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Abstract

We provide a number of simplified and improved separations between pairs
of Resolution-with-bounded-conjunction refutation systems, Res(d), as well as
their tree-like versions, Res∗(d). The contradictions we use are natural combi-
natorial principles: the Least number principle, LNPn and an ordered variant
thereof, the Induction principle, IPn.

LNPn is known to be easy for Resolution. We prove that its relativization is
hard for Resolution, and more generally, the relativization of LNPn iterated d
times provides a separation between Res(d) and Res(d+1). We prove the same
result for the iterated relativization of IPn, where the tree-like variant Res∗(d)
is considered instead of Res(d).

We go on to provide separations between the parameterized versions of
Res(1) and Res(2). Here we are able again to use the relativization of the
LNPn, but the classical proof breaks down and we are forced to use an alter-
native. Finally, we separate the parameterized versions of Res∗(1) and Res∗(2).
Here, the relativization of IPn will not work as it is, and so we make a vectorizing
amendment to it in order to address this shortcoming.

Keywords: Proof complexity, Lower bounds,
Resolution-with-bounded-conjunction, Parameterized proof complexity

1. Introduction

We study the power of relativization in Propositional proof complexity, i.e.
we are interested in the following question: given a propositional proof system is
there a first-order (FO) sentence which is easy but whose relativization is hard

✩Extended abstracts of results in this paper appeared as [9] at CSR 2006 and as [10] at
CSR 2013. Several proofs, especially those omitted from [9], appear here for the first time.
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(within the system)? The main motivation for studying relativization comes
from a work of Kraj́ıček, [19]. He defines a combinatorics of FO structure and
a relation of covering between FO structures and propositional proof systems.
The combinatorics contains all the sentences easy for the proof system. On
the other hand, as defined in [19], it is closed under relativization. Thus the
existence of a sentence, which is easy but whose relativization is hard, for the
underlying proof system, would imply that it is impossible to capture the class
of easy sentences by a combinatorics. Ideas of relativization have also appeared
in [11, 2]. The proof, in fact refutation, system we consider is Resolution-with-
bounded-conjunction, denoted Res(d) and introduced by Kraj́ıček in [18]. It is
an extension of Resolution in which conjunctions of up to d literals are allowed
instead of single literals. The tree-like version of Res(d) is usually denoted
Res∗(d). Kraj́ıček proved that tree-like Resolution, and even Res∗(d), have
combinatorics associated with it. This follows also from Riis’s complexity gap
theorem for tree-like Resolution [23], and shows that the sentences, easy for
tree-like Resolution, remain easy after having been relativized.

The next natural system to look at is Resolution. It is stronger than Res∗(d)
for any d, 1 ≤ d ≤ n (equivalent to Res∗(n), in fact, where n is the number of
variables), and yet weak enough so that one could expect that it can easily prove
some property of the whole universe, but cannot prove it for an arbitrary subset.
As we show in the paper, this is indeed the case. The example is very natural, the
Least number principle, LNPn. The contradiction LNPn asserts that a partial n-
order has no minimal element. In the literature it enjoys a myriad of alternative
names: the Graph ordering principle GOP, Ordering principle OP and Minimal
element principle MEP. Where the order is total it is also known as TLNP and
GT. It is not hard to see that LNPn is easy for Resolution [7], and we prove
that its relativization RLNPn is hard. A more general result has been proven
in [25]; however the lower bound there is weaker. We also consider iterated
relativization, and show that the dth iteration d-RLNPn is hard for Res(d), but
easy for Res(d+1). We go on to consider the relativization question for Res∗(d),
where the FO language is enriched with a built-in order. The complexity gap
theorem does not hold in this setting [11], though we are able to show that
relativization again makes some sentences harder. A variant of the Induction
Principle gives the contradiction IPn, saying that there is a property which:
holds for the minimal element; if it holds for a particular element, there is a
bigger one for which the property holds, too; and the property does not hold for
the maximal element. We prove that the dth iteration of the relativization of
the Induction principle, d-RIPn, is easy for Res∗(d + 1), but hard for Res∗(d).
More precisely, our results are the following:

1. Any Resolution refutation of RLNPn is of size 2Ω(n). Firstly, this answers
positively to Kraj́ıček’s question. Secondly, observing that RLNPn has an
O(n3)-size refutation in Res(2), we get an exponential separation between
Resolution and Res(2). A similar result was proved in [25] (see also [1]
for a weaker, quasi-polynomial, separation). Our proof is quite simple
compared with that of [25], where this separation is a corollary of a more
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general result, and our lower bound is stronger.

2. d-RLNPn has an O(dn3)-size refutation in Res(d+1), but requires 2Ω(nǫ)-
size refutation in Res(d), where ǫ is a constant dependent on d. These
separations were first proved in [25]. As a matter of fact, we use their
method but our tautologies are more natural, and our proof is a little
simpler.

3. d-RIPn has an O(dn2)-size Res∗(d + 1) refutation, but requires Res∗(d)
refutations of size 2Ω(n

d ). This holds for any d, 0 ≤ d ≤ n. A similar
result was proven in [15]. Again, our tautologies are more natural, while
the proof is simpler.

The second part of the paper is in the area of Parameterized proof complexity,
a program initiated in [12], which generally aims to gain evidence that W[i]
is different from FPT. Typically, i is so that the former is W[2], though—in
the journal version [13] of [12]—this has been W[SAT] and—in the note [20]—
W[1] was entertained. In the W[2] context, parameterized refutation systems
aim at refuting parameterized contradictions which are pairs (F , k) in which F
is a propositional CNF with no satisfying assignment of weight ≤ k. Several pa-
rameterized (hereafter often abbreviated as “p-”) proof systems are discussed in
[12, 3, 6]. The lower bounds in [12], [3] and [6] amount to proving that the sys-
tems p-tree-Resolution, p-Resolution and p-bounded-depth Frege, respectively,
are not fpt-bounded. Indeed, this is witnessed by the Pigeonhole principle, and
so holds even when one considers parameterized contradictions (F , k) where F
is itself an actual contradiction. Such parameterized contradictions are termed
“strong” in [6], in which the authors suggest these might be the only parame-
terized contradictions worth considering, as general lower bounds—even in p-
bounded-depth Frege—are trivial (see [6]). We sympathize with this outlook,
but remind that there are alternative parameterized refutation systems built
from embedding (see [12, 13]) for which no good lower bounds are known even
for general parameterized contradictions.

In the world of parameterized proof complexity, we already have lower
bounds for p-Res(d) (as we have for p-bounded-depth Frege), but we are still
interested in separating levels p-Res(d). We are again able to use the relativized
Least number principle, RLNPn to separate p-Res(1) and p-Res(2). Specifically,
we prove that

4. (RLNPn, k) admits a polynomial-sized in n refutation in Res(2), but all

p-Res(1) refutations of (RLNPn, k) are of size ≥ n
√

(k−3)/16.

Although we use the same principle as in the first part of this paper, the clas-
sical proof of bottleneck counting does not adapt to the parameterized world,
and instead we look for inspiration to the proof given in [6] for the Pigeonhole
principle. For tree-like Resolution, the situation is more complicated. RIPn,
admits fpt-bounded proofs in Res∗(1), indeed of size O(k!), therefore we are
forced to alter this principle. Thus we come up with the relativized vectorized
induction principle RVIPn. We are able to show that
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5. (RVIPn, k) admits O(n4) refutations in Res∗(2), while every refutation in
Res∗(1) is of size ≥ nk/16.

Note that both of our parameterized contradictions are “strong”, in the sense of
[6]. We go on to give extended versions of RVIPn and explain how they separate
p-Res∗(d) from p-Res∗(d+ 1), for d > 1.

This paper is organized as follows. We begin with the preliminaries. After
this, we give the results about Resolution and Res(d) complexity of the d-RNLPn

(Items 1 and 2 above) in Section 3. We then give the results about Res∗(d)
complexity of the d-RIPn (Item 3) in Section 4. Moving to the parameterized
world, we give our separation of p-Res(1) from p-Res(2) (Item 4) in Section 5,
and our separations of p-Res∗(d) from p-Res∗(d+ 1) (Item 5) in Section 6. We
then conclude with some final remarks and open questions.

2. Preliminaries

We use the notation [n] := {1, . . . , n} and we denote by ⊤ and ⊥ the Boolean
values true and false, respectively. A literal is either a propositional variable or
its negation. A d-conjunction (d-disjunction) is a conjunction (disjunction) of
at most d literals. A term (d-term) is either a conjunction (d-conjunction) or
a constant, ⊤ or ⊥. A d-DNF is a disjunction of (an unbounded number) of
d-conjunctions.

A d-CNF is a conjunction of (an unbounded number) of d-disjunctions. Thus
we may identify CNFs with sets of clauses. Since variables will often be written
in Roman capitals, conjuncts, disjuncts, CNFs and DNFs will benefit from being
written calligraphically.

As we are interested in translating FO sentences into sets of clauses, we
assume that a finite n-element universe U is given. The elements of U are
the first n positive natural numbers, i.e. U := [n]. When we say “element” we
always assume an element from the universe. We will not explain the translation
itself; the details can be found in [24] or [18]. An example of this translation
can be found at the beginning of Section 3.

2.1. Resolution and Res(d)

The system of Resolution aims to refute a set of clauses by inferring from
them the empty clause (a logical contradiction). We will introduce this system
through its generalization, due to Kraj́ıček [18], to Res(d).

Res(d) is a system to refute a set of d-DNFs. There are four derivation rules.
The ∧-introduction rule allows one to derive from P ∨∧

i∈I1
ℓi and Q∨∧

i∈I2
ℓi,

P ∨Q∨∧

i∈I1∪I2
ℓi, provided |I1 ∪ I2| ≤ d (P and Q are d-DNFs). The cut (or

resolution) rule allows one to derive from P ∨∨

i∈I ℓi and Q∨∧

i∈I ¬ℓi, P ∨Q.
Finally, the two weakening rules allow the derivation of P ∨ ∧

i∈I ℓi from P ,
provided |I| ≤ d, and P ∨∧

i∈I1
ℓi from P ∨∧

i∈I1∪I2
ℓi.

A Res(d) refutation can be considered as a directed acyclic graph (DAG),
whose sources are the initial clauses, called also axioms, and whose only sink
is the empty clause. We will measure the size of a refutation as the number
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of internal nodes of the graph, i.e. the number of applications of a derivation
rule. Whenever we say “we refute an FO sentence in Res(d)”, we mean that
we first translate the sentence into a set of clauses defined on a finite universe
of size n, and then refute it with Res(d). The size of the refutation is then a
function in n. In the notation “Res(d)”, d may be seen as a function in the
number of propositional variables. Important special cases are Res(log) as well
as Res(const). Clearly Res(1) is (ordinary) Resolution. In this case, we have
only usual clauses, i.e. disjunctions of literals. The cut rule becomes the usual
resolution rule, and only the first weakening rule is meaningful. The letter d is
reserved for use as relating to the parameter of some Res(d).

2.2. Res(d) as a branching program

If we turn a Res(d) refutation of a given set of d-DNFs Σ upside-down, i.e.
reverse the edges of the underlying graph and negate the d-DNFs on the vertices,
we get a special kind of restricted branching d-program. We introduce them in
generality (not just for d = 1) as we will use them in the part of the paper on
parameterized proof complexity. The restrictions are as follows. Each vertex
is labelled by a d-CNF which partially represents the information that can be
obtained along any path from the source to the vertex (this is a record in the
parlance of [22]). Obviously, the (only) source is labelled with the constant ⊤.
There are two kinds of queries, which can be made by a vertex:

1. Querying a new d-disjunction, and branching on the answer: that is, from
C and the question

∨

i∈I ℓi? we split on C ∧∨

i∈I ℓi and C ∧∧

i∈I ¬ℓi.
2. Querying a known d-disjunction, and splitting it according to the answer:

that is, from C ∧ ∨

i∈I1∪I2
ℓi and the question

∨

i∈I1
ℓi? we split on C ∧

∨

i∈I1
ℓi and C ∧∨

i∈I2
ℓi.

There are two ways of forgetting information. From C1 ∧C2 we can move to C1.
And from C ∧∨

i∈I1
ℓi we can move to C ∧∨

i∈I1∪I2
ℓi. The point is that forget-

ting allows us to equate the information obtained along two different branches
and thus to merge them into a single new vertex. A sink of the branching d-
program must be labelled with the negation of a d-DNFs from Σ. Thus the
branching d-program is supposed by default to solve the Search problem for Σ:
given an assignment of the variables, find a d-DNF which is falsified under this
assignment.

The equivalence between a Res(d) refutation of Σ and a branching d-program
of the kind above is obvious. If we do not allow the forgetting of information,
we will not be able to merge distinct branches, so what we get is a class of
decision trees that correspond precisely to the tree-like version of these refutation
systems. Indeed, a tree-like branching 2-program is depicted later in the paper in
Figure 1. Naturally, if we allow querying single variables only, we get branching
1-programs—decision DAGs—that correspond to Resolution. These decision
DAGs permit the view of Resolution as a game between a Prover and Adversary
(originally due to Pudlak in [22]). Playing from the unique source, Prover
questions variables and Adversary answers either that the variable is true or false
(different plays of Adversary produce the DAG). Internal nodes are labelled by
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conjunctions of facts (records to Pudlak) and the sinks hold conjunctions that
contradict an initial clause. Prover may also choose to forget information at any
point—this is the reason we have a DAG and not a tree. Of course, Prover is
destined to win any play of the game—but a good Adversary strategy can force
that the size of the decision DAG is large, and many Resolution lower bounds
have been expounded this way.

In order to prove our lower bounds on Resolution refutations, we will use the
well-known and classical technique of bottleneck counting. This was introduced
by Haken in his seminal paper [17] (for the modern treatment see [22]). We first
define the concept of big clause. We then design random restrictions, so that
they “kill” (i.e. evaluate to ⊤) any big clause with high probability (w.h.p.).
By the union bound, if there are few big clause, there is a restriction which
kills them all. We now consider the restricted set of clauses, and using the
Prover-Adversary game, show that there has to be at least one big clause in the
restricted proof, which is a contradiction that completes the argument.

The case of Res(d) is not so easy. A general method for proving lower bounds
is developed in [25]. We first hit the refutation by random restrictions, such that
all the d-DNFs in the refutation, under the restrictions, can be represented by
shallow Boolean decision trees w.h.p. We then use the fact, proved in [25], that
such a refutation can be transformed into a small width Resolution refutation.
Finally we consider the restricted set of clauses, and using the Prover-Adversary
game, show that there has to be at least one big clause in the Resolution refu-
tation. This gives the desired contradiction to the assumption that the initial
Res(d) refutation contains a small number of d-DNFs.

The case of tree-like refutations, either Resolution or Res(d), is much simpler,
as a tree-like refutation of a given set of clause is equivalent to a decision tree,
solving the search problem. We can then use a quite straightforward adversary
argument against a decision tree, in order to show that it has to have many
nodes. Adversary will play to a strategy that occasionally permits him to give
Prover a free choice, this allows the branching in a subtree that gives a lower
bound on that for the refutation.

2.3. Parameterized refutation systems

A parameterized language is a language L ⊆ A∗×N whereA is an alphabet; in
an instance (x, k) ∈ L, we refer to k as the parameter. A parameterized language
is fixed-parameter tractable (fpt and in FPT) if membership in L can be decided
in time f(k)|x|O(1) for some computable function f . If FPT is the parameterized
analog of P, then (at least) an infinite chain of classes vie for the honour to
be the analog of NP. The so-called W-hierarchy sits thus: FPT ⊆ W[1] ⊆
W[2] ⊆ . . . ⊆ W[SAT]. For more on parameterized complexity and its theory
of completeness, we refer the reader to the monographs [14, 16]. Recall that the
weight of an assignment to a propositional formula is the number of variables
evaluated to true. Of particular importance to us is the parameterized problem
Bounded-CNF-Sat whose input is (F , k) where F is a formula in CNF and
whose yes-instances are those for which there is a satisfying assignment of weight
≤ k. Bounded-CNF-Sat is complete for the class W[2], and its complement
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(modulo instances that are well-formed formulae) PCon is complete for the
class co-W[2]. Thus, PCon is the language of parameterized contradictions,
(F , k) s.t. F is a CNF which has no satisfying assignment of weight ≤ k. The
letter k is reserved for use as pertaining to this weight bound.

A proof system for a parameterized language L ⊆ A∗ × N is a poly-time
computable function P : A∗ → A∗ × N s.t. range(P ) = L. P is fpt-bounded if
there exists a computable function f so that each (x, k) ∈ L has a proof of size at
most f(k)|x|O(1). These definitions come from [3, 4, 6] and are slightly different
from those in [12, 13] (they are less unwieldy and have essentially the same
properties). The program of parameterized proof complexity is an analog of that
of Cook-Reckow [8], in which one seeks to prove results of the form W[2] 6=co-
W[2] by proving that parameterized proof systems are not fpt-bounded. This
comes from the observation that there is an fpt-bounded parameterized proof
system for a co-W[2]-complete L if W[2] =co-W[2].

The system of parameterized Resolution [12] seeks to refute the parameter-
ized contradictions of PCon. Given (F , k), where F is a CNF in variables
x1, . . . , xn, it does this by providing a Resolution refutation of

F ∪ {¬xi1 ∨ . . . ∨ ¬xik+1
: 1 ≤ i1 < . . . < ik+1 ≤ n}. (1)

Thus, in parameterized Resolution we have built-in access to these additional
clauses of the form ¬xi1 ∨ . . . ∨ ¬xik+1

, but we only count those that appear
in the refutation. We may consider any refutation system as a parameterized
refutation system, by the addition of the clauses given in (1). In particular,
parameterized Res(d), p-Res(d), will play a part in the sequel.

3. Relativized Least number principle and Res(d)

The Least number principle, states that a (partial) order, defined on a finite set
of n elements, has a minimal element. Its negation LNP can be expressed as
the following FO sentence:

((∀x ¬L (x, x))∧
(∀x, y, z (L (x, y) ∧ L (y, z)) → L (x, z)) ∧ (2)

(∀x∃y L (y, x))) .

Here L (x, y) stands for x < y. The encoding of LNPn as a set of clauses is as
follows.

¬Li,i i ∈ [n]

¬Li,j ∨ ¬Lj,ℓ ∨ Li,ℓ i, j, ℓ ∈ [n]
∨

i∈[n]

Si,j j ∈ [n]

¬Si,j ∨ Li,j i, j ∈ [n]

7



where S is the Skolem relation, witnessing the existential variable y from ∀x∃y
L (y, x), i.e., for each j, Si,j = ⊤ implies that the ith element is smaller than
the jth one. Of course, this S relation is unnecessary in the standard LNPn

(one may remove it and replace each
∨

i∈[n] Si,j with
∨

i∈[n] Li,j). However, it
will become necessary in the relativizations which we now introduce.

The negation of the d-Relativized Least number principle, d-RLNPn, is as fol-
lows. Let Rp, 1 ≤ p ≤ d, be the unary predicates which we relativize by, and
let us denote by R (x) the conjunction

∧

p∈[d]R
p (x). d-RLNPn is the following

sentence:

((∀xR (x) → ¬L (x, x))∧
(∀x, y, z R (x) ∧R (y) ∧R (z) →
(L (x, y) ∧ L (y, z)) → L (x, z)) ∧
(∀x∃y R (x) → (R (y) ∧ L (y, x))) ∧
(∃xR (x))) .

What this is saying is that the negation of the least number principle holds
on the subuniverse given by R(x), and this subuniverse is non-empty. The
corresponding translation into clauses (simplified by assuming the witness to
the final R be n) gives the following.

¬Ri ∨ ¬Li,i i ∈ [n]

¬Ri ∨ ¬Rj ∨ ¬Rℓ ∨ ¬Li,j ∨ ¬Lj,ℓ ∨ Li,ℓ i, j, ℓ ∈ [n]
∨

i∈[n]

Si,j j ∈ [n]

¬Si,j ∨ ¬Rj ∨Rp
i i, j ∈ [n]; p ∈ [d]

¬Si,j ∨ ¬Rj ∨ Li,j i, j ∈ [n]

Rp
n p ∈ [d]

We generally write RLNPn for 1-RLNPn.

3.1. The upper bound: d-RLNPn is easy for Res(d+ 1)

Proposition 1. There is an O
(

dn3
)

size Res(d+ 1) refutation of d-RLNPn.

Proof. As in the previous subsection,Ri is the d-conjunction
∧

p∈[d]R
p
i ; clearly

¬Ri is then a d-disjunction.
The Res(d+ 1) proof will consists of n stages. We will show how to construct

it, starting from the nth stage, and going to the 1st one.
The ℓth stage clauses that we will need to derive are

¬Rj ∨
∨

i∈[ℓ], j 6=i

(Li,j ∧Ri) j ∈ [ℓ] (3)
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together with
∨

i∈[ℓ]

Ri. (4)

Thus the 1st stage clauses are ¬R1 and R1 which, resolved, give the empty
clause. An nth stage clause of the form (3) can be derived from the axioms.
We first use d (n− 1) applications of ∧-introductions to derive ¬Si,j ∨ ¬Rj ∨
∨ (Ri ∧ Li,j), j ∈ [n], j 6= i, and then n− 1 resolutions of variables Si,j . Finally
we “kill” the literal Si,i by two resolutions with the axioms ¬Sj,j ∨ ¬Rj ∨ Lj,j

and ¬Rj ∨ ¬Lj,j .
We derive the nth stage clause of the form (4) by directly weakening the

axioms Rn.
What remains is to show how to derive the (ℓ− 1)th stage clauses from the

ℓth stage ones. The clause

¬Rj ∨
∨

i∈[ℓ−1], j 6=i

(Li,j ∧Ri) , j ∈ [ℓ− 1] (5)

can be derived as follows. We start off with the ℓth stage clause

¬Rℓ ∨
∨

i∈[ℓ−1]

(Li,ℓ ∧Ri) ,

where we can assume the big disjunction omits i = ℓ by Resolution with the
irreflexivity axiom ¬Rℓ ∨ ¬Lℓ,ℓ, and manipulate it at ℓ − 1 substages, the ith
substage dealing with the conjunction Li,ℓ ∧Ri, i ∈ [ℓ− 1]. Let us consider the
clause before the ith substage, and denote it by

C ∨ (Li,ℓ ∧Ri) (6)

(here C is the corresponding subclause). We first resolve it with the transitivity
axiom

¬Ri ∨ ¬Rℓ ∨ ¬Rj ∨ ¬Li,ℓ ∨ ¬Lℓ,j ∨ Li,j

to get
¬Rj ∨ ¬Rℓ ∨ ¬Lℓ,j ∨ C ∨ Li,j ,

and then apply a ∧-introduction with C ∨Ri, which is a weakening of (6) to get

¬Rj ∨ ¬Rℓ ∨ ¬Lℓ,j ∨ C ∨ (Li,j ∧Ri).

Thus after having completed the ℓ − 1 substages we get the clause

¬Rj ∨ ¬Rℓ ∨ ¬Lℓ,j ∨
∨

i∈[ℓ−1]

(Li,j ∧Ri).

A resolution step with the irreflexivity axiom ¬Rj∨¬Lj,j “kills” the conjunction
Lj,j ∧Rj , and we get

¬Rj ∨ ¬Rℓ ∨ ¬Lℓ,j ∨
∨

i∈[ℓ−1],i6=j

(Li,j ∧Ri).
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A final cut with another ℓth stage clause,

¬Rj ∨
∨

i∈[ℓ], j 6=i

(Li,j ∧Ri) ,

now gives the desired result (5).
The (ℓ− 1)th stage clause

∨

i∈[ℓ−1]Ri is easier to derive. We weaken the ℓth

stage clause ¬Rℓ ∨
∨

i∈[ℓ−1] (Li,ℓ ∧Ri) ℓ− 1 times to get ¬Rℓ ∨
∨

i∈[ℓ−1] Ri. We

then resolve it with the ℓth stage clause
∨

i∈[ℓ] Ri.
This completes the proof.

3.2. An optimal lower bound: RLNPn is exponentially hard for Resolution

We will prove the following using the well-known method of random restric-
tions.

Proposition 2. Any Resolution proof of RLNPn is of size 2Ω(n).

Proof. The idea is to randomly divide the universe U into two approximately
equal parts. One of them, R, will represent the predicate R; all the variables
within it will remain unset. The rest, C, will be the “chaotic” part; all the
variables within C and most of the variables between C and R will be set at
random. It is now intuitively clear that while C kills with positive probability a
certain number of “big” clauses, R allows to show, via an adversary argument,
that at least one such clause must be present in any Resolution refutation, after
it has been hit by the random restrictions. Therefore a huge number of “big”
clauses must have been presented in the original refutation.

We of course keep Rn := ⊤. The random restrictions are as follows.

1. We first set all the variables Ri, i ∈ [n− 1], to either ⊤ or ⊥ independently
at random with equal probabilities, 1/2. Let us denote the set of variables
with Ri = ⊤ by R, and the set of variables with Ri = ⊥ by C, C = U \R.

2. We now set all the variables Li,j with at least one endpoint in C, i.e.
{i, j} ∩ C 6= ∅, to either ⊤ or ⊥ independently at random with equal
probabilities, 1/2.

3. For each j ∈ C, j 6= i we set Si,j to either ⊤ or ⊥ independently at random
with equal probabilities 1/2. Note that it is possible to set all the Si,j to
⊥, thus violating an axiom. It however happens with small probability,
1/2n−1 for a fixed j.

4. We finally set all the variables Si,j with i ∈ C, j ∈ R to ⊥.

Note the unset variables define exactly the non-relativized principle onR, LNP|R|.
By the Chernoff bound (see [21]) the probability that R contains less than

n/4 elements is exponentially small, and we therefore have the following.

Observation 1. The probability that the random restrictions are inconsistent
(i.e. violate an axiom) or |R| ≤ n/4 is at most (n-1) 2−(n−1) + e−n/16.

10



A big clause is one which contains at least n/8 busy elements. The element
i is busy in the clause C iff C contains one of the following variables, either
positively or negatively: Ri, Li,j , Lj,i, Sj,i for some j, j 6= i (note the omission
of Si,j). We can now deduce the following.

Observation 2. A clause, containing p busy elements, does not evaluate to ⊤
under the random restrictions with probability at most (3/4)p/2.

Indeed, let us consider the different cases of a busy element i in the clause
C:

1. The variable Ri is present in C: The probability that the corresponding
term does not evaluate to ⊤ is 1/2.

2. The variable Sj,i for some i 6= j is present in C: The corresponding term
does not evaluate to ⊤ if either i ∈ R, or i ∈ C and it evaluates to ⊥. The
probability of this is 3/4.

3. Either the variable Li,j or the variable Lj,i for some j 6= i is present
in C. Let us denote the set of all such elements i or j by V, |V| =
ℓ, and the corresponding subclause of C induced by those elements as
E . That is, E contains precisely those atoms of C that are of the form
Li,j or Lj,i. Construct the graph G with vertex set V and edge set E

determined by the variables Li,j , i.e. E = {{i, j} | Li,j is present in C}.
Consider any spanning forest of G. Assume that all the roots are in R as
this only increases the probability that E does not evaluate to ⊤. Going
from the root to the leaves in each tree, we see that the probability that
the corresponding edge does not evaluate to ⊤ is 3/4 (the same reason
as in the 2nd case). Moreover all the edge variables are independent
from each other, and also there are at most ℓ/2 roots (exactly ℓ/2 iff the
forest consists of trees having a root and a single leaf only). Therefore
the probability that the subclause E does not evaluate to ⊤ is at most

(3/4)
ℓ/2

.

As the events from 1, 2 and 3 are independent for different elements from U, we
have completed the argument for Observation 2.

We can now present the main argument in the proof. We recall that a big
clause is one which contains at least n/8 busy elements. Assume there is a

Resolution refutation of RLNPn which contains less than (4/3)
n/8

big clauses.
From the Observations 1 and 2, using the union-bound on probabilities, we
can conclude that there is a restriction which is consistent, “kills” all the big
clauses (evaluating them to ⊤), and leaves R big enough (|R| ≥ n/4). This

is because (n-1) 2−(n−1) + e−n/16 + (4/3)n/8 (3/4)n/16 < 1. Recall that the
restricted refutation is nothing but a Resolution refutation of LNP|R| on R.
What remains to show is that any such refutation must contain a big clause
which would contradict to the assumption there were “few” big clauses in the
original refutation.

We will consider the Prover-Adversary game for LNP|R|. At any time R

is represented as a disjoint union of three sets, R = B ⊎ W ⊎ F. B is the set

11



of all the elements busy in the current clause. The elements of B are always
totally ordered. W is the set of witnesses for some elements in B, i.e. for each
j ∈ B there is an element i ∈ W ⊎ B such that Si,j = ⊤. We assume that,
at any time, any element of W is smaller than all the elements of B. F is the
set of “free” elements. It is obvious how Adversary maintains these sets in the
Prover-Adversary game. When a variable, which makes an element i ∈ W ⊎ F

busy, is queried he adds i at the bottom of the totally ordered set B, answers
accordingly, and chooses some j ∈ F and moves it to W setting Sj,i = ⊤.
When all the variables, which kept an element B busy, are forgotten, Adversary
removes i from B and removes the corresponding witness j from W if it is there
(note that it may be in B, too, in which case it is not removed). In this way
Adversary can maintain the partial assignment consistent as far as F 6= ∅. Note
also that |B| ≥ |W|. Therefore at the moment a contradiction is reached we
have |B| ≥ |R| /2 ≥ n/8 as claimed.

3.3. General lower bounds: d-RLNPn is subexponentially hard for Res (d)

We will first give the necessary background from [25].

Definition 1 (Definition 3.1, [25]). A decision tree is a rooted binary tree
in which every internal node queries a propositional variable, and the leaves are
labelled by either ⊤ or ⊥.

Thus every path from the root to a leaf may be viewed as a partial assignment.
Let us denote by Brv (T), for v ∈ {⊤,⊥}, the set of paths (partial assignments)
in the decision tree T which lead from the root to a leaf labelled by v.

A decision tree T strongly represents a DNF F iff for every π ∈ Brv (T),
F ↾π= v.

The representation height of F , h (F), is the minimum height of a decision
tree strongly representing F .

Definition 2 (Definition 3.2, [25]). Let F be a DNF, and S be a set of vari-
ables. We say that S is a cover of F iff every conjunction of F contains a
variable from S. The covering number of F , c (F), is the minimum size of a
cover of F .

Lemma 1 (Corollary 3.4, [25]). Let d ≥ 1, α > 0, 1 ≥ β, γ > 0, s > 0,
and let D be a distribution on partial assignments such that for every d-DNF
G, Prρ∈D [G ↾ρ 6= ⊤] ≤ α2−β(c(G))γ . Then for every d-DNF F :

Prρ∈D [h (F ↾ρ) ≥ s] ≤ αd2−2(β/4)d(s/2)γ
d

.

Lemma 2 (Theorem 5.1, [25]). Let G be a set of clauses of width at most
w. If G has a Res (d) refutation so that for each line L of the refutation, of Γ,
h (L) ≤ w, then G has a Resolution refutation of width at most dw.

We also need the following construction.
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Lemma 3 (Subsections 8.3 and 8.4 in [25]). There is an undirected graph
G ([n] , E) on n vertices and max-degree θ (lnn) such that any Resolution refu-
tation of LNPn, restricted on G, is of width Ω (n).

LNPn, restricted on G, means that for each element i the witness j has to
be a neighbour of i in G, i.e. we set Si,j = ⊥ whenever {i, j} /∈ E.

We can now prove the desired result.

Proposition 3. For every constant d ≥ 1 there is a constant εd ∈ (0, 1] such
that any Res(d) refutation of d-RLNPn is of size 2Ω(nεd ).

Proof. We again denote by Ri the d-conjunction ∧p∈[d]R
p
i . We consider d-

RNLPn, restricted on the graph G from Lemma 3. Thus we have eliminated
all the “big” axioms in the encoding of d-RNLPn; the biggest ones are now of
width θ (lnn), and therefore it would be possible to eventually apply Lemma 2.

The random restrictions are very similar to the ones in the proof of Propo-
sition 2. We fix Rn (i.e. Rp

n = ⊤ for all p ∈ [d]) to ⊤.

1. For each i ∈ [n− 1] and p ∈ [d] we set the variable Rp
i to either ⊤ or ⊥,

independently at random with equal probabilities, 1/2. We denote the set
of elements with Ri = ⊤ by R, and the rest by C, C = U \ R. Note that
R 6= ∅ as always n ∈ R, and by the Chernoff bound

Prob
[

|R| ≤ n

2d+1

]

≤ e−n/2d+3

.

2. We now set all the variables Li,j with at least one endpoint in C, i.e.
{i, j} ∩ C 6= ∅, to either ⊤ or ⊥ independently at random with equal
probabilities, 1/2.

3. For each j ∈ C, and i, a neighbour of j in G, we set Si,j to either ⊤
or ⊥ independently at random with equal probabilities 1/2. Note that it
is possible to set all the Si,j to ⊥, thus violating an axiom. It happens
with probability 1/2degG(i) = 1/nω0 where ω0 is the constant, hidden in
θ-denotation in Lemma 3, and note that we can choose ω0 ≥ 1.

4. We finally set all the variables Si,j with j ∈ R, i ∈ C to ⊥.

The unset variables define exactly the non-relativized principle on R over G,
LNP|R|, and we have

Observation 3. The probability that the random restrictions are inconsistent

(i.e. violate an axiom) or |R| ≤ n/2d+1 is at most 1/nω0−1 + e−n/2d+3

.

We will now consider the effect of the random restrictions on a given d-DNF
C. We need a few definitions first: We say that a variable Rp

i for some p ∈
[d] mentions the element i; a variable Li,j mentions both i and j; a variable
Si,j mentions j only (cf. definition of business in Proposition 2). A formula
mentions the union of elements mentioned by some variable from the formula.
The element-cover number of a d-DNF F , c′ (F), is the minimum cardinality of
a set of elements, such that each element is mentioned by at least one term of
the clause. There is an obvious connection between c′ (F) and the cover c (F):
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Observation 4. c′ (F) = Ω
(

√

c (F)/ logn
)

.

Indeed m elements mention dm variables Rp
i , and at most

(

m
2

)

+mmaxi degG (i)

variables Li,j/Si,j which makes O
(

m2 +m logn
)

in total, and therefore c (F) =

O
(

(c′ (F))
2
+ c′ (F) logn

)

.

We can now show that any d-DNF F collapses under random restrictions to
a short decision tree w.h.p. Let us first note that F mentions at most ω0 logn
variables Sj,n. We build up a decision tree by first querying all these. This
contributes ω0 logn to the height and there are at most nω0 leaves which contains
d-DNFs which do not mention the nth element.

Let us take such a d-DNF G. We are now going to use Lemma 1. Let us
perform the following experiment. Take any term, T , of G. Each literal of T ,
containing a variable Rp

i , evaluates to ⊤ with probability 1/2. Each literal, con-
taining a variable Sj,i, has a probability for i ∈ C at least 1/2; indeed the rest of
T may contain at most d− 1 positive appearances of variables Rp

i and then the
last one, not in T , “decides” i ∈ C with probability 1/2. Therefore the literal,
containing a variable Sj,i, evaluates to ⊤ with probability at least 1/4. The same
argument applies to a literal, containing a variable Li,j . Thus the probability
that T evaluates to ⊤ under the random restrictions is at least 1/4d (the fact
that the term contains at most d variables is essential here; indeed consider the
d+1-term Ri∧Sj,i: Ri = ⊤ enforces Sj,i either ⊥ or unset, and therefore there
is no way to evaluate the term to ⊤). On the other hand T mentions at most
2d elements, so we can repeat the above procedure (i.e. picking a new term) at
least c′ (G) / (2d) times and the probability that each term does not evaluate to
⊤ is at most 1− 1/4d. Moreover these c′ (G) / (2d) trials are independent as in
each of them only elements, not mentioned so far, are involved. Therefore the
probability that G does not evaluate to ⊤ under the random restrictions is at

most
(

1− 1/4d
)c′(G)/(2d)

which is at most
(

1− 1/4d
)

√
c(G)/(2d log n)

by Observa-
tion 4.

We can now apply Lemma 1 with α = 1, β = ω1/ logn, where ω1 is a
constant, depending on d only, and γ = 1/2. We set s = ω2n, where ω2 will
be fixed later, and will depend on d only. What we get by the lemma is that
the probability that G, under the random restrictions, cannot be represented

by a decision tree of height at most ω2n is at most exp
(

−ω3n
1/2d/ (log n)

d
)

,

where ω3 is a constant, dependent on d. Going back to the initial d-DNF
F , we see that the probability F , under the random restrictions, cannot be
represented by a decision tree of height at most ω2n + ω0 logn is at most

nω0 exp
(

−ω3n
1/2d/ (logn)

d
)

.

We can finally present the main argument of the proof. Suppose, for the
sake of contradiction, that there is a Res(d) refutation of d-RLNPn contain-

ing less than n−ω0 exp
(

(ω3/2)n
1/2d/ (logn)

d
)

d-DNFs. By the union bound,

the probability that at least one of them, under the random restrictions, can-
not be represented by a decision tree of height at most ω2n + ω0 logn is at
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most exp
(

− (ω3/2)n
1/2d/ (logn)d

)

. By Lemma 2 then, with the same proba-

bility, the restricted Res(d) refutation cannot be transformed to a width ω2dn+
ω0d logn Resolution refutation. Adding up this probability with the probability
from Observation 3, we see there exists a “good” restriction, i.e. such that the
final Resolution refutation is of width ω2dn+ ω0d logn. Recall that we are still
free to choose ω2 (it affects ω3, but it is fine as ω3 is a constant, dependent on
d, too) and it depends on d only, so we can ensure that ω2 is smaller than the
constant, hidden in the Ω-notation in Lemma 3, divided by 2d+1 (recall that the
size of R is at least n/2d+1). This is the desired contradiction which completes
the proof.

4. Relativized Induction principle and Res∗(d)

In this section we consider a version of the Induction principle, denoted IPn,
that can be encoded as an FO sentence if a built-in predicate, defining a total
order on the universe, is added to the language. It is easy to show that IPn is
easy for tree-like Resolution, and so it is also for its dth relativization d-RIPn,
but for Res∗ (d+ 1). Finally we prove that d-RIPn is hard for Res∗ (d).

4.0.1. Induction principle

The (negation of the) Induction principle, we consider, is the following simple
statement: Given an ordered universe, there is a property P , such that

1. The property holds for the smallest element.

2. If P (x) hold for some x, then there is y, bigger than x, and such that
P (y) holds.

3. The property does not hold for the biggest element.

The universe U can now be considered as the set of the first n natural numbers.
In our language we can use the relation symbol < with its usual meaning. We
can also use any constant c as well as n− c (note that in the language n denotes
the maximal element of U, while 1 denotes the minimal one). The Induction
principle, we have just described, can be written as

P (1) ∧ ∀x∃y ((x < y ∧ P (x)) → P (y)) ∧ P (n).

The translation into propositional logic gives the following set of clauses

P1, ¬Pn
n
∨

j=i+1

Si,j i ∈ [n− 1]

¬Si,j ∨ ¬Pi ∨ Pj i, j ∈ [n], i < j.
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The relativized version’s translation is

P1, ¬Pn

Rp
1, R

p
n p ∈ [d]

n
∨

j=i+1

Si,j i ∈ [n− 1] (7)

¬Si,j ∨ ¬Ri ∨Rp
j i, j ∈ [n], i < j, p ∈ [d] (8)

¬Si,j ∨ ¬Ri ∨ ¬Pi ∨ Pj i, j ∈ [n], i < j. (9)

4.1. The upper bound

Proposition 4. There is an O
(

dn2
)

size Res∗ (d+ 1) refutation of d-RIPn.

Proof. We first apply ∧-introduction between the clauses (8) and (9), d times,
to get the clauses

¬Si,j ∨ ¬Ri ∨ ¬Pi ∨ (Rj ∧ Pj) 1 ≤ i < j ≤ n.

For every i we resolve these with the clauses (7) to get

¬Ri ∨ ¬Pi ∨
∨

j≥i+1

(Rj ∧ Pj) . (10)

The ith stage clause is now

∨

j≥i+1

(Rj ∧ Pj) . (11)

For i = 1 it is derived by resolving (10) with the pure-literal axioms P1 and Rp
1,

p ∈ [d]. The induction step is pretty easy: we resolve the (i − 1)th stage clause
∨

j≥i (Rj ∧ Pj) with the clause (10) to get the ith stage clause (11). After the
(n− 1)th stage we have derived the pure-term clause Rn ∧Pn. We now weaken
it to Pn and then resolve it with the axiom ¬Pn to get the desired empty clause.

The number of resolution steps is O
(

dn2
)

. At each stage we have resolved
the clause obtained at the previous stage only once, therefore the Res(d+ 1)
refutation, we have constructed, is tree-like.

4.2. The lower bound

We will first prove it for d = 1, i.e. that RIPn is exponentially hard for
tree-like Resolution. We will then generalize it to any d.

Proposition 5. Any tree-like Resolution refutation of RIPn is of size 2Ω(n).

Proof. We will use an adversary strategy against the decision tree solving the
search problem.

We say that the variables Pi, Ri and Si,j for j > i are associated to the
ith element. When one of these has been queried for the first time by Prover,
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Adversary fixes all of them, so that the ith element becomes busy (cf. definition
of business in Section 3). Initially only the minimal and maximal elements are
busy as the singleton clauses P1, R1, ¬Pn and Rn force the values of the cor-
responding variables. For technical reasons only, we assume that the (n− 1)th
element is busy too, by setting Sn−1,n = ⊤, Rn−1 = ⊤ and Pn−1 = ⊥. The
elements that are not busy we call free, with the exception of those below the
source. The source is the biggest element j, such that Rj = Pj = ⊤. Initially
the source is the first element. It is important to note that no contradiction can
be found as far as there is at least one free element bigger than the source. All
the variables associated to the elements smaller than the source are set (consis-
tently with the axioms) in the current partial assignment. Thus there are free
elements only between the source and the maximal element. Informally speak-
ing, Prover’s strategy is moving the source towards the end of the universe, the
(n− 2)th element.

We will prove that at any stage in the Prover-Adversary game, the number
of free elements can be used to lower bound the subtree, rooted at the current
node of the tree. More precisely, if T (m) is the size of the subtree rooted at a
node, where there are m such elements, we will show that T (m) ≥ ϕm. Here
ϕm is the mth Fibonacci number, defined by

ϕ0 = ϕ1 = 1
ϕm = ϕm−1 + ϕm−2 for m ≥ 2.

Initially, we have n − 3 free elements bigger than the source, therefore the

inequality we claim, together with the known asymptotic ϕm ∼ 1√
5

(

1+
√
5

2

)m

,

implies the desired lower bound.
What remains is to prove T (m) ≥ ϕm. We use induction on m. The basis

cases m = 0 or m = 1 are trivial. To prove the induction step, we consider all
the possibilities for a Prover’s query:

1. It is about either a busy element or an element below the source. As
already explained, the value of such a variable is already known in the
current partial assignment. Adversary answers; the value of m does not
change.

2. The query is about a free element i, and recall that it is bigger than the
source. If the variable queried is either Ri or Pi, Adversary first sets
Si,n = ⊤, Si,j = ⊥ for all j, i < j < n, and then allows Prover a free
choice between the two possibilities: either Ri = ⊤, Pi = ⊥ or Ri = ⊥,
Pi = ⊤. If the variable queried is Si,j , for some j > i, Adversary first sets
Ri = Pi = ⊥ Si,l = ⊤ for all l 6= j, and then allows Prover a free choice
between either Si,j = ⊤ or Si,j = ⊥. The number of free elements, m,
decreases by one. Therefore we have

T (m) ≥ 2T (m− 1) .

By the induction hypothesis T (m− 1) > ϕm−1, and then T (m) ≥ 2ϕm−1 ≥
ϕm.
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3. The query is about the source, i.e. the variable queried is Si,j , where i is the
source’s index. If the jth element is busy, Adversary answers ⊥. If the jth
element is free, but far away from the source, that is there are at least two
free elements between the source and the jth element, Adversary answers
⊥, too. Neither the position of the source nor the value of m changes.
The only remaining case is when the jth element is both free and near to
the source, that is one of the two smallest free elements, bigger than the
source. Adversary now offers Prover a free choice to move the source to
any of these two elements, by giving the corresponding answer: ⊤—source
is moved to the jth element or ⊥—source is moved to the other nearest
element. In one of these choices m decreases by one, and in the other it
decreases by two. Therefore we have

T (m) ≥ T (m− 1) + T (m− 2) .

The induction hypothesis gives T (m− 1) ≥ ϕm−1 and T (m− 2) ≥ ϕm−2.
Thus

T (m) ≥ ϕm−1 + ϕm−2 = ϕm.

This completes the proof.

We will show how to modify the proof in order to prove a more general state-
ment.

Proposition 6. Any Res∗ (d) refutation of d-RIPn is of size 2Ω(n/d).

Proof. The proof is very similar to the previous one, so we will explain what
changes should be made in there. Our task is now to prove that T (m) ≥ ρd

m.
Where ρd is the largest real positive root of the equation

xd+1 − x− 1 = 0.

It is not hard to see that

1 +
α

d
≤ ρd ≤ 1 +

β

d

for some appropriately chosen constants α and β. Thus we would get the desired
result as T (m) ≥

(

1 + α
d

)m ≥ em/(1+d/α) (we have used the known inequality

(1 + x)
1+1/x

> e for x > 0).
We first set the variables, associated to the last d + 1 elements, by setting

Rj = ⊤ (i.e. Rp
j = ⊤ for all p ∈ [d]), Pj = ⊥ and Sj,n = ⊤ for all j,

n− d ≤ j ≤ n− 1.
Prover now can query d-disjunctions instead of single variables. Adversary

first simplifies the query, using the current partial assignment, and then answers
as follows:

1. The resulting query evaluates to either ⊥ or ⊤ under the current partial
assignment. Adversary replies with the corresponding value. Clearly the
number of free elements, m, does not change.
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2. The resulting query involves only free elements; recall that they all are
bigger than the source. Suppose there are d′ (d′ ≤ d) such elements.
Adversary allows Prover a free choice between ⊥ and ⊤, without moving
the source to one of the new elements. This is because the only way to
force such a movement is a positive answer to a query Rj ∧Pj which is of
size d+ 1. The number of free elements decreases by d′, and therefore we
have

T (m) ≥ 2T (m− d′) .

By the induction hypothesis T (m− d′) ≥ ρd
m−d′ ≥ ρd

m−d, and then
T (m) ≥ 2ρd

m−d > ρd
m−d + ρd

m−d−1 = ρd
m.

3. The resulting query involves the source, i.e. contains variable(s) of the form
Si,j , where i is the source’s index and j is a free element. Denote the set
of all such elements by J, i.e. J = {j | Si,j is in the query and j is free}.
If all the elements in J are far away from the source, that is at distance
at least d + 2, Adversary first sets all the Si,j ⊥ and then answers the
resulting query as in Case 2. In the other case, when at least one element
from J is near to the source, it is always possible to move the source to
two elements between 1st or (d+ 1)th nearest free element at worst, and
the choice of which may be given to Prover. In the former case we have
an instance with at least m − d free elements, and in the latter with at
least m− d− 1. This gives

T (m) ≥ T (m− d) + T (m− d− 1) .

The induction hypothesis gives T (m− d) ≥ ρd
m−d and T (m− d− 1) ≥

ϕd
m−d−1. Thus

T (m) ≥ ρd
m−d + ρd

m−d−1 = ρd
m.

This completes the proof.

5. Separating p-Res(1) and p-Res(2)

We recall RLNPn and its salient properties of being polynomial to refute
in Res(2), but exponential in Res(1) (as in Section 3). Polynomiality clearly
transfers to fpt-boundedness in p-Res(2), so we address the lower bound for
p-Res(1).

5.1. Lower bound: A strategy for Adversary over RLNPn

We will give a strategy for Adversary in the game representation of a p-Res(1)
refutation. The argument used in Section 3 does not adapt to the parameterized
case, so we instead use a technique developed specifically for the parameterized
Pigeonhole principle in [6].

Recall that a parameterized clause is of the form ¬v1 ∨ . . . ∨ ¬vk+1 (where
each vi is some R, L or S variable). The i, j appearing in Ri, Li,j and Si,j are
termed co-ordinates. We define the following random restrictions. Set Rn := ⊤.
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Randomly choose i0 ∈ [n − 1] and set Ri0 := ⊤ and Li0,n = Si0,n := ⊤.
Randomly choose n − √

n elements from [n − 1] \ i0, and call this set C. Set
Ri := ⊥ for i ∈ C. Pick a random bijection π on C and set Li,j and Si,j , for
i, j ∈ C, according to whether π(j) = i. Set Li,j = Lj,i = Si,j = Sj,i := ⊥, if
j ∈ C and i ∈ [n] \ (C ∪ {i0}).

What is the probability that a parameterized clause is not evaluated to true
by the random assignment? We allow that each of ¬Rn, ¬Ri,0, ¬Lio,n and
¬Si0,n appear in the clause—leaving k + 1 − 4 = k − 3 literals, within which

must appear
√

(k − 3)/4 distinct co-ordinates. The probability that some ¬Ri,
i /∈ {i0, n}, fails to be true is bound above by the probability that i is in

[n− 1] \ (C ∪ {i0})—which is ≤
√
n−2
n−2 ≤ 1√

n
. The probability that some ¬Li,j

fails to be true, where one of the co-ordinates i, j is possibly mentioned before
and (i, j) 6= (i0, n), is bound above by the probability that both i, j are in [n]\C
plus the probability that both i, j are in C and i = π(j). This gives the bound

≤
√
n
n ·

√
n−1
n−1 + n−√

n
n · n−√

n−1
n−1 · 1

n−√
n−1

≤ 2
n ≤ 1√

n
. Likewise with ¬Si,j . Thus

we get that the probability that a parameterized clause is not evaluated to true

by the random assignment is ≤ 1√
n

√
(k−3)/4

= n−
√

(k−3)/16.

Now we are ready to complete the proof. Suppose fewer than n
√

(k−3)/16

parameterized clauses appear in a p-Res(1) refutation of RLNPn, then there is
a random restriction as per the previous paragraph that evaluates all of these
clauses to true. What remains is a Res(1) refutation of RLNP√

n, which must

be of size larger than n
√

(k−3)/16 itself, for n sufficiently large (see [9]). Thus
we have proved.

Theorem 1. Every p-Res(1) refutation of RLNPn is of size ≥ n
√

(k−3)/16.

6. Separating p-Res∗(1) and p-Res∗(2)

Let us recall the important properties of IPn and RIPn, from the perspective
of Section 4. IPn admits refutation in Res∗(1) in polynomial size, as does RIPn

in Res∗(2). But all refutations of RIPn in Res∗(1) are of exponential size. In
the parameterized world things are not quite so well-behaved. Both IPn and
RIPn admit refutations of size, say, ≤ 4k! in p-Res∗(1); just evaluate variables
Si,j from i := n− 1 downwards. Thus ask in sequence

Sn−1,n, Sn−2,n−1, Sn−2,n, . . . . . . , Sn−k,n−k+1, . . . , Sn−k,n,

each level Sn−i,n−i+1, . . . , Sn−i,n surely yielding a true answer. Clearly this is an
fpt-bounded refutation. We are forced to consider something more elaborate,
and thus we introduce the Relativized Vectorized Induction Principle RVIPn

below. Roughly speaking, we stretch each single level of RIPn into n copies of
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itself in RVIPn, to make things easier for Adversary.

R1, P1,1, Rn,¬Pn,j j ∈ [n]
∨

l>i,m∈[n] Si,j,l,m i, j ∈ [n]

¬Si,j,l,m ∨ ¬Ri ∨ ¬Pi,j ∨Rl i ∈ [n− 1], j, l,m ∈ [n]
¬Si,j,l,m ∨ ¬Ri ∨ ¬Pi,j ∨ Pl,m i ∈ [n− 1], j, l,m ∈ [n]

6.1. Lower bound: A strategy for Adversary over RVIPn

We will give a strategy for Adversary in the game representation of a Res∗(1)
refutation. For convenience, we will assume that Prover never questions the
same variable twice (this saves us from having to demand trivial consistencies
in future evaluations).

Information conceded by Adversary of the form Ri,¬Ri, Pi,j and Si,j,l,m

makes the element i busy. ¬Pi,j and ¬Si,j,l,m do not make i busy, in the case of
¬Pi,j this is a departure from earlier definitions of business (due to the vector-
ization, there are now n ways that some i can become true as Pi,j). The source
is the largest element i for which there is a j such that Adversary has conceded
Ri∧Pi,j . Initially, the source is 1. Adversary always answers R1, P1,1, Rn,¬Pn,j

(for j ∈ [n]), according to the axioms. Thus i := 1 and n are somehow special,
and the size of the set inbetween is n− 2. In the following, i refers to the first
index of a variable.

If i is below the source. When Adversary is asked Ri, Pi,j or Si,j,l,m, then
he answers ⊥.

If i is above the source. When Adversary is asked Ri, or Pi,j , then he gives
Prover a free choice unless: 1.) Ri is asked when some Pi,j was previously
answered ⊤ (in this case Ri should be answered ⊥); or 2.) Some Pi,j is asked
when Ri was previously answered ⊤ (in this case Pi,j should be answered ⊥).
When Adversary is asked Si,j,l,m, then again he offers Prover a free choice. If
Prover chooses ⊤ then Adversary sets Pi,j and Ri to ⊥.

Suppose i is the source. Then Adversary answers Pi,j and Si,j,l,m as ⊥,
unless Ri ∧ Pi,j witnesses the source. If Ri ∧ Pi,j witnesses the source, then,
if l is not the next non-busy element above i, answer Si,j,l,m as ⊥. If l is the
next non-busy element above i, then give Si,j,l,m a free choice, unless ¬Pl,m is
already conceded by Adversary, in which case answer ⊥. If Prover chooses ⊤
for Si,j,l,m then Adversary sets Rl and Pl,m to ⊤.

Using this strategy, Adversary can not be caught lying until either he has
conceded that k variables are true, or he has given Prover at least n − 2 free
choices.

Let T (p, q) be some monotone decreasing function that bounds the size of
the game tree from the point at which Prover has answered p free choices ⊤ and
q free choices ⊥. We can see that T (p, q) ≥ T (p + 1, q) + T (p, q + 1) + 1 and
T (k, n− 2 − k) ≥ 0. The following solution to this recurrence can be found in
[13].

Corollary 1. There is an f ∈ Ω(nk/16) s.t. every p-Res∗(1) refutation of RVIPn

is of size ≥ f(n).
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We may increase the number of relativizing predicates to define d-RVIPn.

R1
1, . . . , R

d
1, P1,1, R

1
n, . . . , R

d
n¬Pn,j j ∈ [n]

∨

l>i,m∈[n] Si,j,l,m i, j ∈ [n]

¬Si,j,l,m ∨ ¬R1
i ∨ . . . ∨ ¬Rd

i ∨ ¬Pi,j ∨R1
l i ∈ [n− 1], j, l,m ∈ [n]

...
¬Si,j,l,m ∨ ¬R1

i ∨ . . . ∨ ¬Rd
i ∨ ¬Pi,j ∨Rr

l i ∈ [n− 1], j, l,m ∈ [n], r ∈ [d]
¬Si,j,l,m ∨ ¬R1

i ∨ . . . ∨ ¬Rd
i ∨ ¬Pi,j ∨ Pl,m i ∈ [n− 1], j, l,m ∈ [n]

We sketch how to adapt the previous argument in order to demonstrate the
following.

Corollary 2. There is an f ∈ Ω(nk/16d) s.t. every p-Res∗(d) refutation of
RVIPd

n is of size ≥ f(n).

We use essentially the same Adversary strategy in a branching d-program. We
answer questions ℓ1 ∨ . . . ∨ ℓd as either forced or free exactly according to the
disjunction of how we would have answered the corresponding ℓis, i ∈ [d], before.
That is, if one ℓi would give Prover a free choice, then the whole disjunction is
given as a free choice. The key point is that once some disjunction involving some
subset of R1

i , . . . , R
d
i or Pi,j (never all of these together, of course), is questioned

then, on a positive answer to this, the remaining unquestioned variables of this
form should be set to ⊥. This latter rule introduces the factor of d in the
exponent of nk/16d.

6.2. Upper bound: a Res∗(d+ 1) refutation of RVIPd
n

We encourage the reader to have a brief look at the simpler, but very similar,
refutation of RIPn in Res∗(2), of size O(n2), as depicted in Figure 1.

Proposition 7. There is a refutation of d-RVIPn in Res∗(d+1), of size O(nd+4).

Proof. We give the branching program for d := 1 in Figure 2. The gener-
alization to higher d is clear: substitute questions of the form ¬Ri ∨ ¬Pi,j by
questions of the ¬R1

i ∨ . . . ∨Rd
i ∨ ¬Pi,j .

7. Final remarks

It is most natural when looking for separators of p-Res∗(1) and p-Res∗(2)
to look for CNFs, like RVIPn that we have given. p-Res∗(2) is naturally able
to process 2-DNFs and we may consider p-Res∗(1) acting on 2-DNFs, when we
think of it using any of the clauses obtained from those 2-DNFs by distribu-
tivity. In this manner, we offer the following principle as being fpt-bounded
for p-Res∗(2) but not fpt-bounded for p-Res∗(1). Consider the two axioms
∀x(∃y ¬S(x, y) ∧ T (x, y)) ∨ P (x) and ∀x, y T (x, y) → S(x, y). This generates
the following system ΣPST of 2-DNFs.

Pi ∨
∨

j∈[n](¬Si,j ∧ Ti,j) i ∈ [n]

¬Ti,j ∨ Si,j i, j ∈ [n]
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¬Rn ∨ ¬Pn?

⊤
��

⊥
// #

¬Rn−1 ∨ ¬Pn−1?

⊤
��

⊥
// Sn−1,n?

⊤
��

⊥
// #

...

⊤
��

#

¬R1 ∨ ¬P1?

⊤
��

⊥
// S1,n?

⊤
��

⊥
// · · · ⊥

// S1,2?

⊤
��

⊥
// #

# # #

Figure 1: Refutation of RIPn in Res∗(2).

Note that the expansion of ΣPST to CNF makes it exponentially larger. It is
not hard to see that ΣPST has refutations in p-Res∗(2) of size O(kn), while any
refutation in p-Res∗(1) will be of size ≥ nk/2.

All of our upper bounds, i.e. for both RVIPn and RLNPn, are in fact poly-
nomial, and do not depend on k. That is, they are fpt-bounded in a trivial
sense. If we want examples that depend also on k then we may enforce this
easily enough, as follows. For a set of clauses Σ, build a set of clauses Σ′

k with
new propositional variables A and B1, B

′
1, . . . , Bk+1, B

′
k+1. From each clause

C ∈ Σ, generate the clause A∨ C in Σ′
k. Finally, augment Σ′

k with the following
clauses: ¬A ∨ B1 ∨ B′

1, . . . , ¬A ∨ Bk+1 ∨ B′
k+1. If Σ admits refutation of size

Θ(nc) in p-Res∗(d) then (Σ′
k, k) admits refutation of size Θ(nc + 2k+1). The

parameterized contradictions so obtained are no longer “strong”, but we could
even enforce this by augmenting instead a Pigeonhole principle from k+1 to k.

It seems hard to prove p-Res(1) lower bounds for parameterized k-clique on
a random graph [4], but we now introduce a contradiction that looks similar
but for which lower bounds should be easier. It is a variant of the Pigeonhole
principle which could give us another very natural separation of p-Res(1) from
p-Res(2). Define the contradiction PHPk+1,n,k, on variables Pi,j (i ∈ [k+1] and
j ∈ [n]) and Qi,j (i ∈ [n] and j ∈ [k]), and with clauses:

¬Pi,j ∨ ¬Pl,j i 6= l ∈ [k + 1]; j ∈ [n]
¬Qi,j ∨ ¬Ql,j i 6= l ∈ [n]; j ∈ [k]
∨

j∈[n] Pi,j i ∈ [k]

¬Pi,j ∨
∨

l∈[k] Qj,l j ∈ [n]

We conjecture that this principle, which admits fpt-bounded refutation in p-Res(2),
does not in p-Res(1).
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¬Rn ∨ ¬Pn,n?

⊤
��

⊥
// #

...

⊤
��

¬Rn ∨ ¬Pn,1?

⊤
��

⊥
// #

¬Rn−1 ∨ ¬Pn−1,n?

⊤
��

⊥
// Sn−1,n,n,n?

⊤
��

⊥
// · · · ⊥

// Sn−1,n,n,1?

⊤
��

⊥
// #

...

⊤
��

# #

¬Rn−1 ∨ ¬Pn−1,1?

⊤
��

⊥
// Sn−1,1,n,n?

⊤
��

⊥
// · · · ⊥

// Sn−1,1,n,1?

⊤
��

⊥
// #

...

⊤
��

# #

...

⊤
��

¬R1 ∨ ¬P1,n?

⊤
��

⊥
// S1,n,n,n?

⊤
��

⊥
// · · · ⊥

// · · · ⊥
// S1,n,2,1?

⊤
��

⊥
// #

...

⊤
��

# #

¬R1 ∨ ¬P1,1?

⊤
��

⊥
// S1,1,n,n?

⊤
��

⊥
// · · · ⊥

// · · · ⊥
// S1,1,2,1?

⊤
��

⊥
// #

# # #

Figure 2: Refutation of RVIPn in Res∗(2).
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We have left open the technical question as to whether suitably defined,
further-relativized versions of RLNPn can separate p-Res(d) from p-Res(d+1).
We conjecture that they can.

Finally, it is possible that the results of Section 6 might be derived in a
simpler manner using the assymetric Prover-Delayer game of [5].
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