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Abstract Since first introduced by John von Neumann, the notion of cellular automa-
ton has grown into a key concept in computer science, physics and theoretical biology.
In its classical setting, a cellular automaton is a transformation of the set of all con-
figurations of a regular grid such that the image of any particular cell of the grid is
determined by a fixed local function that only depends on a fixed finite neighbourhood.
In recent years, with the introduction of a generalised definition in terms of transfor-
mations of the form τ : AG → AG (whereG is any group and A is any set), the theory
of cellular automata has been greatly enriched by its connections with group theory
and topology. In this paper, we begin the finite semigroup theoretic study of cellular
automata by investigating the rank (i.e. the cardinality of a smallest generating set)
of the semigroup CA(Zn; A) consisting of all cellular automata over the cyclic group
Zn and a finite set A. In particular, we determine this rank when n is equal to p, 2k

or 2k p, for any odd prime p and k ≥ 1, and we give upper and lower bounds for the
general case.
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1 Introduction

Cellular automata (CA)were introduced by John vonNeumann as an attempt to design
self-reproducing systems that were computationally universal (see [19]). Since then,
the theory of CA has grown into an important area of computer science, physics, and
theoretical biology (e.g. [4,12,20]). Among the most famous CA are Rule 110 and
John Conway’s Game of Life, both of which have been widely studied as discrete
dynamical systems and are known to be capable of universal computation.

In recent years, many interesting results linkingCA and group theory have appeared
in the literature (e.g. see [3–5]). One of the goals of this paper is to embark in the new
task of exploring CA from the point of view of finite semigroup theory.

We shall review the broad definition of CA that appears in [4, Sect. 1.4]. Let G be
a group and A a set. Denote by AG the set of functions of the form x : G → A. For
each g ∈ G, denote by Rg : G → G the right multiplication map, i.e. (h)Rg := hg
for any h ∈ G. We shall emphasise that in this paper we apply maps on the right, while
in [4] maps are applied on the left.

Definition 1 Let G be a group and A a set. A cellular automaton over G and A is
a map τ : AG → AG satisfying the following property: there exists a finite subset
S ⊆ G and a local map μ : AS → A such that

(g)(x)τ = ((Rg ◦ x)|S)μ,

for all x ∈ AG , g ∈ G, where (Rg ◦ x)|S is the restriction to S of (Rg ◦ x) : G → A.

Let CA(G; A) be the set of all cellular automata over G and A; it is straightforward
to show that, under composition of maps, CA(G; A) is a semigroup. Most of the
literature on CA focus on the case when G = Z

d , d ≥ 1, and A is a finite set (see
[12]). In this situation, an element τ ∈ CA(Zd; A) is referred as a d-dimensional
cellular automaton.

Although results on semigroups of CA have appeared in the literature before (see
[10,18]), the semigroup structure of CA(G; A) remains basically unknown. In partic-
ular, the study of the finite semigroups CA(G; A), when G and A are finite, has been
generally disregarded, perhaps because some of the classical questions are trivially
answered (e.g. the Garden of Eden theorem becomes trivial). However, many new
questions, typical of finite semigroup theory, arise in this setting.

One of the fundamental problems in the study of a finite semigroup M is the
determination of the cardinality of a smallest generating subset of M ; this is called the
rank of M and denoted by Rank(M):

Rank(M) := min{|H | : H ⊆ M and 〈H〉 = M}.

It is well-known that, if X is any finite set, the rank of the full transformation semigroup
Tran(X) (consisting of all functions f : X → X ) is 3, while the rank of the symmetric
group Sym(X) is 2 (see [7, Ch. 3]). Ranks of various finite semigroups have been
determined in the literature before (e.g. see [1,2,8,9,11]).
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Ranks of finite semigroups of one-dimensional cellular automata 349

In order to hopefully bring more attention to the study of finite semigroups of CA,
we shall propose the following problem.

Problem 1 For any finite group G and any finite set A, determine Rank(CA(G; A)).

A natural restriction of this problem, and perhaps a more feasible goal, is to determine
the ranks of semigroups of CA over finite abelian groups.

In this paper we study the finite semigroups CA(Zn; A), where Zn is the cyclic
group of order n ≥ 2 and A is a finite set with at least two elements. By analogy with
the classical setting, we may say that the elements of CA(Zn; A) are one-dimensional
cellular automata over Zn and A.

In this paper we shall establish the following theorems.

Theorem 1 Let k ≥ 1 be an integer, p an odd prime, and A a finite set of size q ≥ 2.
Then:

Rank(CA(Zp; A)) = 5;

Rank(CA(Z2k ; A)) =
{

1
2k(k + 7), if q = 2;
1
2k(k + 7) + 2, if q ≥ 3;

Rank(CA(Z2k p; A)) =
{

1
2k(3k + 17) + 3, if q = 2;
1
2k(3k + 17) + 5, if q ≥ 3.

Let 2Z be the set of even integers. For any integer n ≥ 2, let [n] := {1, 2, . . . , n}.
Denote by d(n) the number of divisors of n (including 1 and n itself) and by d+(n)

the number of even divisors of n. Let

E(n) :=
∣∣∣{(s, t) ∈ [n]2 : t | n, s | n, and t | s

}∣∣∣
be the number of edges in the divisibility digraph of n (see Sect. 4).

Theorem 2 Let n ≥ 2 be an integer and A a finite set of size q ≥ 2. Then:

Rank(CA(Zn; A)) =
{
d(n) + d+(n) + E(n) − 2 + ε(n, 2), if q = 2 and n ∈ 2Z;
d(n) + d+(n) + E(n) + ε(n, q), otherwise;

where 0 ≤ ε(n, q) ≤ max{0, d(n) − d+(n) − 2}.

2 Preliminary results

For the rest of the paper, let n ≥ 2 be an integer and A a finite set of size q ≥ 2. We
may assume that A = {0, 1, . . . , q − 1}. When G is a finite group, we may always
assume that the finite subset S ⊆ G of Definition 1 is equal to G, so any cellular
automaton over G and A is completely determined by the local map μ : AG → A.
Therefore, if |G| = n, we have |CA(G; A)| = qq

n
.
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It is clear that CA(Zn; A) is contained in the semigroup of transformations
Tran(An), where An is the n-th Cartesian power of A. For any f ∈ Tran(An) write
f = ( f1, . . . , fn), where fi : An → A is the i -th coordinate function of f . For any
semigroup M and σ ∈ M , define the centraliser of σ in M by

CM (σ ) := {τ ∈ M : τσ = στ }.

It turns out that CA(Zn; A) is equal to the centraliser of a certain transformation in
Tran(An).

For any f ∈ Tran(An), define an equivalence relation ∼ on An as follows: for any
x, y ∈ An , say that x ∼ y if and only if there exist r, s ≥ 1 such that (x) f r = (y) f s .
The equivalence classes induced by this relation are called the orbits of f .

Lemma 1 Let n ≥ 2 be an integer and A a finite set. Consider the map σ : An → An

given by

(x1, . . . , xn)σ = (xn, x1, . . . , xn−1).

Then:

(i) CA(Zn; A) = CTran(An)(σ ) := {τ ∈ Tran(An) : τσ = στ }.
(ii) Let O be the set of orbits of σ : An → An. For every P ∈ O, |P| divides n.
(iii) Every τ ∈ CA(Zn; A) satisfies the following property: for every P ∈ O there

exists Q ∈ O, with |Q| dividing |P|, such that (P)τ = Q.

Proof We shall prove each part.

(i) By Definition 1, a map τ : An → An is a cellular automaton over G = Zn and A
if and only if there exists a map μ : An → A such that

(x1, x2, . . . , xn)τi = (x1+i , x2+i , . . . , xn+i )μ

for any 1 ≤ i ≤ n, where the sum in the subindex of x j+i is done modulo n.
Hence,

(x1, x2, . . . , xn)στ = (xn, x1, . . . , xn−1)τ

= ((x1, x2, . . . , xn)μ, (x2, x3, . . . , x1)μ, . . . , (xn, x1, . . . , xn−1)μ)

= ((x2, x3, . . . , x1)μ, (x3, x4, . . . , x2)μ, . . . , (x1, x2, . . . , xn)μ)σ

= (x1, x2, . . . , xn)τσ.

This shows that CA(Zn; A) ≤ {τ ∈ Tran(An) : τσ = στ }. Let f ∈ Tran(An) be
such that f σ = σ f . This implies that f σ k = σ k f for any k ∈ Z, so

(x1, x2, . . . , xn) fn−k = (x1−k, x2−k, . . . , xn−k) fn .

Therefore, f is a cellular automaton over Zn and A with μ = fn .
(ii) This follows directly by the Orbit-Stabiliser Theorem ([6, Theorem 1.4A]).
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(iii) Fix τ ∈ CA(Zn; A), P ∈ O and x ∈ P . By definition of orbit, and since σ is
a permutation, for every y ∈ P there is i ∈ Z such that (x)σ i = y. By part (i),
(x)τσ i = (x)σ iτ = (y)τ , so (P)τ ⊆ Q for some Q ∈ O. Furthermore, for
every z ∈ Q there is j ∈ Z such that (z)σ j = (x)τ , so z = (x)σ− jτ ∈ (P)τ .
This shows that (P)τ = Q. Finally, we show that |Q| divides |P|. Fix z ∈ Q. For
any w ∈ Q there is k ∈ Z such that z = (w)σ k . Then σ k is a bijection between
the preimage sets (z)τ−1 and (w)τ−1. This means that

∣∣(z)τ−1
∣∣ = ∣∣(w)τ−1

∣∣ for
every w ∈ Q = (P)τ . Therefore,

|P| =
∑
w∈Q

∣∣∣(w)τ−1
∣∣∣ =

∣∣∣(z)τ−1
∣∣∣ · |Q| .

Lemma 1 (i) is in fact a particular case of a more general result.

Lemma 2 Let G be a finite group and A a finite set. For each g ∈ G, let σg ∈
Tran(AG) be the transformation defined by (h)(x)σg := (hg−1)x, for any h ∈ G, x ∈
AG. Then,

CA(G; A) = {τ : AG → AG : τσg = σgτ, ∀g ∈ G}.

Proof The result follows by Curtis-Hedlund Theorem (see [4, Theorem 1.8.1]).

Let ICA(G; A) be the set of invertible cellular automata:

ICA(G; A) := {τ ∈ CA(G; A) : ∃φ ∈ CA(G; A) such that τφ = φτ = id}.

It may be shown that ICA(G; A) = CA(G; A) ∩ Sym(AG) whenever A is finite (see
[4, Theorem 1.10.2]).

We shall use the cyclic notation to denote the permutations in Tran(An). If D ⊆ An

and a ∈ An , we define the transformation (D → a) ∈ Tran(An) by

(x)(D → a) :=
{
a if x ∈ D

x otherwise .

When D = {b} is a singleton, we write (b → a) instead of ({b} → a).
In the following examples, we identify the elements of An with their lexicographical

order: (a1, a2, . . . , an) ∼ ∑n
i=1 aiq

i−1.

Example 1 A generating set for CA (Z2; {0, 1}) is

{(1, 2), ({1, 2} → 0), (0, 3), (3 → 0)},

where 0 := (0, 0), 1 := (1, 0), 2 := (0, 1) and 3 := (1, 1). Direct calculations in
GAP show that indeed Rank(CA (Z2; {0, 1})) = 4.
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Example 2 A generating set for CA (Z3; {0, 1}) is

{(1, 2, 4) (0, 7) , (1, 6) (2, 5) (3, 4) , (1 → 6)(2 → 5)(4 → 3), ({1, 2, 4} → 0), (7 → 0)}.

Direct calculations in GAP show that indeed Rank(CA (Z3; {0, 1})) = 5.

If U is a subset of a finite semigroup M , the relative rank of U in M , denoted by
Rank(M : U ), is the minimum cardinality of a subset V ⊆ M such that 〈U, V 〉 = M .
The proof of the main results of this paper are based in the following observation.

Lemma 3 Let G be a finite group and A a finite set. Then,

Rank(CA(G; A)) = Rank(CA(G; A) : ICA(G; A)) + Rank(ICA(G; A)).

Proof As ICA(G; A) is the group of units of CA(G; A), this follows by [1,
Lemma 3.1]. ��

In Sect. 3 we study the rank of ICA(Zn; A), while in Sect. 4 we study the relative
rank of ICA(Zn; A) in CA(Zn; A).

3 The rank of ICA(Zn; A)
Let σ : An → An be as defined in Lemma 1. For any d ≥ 1 dividing n, the number
of orbits of σ of size d is given by the Moreau’s necklace-counting function

α(d, q) = 1

d

∑
b|d

μ

(
d

b

)
qb,

where μ is the classic Möbius function (see [14]). In particular, if d = pk , where p is
a prime number and k ≥ 1, then

α(pk, q) = q pk − q pk−1

pk
. (1)

Remark 1 Observe that α(d, q) = 1 if and only if (d, q) = (2, 2). Hence, the case
when n is even and q = 2 is degenerate and shall be analysed separately in the rest of
the paper.

We say that d is a non-trivial divisor of n if d | n and d �= 1 (note that, in our
definition, d = n is a non-trivial divisor of n). For any integer α ≥ 1, let Symα and
Altα be the symmetric and alternating groups on [α] = {1, . . . , α}, respectively.

A wreath product of the form Zd � Symα := {(v;φ) : v ∈ (Zd)
α, φ ∈ Symα} is

called a generalized symmetric group (see [17]). We shall use the additive notation for
the elements of (Zd)

α , so the product in Zd � Symα is

(v;φ) · (w;ψ) = (v + wφ;φψ),
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where v,w ∈ (Zd)
α , φ,ψ ∈ Symα , and φ acts on w by permuting the coordinates.

We shall identify the elements (v; id) ∈ Zd � Symα with v ∈ (Zd)
α .

The following result is a refinement of [18, Theorem 9].

Lemma 4 Let n ≥ 2 be an integer and A a finite set of size q ≥ 2. Let d1, d2, . . . , d�

be the non-trivial divisors of n. Then

ICA(Zn; A) ∼= (Zd1 � Symα(d1,q)) × · · · × (Zd�
� Symα(d�,q)) × Symq .

Proof LetO the set of orbits of σ : An → An as defined in Lemma 1. Part (ii) of that
lemma shows that CA(Zn; A) is contained in the semigroup

Tran(An,O) := { f ∈ Tran(An) : ∀P ∈ O, ∃Q ∈ O such that (P) f ⊆ Q}.

As O contains q singletons and α(di , q) orbits of size di ≥ 2, we know by [2,
Lemma 2.1] that the group of units of Tran(An,O) is

S(An,O) ∼= (Symd1 � Symα(d1,q)) × · · · × (Symd�
� Symα(d�,q)) × Symq .

Clearly, ICA(Zn; A) ≤ S(An,O). Let P be an orbit of size di . Since the restriction
of σ to P , denoted by σ |P , is a cycle of length di , and the centraliser of σ |P in Symdi
is 〈σ |P 〉 ∼= Zdi , it follows that

ICA(Zn; A) ≤ (Zd1 � Symα(d1,q)) × · · · × (Zd�
� Symα(d�,q)) × Symq .

Equality follows as any permutation stabilising the sets of orbits of size di commutes
with σ . ��

For 1 ≤ i ≤ α, denote by ei the element of (Zd)
α with 1 at the i-th coordinate, and

0 elsewhere. Denote by e0 the element of (Zd)
α with 0’s everywhere. For any α ≥ 2,

define permutations zα ∈ Symα by

zα :=
{

(1, 2, 3, . . . , α), if α is odd,

(2, 3, . . . , α) if α is even.
(2)

Note that the order of zα , denoted by o(zα), is always odd.
In the following Lemmawe determine the rank of the generalized symmetric group.

Lemma 5 Let d, α ≥ 2. Then, Rank
(
Zd � Symα

) = 2.

Proof It is clear that Zd � Symα is not a cyclic group, so 2 ≤ Rank
(
Zd � Symα

)
.

Define zα as in (2). We will show that Zd � Symα is generated by

x := (e1; zα) and y := (e1; (1, 2)).

Let M := 〈x, y〉 ≤ Zd � Symα . Let ρ : Zd � Symα → Symα be the natural
projection, and note that this is a group homomorphism. Clearly, (M)ρ = Symα and
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ker(ρ) = (Zd)
α , so, in order to prove that M = Zd � Symα , it suffices to show that

(Zd)
α ≤ M .

Since (M)ρ = Symα , the intersection (Zd)
α ∩M is a Symα-invariant submodule of

(Zd)
α . If α = 2, then x = e1 generates (Zd)

α as Symα-module, so (Zα
d )∩M = (Zα

d ).
Henceforth, assume α ≥ 3. Observe that

y2 = e1 + e2 = (1, 1, 0 . . . , 0) ∈ (Zd)
α ∩ M.

Now, by Symα-invariance

y2 +
d−1∑
i=1

(
y2

)(1,2,3) + (
y2

)(1,3,2)

= (1, 1, 0, . . . , 0) + (0, d − 1, d − 1, 0, . . . , 0) + (1, 0, 1, 0, . . . , 0)

= (2, 0, . . . , 0) =: 2e1 ∈ (Zd)
α ∩ M

If d is odd, then 2e1 generates (Zd)
α as Symα-module, so (Zd)

α ∩ M = (Zd)
α .

Suppose that d is even and α is odd. Then,

xα = (1, 1, . . . , 1) ∈ (Zd)
α ∩ M.

Since Symα is 2-transitive on the basis of (Zd)
α and y2 = (1, 1, 0 . . . , 0) ∈ (Zd)

α∩M ,
we obtain that (1, . . . , 1, 0) ∈ (Zd)

α ∩ M . Therefore,

(1, 1, . . . , 1) − (1, . . . , 1, 0) = (0, . . . , 0, 1) ∈ (Zd)
α ∩ M,

and (Zd)
α ∩ M = (Zd)

α .
Finally, suppose that d and α are both even. Then,

xα−1 = (α − 1, 0, . . . , 0) ∈ (Zd)
α ∩ M.

Write α − 1 = 2k + 1, for some k ∈ N. Then

xα−1 −
k∑

i=1

2e1 = (1, 0, . . . , 0) ∈ (Zd)
α ∩ M.

Therefore, (Zd)
α ∩ M = (Zd)

α . ��
We need the following results in order to establish Rank(ICA(Zp, A)) when p is a

prime number.

Lemma 6 (Lemma 5.3.4 in [13]) Let α ≥ 2. The permutation module for Symα over
a field F of characteristic p has precisely two proper nonzero submodules:
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U1 := {(a, a, . . . , a) : a ∈ F} and U2 :=
{

(a1, a2, . . . , aα) ∈ F
α :

α∑
i=1

ai = 0

}
.

Theorem 3 ([15,16]) Let q ≥ 3 be an integer.

(i) Except for q ∈ {5, 6, 8}, Symq is generated by an element of order 2 and an
element of order 3.

(ii) If p′ > 3 is a prime number dividing q! and q �= 2p′ − 1, then Symq is generated
by an element of order 2 and an element of order p′.

Lemma 7 Let p be a prime number and A a finite set of size q ≥ 2. Then:

(i) If q ≥ 3 and p = 2, then Rank(ICA(Z2; A)) = 3.
(ii) If q ≥ 2 and p ≥ 3, or q = p = 2, then Rank(ICA(Zp; A)) = 2.

Proof If q = p = 2, the result follows by Example 1. Assume (p, q) �= (2, 2). By
Lemma 4,

ICA(Zp; A) ∼= W := (Zp � Symα) × Symq ,

where α := α(p, q) ≥ 2 is theMoreau’s necklace-counting function.We use the basic
fact that Rank(G/N ) ≤ Rank(G), for any group G and any normal subgroup N of
G. Let U2 be the Symα-invariant submodule of (Zp)

α defined in Lemma 6. Then U2
is a normal subgroup of Zp � Symα such that (Zp � Symα)/U2 ∼= Zp × Symα . Now,
Altα is a normal subgroup of Zp × Symα with quotient Zp × Z2. This implies that
there is a normal subgroup N of Zp � Symα with quotient isomorphic to Zp × Z2.
Therefore, N × Altq is a normal subgroup of W with quotient group isomorphic to
Zp × Z2 × Z2. Hence,

Rank(Zp × Z2 × Z2) ≤ Rank(W ). (3)

Define zα and zq as in (2). We shall prove the two cases (i) and (ii).

(i) Suppose that q ≥ 3 and p = 2, so 3 ≤ Rank(W ) by (3). We shall show that
W = 〈v1, v2, v3〉 where

v1 := ((e1; zα), id),

v2 := ((e1; (1, 2)), zq),

v3 := ((e0; id), (1, 2)).

The projections of v1, v2 and v3 to Symq generate Symq , so it is enough to prove
that v1 and

(v2)
o(zq ) =

{
((e1; (1, 2)), id), if o(zq) = 1 mod (4)

((e2; (1, 2)), id), if o(zq) = 3 mod (4)
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generateZ2 �Symα . LetM := 〈v1, (v2)o(zq )〉. We follow a similar strategy as in the
proof of Lemma 5. Note that the projections of v1 and (v2)

o(zq ) to Symα generate
Symα . Now, (Z2)

α ∩ M is an Symα-invariant submodule of (Z2)
α .

If α is even, then

(v1)
o(zα) = (1, 0, . . . , 0) = e1 ∈ (Z2)

α ∩ M,

and so (Z2)
α ∩ M = (Z2)

α in this case.
Suppose that α is odd. Then

(v1)
o(zα) = (1, 1, . . . 1) ∈ (Z2)

α ∩ M.

Observe that

(v2)
2o(zq ) = (1, 1, 0, . . . , 0) ∈ (Z2)

α ∩ M.

By the 2-transitivity of Symα we obtain that (0, 1, . . . , 1) ∈ (Z2)
α∩M . Therefore,

e1 = (1, 1, . . . , 1) + (0, 1, . . . , 1) ∈ (Z2)
α ∩ M,

and we conclude that (Z2)
α ∩ M = (Z2)

α in this case as well.
(ii) Suppose that q ≥ 2 and p ≥ 3. Then 2 ≤ Rank(W ) by (3). Observe that (1)

implies that α = q p−q
p is always an even number. We shall find generators u1 and

u2 of W of the form

u1 := ((e1; (2, 3, . . . , α)), g) and u2 := ((e1; (1, 2)), h), (4)

where g, h ∈ Symq , g is an involution, and 〈g, h〉 = Symq . As the projections of
u1 and u2 to Symq generate Symq , it is enough to show that (u1)2 and (u2)o(h)

generate Zp � Symα . Let M := 〈(u1)2, (u2)o(h)〉. The projections of (u1)2 and
(u2)o(h) to Symα generate Symα , so, as in the proof of Lemma 5, it is enough to
show that (Zp)

α ≤ M . Observe that (Zp)
α ∩ M is a Symα-invariant subspace of

(Zp)
α .

We shall show that (Zp)
α ∩ M is a nonzero Symα-invariant subspace of (Zp)

α

different from U1 and U2, as given by Lemma 6, so (Zp)
α ∩ M = M . Whenever

α ≥ 3, it suffices to show that at least one of the following elements of (Zp)
α ∩ M

is nonzero:

w1 := (u1)
2(α−1) = (2(α − 1), 0, . . . , 0),

w2 := (u2)
2o(h) = (o(h), o(h), 0, . . . , 0).

Let q = 2, and take g := (1, 2) and h := (1). The only case when α = 2 is
when p = 3. Here, although w2 = (1, 1) is nonzero, it generates U1; however,
w1 = (2, 0) /∈ U1 ∪ U2, as required. For p ≥ 4, w2 = (1, 1, 0, . . . , 0) is always
nonzero, as required. Henceforth, suppose q ≥ 3.
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Assumefirst that p > 3. Forq /∈ {5, 6, 8}, take g and h as the generators of Symq of
orders 2 and 3, respectively, stated in Theorem 3 (i). Hence, w2 = (3, 3, 0, . . . , 0)
is nonzero.
For q ∈ {5, 6, 8}, take g := (1, 2) and h := zq (as defined in (2)). If q = 5, then
w2 is nonzero, except when p = 5. In this case, by Eq. (1),

α − 1 = 55 − 5

5
− 1 = 623 �= 0 mod (5),

so w1 is nonzero. If q = 6, then w2 is nonzero, except when p = 5. In this case,

α − 1 = 65 − 6

5
− 1 = 1553 �= 0 mod (5),

so w1 is nonzero. If q = 8, then w2 is nonzero, except when p = 7. In this case,

α − 1 = 87 − 8

7
− 1 = 299591 �= 0 mod (7),

so w1 is nonzero.
Assume now that p = 3. If q ≥ 5, then 5 | q! and, for q �= 2 · 5− 1 = 9, we may
take g and h as the generators of Symq of orders 2 and 5, respectively, stated in
Theorem 3 (ii). Hence, w2 is nonzero. If q = 3, q = 4, or q = 9, then

α − 1 = 33 − 3

3
− 1 = 7 �= 0 mod (3),

α − 1 = 43 − 4

3
− 1 = 19 �= 0 mod (3), or

α − 1 = 93 − 9

3
− 1 = 239 �= 0 mod (3),

respectively. Therefore, w1 is nonzero, which completes the proof.

��
Recall that for any integer n ≥ 2, we denote by d(n) the number of divisors of n

(including 1 and n itself) and by d+(n) the number of even divisors of n (so d+(n) = 0
if and only if n is odd).

Theorem 4 Let n ≥ 2 be an integer and A a finite set of size q ≥ 2.

(i) If n is not a power of 2, then

Rank(ICA(Zn; A)) =
{
d(n) + d+(n) − 1 + ε(n, 2) if q = 2 and n ∈ 2Z;
d(n) + d+(n) + ε(n, q), otherwise;

where 0 ≤ ε(n, q) ≤ d(n) − d+(n) − 2.
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(ii) If n = 2k , then

Rank(ICA(Z2k ; A)) =
{
2d(2k) − 2 = 2k if q = 2;
2d(2k) − 1 = 2k + 1 if q ≥ 3.

Proof Let d1, d2, . . . , d� be the non-trivial divisors of n, with � = d(n) − 1, and let

ICA(Zn; A) ∼= W := (Zd1 � Symα(d1,q)) × · · · × (Zd�
� Symα(d�,q)) × Symq .

Suppose first that q �= 2 or n is odd. Then α(di , q) ≥ 2 for all i . As in the proof
of Lemma 7, there is a normal subgroup U � Zdi � Symα(di ,q) with quotient group
Zdi ×Symα(di ,q), andAltα(di ,q) is a normal subgroup ofZdi ×Symα(di ,q) with quotient
groupZdi ×Z2. Hence, there is a normal subgroup Ndi ofZdi �Symα(di ,q) with quotient
isomorphic to Zdi × Z2. Therefore, Nd1 × · · · × Nd�

is a normal subgroup of W with
quotient isomorphic to

Q := (Zd1 × Z2) × · · · × (Zd�
× Z2) × Z2.

If n is odd, then gcd(2, di ) = 1 for all i , so

Q ∼= Z2d1 × · · · × Z2d�
× Z2,

and Rank(Q) = � + 1 = d(n) in this case. If n is even, suppose that d1, . . . , de, with
e = d+(n), are all the even divisors of n. Hence,

Q ∼= Zd1 × · · · × Zde × Z2de+1 × · · · × Z2d�
× (Z2)

e+1,

and Rank(Q) = � + e + 1 = d(n) + d+(n). This gives the lower bound for the rank
of W .

For the upper bound, we shall use the basic fact that Rank(G1×G2) ≤ Rank(G1)+
Rank(G2), for any pair of groups G1 and G2. Assume first that n is not a power of 2
and let d� be an odd prime. Hence, Rank

(
(Zd�

� Symα(d�,q)) × Symq

) = 2 by Lemma
7 (ii), and Rank(Zdi � Symα(di ,q)) = 2 for all i by Lemma 5. Thus, Rank(W ) ≤ 2� =
2d(n)− 2. If n is a power of 2, then Rank

(
(Z2 � Symα(2,q)) × Symq

) = 3 by Lemma
7 (i), so Rank(W ) ≤ 2� + 1 = 2d(n) − 1.

When q = 2 and n is even, we may assume that d� = 2, so ICA(Zn; A) ∼=
(Zd1 � Symα(d1,2)) × · · · × (Zd�−1 � Symα(d�−1,2)) × (Z2)

2. The rest of the proof is
similar to the previous paragraphs. ��
Corollary 1 Let p be an odd prime and k ≥ 1 an integer. Let A be a finite set of size
q ≥ 2. Then:

Rank(ICA(Z2k p; A)) =
{
4k + 1 if q = 2,

4k + 2 if q ≥ 3.
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Proof This follows by Theorem 4 (i) because d(2k p) − d+(2k p) − 2 = 0, so
ε(2k p, q) = 0. ��

4 The relative rank of ICA(Zn; A) in CA(Zn; A)
For any integer n ≥ 2, define the divisibility digraph of n as the digraph with vertices
V := {s ∈ [n] : s | n} and edges E := {

(s, t) ∈ V2 : t | s}. Denote E(n) := |E |.
Lemma 8 Let n ≥ 2. If n = pa11 pa22 . . . pamm , where pi are distinct primes, then

E(n) = 1

2m

m∏
i=1

(ai + 1)(ai + 2).

Proof Note that the outdegree of any s = pb11 pb22 . . . pbmm | n is

outdeg(s) = (b1 + 1)(b2 + 1) . . . (bm + 1).

Therefore,

E(n) =
∑
s|n

outdeg(s) =
a1∑

b1=0

· · ·
am∑

bm=0

(b1 + 1)(b2 + 1) . . . (bm + 1)

= 1

2m

m∏
i=1

(ai + 1)(ai + 2).

��
In the proof of the following result we shall use the notion of kernel of a trans-

formation τ : An → An as the partition of An induced by the equivalence relation
{(x, y) ∈ An × An : (x)τ = (y)τ }.
Lemma 9 Let n ≥ 2 be an integer and A a finite set of size q ≥ 2. Then:

Rank(CA(Zn; A) : ICA(Zn; A)) =
{
E(n) − 1 if q = 2 and n ∈ 2Z;
E(n) otherwise.

Proof Let O be the set of orbits of σ : An → An , as defined in Lemma 1. Let
d1, . . . , d� be all the divisors of n ordered as follows

1 = d1 < d2 < · · · < d�−1 < d� = n.

For 1 ≤ i ≤ �, let αi := α(di , q) and denote by Oi the subset of O of orbits of size
di . Let

Bi :=
⋃
P∈Oi

P.
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Suppose that q �= 2 or n is odd, so αi ≥ 2 for all i . For any pair of divisors d j and
di such that d j | di , fix ω j ∈ Bj and ωi ∈ Bi in distinct orbits. Denote the orbits that
contains ωi by [ωi ]. Define idempotents τi, j ∈ CA(Zn; A) in the following way:

(x)τi, j :=
{

(ω j )σ
k if x = (ωi )σ

k

x if x ∈ An \ [ωi ].

Note that τi, j collapses [ωi ] to [ω j ] and fixes everything else.
We claim that

H := 〈
ICA(Zn; A), τi, j : d j | di

〉 = CA(Zn; A).

Let ξ ∈ CA(Zn; A). For 1 ≤ i ≤ �, and define

(x)ξi :=
{

(x)ξ if x ∈ Bi
x otherwise.

Clearly ξi ∈ CA(Zn; A). By Lemma 1, we have (Bi )ξ ⊆ ⋃
j≤i Bi , so

ξ = ξ1ξ2 . . . ξ�.

We shall prove that ξi ∈ H for all 1 ≤ i ≤ �. For each i , decompose Bi = B ′
i ∪ B ′′

i ,
where

B ′
i =

⋃ {
P ∈ Oi : (P)ξi ⊆ Bj for some j < i

}
,

B ′′
i =

⋃
{P ∈ Oi : (P)ξi ⊆ Bi } .

If ξ ′
i and ξ ′′

i are the transformations that act as ξi on B ′
i and B ′′

i , respectively, and fix
everything else, then ξi = ξ ′

i ξ
′′
i .

1. We show that ξ ′
i ∈ H . For any orbit P ⊆ B ′

i , the orbit Q := (P)ξ ′
i is contained

in Bj for some j < i . By Lemma 4, there is φ ∈ Symαi
× Symα j

≤ ICA(Zn; A)

such that φs acts as the double transposition ([ωi ], Ps)([ω j ], Qs), and

(P)ξ ′
i = (P)φ−1τi, jφ.

As ξ ′
i may be decomposed as a product of transformations that only move one

orbit in B ′
i , the above equality implies that ξ ′

i ∈ H .
2. We show that ξ ′′

i ∈ H . In this case, ξ ′′
i |Bi ∈ Tran(Bi ). In fact, as ξ ′′

i preserves
the partition of Bi into orbits, ξ ′′

i |Bi ∈ 〈σ |Bi 〉 � Tranαi . As αi ≥ 2, the semigroup
Tranαi is generated by Symαi

≤ ICA(Zn; A) together with the idempotent τi,i .
Hence, ξ ′′

i ∈ H .

This establishes that the relative rank of ICA(Zn; A) in CA(Zn; A) is at most E(n).

123



Ranks of finite semigroups of one-dimensional cellular automata 361

For the converse, suppose that

〈ICA(Zn; A),U 〉 = CA(Zn; A),

where |U | < E(n). Hence, we may assume that, for some d j | di ,

U ∩ 〈ICA(Zn; A), τi, j 〉 = ∅. (5)

By Lemma 1, there is no τ ∈ CA(Zn; A) such that (X)τ ⊆ Y for X ∈ Oa , Y ∈ Ob

with db � da . This, together with (5), implies that U has no element with kernel of the
form

{{x, y}, {z} : x ∈ P, y ∈ Q, z ∈ An \ (P ∪ Q)
}

for any P ∈ Oi , Q ∈ O j . Thus, there is no element in 〈ICA(Zn; A),U 〉 with kernel
of such form, which is a contradiction (because τi, j ∈ CA(Zn; A) has indeed this
kernel).

The case when q = 2 and n is even follows similarly, except that now, as there is a
unique orbit of size 2 in O, there is no idempotent τ2,2. ��

Finally, Theorems 1 and 2 follow by Theorem 4 and Lemmas 3, 7, 8 and 9.
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