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Abstract 

It is known that modes in axially uniform waveguides exhibit backward-propagation 

characteristics that group and phase velocities have opposite signs. For elastic plates, group 

velocities of backward Lamb waves depend only on Poisson’s ratio. This paper investigates the 

way to achieve a large group velocity of a backward mode in hollow cylinders by changing the 

outer to inner radius ratio, in order that such a mode with strong backward-propagation 

characteristics may be used in acoustic logging tools. Dispersion spectra of guided waves in 

hollow cylinders with various radius ratios are numerically simulated to explore the existence of 

backward modes and to choose the clearly visible backward modes with high group velocities. 

Analyses of group velocity characteristics show that only a small number of low order backward 

modes are suitable for practical exploitation, and the radius ratio to reach the highest group 

velocity corresponds to the accidental degeneracy of neighboring pure transverse and 

compressional modes at the wavenumber k = 0. It is also shown that large group velocities of 

backward waves are achievable in hollow cylinders made of commonly encountered materials, 

which may bring cost benefits in the case of fabricating acoustic devices utilizing 

backward-propagation effects. 
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I. INTRODUCTION 

A backward wave refers to a wave for which phase and group velocities are oppositely 

directed.
1-2

 It is well established that backward waves, resulting from strong mode repulsions, 

exist in axially uniform (constant cross section) optical waveguides.
3
 In the frequency- 

wavenumber ( k  ) spectra, backward wave branches often occur in the vicinity of the 

wavenumber k = 0, and they are noticeable by anomalous dispersion characteristics in that the 

frequency decreases with the wavenumber (i.e., the group velocity gV k    and the phase 

velocity V k have opposite signs) and the zero-group-velocity (ZGV) at nonzero 

wavenumber.
1-2

  

Applications of backward wave motions of Lamb waves in plate structures have been explored. 

For example, acoustic superlens investigations
4-5

 applying the negative refraction effect or the 

backward-propagation effect that the energy flux direction is opposite to the phase velocity 

direction; and the non-contact laser-based nondestructive evaluation and material 

characterization techniques using ZGV resonances of backward Lamb modes
6-9

. Generally, a 

large group velocity and a wide range of frequencies over which the backward mode exists (i.e., 

the backward-propagation effect is strong) is often required for the purpose of designing new 

acoustic devices utilizing backward waves.
10-11

 For Lamb waves in elastic homogeneous plates, 

group velocities of backward wave branches are determined by only one factor - Poisson’s ratio 

or the bulk velocity ratio
12

, the bulk velocity ratio p sV V   is related to the Poisson’s ratio

by
2 2( 2) 2( 1)     ; and high group velocities appear in plates with bulk velocity ratios 
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being rational numbers, i.e., ratios between even integers and odd integers 2 (2 1)n m   or 

(2 1) 2m n   , 1,2,3...,n  and 0,1,2,...m  12
.  

One application of interest is the design of an acoustic isolator of the Logging-While-Drilling 

(LWD) monopole acoustic tool utilizing the backward-propagation effect. The LWD monopole 

acoustic technology is aimed at the real-time measurement of compressional wave velocities of 

earth formations during drilling.
13

 A commonly used design of a LWD monopole tool involves an 

acoustic transmitter and receiver system assembled transversely to the longitudinal axis of the 

drilling collar which can be simplified as a cylindrical shell.
13, 14 

The transmitter and receivers are 

separated by the acoustic isolator. Acoustic isolation is essential for the accurate measurement of 

compressional wave velocities of formations using a LWD monopole tool.
15

 When the 

transmitter, which is mounted to the collar, starts to work, it excites motion in both the formation 

and the collar. Thus, signals received by the receivers are composed of the formation waves and 

the tool waves. The tool waves are axisymmetric guided waves propagating along the collar. 

They need to be suppressed through acoustic isolation, so that the receivers only receive the 

formation waves. The isolator can be made by cutting grooves on the collar in the range from the 

transmitter to the receivers. This grooved structure enhances the attenuation of the tool waves
15

; 

however, it is at a cost of a reduction in strength of the tool.  

The authors seek to design an acoustic isolator with high mechanical strength, instead of 

using the grooved structure, so that the tool can function well during drilling. The proposed 

method is to decrease the propagation velocities of the tool waves by applying the interference 

effects of backward- and forward- propagating tool waves propagating along the cylindrical 
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collar, in order to separate the formation arrivals from the delayed tool waves. For planar 

structures, it has been reported that the self-interference between forward- and backward- 

propagating parts of a single Lamb mode could produce a stationary mode with finite standing 

wave ratio
16

. In particular, interference effects can lead to plate resonances in which Lamb waves 

have zero group velocity
7
. These works show the potential of using backward waves to 

manipulate the flow of acoustic energy in novel ways.
4
 For practical purpose, only the guided 

modes with strong backward- propagation effects (i.e., a high group velocity and a wide 

frequency range of existence) are useful in the design of the acoustic isolation part of the collar.  

In this paper, influences of geometry and material properties on group velocities of backward 

modes propagating along the hollow cylinder (i.e., the simplified model of the metallic collar) 

are theoretically studied, in order to search for the modes with strong backward-propagation 

effects. In an elastic plate, group velocities of backward Lamb modes are determined only by 

material properties of the plate.
12

 In a hollow cylinder, the authors seek to achieve high group 

velocities of backward modes by changing the external radius to internal radius ratio of the 

cylinder, b/a, instead of using a particular (possibly expensive) material to manufacture the 

cylinder. This is only a primary study to find out whether there are clearly manifest backward 

modes propagating along the simplified model of a drilling collar and how the radius ratio b/a 

affects the group velocity of a backward mode. There are still plenty of opportunities for further 

research, for instance, investigations of interference effects of backward- and forward- 

propagating parts of guided waves on the curved surface of the collar, to be carried out for the 

potential application of designing an acoustic isolator in a LWD acoustic tool. 
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As early as 1904 Lamb first discussed the possibility of the existence of backward waves.
 17

 

Mindlin
1
 and Medick

18
 gave the complex frequency-wavenumber ( k  ) spectra, for Lamb 

waves in plates having bulk velocity ratios which are or are not rational numbers, in which 

backward -propagation branches are clearly identified. In the k   plane, a typical backward 

wave branch starts from the frequency axis (at k = 0), descends with frequency, and terminates at 

a saddle point intersected by a complex branch, i.e., an evanescent wave. The saddle point with 

horizontal slope is named as the zero-group-velocity (ZGV) point corresponding to the vanished 

group velocity while it is with nonzero wavenumber. In 1965, Meitzler
2
 reported on an 

experimental observation of backward waves propagating in elastic cylinders and plates, that is, 

the second real branch in dispersion spectra shows a backward-propagation region in which 

phase and group velocities have opposite signs.  

Numerous research works have since reported properties of backward waves and ZGV points 

both numerically and experimentally. Most described Lamb waves in plates
19-23

, multilayered 

thin films and coatings
24-25

. For example, Negishi
19

 numerically revealed that backward- 

propagation phenomena exist in the first order symmetric Lamb mode (S1) for Poisson’s ratio ν < 

0.45 and in the second order anti-symmetric Lamb mode (A2) for ν < 0.31. Werby and Uberall
23

 

theoretically demonstrated that S1 modes for all elastic materials have a backward-propagation 

region. From the authors’ numerical results, group velocities of backward-propagation regions of 

S1 modes for ν > 0.451 and of A2 for ν > 0.317 are too small to be applied in practice. In 2008, 

Prada et al.
12

 numerically analyzed the existence conditions of ZGV-Lamb modes versus 

Poisson’s ratio and concluded that ZGV modes are not a rare phenomenon. In 2012, Kausel
26
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theoretically analyzed that for engineering requirements the number of effective ZGV modes in 

laminated media is in the single digits and those visible ZGVs often show up in low order modes.  

Guided elastic waves in cylindrical structures, which are also commonly encountered as 

waveguides, also exhibit backward-propagation motions
2-3, 27-29

. For example, for a thin wall pipe, 

Ces et al.
27

 reported the variations of ZGV frequencies of the second order symmetric backward 

Lamb modes S2b with the ratio of outer radius to inner radius b/a (1.08 2b a  ). However, 

little attention has been paid to the group velocity of backward waves in cylindrical structures. In 

this paper, for further understanding of group velocity characteristics of backward modes, phase 

and group velocities dispersion spectra of axisymmetric longitudinal guided modes in hollow 

cylinders with various radius ratios b/a are numerically simulated and analyzed in combination 

with a theoretical development. The radius ratio can take a value from unity to infinity, i.e., 

1 b a   ; limit cases are considered as b a  representing a solid free rod, and 1b a   

representing a thin plate. Properties of backward waves in these two limit cases have been 

reported
1-3, 12

, and they provide useful cases with which one can test our numerical results. Two 

types of materials, having bulk velocity ratios which are or are not a rational number, 

respectively, are chosen for hollow cylinder models.  

The objectives are firstly to understand the reasons for the existence of backward modes in 

relatively thick and thin walled hollow cylinders, respectively; secondly, to select those 

backward modes of engineering interest, exhibiting the two properties that are a high group 

velocity and a wide range of frequencies over which the backward mode exists; thirdly, to find 

the optimum radius ratios b/a of a pipe corresponding to the highest group velocity; finally, to 
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search for a guided mode that will be useful for engineering exploitation, by virtue of having 

clear backward-propagation properties, and in a hollow cylinder in which the radius ratio may be 

optimized, so that a high group velocity is achievable in such a cylinder made of a commonly 

available material.   

II. DISPERSION EQUATIONS AND CUTOFF FREQUENCIES 

A. Dispersion equations 

The dispersion equation for axisymmetric guided modes (i.e., longitudinal modes) propagating 

in an infinite-length hollow cylinder with traction free boundary conditions is derived from the 

property that the determinant of a four by four matrix is equal to zero, as given by Gazis
30

 in1959. 

The equation is expressed as 

det( ) 0, , 1,2,3,4.ijm i j                         (1) 

where the matrix elements are listed in Appendix A. Phase velocity dispersion curves are 

obtained by tracing the real roots of the transcendental dispersion equation (1), which may be 

numerically solved by applying the bisection method. Group velocity dispersion spectra are 

calculated using the relation with the phase velocity,  

,

1
g

V
V

dV

V d









                                    (2) 

where   is the angular frequency, and V is the phase velocity of guided modes. 

In this paper, only the backward branches of axisymmetric guided modes are considered. For a 

LWD monopole acoustic tool, the transmitter is an axisymmetric source which will excite the 
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axisymmetric modes in the circular collar. According to Ibanescu et al.
3
, in a circular waveguide 

with constant cross-section, there is no interaction between an axisymmetric mode with its 

circumferential order n = 0 and a non-axisymmetric mode with 0n  . Due to the continuous 

rotational symmetry of a hollow cylinder, axisymmetric and non-axisymmetric guided modes are 

uncoupled for any wavenumber k.
 3

 Hence, the backward branches of axisymmetric modes are 

not relevant to the non-axisymmetric modes. Future investigation of backward-propagation 

properties of non-axisymmetric modes may reveal potential applications of LWD dipole and 

quadrupole acoustic tools. The dipole and quadrupole sources could excite non-axisymmetric 

modes (i.e., flexural guided modes) with n = 1 and n = 2, respectively. The coupling between two 

modes with the same circumferential order n ( 0n  ) may generate a backward flexural mode.
3
 It 

is interesting to study the backward flexural modes for multi-pole acoustic loggings. 

Dispersion spectra of guided modes in a solid cylinder and in a thin plate are also numerically 

simulated respectively. A cylinder and a plate can be considered as two limit cases of a hollow 

cylinder with radius ratios b a  and 1b a  , respectively. Properties of backward waves in 

the two limit cases have been investigated and reported
1-3, 12

. These results are useful for further 

understanding of backward waves in hollow cylinders with1 b a  . Expressions of dispersion 

equations for a cylinder and a plate are not included in this paper for brevity; instead, they can be 

found in Rose
31

. 

B. Cutoff frequencies 

At cutoff frequencies, i.e., the wavenumber k = 0, guided modes decouple into pure 

compressional P modes and pure transverse S modes. They are cylindrical waves of infinite 
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wavelength. The coupling between compressional and transverse type vibrations, which is 

caused by the boundary conditions, causes repulsions between neighboring dispersion curves of 

a given symmetry (symmetric or anti-symmetric) that prevent them from intersecting.
 32

 Ibanescu 

et al.
3
 have obtained quantitative results for the behavior of the dispersion relation ( )k in the 

vicinity of k = 0 by using perturbation theory for the eigenvalue equation for
2 in axially 

uniform waveguides. They found that the strength of repulsion is related to the frequency 

separation at k = 0 between two neighboring modes; and the rule is that the smaller the frequency 

separation at k = 0, the stronger the repulsion becomes. Prada et al.
 12

 and Kausel 
26

 found a 

similar rule to apply in the cases of acoustic waves in elastic plates and laminate media, 

respectively, that the smaller the frequency gap between a pair of S and P modes at k = 0, the 

stronger the repulsion. In the vicinity of k = 0, the strong repulsion between a pair of neighboring 

P and S modes may produce a backward wave.
 3, 12, 26

 The extent of repulsion is related to the 

difference between the cutoff frequencies of the P and S modes, and the strongest repulsion 

corresponds to the case of identical cutoff frequencies.
 3, 12, 26

 Hence, cutoff frequencies are 

required to firstly distinguish between S and P modes in dispersion spectra in which numerous 

modes occur, and secondly to assist the estimation of the extent of the mode repulsion. Cutoff 

frequencies are calculated from dispersion equations at k = 0. Three dispersion equations for a 

hollow cylinder, a solid cylinder, and a thin plate at k = 0 are considered below. 

(1) A hollow cylinder 

The motion at a cutoff frequency is independent of the axial coordinate z, i.e., the wavenumber 

k is equal to zero. The dispersion equation (1) for longitudinal modes in a hollow cylinder at k = 
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0 reduces to 

22 44 24 42 11 33 13 31( )( ) 0,m m m m m m m m  
                    (3) 

where the matrix elements are 

2

12 12 1( ),x I xm     
2

14 12 1( ) ,x K xm   

2

22 14 2( ),x I xm      
2

24 14 2( ) ,x K xm   

2

1 0 1 1 1 1

2

1 0 1 1 1 1

2

2 0 2 2 1 2

2

2 0 2 2

11

13

31

3 1 23

( ) 2 ( ),

( ) 2 ( ),

( ) 2 ( ),

( ) 2 ( ),

m

m

m

x I w w I w

x K w w K w

x I w w I w

x K K wm w w





 

 

 

 


                         (4) 

where ( )nI x and ( )nK x in the above formulae are the n
th

 order modified Bessel functions of the 

first and second kinds, and the other parameters are defined as 

1 2 1 2, , = , ,
s s p p

x i a x i b w i a w i b
V V V V

   
                   (5) 

where Vp and Vs are the longitudinal and shear bulk velocities, respectively; a and b are the inner 

and outer radii of the hollow cylinder; and   is the angular frequency.  

  Longitudinal modes at cutoff frequencies k = 0 decouple into pure P and S modes. The four 

terms 22 24 42 44, , ,m m m m  in the first parentheses of Equation (3) are related only to the shear bulk 

velocity Vs, while the terms 11 13 31 33, , ,m m m m  in the second parentheses are functions of the 

longitudinal bulk velocity Vp and the Poisson’s ratio ν.   

Cutoff frequencies of pure S modes, fcs, are numerically calculated from the equation that the 

expression in the first parentheses of Equation (3) is equal to zero, giving 

1 1 1 2 1 2 1 1( ) ( ) ( ) ( ) 0.I x K x I x K x                          (6) 
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The equation to calculate cutoff frequencies of pure P modes, fcp, is that the expression in the 

second parentheses of Equation (3) is equal to zero, i.e., 

2 2

1 0 1 1 1 1 2 0 2 2 1 2

2 2

2 0 2 2 1 2 1 0 1 1 1 1

[ ( ) 2 ( )][ ( ) 2 ( )]

[ ( ) 2 ( )][ ( ) 2 ( )] 0.

x I w w I w x K w w K w

x I w w I w x K w w K w

  

  
              (7) 

  As shown in Equations (6) and (7), cutoff frequencies fcs and fcp depend not only on material 

properties but also on the radius ratio b/a of a hollow cylinder. 

(2) A solid cylinder  

In an infinitely-long solid cylinder with traction free boundary conditions, with the exception 

of the lowest order longitudinal mode, all the other longitudinal modes have finite cutoff 

frequencies. At cutoff frequencies with k = 0, the dispersion equation for longitudinal modes has 

the form of   

2

0 1 12

2
[ ( ) ( )] ( ) 0,s

p

V
J J J

V
                            (8) 

where ( )nJ x is the n
th

 order Bessel function of the first kind, ,pb V  ,sb V  and b is 

radius of the cylinder.  

As shown in Equation (8), longitudinal modes could be broken down into two categories that 

are the axial-shear modes (S modes) and the radial modes (P modes), according to their motions 

at cutoff frequencies. For S modes, their motions at their cutoff frequencies are axial shear of the 

cylinder. The cutoff frequencies, fcs, depend on the shear bulk velocity, 

1( ) 0.J                                   (9) 

  For P modes, their z-independent motions at their cutoff frequencies are purely radial in the 

cylinder, and their cutoff frequencies fcp depend on the longitudinal bulk velocity and Poisson’s 
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ratio, i.e., 

2

0 12

2
( ) ( ) 0.s

p

V
J J

V
                             (10) 

(3) A thin plate 

At cutoff frequencies, Lamb modes in a thin plate with thickness d b a  decouple into pure 

thickness-shear type (S modes) and pure thickness-stretch type (P modes). This paper follows the 

Lamb mode classification by Prada et al.
12

 For symmetric modes, the cutoff frequencies are
12

 

,cs sf d nV  mode S2n, and (2 1) 2,cp pf d m V   mode S2m+1,          (11) 

and for antisymmetric modes, they are
12

 

(2 1) 2,cs sf d m V   mode A2m+1, and ,cp pf d nV mode A2n,          (12) 

where 1,2,3,...,n   and 0,1,2,...m   

III. NUMERICAL RESULTS AND ANALYSES 

Characteristics of backward waves can be obtained from dispersion spectra derived from the 

roots of the dispersion equation. Only the real roots, i.e., those corresponding to propagating 

modes, are numerically calculated by applying the bisection technique to solve these dispersion 

equations. The roots are plotted as a set of dispersion curves in the dimensionless wavenumber 

( 2kd  ) and frequency ( sfd V ) plane; where d b a  , being the pipe wall thickness, and sV  

is the shear bulk velocity. Further, cutoff frequencies of P and S modes are calculated using 

Equations (6-7) and (9-12). Their dimensionless values ( cp sf d V and cs sf d V ) are marked using 

different symbols in the frequency coordinates of dispersion spectra, in order to distinguish P 

modes from S modes at k = 0. Our numerical results of dispersion spectra correlate well with the 
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reference solutions found in Rose
31

 and Sinha et al.
33

     

Influences of the material property and the geometry of a hollow cylinder on backward waves 

are now considered. Nickel pipes of bulk velocity ratio being a rational number and steel pipes of 

bulk velocity ratio not being a rational number are chosen for numerical simulations. Their 

material properties are: for nickel with Poisson’s ratio ν = 0.333, longitudinal and shear bulk 

velocities are Vp = 6000 m/s, Vs = 3000 m/s, and density 8900  kg/m
3
, with 2p sV V  ; for 

steel with ν = 0.292, Vp = 5900 m/s, Vs = 3200 m/s, and 7900  kg/m
3
, with 1.84p sV V  . 

For the analyses of sensitivity to waveguide geometry, the variable is the ratio of outer radius to 

inner radius b/a. The outer radius is fixed as b = 10 mm, and the radius ratio b/a varies from 1.02 

to 100. In addition, dispersion spectra for solid cylinders and thin plates are also simulated to 

represent two limits of a hollow cylinder withb a  and 1b a  , respectively.  

A. Existence of backward modes in hollow nickel cylinders 

In the dimensionless frequency-wavenumber plane, dispersion curves of longitudinal modes in 

four nickel pipes with the radius ratio b/a being infinity (i.e., the solid cylinder), 50, 3.333, and 

1.053 are displayed in Figures 1(a)-1(d), respectively, in order to illustrate the influence of the 

ratio b/a on the existence of backward modes. The cutoff frequencies of pure S and P modes are 

marked with dots and squares, respectively. In this figure, k denotes the wave number at which a 

particular guided mode propagates at any given frequency, f. 

Backward regions of Lamb modes have different classifications. Werby and Uberall
23

 

classified that the first order symmetric Lamb mode S1 has a double-valued phase velocity over a 

particular frequency range. Marston
29

 suggested the region corresponding to “negative” group 
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velocity should be classified as a backward wave segment of the second order symmetric Lamb 

mode S2, which is designated as backward mode S2
b
. The reason is that modes at the same 

frequency having two phase velocities are orthogonal.
34-35

 This paper follows the mode 

classification by Marston
29

 and Meitzler
36

. For instance, as labeled in Fig. 1(b), longitudinal 

modes are denoted L(0,m), where the modal order m = 1,2,3,…, and backward longitudinal 

modes are denoted L(0,3)b, L(0,6)b, …, where the subscript b denotes backward mode.  

From numerical results, the number and distribution of backward modes in a hollow cylinder 

depend on the radius ratio b/a and Poisson’s ratio. It is different from the case of a thin plate that 

backward-propagation regions of Lamb waves depend only on Poisson’s ratio.
12

 A general 

observation from Fig. 1 is that, as the ratio b/a decreases, dispersion curves are gradually 

becoming more closely spaced in the vicinity of k = 0. It is expected that the number of 

backward modes in a thin-walled pipe with the relatively small ratio b/a is larger than that in a 

thick-walled pipe with the large b/a. However, in the frequency range where 3.25sfd V  , the 

number of backward modes, i.e., those labeled with subscript b in Fig. 1, does not monotonically 

increase with decreasing b/a.  

(1) Thick-walled nickel pipes 

Consider a hollow cylinder with a relatively large radius ratio b/a. Backward modes appear as 

in the limit case of backward modes in a solid cylinder withb a  . For a thick-walled pipe or 

a solid cylinder, the waveguide has three symmetries: the continuous translational symmetry in 

the axial direction (i.e., the z-axis), the reflection symmetry through the cross sectional ( r ) 

plane, and the continuous rotational symmetry that is symmetric with respect to reflection across 
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planes containing the z-axis. At k = 0, the difference between the cutoff frequencies of S and P 

modes, i.e., cs cpf f , can be made arbitrarily small.
3 
At 0k  , the propagation along the +z and 

–z directions breaks the reflection symmetry through the ( r ) plane. The two modes are no 

longer pure S or P ones; a mode coupling occurs such that the mechanical displacements of two 

modes are composed of both compressional and transverse components. This leads to a repulsion 

between the two neighboring modes in the vicinity of k = 0 in the dispersion spectra. According 

to Ibanescu et al.
3
, the rule is that a stronger repulsion corresponds to a smaller cs cpf f ; and if 

the repulsion is sufficiently strong, a backward wave region with negative slope exists.  

When comparing Fig. 1(a) with Fig. 1(b), a similarity is evident between the dispersion 

spectra of the longitudinal modes in the solid nickel cylinder with b a   and those in the 

thick-walled hollow cylinder with b/a = 50. At the vertical axis k = 0, S and P modes are 

distinguished using points and squares. In the vicinity of k = 0, as discussed in the above 

paragraph, the strong repulsion between the second and third branches L(0,2) and L(0,3), that are 

pure S and P modes at k = 0 respectively, generates a visible backward-propagation region 

L(0,3)b. In this region, the frequency exhibits a negative gradient with respect to the wavenumber. 

There are other high order backward modes, such as the L(0,6)b in Fig. 1(a) and the L(0,6)b and 

L(0,9)b in Fig. 1(b). Their dispersion curves are relatively flat, i.e., the group velocities are rather 

small. For a thick-walled hollow cylinder, group velocity characteristics of the clearly visible 

backward mode L(0,3)b are discussed further below. 

(2) Thin-walled nickel pipes 

Consider a hollow cylinder with a relatively small radius ratio b/a. Backward modes appear as 
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in the limit case of backward Lamb modes in a thin plate. For instance, as shown in Fig. 1(d), the 

L(0,5)b and L(0,11)b backward modes in the thin nickel pipe with b/a = 1.053 are resulting from 

strong repulsions of two pairs of neighboring branches that are pure S and P modes at k = 0, i.e., 

L(0,4) & L(0,5) and L(0,10) & L(0,11), respectively. The two backward modes are similar as the 

second and sixth order symmetric backward Lamb modes, i.e., S2b and S6b in the thin nickel plate 

of thickness d b a  , generated by the repulsions between two pairs of symmetric Lamb 

modes S1 & S2 and S3 & S6, respectively.    

Compared to a solid cylinder, an additional symmetry exists in a thin plate. Because of the 

symmetry through the median plane of the plate, symmetric and antisymmetric Lamb waves are 

uncoupled for any wavenumber.
34, 37

 The dispersion curves of some symmetric Lamb modes may 

intersect with the curves of antisymmetric Lamb modes.
 37

 Thus, no repulsion (i.e., no backward 

region) occurs between two neighboring modes if one mode is symmetric Sl and the other is 

antisymmetric Ap, where l and p are the modal orders l, p = 1,2,3,…
12

 For example, in a nickel 

plate with thickness d, no backward region exists between the symmetric mode S4 and the 

antisymmetric mode A2. The cutoff frequencies of S4 (pure S mode at k = 0) and A2 (pure P mode 

at k = 0) are equal, i.e., from Equations (11-12) that 2cs s cp sf d V f d V  . Since S4 and A2 belong 

to different families (symmetries), even though cs cpf f , the two modes are uncoupled for any 

wavenumber k, that is, no backward mode exists. 

A similar phenomenon is exhibited in a thin-walled pipe. For instance, in Figures 1(c) and 1(d), 

there is no sign of a backward region of the two L(0,7) modes, i.e., the slopes of the two L(0,7) 

dispersion curves are both positive. Although the seventh and eighth branches, L(0,7) and L(0,8) 
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modes, are very close at k = 0 and they are pure S and P modes respectively, the two branches do 

not repel each other in the vicinity of k = 0. The reason is that, for a mode with a short 

wavelength (or a high frequency), the curvature of a thin-walled pipe can be ignored
38-39

. In that 

case, the pipe resembles a thin plate having a symmetry through the median plane. As illustrated 

in Fig. 1(d), the L(0,7) and L(0,8) modes behave as the uncoupled Lamb modes S4 and A2. Hence, 

no backward mode is generated between the uncoupled L(0,7) and L(0,8) modes.  

The important result is that, in a thin-walled pipe, the difference between cutoff frequencies of 

two neighboring S and P branches 0cs cpf f   is not a sufficient condition for the existence of 

a backward mode. The symmetry properties of the neighboring S and P modes through the 

median plane also need to be considered.  

B. Influences of the radius ratio on backward modes  

From the dispersion spectra, although numerous backward modes might exist in a nickel pipe, 

only a small number of low order modes are clearly visible, for instance, L(0,3)b, L(0,5)b, and 

L(0,11)b. For practical purposes, attention is now paid to determining the effects of the radius 

ratio b/a on the group velocity and the frequency range of existence of the visible backward 

waves. The purpose is to search for a suitable radius ratio corresponding to a strong backward 

-propagation effect. 

(1) Parameter definitions   

For clarity, the authors here define the frequency range of existence and the maximum group 

velocity of a backward mode. To illustrate these parameters, Figures 2(a) and 2(b) show phase 

and group velocity dispersion curves of the L(0,5)b mode in a nickel pipe with radius ratio b/a = 
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3.33, respectively. The frequency range of existence of a backward mode is defined as 

.up downf f f                                (13) 

As shown in Fig. 2, the cutoff frequency of the L(0,5)b mode, fup, corresponds to the frequency at 

which phase velocity turns to infinity while wavenumber and group velocity become zero, 

respectively, i.e., , 0, 0,gV k V    except for the case of an accidental degeneracy cs cpf f . 

With an accidental degeneracy, the group velocity at fup is a finite value
 3, 26

. The value of fup can 

be obtained from the cutoff frequency given by Equations (6-7) and (9-12). The fdown corresponds 

to the zero-group-velocity (ZGV) point at which the phase velocity is finite, the wavenumber is 

nonzero, and the group velocity is zero, i.e., , 0, 0.gV k V     The value of fdown can be 

determined from the zero crossings of the group velocity dispersion curves.  

  A backward mode is normally dispersive in that its phase and group velocities are changing 

with frequency, as shown in Fig. 2. The maximum group velocity of one backward mode, g,maxV , 

in the frequency range down upf f f   can be numerically obtained from group velocity 

dispersion spectra. It is marked in Fig. 2(b) for an illustration. 

 (2) Clearly visible backward modes 

For engineering interests, quantitative analyses of three backward modes L(0,3)b, L(0,5)b, and 

L(0,11)b in nickel pipes are carried out. Numerical results of the variation of two dimensionless 

quantities, i.e., the maximum group velocity g,max sV V and the frequency range of existence

2 ( ) sf b a V  , with the radius ratio b/a, are displayed in Figures 3(a) and 3(b), respectively.  

  As shown in Fig. 3, with the varying radius ratio, the frequency range of existence of a 

backward mode becomes wider as the maximum group velocity becomes larger. Moreover, for a 
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thick-walled nickel hollow cylinder with b/a > 5, the L(0,3)b mode is the dominant 

backward-propagation one having a relatively large g,max sV V and 2 ( ) sf b a V  ; while in the 

thin-walled pipe case of b/a < 5 , the L(0,5)b mode is the dominant one.  

  For the other high order backward longitudinal modes, e.g., L(0,11)b, their frequency ranges of 

existence and group velocities are rather small compared to those of L(0,3)b in the case of b/a > 5 

or L(0,5)b at b/a < 5. These high order backward modes are not suitable for utilization in 

engineering devices, especially when the system attenuations need to be considered.  

In Fig. 3, the largest values of both the maximum group velocity and the frequency range of 

existence of the L(0,3)b mode are exhibited in the case of b/a = 8.25, and those of the L(0,5)b 

mode appear at 1b a  , i.e., for the thin plate case. These peaks correspond to accidental 

frequency degeneracy phenomena cs cpf f , as illustrated in Figures 4(a) and 4(b).  

For instance, Fig. 4(c) shows the influence of the radius radio b/a on the occurrence of the 

backward mode L(0,3)b. The L(0,3)b is resulting from the strong repulsion between the 

neighboring L(0,2) and L(0,3) modes in the vicinity of k = 0; and the strength of repulsion 

becomes larger with the decreasing frequency separation at k = 0. As shown in Fig. 4(c), the 

frequency separation depends on the ratio b/a. (1) For the nickel pipe of b/a = 2, the difference 

between the cutoff frequencies of L(0,2) and L(0,3) modes is relatively large and the two modes 

are weakly interacting modes. (2) For b/a = 3.33, a stronger interaction leads to a flat 

backward-propagation region and a zero-group-velocity point of the lower branch. (3) For b/a = 

8.25, the accidental degeneracy of the two branches at k = 0 corresponds to the strongest 

repulsion in the vicinity of k = 0. It gives rise to the highest group velocity and the widest range 
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of frequencies over which the backward mode L(0,3)b exists. When 8.25b a  , L(0,2) and 

L(0,3) modes are pure P and S modes at k = 0, respectively; when b/a > 8.25, L(0,2) and L(0,3) 

are pure S and P modes at k = 0, respectively. (4) For b/a = 20, the weaker coupling between the 

two branches leads to a less pronounced trough, i.e., a weak backward-propagation effect.  

(3) Monotonic variation relations 

For most of the backward modes, variation relations between the maximum group velocity and 

the radius ratio b/a (or relations between the frequency range of existence and b/a) are 

complicated, as illustrated in Fig. 5(a). For instance, two variation curves for L(0,3)b in Fig. 3 are 

not monotonic. By contrast, for the L(0,5)b and L(0,11)b modes, the variation curves in Fig. 3 are 

monotonically increasing with the decreasing ratio b/a in the ranges of 1 10b a   and 

1 15b a  , respectively, and finally approaching their maxima at 1b a  .  

The distinctive behavior is related to the ratio between bulk longitudinal and shear velocities

p sV V . For a nickel plate (i.e., the limit case of a nickel pipe with 1b a  ) for which the bulk 

velocity ratio is a rational number 2p sV V  , a coincidence of two cutoff frequencies (i.e., an 

accidental degeneracy) occurs occasionally. Originating from a coincident cutoff frequency, the 

repulsion between two neighboring branches with opposite slopes reaches its maximum.
3, 12, 26

 

From Equation (11), the cutoff frequencies of S1 and S2 are identical, i.e., 1 1 1,cs s cp sf d V f d V   

and those of S3 and S6 are also equal, i.e., 2 2 3cs s cp sf d V f d V  . Two symmetric backward 

Lamb modes S2b and S6b are generated from the strongest repulsions between S1 & S2 and S3 & S6, 

respectively. Hence, in the limit case of 1b a  , both modes L(0,5)b and L(0,11)b reach their 

highest group velocities and the widest frequency ranges of existence, respectively. 
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For a thin-walled nickel pipe, the backward modes L(0,5)b and L(0,11)b respectively resemble 

the backward Lamb modes S2b and S6b in a thin nickel plate with thickness d b a  . The gaps 

between the cutoff frequencies of L(0,4) and L(0,5) (which generates L(0,5)b) and between those 

of L(0,10) and L(0,11) (which generates L(0,11)b) both become small with decreasing b/a, and 

finally diminish to zero at 1b a  . The general rule is that the smaller the frequency gap at k = 

0, the stronger the repulsion; and the strongest repulsion corresponds to the accidental frequency 

degeneracy.
3
 According to this rule, the smaller the radius ratio b/a, the higher the group 

velocities, and the wider the frequency ranges of existence of L(0,5)b and L(0,11)b modes in a 

thin-walled nickel pipe with 2p sV V  , as illustrated in Fig. 5(b). 

It is worth noting that there is no need to manufacture a very thin walled pipe to generate the 

highest group velocity of the L(0,5)b mode. As illustrated in Fig. 3(a), the curve of the maximum 

group velocity g,maxV becomes flat when b/a approaches 1. For example, the value of g,maxV  at 

b/a = 2 is greater than 85% of that at 1b a  .  

C. Bulk velocity ratio not being a rational number 

In a thin plate, the repulsion between two Lamb waves reaches a maximum only if the bulk 

velocity ratio is a rational number.
12

 For example, the maximum group velocity, g,maxV , of the 

backward Lamb mode S2b in a nickel plate is about 1.681 times larger than that of the S2b mode 

in a steel plate; and the frequency range of existence, 2 ( ) sf b a V  , of the S2b in the nickel 

plate is about 1.487 times wider than that of the same mode in the steel plate. The bulk velocity 

ratio of the nickel plate is a rational number, 2p sV V  , while that of the steel plate is not a 
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rational number, as 1.84p sV V  . Material is the only controllable parameter to obtain a 

backward mode of a large group velocity in a thin plate.  

In a hollow cylinder, the radius ratio b/a obviously affects the behavior of backward modes, as 

discussed in Section III. B. It is interesting to study, in a hollow pipe with a bulk velocity ratio 

not being a rational number, whether we could control the ratio b/a to obtain a clearly visible 

backward mode exhibiting a comparable magnitude of group velocity to that of a pipe with bulk 

velocity ratio being a rational number.  

From numerically predicted dispersion spectra of longitudinal modes in a large number of 

steel hollow cylinders with different ratios b/a, the clearly visible backward modes are the low 

order modes L(0, 3)b, L(0,5)b, and L(0,7)b. For these three modes, their variation curves of the 

dimensionless group velocity g,max sV V and the frequency range of existence 2 ( ) sf b a V  with 

the variable b/a are traced in Figures 6(a) and 6(b), respectively.  

As shown in Fig. 6, influences of the radius ratio b/a on the three backward modes are 

dramatic. Under the condition of b/a < 6, L(0,5)b is the most visible backward mode with 

relatively large group velocity and wide frequency range of existence; in the case of b/a > 6, the 

L(0,3)b is the most manifest one which backward-propagation effect is strong. The L(0,7)b mode 

is not attractive for practical interest. Moreover, in steel hollow cylinders with bulk velocity 

ratios not being a rational number, variation curves of the three modes are not monotonic. The 

peak values of each curve in Fig. 6 correspond to the strongest repulsions, originating from the 

accidental degeneracy of neighboring pure P and S modes at the wavenumber k = 0. Noticeably, 

the peak group velocity of the backward mode L(0,5)b in the steel pipe with radius ratio b/a = 3.6 
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is rising about 1.65 times larger than that in the steel plate with 1b a  .    

In order to directly compare the clearly visible backward modes L(0,3)b and L(0,5)b in the 

nickel and steel hollow cylinders, the maximum group velocity, the frequency ranges of 

existence, as well as the radius ratios b/a corresponding to the strongest repulsions, are listed in 

Table I. Clearly, both group velocities and frequency ranges of existence of two backward modes 

in steel pipes are comparable with those in nickel pipes. It means that one can expect to achieve a 

backward mode with large group velocity in a hollow cylinder made of a commonly encountered 

material for which bulk velocity ratio is not a rational number. 

IV. CONCLUSIONS AND DISCUSSIONS 

This paper provides theoretical and numerical analyses on the problem of whether it is 

possible to achieve large group velocities of backward modes by changing the ratio of the outer 

radius to the inner radius of a hollow cylinder, b/a. The major findings are: 

(1) In a hollow cylinder, propagation properties of a backward mode are determined by two 

factors. They are the Poisson’s ratio of the pipe material and the radius ratio b/a.  

(2) Generally, variation curves of both the maximum group velocity and the frequency range of 

existence of a backward mode are not monotonic with the ratio b/a. Except for the case of a 

thin-walled pipe with bulk velocity ratio being a rational number, for certain backward modes, 

variation curves are monotonically increasing with decreasing b/a and finally reaching their 

maxima at 1b a  . 

(3) The highest group velocity and the widest frequency range of existence of a backward mode, 

that resulting from the strongest repulsion, correspond to the accidental frequency 
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degeneracy of two neighboring pure transverse and compressional modes (S and P modes) at 

the wavenumber k = 0. The radius ratio b/a corresponding to the strongest repulsion can be 

numerically calculated by setting the cutoff frequency of the S mode to that of the 

neighboring P mode. 

(4) The third and fifth order longitudinal backward modes, i.e., L(0,3)b and L(0,5)b, show strong 

backward-propagation effects in that they have large group velocities and wide frequency 

ranges of existence. They are promising for engineering applications as very few of the 

backward modes are clearly visible. 

(5) Comparing group velocities of backward modes in pipes made of different Poisson’s ratios, it 

is concluded that a comparably large group velocity can be achieved using commonly 

available materials. It is known that, in a thin plate, the largest group velocity is possible only 

for particular materials for which bulk velocity ratios are rational numbers. In a hollow 

cylinder, by selecting the clearly visible backward mode and by manufacturing the suitable 

geometry of a pipe (i.e., the radius ratio b/a), it is possible to obtain the required large group 

velocity in common and inexpensive materials, resulting in cost benefits for the potential 

application of designing acoustic logging tools utilizing the backward-propagation effect.  
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APPENDIX A: MATRIX ELEMENTS OF DISPERSION EQUATION 

The dispersion equation of the axisymmetric guided modes in a hollow cylinder with free 

boundary conditions is the determinant of a 4 4 coefficient matrix, that is, 

det( ) 0, , 1,2,3,4.ijm i j                          (A1) 

The matrix elements are 
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respectively. ( )nI x and ( )nK x in the above formulae are the n
th

 order modified Bessel functions 

of the first and second kinds, and the other parameters are defined as  

1 2 1 2 1 2, , = , = , , ,x a x b w a w b Y ka Y kb                       (A3) 

where a and b are the inner and outer radii of the hollow cylinder; k V is the wavenumber; 

  is the angular frequency, and V is the phase velocity of guided modes propagating in the pipe. 
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The parameters and   in equation (A3) are 

2 2
2 2

2 2
, ,

p s

k k
V V

 
                                (A4) 

where Vp and Vs are the longitudinal and shear bulk velocities, respectively, which are functions 

of the pipe’s material.  
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TABLE I. The dominant backward modes exist in the nickel and steel hollow cylinders, 

respectively. For each clearly visible backward mode, the largest group velocity g,maxV , the widest 

frequency range of existence sd V , and the ratio of outer radius to inner radius b/a 

corresponding to the strongest repulsion are listed respectively. Here, p sV V   is the bulk 

velocity ratio, 2 f   is the angular frequency, and d b a   is the pipe wall thickness. 

 

Material Mode b/a g,maxV   

(km/s) 
s

d

V


 

Nickel 

2   

L(0,3)b 8.25 1.92 0.339 

L(0,5)b 1.00 1.91 0.580 

Steel 

1.84   

L(0,3)b 20.0 1.83 0.329 

L(0,5)b 3.60 1.88 0.625 
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Figure Captions 

FIG. 1 (Color online) Predicted dispersion curves of longitudinal modes in the solid nickel 

cylinder (a) and those in three nickel hollow cylinders with the same outer radius b = 10 mm and 

different inner radii a = 0.2, 3, and 9.5 mm (b) (c) and (d), respectively. The vertical and 

horizontal axes are dimensionless frequency sfd V  and wavenumber 2kd  , where d b a   

is the pipe wall thickness, f is the frequency, Vs = 3000 m/s is the shear bulk velocity of nickel, 

the wavenumber 2k V f V   , and V is the phase velocity of guided waves. Moreover, 

cutoff frequencies of pure S and P modes at k = 0 are marked with dots and hollow squares, 

respectively. 

FIG. 2 (Color online) Phase velocity (a) and group velocity (b) dispersion curves of the 

backward mode L(0,5)b and the forward mode L(0,4) in the nickel hollow cylinder with the bulk 

velocity ratio p sV V = 2 and the radius ratio b a = 3.33. The solid and dashed lines represent 

the L(0,4) and L(0,5)b modes, respectively. 

FIG. 3 (Color online) Variations, with the radius ratio b/a in the range of 1 100b a  , of the 

normalized maximum group velocity g,max sV V  (a) and the frequency range of existence 

sd V  (b) of the three backward-propagation modes in a set of hollow nickel pipes with the 

fixed outer radius b being equal to 10 mm. The ratio between longitudinal and shear bulk 

velocities is a rational number, i.e., p sV V = 2. The shear bulk velocity Vs = 3000 m/s, and 

d b a   is the pipe wall thickness. The solid, dashed, and dotted lines represent variation 

curves of the L(0,3)b, L(0,5)b, and L(0,11)b longitudinal backward modes, respectively.   
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FIG. 4 (Color online) Dispersion spectra of longitudinal modes in the nickel hollow cylinders 

with radius ratio b/a = 8.25 (a) and b/a = 1.02 (b), respectively. The interactions between the 

L(0,2) and L(0,3) modes in four nickel pipes with radius radios b/a = 2, 3.33, 8.25, and 20, 

respectively, are shown in figure (c). The solid and dotted lines represent the forward and 

backward modes, respectively. At the wavenumber k = 0, one branch is pure transverse (S) wave, 

and the other is pure compressional (P) wave. The dots and hollow squares represent cutoff 

frequencies of pure S and P modes, respectively. For b/a = 2, weakly interacting modes (1). For 

b/a = 3.33, a stronger interaction leads to a flat backward-propagation region of the lower branch 

(2). For b/a = 8.25, an accidental degeneracy at k = 0 corresponds to the strongest repulsion 

which gives rise to the clearly visible backward mode L(0,3)b with the strongest 

backward-propagation effect (3). For b/a = 20, a weaker repulsion leads to a less pronounced 

trough of the lower branch (4).   

FIG. 5 (Color online) Group velocity dispersion curves of the L(0,3)b modes in the nickel hollow 

pipes having their outer to inner radius ratios b/a = ∞, 10, 8, 6.67, and 5, respectively (a); and 

those of the L(0,5)b modes in the cases of b/a = 1.02, 2, 5, and 8, respectively (b). For each 

backward mode, the influence of the radius ratio b/a on the frequency range of existence and that 

on the maximum group velocity are similar. 

FIG. 6 (Color online) Variations, with the ratio between outer to inner radii in the range of 

1 100b a  , of the maximum group velocity g,max sV V  (a) and the frequency range of 

existence sd V  (b) of the three backward modes in hollow steel pipes with the fixed outer 

radius b being equal to 10 mm. The ratio between longitudinal and shear bulk velocities of the 
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steel pipe is not a rational number, i.e., 1.84p sV V  . The shear bulk velocity Vs = 3200 m/s, 

and d b a   is the pipe wall thickness. The solid, dashed, and dotted lines represent variations 

curves of the L(0,3)b, L(0,5)b, and L(0,7)b longitudinal backward modes, respectively.   
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