PVTk1

actual reported expected value. Thus, errors in expected value calculation do not appear

to be an important reason for the observed over-contribution.

As discussed in the main body of the paper, I added the PVTk1 treatment, altering

PVT into an individual choice problem (while keeping the framing as close as possible to

the original PVT treatment). This treatment is designed to test whether weak incentives

due to infrequent provision of the group project might drive over-contribution in this

case. As shown in Table 1 in the main body of the paper, there is some evidence in

support of this explanation, with lower contribution in PVTk1 relative to PVT at cost

level 65. Aggregate contribution rates in PVT and PVTk1 are displayed graphically in

Figure OA.3, showing visual evidence consistent with the regression result in the main

body of the paper. Figure OA.4 compares contribution in PVT and PVTk1 at each cost

level over repeated trials. Again, the two treatments appear somewhat different at cost

level 65, but similar for lower cost levels.

Beyond differences in the aggregate rates of contribution in PVT and PVTk1 at the

highest cost level, there may also differences in learning. Table OA.3 shows regres-

6



Figure OA.4: Contribution in PVT v. PVTk1 over repeated trials.

sions similar to those in Table OA.1, examining trends over several rounds of play in

PVTk1. For cost level 65, there is a significant reduction in contributions for PVTk1. No

such trend is apparent in PVT, as shown in Table OA.1. Comparing the coefficients on

7



PVTk1
Variable w=65 w=55 w=45 w=35
signal 1.046*** 1.036*** 1.041*** 1.021

(0.013) (0.010) (0.010) (0.017)
round 0.851** 1.004 0.964 1.134*

(0.059) (0.049) (0.036) (0.077)
feedback 0.136 0.919 0.061** 0.747

(0.181) (0.732) (0.077) (1.347)

Table OA.3: Logit regression results for PVTk1 and each cost level. The dependent variable is an indicator
for contribution. Session indicators included but not reported. Odds ratios are reported with standard
errors in parentheses, clustered at the subject level. ***, **, and * indicate significance at the 1%, 5%, and
10% levels, respectively.

round of play in PVT and PVTk1, the difference is significiant (p-value=0.030).2 Thus,

there is some evidence that steepening incentives may help subjects learn not to over-

contribute in this setting. However, even in the individual choice problem of PVTk1,

subjects still choose the group project too often for w = 65. It is possible that some sub-

jects simply enjoy gambling in small amounts, or use idiosyncratic heuristics leading to

over-contribution.

A.3 Predicted Probability of Contribution as a Function of the Signal

Figure OA.5 shows predicted probabilities of contribution for CVT, PVT, and AT at each

cost level, including 95% confidence intervals. These predicted probabilities are derived

from the logit regression estimates in Table OA.1. Explanatory variables other than

signal are fixed at their mean values. The graphs suggest that the probability of con-

tribution increases smoothly with the signal rather than following a step function as

suggested by the theoretical benchmarks. It is possible that subjects use probabilistic

strategies, with contribution more likely as the signal increases. Another possibility, as

explored in the main body of the paper, is that subjects’ cutoff strategies are heteroge-

neous. Such behavior could lead to aggregate contribution that increases gradually in

the signal rather than jumping sharply at a common cutoff.

2For this comparison, I nest the two models, interact all explanatory variables with the indicator for
PVTk1, and test the significance of the interaction between the treatment indicator and round of play.
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Figure OA.5: Predicted probability of contribution as a function of the signal for CVT, PVT, and AT at
each cost level, from the logit regression estimates in Table OA.1. Shown with 95% confidence intervals.

A.4 Cognitive/Quantitative Ability

In Table 2 in the main body of the paper, I report estimated strategy proportions for

CVT and AT. An additional question of interest is whether cognitive and quantitative

ability are correlated with proper belief conditioning. Subjects gave consent to access

academic records including GPA, ACT/SAT scores, and academic major. Academic major

is used as a proxy for quantitative ability: I classify mathematics, statistics, engineering,

natural and physical sciences, computer science, economics, finance, and accounting as

quantitative majors. I have run a number of regressions checking whether consistency

with BNE correlates with ACT/SAT percentile, GPA, and quantitative major. However,

as shown in Table OA.4 the results have been negative. Perhaps surprisingly, there is

little correlation between the measures of cognitive and quantitative ability, and thus

multicollinearity does not seem to be a major issue in this case.
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Variable CVT AT
ACT/SAT Percentile 0.0017 0.0010

(0.0014) (0.0016)
GPA 0.0328 0.0513

(0.0834) (0.1194)
Quant -0.0177 0.0600

(0.0726) (0.1014)

Table OA.4: Linear regressions results. The dependent variable is the proportion of choices consistent with
BNE. Robust standard errors shown in parentheses. Session indicators are included but not reported.

A.5 Efficiency

In addition to contribution decisions, efficiency is of some interest. Figures OA.6 and

OA.7 show the average per person net gains in CVT and PVT at each cost of contribution

for the signals realized in the experiment. As there is no public good of any kind in

AT, efficiency in this case is of less interest and is omitted. The first-best efficiency

benchmark shows the net gain if provision occurs if and only if provision is efficient

(with the most efficient contributing set in PVT). The second-best benchmark shows the

net gain if a benevolent social planner were to enforce a symmetric contribution cutoff

to maximize the expected total surplus. While efficiency under BNE is somewhat lower

than second-best in CVT, it is quite close. Efficiency in the data falls below the BNE

benchmark in CVT, particularly for cost levels 45 and 55. In PVT, efficiency in the data

is actually higher than the BNE benchmark at cost level 45, but falls short otherwise,

including small negative net returns for cost levels 55 and 65.
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Figure OA.6: Efficiency in CVT

Figure OA.7: Efficiency in PVT
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ONLINE APPENDIX B EXPERIMENTAL INSTRUCTIONS

Experiment Overview

This is an experiment in the economics of decision-making. In this experiment you will

make a series of choices, each of which may earn you money. The amount of money you

earn will depend on the decisions you make and on the decisions of others. If you listen

carefully and make good decisions, you could earn a considerable amount of money that

will be paid to you in cash at the end of the experiment.

Ground Rules

Please make all decisions independently; do not communicate with others (in the room

or outside the room) in any way during the experiment. This means no talking, no cell

phone usage, no texting, no internet chatting, etc. Please do not attempt to use any

software other than the experiment software provided. Failure to comply with these

rules will lead to dismissal from the experiment.

Instructions (CVT)

During the experiment, participants earn tokens. All participants will be paid based on

the number of tokens they earn. Each token is worth 20 cents, or $1 for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round, you will

be randomly and anonymously matched into groups of five. At the start of each later

round, you will be randomly and anonymously re-matched into new groups of five, so

that your group changes every round and you never learn the identities of the other

group members in any round.

In each round, you will choose how to allocate some number of tokens, which we will

call T. Everyone in your group in any given round will allocate the same number of

tokens, so that T is the same for everyone in your group and is known to everyone in

your group. However, T may change from round to round.

The T tokens may be allocated to a private account or to a group project. If you

choose to allocate T tokens to a private account, then you get T tokens for the round.

The details of the group project are as follows.
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In each round, a random number will be selected by the computer from a uniform

distribution between 0 and 100. We will call this random number your signal. Each

other member of your group will also get a signal randomly selected by the computer

from the same distribution. We will call the signals of the five group members S1, S2,

S3, S4, and S5. All signals are drawn independently. During each round, you will not

observe the signals of the other members. Similarly, other members of the group will

not observe any signal other than their own.

If you choose to allocate T tokens to the group project, and if at least three other

members of your group also choose to allocate T tokens to the group project, then you

get a number of tokens equal to the average of the signals of all five members of your

group for the round. We will call the average of the signals of the five members of your

group the value of the group project, or V , which is given by:

V = S1+S2+S3+S4+S5
5

So, for example, if your signal is 50 and the other members of your group get signals

of 25, 40, 62, and 86, then the average of all five signals is:

V = 50+25+40+62+86
5

= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project and at least

three other members of your group also chose to allocate T tokens to the group project,

then you would get 52.6 tokens for that round.

If you choose to allocate T tokens to the group project, but less than three other

members of your group also choose to allocate T tokens to the group project, then you

get T tokens for that round. In other words, if less than four of the five members of

your group (including yourself) choose to allocate T tokens to the group project, then

all tokens are automatically reallocated to private accounts and everyone in your group

gets T tokens.

After all members of your group have made their choice, you will learn the value of

the group project (V ) and your earnings in tokens for the round. You will also learn the

signals observed by the other members of your group (listed from highest to lowest) and

how they allocated T tokens (to the group project or private account).

The following summarizes your choice in each round. If you choose to allocate T
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tokens to a private account, then you get T tokens. If you choose to allocate T tokens

to the group project, and if at least three other members of your group also choose to

allocate T tokens to the group project, then you get V tokens, where V is the average of

the signals of the five members of your group. If you choose to allocate T tokens to the

group project, but less than three other members of your group also choose to allocate T

tokens to the group project, then you get T tokens.

Remember that you will be randomly and anonymously re-matched into new groups

of five at the start of each round. Also remember that T is the same for every member of

your group. However, signals are randomly and independently drawn for each member

of your group.

Of the twenty rounds, one will be randomly selected for payment. All participants will

be paid their earnings in dollars for the randomly selected round, plus a $5.00 show-up

payment. You will not find out which round you will be paid for until the end of the

experiment, so you should treat each round as something for which you might get paid.

You will not be paid for the rounds that are not randomly selected for payment.

Are there any questions before we begin the experiment?

Instructions (AT)

During the experiment, participants earn tokens. All participants will be paid based on

the number of tokens they earn. Each token is worth 20 cents, or $1 for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round, you will

be randomly and anonymously matched into groups of five. At the start of each later

round, you will be randomly and anonymously re-matched into new groups of five, so

that your group changes every round and you never learn the identities of the other

group members in any round.

In each round, you will choose how to allocate some number of tokens, which we will

call T. Everyone in your group in any given round will allocate the same number of

tokens, so that T is the same for everyone in your group and is known to everyone in

your group. However, T may change from round to round.

The T tokens may be allocated to a private account or to a group project. If you

choose to allocate T tokens to a private account, then you get T tokens for the round.

The details of the group project are as follows.
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In each round, a random number will be selected by the computer from a uniform

distribution between 0 and 100. We will call this random number your signal. Each

other member of your group will also get a signal randomly selected by the computer

from the same distribution. We will call the signals of the five group members S1, S2,

S3, S4, and S5. All signals are drawn independently. During each round, you will not

observe the signals of the other members. Similarly, other members of the group will

not observe any signal other than their own.

If you choose to allocate T tokens to the group project, and if no more than one other

member of your group also chooses to allocate T tokens to the group project, then you

get a number of tokens equal to the average of the signals of all five members of your

group for the round. We will call the average of the signals of the five members of your

group the value of the group project, or V , which is given by:

V = S1+S2+S3+S4+S5
5

So, for example, if your signal is 50 and the other members of your group get signals

of 25, 40, 62, and 86, then the average of all five signals is:

V = 50+25+40+62+86
5

= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project and if no

more than one other member of your group also chose to allocate T tokens to the group

project, then you would get 52.6 tokens for that round.

If you choose to allocate T tokens to the group project, but more than one other mem-

ber of your group also chooses to allocate T tokens to the group project, then you get

T tokens for that round. In other words, if more than two of the five members of your

group (including yourself) choose to allocate T tokens to the group project, then all to-

kens are automatically reallocated to private accounts and everyone in your group gets

T tokens.

After all members of your group have made their choice, you will learn the value of

the group project (V ) and your earnings in tokens for the round. You will also learn the

signals observed by the other members of your group (listed from highest to lowest) and

how they allocated T tokens (to the group project or private account).

The following summarizes your choice in each round. If you choose to allocate T
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tokens to a private account, then you get T tokens. If you choose to allocate T tokens to

the group project, and if no more than one other member of your group also chooses to

allocate T tokens to the group project, then you get V tokens, where V is the average of

the signals of the five members of your group. If you choose to allocate T tokens to the

group project, but more than one other member of your group also chooses to allocate T

tokens to the group project, then you get T tokens.

Remember that you will be randomly and anonymously re-matched into new groups

of five at the start of each round. Also remember that T is the same for every member of

your group. However, signals are randomly and independently drawn for each member

of your group.

Of the twenty rounds, one will be randomly selected for payment. All participants will

be paid their earnings in dollars for the randomly selected round, plus a $5.00 show-up

payment. You will not find out which round you will be paid for until the end of the

experiment, so you should treat each round as something for which you might get paid.

You will not be paid for the rounds that are not randomly selected for payment.

Are there any questions before we begin the experiment?

Instructions (PVT)

During the experiment, participants earn tokens. All participants will be paid based on

the number of tokens they earn. Each token is worth 20 cents, or $1 for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round, you will

be randomly and anonymously matched into groups of five. At the start of each later

round, you will be randomly and anonymously re-matched into new groups of five, so

that your group changes every round and you never learn the identities of the other

group members in any round.

In each round, you will choose how to allocate some number of tokens, which we will

call T. Everyone in your group in any given round will allocate the same number of

tokens, so that T is the same for everyone in your group and is known to everyone in

your group. However, T may change from round to round.

The T tokens may be allocated to a private account or to a group project. If you

choose to allocate T tokens to a private account, then you get T tokens for the round.

The details of the group project are as follows.
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In each round, a random number will be selected by the computer from a uniform

distribution between 0 and 100. We will call this random number your signal and label

it S. Each other member of your group will also get a signal randomly selected by the

computer from the same distribution. All signals are drawn independently. During each

round, you will not observe the signals of the other members. Similarly, other members

of the group will not observe any signal other than their own.

Furthermore, in each round, four unobserved random number will be selected for you

by the computer from a uniform distribution between 0 and 100. We will label these

four random numbers R1, R2, R3, and R4. For each other member of your group, there

will also be four unobserved numbers randomly selected by the computer from the same

distribution. All of these random numbers are drawn independently of each other and

independently of your signal and the signals of others in your group. You will not observe

any of these random numbers, and neither will any other member of your group.

If you choose to allocate T tokens to the group project, and if at least three other

members of your group also choose to allocate T tokens to the group project, then you get

a number of tokens equal to the average of your signal and the four unobserved random

numbers selected for you by the computer for the round. We will call this average your

value for the group project, or V , which is given by:

V = S+R1+R2+R3+R4
5

So, for example, if your signal is 50 and the four unobserved random numbers are 25,

40, 62, and 86, then the average is:

V = 50+25+40+62+86
5

= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project and at least

three other members of your group also chose to allocate T tokens to the group project,

then you would get 52.6 tokens for that round.

If you choose to allocate T tokens to the group project, but less than three other

members of your group also choose to allocate T tokens to the group project, then you

get T tokens for that round. In other words, if less than four of the five members of

your group (including yourself) choose to allocate T tokens to the group project, then

all tokens are automatically reallocated to private accounts and everyone in your group
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gets T tokens.

After all members of your group have made their choice, you will learn your value for

the group project (V ) and your earnings in tokens for the round. You will also learn the

signals observed by the other members of your group (listed from highest to lowest) and

how they allocated T tokens (to the group project or private account).

The following summarizes your choice in each round. If you choose to allocate T

tokens to a private account, then you get T tokens. If you choose to allocate T tokens

to the group project, and if at least three other members of your group also choose to

allocate T tokens to the group project, then you get V tokens, where V is the average of

your signal, R1, R2, R3, and R4. If you choose to allocate T tokens to the group project,

but less than three other members of your group also choose to allocate T tokens to the

group project, then you get T tokens.

Remember that you will be randomly and anonymously re-matched into new groups

of five at the start of each round. Also remember that T is the same for every member

of your group. However, signals and unobserved random numbers are randomly and

independently drawn for each member of your group.

Of the twenty rounds, one will be randomly selected for payment. All participants will

be paid their earnings in dollars for the randomly selected round, plus a $5.00 show-up

payment. You will not find out which round you will be paid for until the end of the

experiment, so you should treat each round as something for which you might get paid.

You will not be paid for the rounds that are not randomly selected for payment.

Are there any questions before we begin the experiment?

Instructions (PVTk1)

During the experiment, participants earn tokens. All participants will be paid based on

the number of tokens they earn. Each token is worth 20 cents, or $1 for every 5 tokens.

The experiment consists of twenty rounds. At the start of the first round, you will

be randomly and anonymously matched into groups of five. At the start of each later

round, you will be randomly and anonymously re-matched into new groups of five, so

that your group changes every round and you never learn the identities of the other

group members in any round.

In each round, you will choose how to allocate some number of tokens, which we will
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call T. Everyone in your group in any given round will allocate the same number of

tokens, so that T is the same for everyone in your group and is known to everyone in

your group. However, T may change from round to round.

The T tokens may be allocated to a private account or to a group project. If you

choose to allocate T tokens to a private account, then you get T tokens for the round.

The details of the group project are as follows.

In each round, a random number will be selected by the computer from a uniform

distribution between 0 and 100. We will call this random number your signal and label

it S. Each other member of your group will also get a signal randomly selected by the

computer from the same distribution. All signals are drawn independently. During each

round, you will not observe the signals of the other members. Similarly, other members

of the group will not observe any signal other than their own.

Furthermore, in each round, four unobserved random numbers will be selected for

you by the computer from a uniform distribution between 0 and 100. We will label these

four random numbers R1, R2, R3, and R4. For each other member of your group, there

will also be four unobserved numbers randomly selected by the computer from the same

distribution. All of these random numbers are drawn independently of each other and

independently of your signal and the signals of others in your group. You will not observe

any of these random numbers, and neither will any other member of your group.

If you choose to allocate T tokens to the group project, then you get a number of

tokens equal to the average of your signal and the four unobserved random numbers

selected for you by the computer for the round. We will call this average your value for

the group project, or V , which is given by:

V = S+R1+R2+R3+R4
5

So, for example, if your signal is 50 and the four unobserved random numbers are 25,

40, 62, and 86, then the average is:

V = 50+25+40+62+86
5

= 52.6

Thus, in this case, if you chose to allocate T tokens to the group project, then you

would get 52.6 tokens for that round.

After all members of your group have made their choice, you will learn your value for
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the group project (V ) and your earnings in tokens for the round. You will also learn the

signals observed by the other members of your group (listed from highest to lowest) and

how they allocated T tokens (to the group project or private account).

The following summarizes your choice in each round. If you choose to allocate T

tokens to a private account, then you get T tokens. If you choose to allocate T tokens to

the group project, then you get V tokens, where V is the average of your signal, R1, R2,

R3, and R4.

Remember that you will be randomly and anonymously re-matched into new groups

of five at the start of each round. Also remember that T is the same for every member

of your group. However, signals and unobserved random numbers are randomly and

independently drawn for each member of your group.

Of the twenty rounds, one will be randomly selected for payment. All participants will

be paid their earnings in dollars for the randomly selected round, plus a $5.00 show-up

payment. You will not find out which round you will be paid for until the end of the

experiment, so you should treat each round as something for which you might get paid.

You will not be paid for the rounds that are not randomly selected for payment.

Are there any questions before we begin the experiment?
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