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ABSTRACT
We present recent results from the initial testing of an artificial neural network (ANN)-based
tomographic reconstructor Complex Atmospheric Reconstructor based on Machine lEarNing
(CARMEN) on CANARY, an adaptive optics demonstrator operated on the 4.2 m William
Herschel Telescope, La Palma. The reconstructor was compared with contemporaneous data
using the Learn and Apply (L&A) tomographic reconstructor. We find that the fully optimized
L&A tomographic reconstructor outperforms CARMEN by approximately 5 per cent in Strehl
ratio or 15 nm rms in wavefront error. We also present results for CANARY in Ground
Layer Adaptive Optics mode to show that the reconstructors are tomographic. The results
are comparable and this small deficit is attributed to limitations in the training data used to
build the ANN. Laboratory bench tests show that the ANN can outperform L&A under certain
conditions, e.g. if the higher layer of a model two layer atmosphere was to change in altitude
by ∼300 m (equivalent to a shift of approximately one tenth of a subaperture).

Key words: atmospheric effects – instrumentation: adaptive optics.

1 IN T RO D U C T I O N

The next generation of large and extremely large telescopes require
sophisticated adaptive optics (AO) instrumentation which exploit
tomographic reconstruction algorithms in order to optimize the cor-
rection over the full field of view of the telescope.

Open-loop tomographic AO systems such as multi-object adap-
tive optics (MOAO; Assémat, Gendron & Hammer 2007) instru-
ments use several guide stars (natural and laser) distributed in
the field to probe the turbulent atmosphere. The tomographic re-
constructor uses this information to reconstruct the phase aber-
ration along the line of sight to the scientific target, which is
not necessarily along the same line as a guide star. MOAO sys-
tems include several of these target directions, each of which
contains its own wavefront correcting device. MOAO is forced
to operate in open loop as each target direction requires its own
reconstructed wavefront from the shared guide star wavefront
sensors (WFSs).

Most open-loop tomographic reconstructors require the contem-
poraneous atmospheric optical turbulence profile (i.e. the strength
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of the optical turbulence as a function of the altitude) in order to
optimize the correction. This is either measured independently by
an external profiling instrument such as SLODAR (Wilson 2002)
or SCIDAR (Vernin & Roddier 1973), or calculated directly from
the WFSs (Cortés et al. 2012). If the atmospheric optical turbu-
lence profile was to change significantly during the astronomical
observations the reconstructor would have to be updated in order
to ensure that optimum performance was retained. Recent mea-
surements of both the wind velocity and refractive index structure
constant, C2

n(h)dh, altitude profile evolution throughout a night with
a new SCIDAR instrument (Stereo-SCIDAR, Osborn et al. 2013;
Shepherd et al. 2013) shows that both of these parameters can
fluctuate significantly on the order of minutes.

The magnitude of the change in the optical turbulence profile
that can be tolerated is not trivial to derive and depends on the
specifications of the individual AO system. This issue along with
measurements of the temporal atmospheric variability will be pre-
sented in separate publications.

Learn and Apply (L&A; Vidal, Gendron & Rousset 2010) is an
open-loop tomographic reconstructor which actively learns the at-
mospheric profile. The measurements from all of the WFSs are com-
bined and theoretical functions are used to recover the turbulence
profile. This profile is then used to optimize the reconstructor. This
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method is extremely successful and has been implemented in the
CANARY MOAO demonstrator (Gendron et al. 2011).

CANARY is a flexible AO demonstration bench at the 4.2 m
William Herschel Telescope (La Palma). CANARY is modular by
design and is ideally suited to testing and validating many novel
ideas and concepts in the field of AO, and in the wider field of
astronomical instrumentation. In order to fully understand the in-
strument and the performance of all of the concepts and prototypes
that will be tested on it, the bench contains an atmosphere and
telescope simulator/calibration unit. CANARY also contains a truth
sensor (TS), an additional on-axis WFS. This WFS is not used as
an input to the tomographic reconstructor, but can be used to assess
the performance of the AO system. It is located after the deformable
mirror (DM) in the optical train and so can be used to measure the
corrected wavefront, or by flattening the DM can be sued to measure
the uncorrected on-axis wavefront.

In this paper, we present the latest results from an on-going project
to implement an artificial neural network (ANN) as an open-loop
AO tomographic reconstructor. ANNs are computational models
inspired by biological neural networks which consist of a series
of interconnected simple processing elements called neurons. Each
neuron receives a series of data (input) from other neurons or an
external source and transforms it locally using an activation or trans-
fer function. These output data are then transferred to other neurons
with different weights and the cycle continues until the output neu-
rons are reached. The network needs to be trained before it can
be used. During the training, the weights are changed to adopt the
structure of a determined function, based on a series of input–output
data sets provided. Although each individual neuron implements its
function slowly and imperfectly, the whole structure is capable of
learning complex functions and solutions quite efficiently (Reilly
& Cooper 1990).

ANNs have been applied to the field of AO. Previously, this
has been concentrated on wavefront sensing algorithms. Montera,
Welsh & Ruck (1996) applied an ANN to centroid images in a
Shack–Hartmann WFS to estimate the local slopes. They found
that although the ANN was no better than the standard ‘Centre of
Gravity’ type approaches; however, the ANN was better at estimat-
ing the magnitude of the wavefront sensing error. In addition, Angel
et al. (1990), Sandler et al. (1991) and Lloyd-Hart et al. (1992) suc-
cessfully implemented an ANN for wavefront sensing in the focal
plane.

The purpose of this project is to develop an open-loop tomo-
graphic reconstructor which is entirely insensitive to changes in
the atmosphere optical turbulence profile. In Osborn et al. (2012),
we demonstrated an ANN implementation of an open-loop tomo-
graphic reconstructor, called ‘Complex Atmospheric Reconstructor
based on Machine lEarNing’ (CARMEN), in a Monte Carlo simu-
lation. This simulation also had an implementation of the L&A and
a simple least-squares matrix–vector-multiplication reconstructor.
We demonstrated that CARMEN had the potential to attain a better
performance than the other two reconstructors. This was true in
the case when it was compared to fully optimized reconstructors,
and in the case when the atmosphere dynamically changed during
the simulation duration. However, it should be noted that the ANN
reconstructor was trained with the same simulation, albeit with dif-
ferent data. This is not possible for the on-sky implementation. The
ultimate goal is to develop a reconstructor which is insensitive to
changes in the atmospheric optical turbulence profile. Therefore,
we do not wish to train the ANN with on-sky data as this would
result in the reconstructor learning the concurrent profile. Instead,
we propose to train the ANN offline on an AO calibration bench.

CANARY is an ideal AO demonstrator on which to develop this
reconstructor. The CANARY calibration unit is used to generate the
training data sets for CARMEN. We need to generate the training
data sets on the same bench as we intend to use on-sky. This is
because the neural networks, as with any reconstructor, will be
sensitive to the relative alignment errors of the WFSs.

In Section 2, we briefly describe the ANN. Section 3 describes
the training method, Section 4 the ANN implementation into the
CANARY control system, and in Section 5, we show the results of
the ANN reconstructor with both bench data and on-sky. We discuss
the results in Section 6 and conclude in Section 7.

2 A RT I F I C I A L N E U R A L N E T WO R K S

A characteristic of the ANN is its inherent ability to generalize.
Once trained, the network is able to produce an optimized output
based on previously unseen data (Van Rooji, Jain & Johnson 1996).
Moreover, it has been shown that ANNs perform well on data that
are noisy, imprecise and with incomplete observations (Kasabov
1996; Osborn et al. 2012). At this juncture, it should be noted that
while the mathematical content of ANNs may be complex, the un-
derlying model is basic in comparison to the massive computational
power of the biological neuron (Gurney 1997). Nonetheless, when
compared with traditional statistical predictive techniques ANNs
have shown promising results (Hua 1996), hence their application
in this instance.

The specific ANN model adopted for this work was the multilayer
perceptron (MLP) with feedforward architecture, using the back-
propagation training algorithm during a supervised training process.
Model development was performed in R using the AMORE package.

An MLP maps sets of input data on to a set of appropriate outputs
(Gurney 1997). The MLP includes an activation function in each
of the neurons. This activation function defines whether or not
a particular neuron activates, or fires, given an input signal. For
an MLP containing a linear activation function, it can be shown
with linear algebra that any number of layers can be reduced to a
standard matrix–vector-multiplication input–output model. MLPs
can also contain non-linear activation functions on each neuron.
These functions are developed to model the frequency of action
potentials, or firing, of biological neurons in the brain. This function
is modelled in several ways, but must always be normalizable and
differentiable.

The most popular activation function used in current applications
is the hyperbolic tangent sigmoid function, this can be described as
(Gurney 1997; Haykin 2008)

Fi = 2

1 + exp (−2vi)
− 1 (1)

in which the function is a hyperbolic tangent which ranges from
−1 to 1. vi is the weighted sum of the input synapses of the ith
node (neuron). More specialized activation functions include radial
basis functions which are used in another class of supervised neural
network models, but were found not to be required here.

The MLP consists of one input and one output layer with one
or more intermediate (or hidden) layers of nodes with a non-linear
activation function (Fig. 1). Each node in one layer connects with a
certain weight wij to every node in the following layer. Learning oc-
curs in the perceptron by changing connection weights (or synaptic
weights) after each piece of data is processed based on the amount
of error in the output compared to the expected result. This is an
example of supervised learning and it is performed through back
propagation, a generalization of the least-mean-squares algorithm
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2510 J. Osborn et al.

Figure 1. A simplified network diagram for CARMEN. All of the slopes
from the WFS are input to the network. They are all connected to every
neuron in the hidden layer by a synapse. Each neuron in the hidden layer is
then connected to every output node. CARMEN will output the predicted
on-axis wavefront slopes for the target direction. Each of the synapses has
a weighting function. At run-time the inputs are injected into the network
which is then processed by the different weighting functions generating a
response. In the diagram only a few of the synapses are shown for clarity.

Table 1. CARMEN model topology.

Parameter Value

Type of input Continuous
Type of output Continuous
Transfer function tanh
Network connectivity Fully connected
Learning algorithm Momentum
Learning rate coefficient Input to hidden layer: 0.10

Hidden to output layer: 0.05
Number of hidden layers 1

in the linear perceptron. We represent the error in output node j in
the nth data point by ej(n) = (dj(n) − yj(n))2, where d is the target
value and y is the value produced by the perceptron. We then make
corrections to the weights of the nodes based on those nodal errors
which minimize the energy of error in the entire output, given by

ε(n) = 1

2

∑ (
dj (n) − yj (n)

)2
. (2)

A key summary of the model topology, or architecture, of
CARMEN is provided in Table 1. The input layer is constructed
of 504 input nodes (3 natural guide stars + 4 laser guide stars, all
with 7 × 7 subapertures, resulting in 36 unvignetted subapertures
per WFS, in x and y). The output layer consists of 72 nodes which
describes the open-loop slopes for the on-axis target. The hidden
layer consists of 504 nodes to match the input layer. Using more
than one hidden layer had no discernible benefit to the model pre-
diction accuracy. The type of transfer function used between the
input to hidden and hidden to output layers was hyperbolic tangent.
The topology of the model presented here was determined largely
by trial and error. Of the various models developed, this study re-
ports on findings from the most accurate predictor model. For more
details of the neural network, we direct the reader to our previous
work in Osborn et al. (2012)

3 T R A I N I N G

ANNs are trained by exposing them to a large number of in-
puts together with the desired output. In theory, this training data
should cover the full range of possible scenarios. When the ANN
is confronted with a superposition of a number of the independent

Table 2. CANARY asterism 34 parameters.

Star X (arcsec) Y (arcsec) Magnitude (in V-band)

On-axis 0 0 9.7
Natural guide star 1 −7.2 −20.2 9.2
Natural guide star 2 −36.0 53.3 9.7
Natural guide star 3 54.0 4.3 11.6
Laser guide star 1 18.5 18.5 −
Laser guide star 2 18.5 −18.5 –
Laser guide star 3 −18.5 18.5 –
Laser guide star 4 −18.5 −18.5 –

training sets it can then predict an output by combining a number
of the synaptic pathways. In this way, we do not need to train the
ANN with every possible turbulent profile but just a basis set from
which it can assemble its own approximation.

We have used the CANARY calibration bench to generate a train-
ing data set. This bench consists of deployable four natural and three
laser guide stars and two phase screens. The turbulence strength is
distributed between these two phase screens with a ratio of 0.7:0.3.
Initially, we attempted to only use the stronger phase screen for
the training (with a measured r0 = 0.25 m). However, it became
apparent that this phase screen alone did not have enough phase
variability (i.e. was not big enough) for the statistics to converge for
a suitable training set. If we do not train with sufficient variability in
the input phase then the performance of the reconstructor is severely
compromised (Osborn et al. 2012). Therefore, for the training, we
use the two available phase screens and place them as close together
as possible. We then counter rotate them at different angular veloc-
ities to increase the variability, or independent realizations, of the
phase that we measure. We place the phase screens at the ground
and take 10 000 iterations of WFS slopes, the angular velocities are
defined so that the system is exposed to all possible combinations
of the two phase screens. We then move the two layers up through
the simulated atmosphere space together in small increments. The
data set then includes the influence of turbulent layers at all possible
altitudes.

We train CARMEN to reconstruct the on-axis target slopes (i.e.
the slopes that an on-axis WFS would measure if one were avail-
able) regardless of atmospheric turbulence profile. The input to the
reconstructor will be the measured off-axis slopes from the guide
star WFSs. The output of CARMEN will be the open-loop slopes
predicted for the on-axis target, which can be converted into DM
commands with the TS control matrix. This will result in a tomo-
graphic reconstructor that is stable even in dynamic atmospheric
conditions.

The training must be performed whilst the bench is set to have the
same asterism that will be used on-sky. For this reason, a different
reconstructor is required for each potential asterism. It is possible
that the reconstructor for the laser guide stars could be separated
from that of the natural guide stars, effectively resulting in two
reconstructors. As the asterism of the laser guide stars for each
system is fixed, a single reconstructor can always be used for the
laser guide star reconstructor. For the tests, we used CANARY
asterism 34, the guide star parameters are defined in Table 2. The
laser guide stars are positioned at the corners of a square, centred
on the on-axis target star, with sides of length 37 arcsec.

4 IM P L E M E N TAT I O N

CANARY uses the Durham AO real-time controller (DARC;
Basden & Myers 2012) to provide real-time actuator control in
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response to WFS inputs. This control system is modular, allowing
different algorithms, WFSs and DMs to be integrated with the real-
time control system. We have developed an ANN reconstruction
module (written in the C language) for DARC which takes advan-
tage of the pipelined architecture, minimizing latency between the
last WFS pixel received and commands being sent to the DMs.
DARC modules are dynamically loadable, enabling fast switching
of control algorithms, including when the AO loop is engaged. We
are therefore able to compare traditional matrix–vector wavefront
reconstruction approaches with our ANN implementation with very
little delay.

4.1 DARC module design

An ANN can be represented by a sequence of matrix–vector mul-
tiplications interspersed with addition of a bias term, also derived
from the training process and used to apply an offset to the neuron
values at each layer, and a non-linear mapping:

xi+1 = Fi (Mi · xi + bi) , (3)

where xi is the state vector after the ith stage of the ANN, Mi is the
matrix corresponding to this stage, bi is a vector bias term and Fi

is the activation function for this stage.
We use a three-stage ANN for CANARY, although our real-

time implementation will allow for an arbitrary number of stages.
The first stage maps WFS slopes (504 from the seven CANARY
WFSs) to an intermediate layer, which is then mapped to a layer
representing slopes as would be seen by an on-axis WFS with 72
slope measurements. Finally, a linear stage is used to map this to DM
commands using a closed-loop control matrix (which is not part of
the ANN learning). We have the option to use intermediate stages
with a Sigmoid activation function (equation 1), or with a linear
activation function, allowing investigation of the ANN performance.

4.2 Utilization of pixel streams

A key feature of DARC is the ability to work with pixel streams
rather than image frames. The processing of pixels is performed
as they are delivered to the real-time control system, rather than
having to wait for a whole frame to arrive. This is instrumen-
tal in delivering low latency, and thus, improved AO perfor-
mance. Using the standard DARC matrix–vector reconstruction
module, partial DM commands can be computed once enough pix-
els for a given subaperture have been delivered (this subaperture is
calibrated, slopes computed and partial reconstruction carried out).
For the ANN module, this is not possible, since to progress from
the first layer of the ANN to the following layers, all slope mea-
surements must be known. However, our implementation allows us
to begin to process pixels as soon as they arrive at the real-time
control system, rather than waiting for a whole image frame to ar-
rive. As soon as enough pixels for a given subaperture have been
captured, they are calibrated, and the slope measurements for this
subaperture computed. Then, these slope measurements are used to
perform a partial multiplication with the first ANN stage matrix,
and as more slope measurements become available, the output of
the first ANN stage is built up. Finally, once all pixels have arrived,
the output of the first ANN stage is then complete, and passed on
to further ANN stages. This allows the first ANN stage to make
use of the pixel stream, and since this involves the largest matrix
(a factor of 7 larger than the second stage matrix in the CANARY
case), we therefore retain most of the benefit of the DARC pixel
stream architecture. As a demonstration, the computation time for

the L&A and the ANN reconstructor was found to be 0.68 ± 0.02
and 1.01 ± 0.01 ms, respectively.

Being based on matrix–vector multiplications, the ANN module
is a key candidate for implementation on graphical processing unit
hardware allowing operation for extremely large telescope (ELT)
scale systems.

5 R ESULTS

5.1 Bench validation

To validate the ANN tomographic reconstructor, CARMEN, we
place the stronger of the two phase screens at the ground, PS1. This
phase screen is fixed to an altitude of zero for all tests as we as-
sume that the surface turbulent layer is always present (Osborn et al.
2010). The second phase screen, PS2, is positioned at altitude to rep-
resent a high turbulent layer. We then move PS2 to several different
positions, corresponding to altitudes in the range H0 − 2000 to
H0 + 2000, where H0 is the altitude at which the L&A tomographic
reconstructor was optimized. The combined Fried parameter, r0, a
measure of the integrated atmospheric optical turbulence strength,
for the two phase screens was ∼0.16 m.

Fig. 2 shows the results from this experiment. We see that the
performance is optimized for L&A at an altitude of 5.7 km. As PS2 is
moved away from this altitude the performance degrades. The curve
is not symmetric due to the first phase screen, PS1, at the ground
and due to the reduction in overlap of the projected pupil inducing
further errors at increasing altitudes. The performance of CARMEN
is approximately linear with increasing altitude. The reduction in
performance is, theoretically, based on the reduced overlap of the
projected pupils at altitude. The fraction of overlapping area of
two full discs separated by a distance x in diameter units, where
x = r/D is f (x) = arccos (x) − x(1 − x2)1/2. The residual error
is proportional to 1/f(x). We see that performance of CARMEN
does follow this trend, which demonstrates that the reconstructor
has been generalized to perform regardless of input atmospheric
turbulence profile.

By comparing the performance of the L&A and CARMEN re-
constructors, we see that a fully optimized L&A reconstructor is

Figure 2. Residual WFE for L&A and ANN tomographic reconstructors on
the CANARY calibration bench with the high-altitude turbulent phase screen
(PS2) position at the given altitude. The dashed line shows the expected
performance of the ANN as a function of overlap of the projected pupils.
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Figure 3. On-sky Strehl ratio (in the H band) achieved with the ANN
reconstructor and with L&A as a function of r0. The reconstructors were
interlaced temporally to prevent biasing due to changing conditions. The
solid line indicates the least-squares fit to the data with a power-law model
(y = αxβ ). We see that the results from L&A is approximately 5 per cent
better than that of CARMEN. Also shown is the performance of GLAO
from the same nights, showing that the correction of L&A and CARMEN
was indeed tomographic.

indeed better than the generalized ANN reconstructor. However,
if the high-altitude turbulent layer was to change in altitude by
∼300 m and the L&A algorithm is not re-optimized, then the two
reconstructors are equal. Beyond this altitude range, CARMEN out-
performs the L&A reconstructor. For an asterism of 50 arcsec and 7
subapertures across a 4.2 m pupil (the simulated parameters of the
optical bench), this altitude change corresponds to a shift of one
tenth of a subaperture.

5.2 On-sky validation

During the nights of the 2013 July 22 and 24 the bench trained ANN
tomographic reconstructor was implemented on-sky. The first of
these nights was spent calibrating the ANN reconstructor, involving
developing the optimum routine for calculating the static aberrations
and the optimum gain.

CANARY was operated for short bursts of ∼30 s with active
switching between L&A and CARMEN tomographic reconstruc-
tors. This methodology was used to prevent bias in the results by
using different reconstructors at different times during changeable
conditions. Due to time constraints only 36 exposures were made
with each reconstructor and the Strehl ratio was recorded from the
CANARY science camera in the H-band.

Fig. 3 shows the Strehl ratio obtained with the two reconstructors
as a function of r0. r0 is estimated by fitting the theoretical vari-
ances of a Zernike decomposition of the Kolmogorov power spec-
trum to those of the reconstructed wavefront from the WFS slopes
(Gendron et al. 2011). The L&A reconstructor achieves a mean
Strehl ratio of 0.31 ± 0.06, where the error given is the standard
deviation. CARMEN achieved a mean Strehl ratio of 0.26 ± 0.06.
This shows that CARMEN is capable of attaining a similar perfor-
mance as L&A on-sky. From the standard deviation of the data and
by examining the figure, we see that there is significant overlap in
the results. We also present the results from Ground Layer Adaptive
Optics (GLAO) measurements on the same nights (separated into
night 1, 2013/07/22, and night 2, 2013/07/24, as the performance

Figure 4. On-sky TS rms achieved with the ANN reconstructor and with
L&A as a function of r0. The reconstructs were interlaced temporally to
prevent biasing due to changing conditions. The solid line indicates the
least-squares fit to the data. We see that the mean difference in residual
wavefront error from L&A is approximately 15 nm rms lower than that of
CARMEN. Also shown is the performance of GLAO from the same nights,
showing that the correction of L&A and CARMEN was indeed tomographic.

of GLAO was different for each night). GLAO is a type of AO cor-
rection which only corrects for the ground layer of turbulence. We
see that the performance of tomographic reconstructors (L&A and
CARMEN) is better than that of GLAO showing that the correction
is indeed tomographic.

In addition to the Strehl ratio, we can also analyse the results
in terms of residual wavefront error using WFS data from the CA-
NARY TS rms. Fig. 4 shows the residual wavefront error again as
a function of integrated r0. A least-squares fit to the data with a
power-law model (y = αxβ ) indicates a mean deficit of approxi-
mately 15 nm in the performance of CARMEN in comparison to
L&A for measured r0 values between 0.08 and 0.29 m.

By analysing the Zernike modal decomposition for each recon-
structor, we can attempt to understand the source of the discrepancy
in performance. Fig. 5 shows the uncorrected Zernike variances

Figure 5. Zernike variance for the ANN and the L&A reconstructor. The
dashed lines indicate the Zernike variances for the uncorrected wavefront
(calculated as the mean variances for the three off-axis natural guide stars)
and the solid line indicates the corrected variances from the TS.
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(mean of the off-axis natural guide stars Zernike variances) and the
corrected Zernike variances from the TS. We find that the difference
between the two reconstructors is greatest at higher order Zernike
modes.

6 D ISCUSSION

The on-sky performance of CARMEN does not match that of the
optimized L&A. Although the results are similar, this small disparity
mirrors the difference observed with the bench tests and could be
caused by the finite number of independent phase realization of
the phase screens used for the training process. If we could further
increase the bench phase variability, we can expect the performance
of CARMEN to improve. This is because, if there is not enough
variability in the training data, then the measured power spectrum
of the phase will not have converged and will be erroneous. This
error is then imprinted into the ANN, which will attempt to force
the output to match this erroneous power spectrum.

Bench tests showed that placing the two phase screens together
and counter rotating provided better results than simply using one
phase screen alone. The reason for this is that by using both phase
screens, we can increase the variability and the strength of the tur-
bulence for the bench training. Using two phase screens induces
further errors as there is a finite separation between them. It fol-
lows that the phase screens will therefore be conjugate to different
altitudes on the calibration bench. We estimate that the two phase
screens are separated by approximately 500 m (5 mm on the bench).
The trained data set will therefore contain information on double
layers of separation 500 m. This will inevitably lead to errors in the
reconstruction of single layers.

Errors in the conjugation altitude and lateral positions of the guide
stars will mean that the geometry of the light cones on the bench
will be different to that on-sky, inducing errors in the reconstructed
on-axis slopes. This will have an effect on the beam overlap as a
function of altitude and effectively mean that some WFS will see
the turbulence further away than others.

In addition, turbulence above the maximum altitude used in the
training will not be corrected and will therefore reduce the perfor-
mance of CARMEN. Due to limitations with the current bench used
to generate the training data, the maximum altitude to which we can
place a phase screen is approximately 6.5 km. Therefore, in its cur-
rent format CARMEN is unable to correct for turbulence above this
altitude. Concurrent turbulence profiles from an external Stereo-
SCIDAR instrument (Osborn et al. 2013; Shepherd et al. 2013) on
the Jacobus Kapteyn Telescope, La Palma (Fig. 6) demonstrates that
during testing there was approximately 15 per cent of the integrated
turbulence strength above this altitude on the first night and ap-
proximately 5 per cent on the second. This high-altitude turbulence
would certainly reduce the performance of CARMEN. For this rea-
son, it is important to improve the training to include altitudes up
to the maximum altitude of the expected turbulence.

We have also examined the possibility that the additional com-
putation time of the ANN reconstructor will add to the latency of
the AO system, and hence diminish the performance. If the ANN-
induced significant performance degradation due to latency then
we would expect to see the difference in performance between
CARMEN and L&A correlated with the atmospheric coherence
time, τ 0. The performance of CARMEN would be relatively worse
for shorter τ 0 than L&A. Using turbulence strength and veloc-
ity measurements form Stereo-SCIDAR, CANARY off-axis WFSs
and the local meteorological tower, and correcting for the airmass
of the target asterism (greater airmass will increase the apparent

wind speed if the wind direction is aligned with the target direction)
we estimated τ 0 for all of our observations. Values of τ 0 ranged be-
tween approximately 3 and 9 ms. No correlation was found between
the difference of the performance of CARMEN and L&A and τ 0.
This is to be expected as, from Section 4, the computation time for
CARMEN was estimated to be 1.01 ± 0.01 ms, significantly less
than τ 0.

Despite the limitations in the training of CARMEN, we achieve
a performance within 5 per cent of the Strehl ratio of the optimized
L&A tomographic reconstructor. We have already shown in sim-
ulation (Osborn et al. 2012) that with sufficient training data and
negligible alignment errors the performance of CARMEN and L&A
are comparable. The next stage is to develop a training routine that
can produce comparable results to L&A whilst maintaining the
generality that comes from the neural network approach.

7 C O N C L U S I O N S

We have shown that the ANN open-loop tomographic reconstructor,
CARMEN, is indeed insensitive to changes in the atmospheric opti-
cal turbulence profile. This was demonstrated on the CANARY AO
calibration bench. We see that the ANN provides a consistent re-
construction regardless of turbulence altitude without any additional
information. There is a drop off in performance as the altitude of
the layer increases which is consistent with the reduction of overlap
of the projected pupils at that altitude.

We have also demonstrated that the CARMEN reconstructor,
trained on the calibration bench, could attain results comparable to
that of the L&A method. The performance was slightly lower than
that of L&A, with mean Strehl ratios of 0.31 and 0.26 for L&A
and ANN, respectively. We believe that the lower performance
was caused by insufficient data upon which the neural network
was trained. This includes both the lack of variability in the phase
screens that are used for generating the training data set for the
ANN reconstructor and the fact that there was turbulence above
the altitude that the training data were acquired for. We maximized
the phase variability in the training data set by using two counter-
rotating phase screens placed close to each other. This introduced
a further issue that the two phase screens are actually displaced
in altitude relative to each other. However, despite these limita-
tions on the training of CARMEN, we still achieve a performance
within 5 per cent in terms of Strehl ratio and 15 nm in rms error of
the optimized L&A tomographic reconstructor. We also show that
the reconstructor is performing a tomographic reconstructor as the
performance is significantly better than that of GLAO in similar
atmospheric conditions.
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Figure 6. Atmospheric optical turbulence profiles for the first night (2013/07/22) and the second night (20130724) of CARMEN tests form Stereo-SCIDAR.
The z-scale indicates the strength of the optical turbulence at a given time and altitude. On both nights the reconstructor tests were implemented at approximately
0030–0200. The GLAO data were taken at approximately 2230–2240 and 0530–0550 on the first night and 2240–2310 on the second night.
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