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Abstract

We investigate the performance of a class of hp-adaptive discontinuous Galerkin methods for the
numerical solution of simplified PN approximations of radiative transfer in non-grey semitransparent
media. By introducing an optical scale and using asymptotic expansions in the radiative transfer equation
we formulate the simplified PN approximations. The optical spectrum is decomposed in frequency bands
and the simplified PN equations are solved for each frequency band. As a numerical solver for the
simplified PN equations we consider a high-order discontinuous Galerkin method. The solver belongs
to a class of finite element methods whose approximate solutions are discontinuous across inter-element
boundaries; this property renders the method ideally suited for the hp-adaptivity. An error estimator
is shown to provide reliable and practically useful upper bounds for the numerical errors independent
of the optical scales used in the simulations. The proposed method is simple, fast and highly accurate.
The performance of the method is analyzed on several applications in frequency-dependent radiative
transfer. The aim of such a method compared to the conventional finite element methods is to solve
the simplified PN equations efficiently and with a high level of accuracy on unstructured meshes with
different elements. The obtained results demonstrate the ability of the proposed method to capture the
main radiative features.

Keywords. Radiative transfer; Simplified PN approximations; Discontinuous Galerkin method; hp-
adaptivity; Non-grey media

1 Introduction

There is a vast literature dealing with numerical methods for the radiative transfer equations, see for exam-
ple [22,27] for a survey. These equations have been the key to understand the thermal radiation distribution
on many semitransparent materials. As a well established example, the temperature distribution during
the cooling process of glass which has direct effect on the quality of the product. Moreover, numerical
experiments on semitransparent materials have shown that the heat transfer can not be estimated only
by conduction but also by radiation. For instance, in many annealing processes, the media temperature
is higher than 1000 K and at this temperature radiative transfer dominates conduction. The main diffi-
culties raised when solving numerically the radiative transfer equations lie essentially on the large set of
depend unknowns, the coupling between the radiative transfer and the heat conduction, and the specular
reflecting boundary conditions. The most accurate procedures available for computing radiative transfer
in semitransparent materials are the zonal and Monte Carlo methods [22]. However, these methods are
not widely applied in comprehensive radiative transfer calculations due to their large computational time
and memory storage requirements. Also, the equation of radiative transfer is in a non-differential form,
a significant inconvenience when solved in conjunction with the differential equations of conduction and
convection. For this reason, numerous investigations are currently being carried out worldwide to assess
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computationally efficient methods in radiative transfer applications. The present work deals with the design
of such methods.

In the current study, we consider the simplified PN (SPN ) approximations to the radiative transfer
equations. The SPN approximations were first proposed in [14] and theoretically studied in [19]. In [20,
26], the SPN approximations have been extensively studied for radiative transfer in glass manufacturing,
while in [13] they have been implemented for radiation in gas turbines. The SPN approximations have
also been studied in [6] for internal radiation in crystal growth. The main advantage in considering SPN

approximations is the fact that the radiative transfer equations are transformed to a mixed set of elliptic
equations independent of the angular directions and easy to solve numerically. Furthermore, comparisons
presented in the previous references proved that in optically thick media (large absorption) the SPN models
approximate the full radiative transfer equation with less computational cost and give results which are
more accurate than those obtained by the classical Rosseland approach traditionally used by physicists.
The physical phenomena in many radiative applications can be modeled by the SPN equations with the
property that the media is optically thick, particularly when certain nondimensional parameters reach small
values. As example of these parameters, we mention the optical scale. It is well established that for small
values of this parameter, the SPN approximations are sources of computational difficulties and nonphysical
oscillations. On the other hand, steep fronts and boundary layers are among the difficulties that most
numerical methods fail to resolve accurately. Indeed, such practical radiative problems are not trivial to
simulate because the geometry can be complex and internal source terms may produce steep gradients in
the vicinity of the boundary along the computational domain. It is well known that unstructured grids
can be highly advantageous on the basis of their ability to provide local mesh refinement near important
thermal features and structures. As a consequence, the ability to provide local mesh refinement where it
is needed leads to improved accuracy for a given computational cost as compared with methods that use
structured meshes. The conventional continuous finite element method has been applied in [18] to solve
the SPN approximations for a glass cooling process. The h-adaptivity has also been implemented in this
reference to resolve boundary layers for this class of problems. However, for practical applications, this
method may become computationally demanding due to the lack of a posteriori error analysis.

As for most mesh-based methods for solving partial differential equations (PDEs), the computational
cost in finite element methods becomes more and more important (sometimes prohibitive) when we need
numerical solution with high accuracy. It is also well known that a posteriori error analysis is one approach
to find a compromise between cost and accuracy in these methods. The development of Discontinuous
Galerkin (DG) methods for the numerical approximation of PDEs is an extremely exciting research topic,
see [5, 7–10, 12, 15] among others. The DG methods have several important advantages over the well
established finite volume and finite element methods. The concept of high order discretization is inherent
to the DG method. Moreover, due to the simple communication at element interfaces, elements with
so-called hanging nodes can be easily treated. Additionally, the communication at element interfaces is
identical for any order of the method, which simplifies the use of methods with different polynomial orders
p in adjacent elements. The flexibility of DG methods makes them ideal for hp-adaptivity, which is a
technique where both the size of the elements (h-adaptivity) and their polynomial orders (p-adaptivity) are
adjusted to improve the accuracy of the solution. In the current study we derive a posteriori error estimates
for the DG discretization of SPN approximations in frequency-dependent radiative transfer applications.
The natural combination of adaptive techniques with DG method retains the best features of both methods
and overcomes many of their defects. Their implementation relies on the projection operators, whose actions
use only standard nodal data structures and can be evaluated locally at the element level. In order to be
even more efficient, in this paper we use anisotropic h-adaptivity which has been proved to work very well
in presence of boundary layers generating long and thin elements along them. The gain in efficiency using
adaptivity is directly related to the accuracy of the error estimator which is used to estimate the distribution
of the solution error on the mesh to guide the adaptive procedure. The error estimator used in this work
is a modification of the error estimator in [15] to solve the SPN problems. We numerically illustrate the
efficiency of our techniques by solving several test examples for radiative transfer problems in both grey
and non-grey media. The method is also used to solve a radiative transfer problem with discontinuous
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coefficients. Solving the SPN approximations using a DG method with hp-adaptivity, to the best of our
knowledge, is reported for the first time.

The present paper is organized as follows. Description of the simplified PN approximations of radiative
transfer in non-grey semitransparent media is presented in section 2. Section 3 is devoted to the formu-
lation of hp-adaptive discontinuous Galerkin methods. This section includes the discontinuous Galerkin
discretization and the hp-error estimations for the simplified PN equations. In section 4, we present numer-
ical results and examples for the simplified PN approximations of frequency-dependent radiative transfer.
Our new approach is shown to enjoy the expected accuracy as well as the efficiency. Concluding remarks
are given in section 5.

2 Simplified PN approximations of radiative transfer

Let Ω be a geometrical domain with a boundary ∂Ω of an absorbing and emitting semitransparent material
with a given steady temperature distribution T in Ω and Tb on the boundary ∂Ω. The spectral intensity
I(x, s, ν) at the space point x, within the frequency ν and along the direction s, is obtained from the
dimensionless radiative transfer equation

εs · ∇I + (κ+ σ) I =
σ

4π

∫
S2

I(x, s′, ν)ds′ + κB(T, ν, nm), (x, s, ν) ∈ Ω× S2×]ν0,∞), (2.1)

where ε is the optical thickness coefficient, κ(ν) the absorption coefficient, σ(ν) the scattering coefficient and
B(T, ν, n) is the spectral intensity of the black-body radiation given by the Planck function in a medium
with refractive index n as

B(T, ν, n) =
2hP ν

3

c2
0

n2
(
ehP ν/kBT − 1

)−1
, (2.2)

where hP , kB and c0 are Planck constant, Boltzmann constant and the speed of radiation propagation in
the vacuum, respectively [21]. Note that the equation (2.1) models the changes of an intensity I(x, s, ν)
as particles are passing through the domain Ω at the position point x along the direction s in the unit
sphere S2 with the frequency ν and are subject to loses due to absorption κ and scattering σ, while their
number grows due to the black-body radiation source B(T, ν, nm) inside a semitransparent media with the
refractive index nm. On the boundary we consider transmitting and specular reflecting conditions

I(x̂, s, ν)− ρ(n · s)I(x̂, s′, ν) =
(

1− ρ(n · s)
)
B(Tb, ν, nb), (x̂, s, ν) ∈ ∂Ω− × S2×]ν0,∞), (2.3)

where ∂Ω− is the boundary region defined as

∂Ω− =
{

x̂ ∈ ∂Ω; n(x̂) · s < 0
}
,

with n(x̂) denotes the outward normal in x̂ with respect to ∂Ω. In (2.3), s′ = s− 2(n · s)n is the specular
reflection of s on ∂Ω, and ρ ∈ [0, 1] is the reflectivity obtained according to the Fresnel and Snell laws [27].
Thus, for an incident angle θm given by cos θm = |n · s| and Snell’s law

nb sin θb = nm sin θm,

the reflectivity ρ(µ), µ = |n · s|, is defined as follows

ρ(µ) =


1

2

(
tan2 (θm − θb)

tan2 (θm + θb)
+

sin2 (θm − θb)

sin2 (θm + θb)

)
, if

∣∣∣sin θm

∣∣∣ ≤ nb

nm
,

1, otherwise,

(2.4)

where nb and nm are the refractive indices of the surrounding medium and the semitransparent material,
respectively.
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In the current study we assume that the spectral absorption κ(ν) and the scattering σ(ν) are piecewise
constants with respect to the frequency ν, i.e.

κ(ν) = κk, σ(ν) = σk, ∀ ν ∈ [νk−1, νk), k = 1, 2, . . . , Nν , (2.5)

with κk and σk are constants and Nν is the total number of spectral bands. If we denote the intensity of
the kth spectral band by

I(k)(x, s) =

∫ νk+1

νk

I(x, s, ν)dν,

then the radiative transfer equations (2.1) and (2.3) can be rewritten as

εs · ∇I(k) + (κk + σk) I
(k) =

σk
4π
ϕ(k) + κkB

(k)(T, nm),

(2.6)

I(k)(x̂, s)− ρ(n · s)I(k)(x̂, s′) =
(

1− ρ(n · s)
)
B(k)(Tb, nb),

where the mean intensity ϕ(k) and the Plankian function B(k) are given by

ϕ(k)(x) =

∫
S2

I(k)(x, s)ds and B(k)(T, n) =

∫ νk+1

νk

B(T, ν, n)dν,

respectively. Note that many physical assumptions have to be taken into account to derive well-posed models
for radiative transfer equations in non-grey diffusive semitransparent media. For more details on these
assumptions, we refer to [22, 27] among others. In what follows, we briefly recast the SPN approximations
for the radiative transfer equations (2.6). For more analysis we refer the reader to [20] and further references
can be found therein. Hence, we write the first equation in (2.6) as(

1 +
ε

κk + σk
s · ∇

)
I(k) = Q(k),

where the source term
Q(k) =

σk
4π (κk + σk)

ϕ(k) +
κk

κk + σk
B(k)(T, nm).

We then apply a Neumann series to formally invert the transport operator as

I(k) =

(
1 +

ε

κk + σk
s · ∇

)−1

Q(k),

≈
(

1− ε

κk + σk
s · ∇+

ε2

(κk + σk)
2 (s · ∇)2 − ε3

(κk + σk)
3 (s · ∇)3 +

ε4

(κk + σk)
4 (s · ∇)4 · · ·

)
Q(k).

Integrating with respect to s over all directions in the unit sphere and using the relation∫
S2

(
s · ∇

)n
ds =

(
1 + (−1)n

) 2π

n+ 1
∇n,

we obtain the formal asymptotic equation for ϕ(k)

4πQ(k) =

(
1− ε2

3 (κk + σk)
2∇

2 − 4ε4

45 (κk + σk)
4∇

4 − 44ε6

94 (κk + σk)
6∇

6

)
ϕ(k) +O(ε8).

When terms of order O(ε2), O(ε4), O(ε6) or O(ε8) are neglected we obtain the SP0, SP1, SP2 or SP3

approximations, respectively. Higher order approximations can also be derived similarly. In this paper, we
consider only the SP1 and SP3 approximations, and our DG method can straightforwardly be extended
to other approximations. The boundary conditions for SPN approximations are obtained from variational
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principles and are connected to the Marshak conditions for PN approximations, compare [22]. Here, we
briefly state the set of equations for each SPN approximation and for more details we refer to [20].

For the SP1 approximation:

4πQ(k) = ϕ(k) − ε2

3 (κk + σk)
2∇

2ϕ(k) +O(ε4),

and the SP1 model reads

−∇ ·
( ε2

3 (κk + σk)
∇ϕ(k)

)
+ κkϕ

(k) = 4πκkB
(k)(T, nm),

(2.7)

ϕ(k) +

(
1 + 3r2

1− 2r1

2ε

3 (κk + σk)

)
n(x̂) · ∇ϕ(k) = 4πB(k)(Tb, nb).

The variables r1 and r2 appeared in the boundary conditions for ϕ(k) depend on reflectivity of the considered
media and are given in appendix A.

For the SP3 approximation:

4πQ(k) =

(
1− ε2

3 (κk + σk)
2∇

2 − 4ε4

45 (κk + σk)
4∇

4 − 44ε6

945 (κk + σk)
6∇

6

)
ϕ(k) +O(ε8),

= ϕ(k) − ε2

3 (κk + σk)
2∇

2

(
ϕ(k) +

(
1 +

11ε2

21 (κk + σk)
2∇

2

)(
4ε2

15 (κk + σk)
2ϕ

(k)

))
+O(ε8),

= ϕ(k) − ε2

3 (κk + σk)
2∇

2

(
ϕ(k) +

(
1− 11ε2

21 (κk + σk)
2∇

2

)−1(
4ε2

15 (κk + σk)
2ϕ

(k)

))
+O(ε8),

which can be reformulated up to O(ε8) as

4πQ(k) = ϕ(k) − ε2

3 (κk + σk)
2∇

2
(
ϕ(k) + 2ϕ

(k)
2

)
or

− ε2

3 (κk + σk)
2∇

2
(
ϕ(k) + 2ϕ

(k)
2

)
+ κkϕ

(k) = 4πκkQ
(k),

where

ϕ
(k)
2 =

(
1− 11ε2

21 (κk + σk)
2∇

2

)−1(
2ε2

15 (κk + σk)
2ϕ

(k)

)
.

Expanding this equations yields

11ε2

21 (κk + σk)
2∇

2ϕ
(k)
2 + ϕ

(k)
2 =

2ε2

15 (κk + σk)
2ϕ

(k)∇2ϕ(k),

=
2

5

(
−4πQ(k) + ϕ(k) − 2ε2

3 (κk + σk)
2∇

2ϕ
(k)
2

)
,

or simply

∇ ·
( 9ε2

35 (κk + σk)
∇ψ(k)

1

)
ϕ

(k)
2 +

2

5
κkϕ

(k)
2 −

2

5
κkϕ

(k) =
8

5
πκkB

(k)(Θ, nm).

For computational reasons, by introducing the variables ψ
(k)
1 and ψ

(k)
2 such as

ϕ(k) =
γ2ψ

(k)
1 − γ1ψ

(k)
2

γ2 − γ1
, and ϕ

(k)
2 =

ψ
(k)
2 − ψ(k)

1

γ2 − γ1
,
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the SP3 model is defined as

−∇ ·
( ε2µ2

1

κk + σk
∇ψ(k)

1

)
+ κkψ

(k)
1 = 4πκkB

(k)(Θ, nm),

−∇ ·
( ε2µ2

2

κk + σk
∇ψ(k)

2

)
+ κkψ

(k)
2 = 4πκkB

(k)(Θ, nm),

(2.8)

α1ψ1 +
ε

κk + σk
n(x̂) · ∇ψ(k)

1 = −β2ψ
(k)
2 + η1B

(k)(Θb, nb),

α2ψ2 +
ε

κk + σk
n(x̂) · ∇ψ(k)

2 = −β1ψ
(k)
1 + η2B

(k)(Θb, nb).

A detailed discussion on the formulation of equations (2.8) can be found in [20]. The mean

radiative intensity ϕ(k) is obtained from the variables ψ
(k)
1 and ψ

(k)
2 according to the relation

ϕ(k) =
γ2ψ

(k)
1 − γ1ψ

(k)
2

γ2 − γ1
, k = 1, 2, . . . , Nν .

The parameters µi, αi, βi, ηi, and γi (i = 1, 2) are derived using asymptotic and variational
analyses, see reference [20]. For completeness, the corresponding formulas for calculating
these parameters are listed in appendix A.

3 hp-adaptive discontinuous Galerkin methods

In this section we formulate our DG method for solving the SP1 and SP3 approximations given by the
systems (2.7) and (2.8), respectively. We also describe the error estimators used for the hp-adaptivity
procedures. For simplicity in the presentation, the SPN approximations can be rearranged in a compact
form as

−∇ · (A∇φ) +Bφ = F,
(3.1)

Cn(x̂) · ∇φ+Dφ = G,

where the variables in the compact form (3.1) are defined as

φ = ϕ, A =
ε2

3 (κk + σk)
, B = κk, C =

1 + 3r2

1− 2r1

2ε

3 (κk + σk)
, D = 1,

F = 4πκkB
(k)(T, nm), G = 4πB(k)(Tb, nb),

for the SP1 approximation, and

φ =

 ψ1

ψ2

 , A =


ε2µ2

1

κk + σk
0

0
ε2µ2

2

κk + σk

 , B =

 κk

κk

 , C =

 ε

κk + σk
ε

κk + σk

 ,

D =

 α1 β2

β1 α2

 , F =

 4πκkB
(k)(T, nm)

4πκkB
(k)(T, nm)

 , G =

 η1B
(k)(Tb, nb)

η2B
(k)(Tb, nb)

 ,

for the SP3 approximation. It should be pointed out that all the numerical methods presented in the
literature for the SP3 system, decouple the equations (2.8) by solving the equations for ψ1 and ψ2 separately
using an iterative procedure on the boundary. Here the SP3 approximation is solved in a fully coupled
manner and no iterations are needed for the boundary conditions.
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To formulate our DG method, we first require a discretization of the space domain Ω∪ ∂Ω. To perform
this step, we generate a mesh T = {K} to be a shape-regular subdivision of Ω, with K denoting a generic
element. We assume everywhere in the paper, with the only exception of Section 4.4, that the subdivision
T is constructed via affine mappings FK : K̂ −→ K with non-singular Jacobian where K̂ is the reference
square or triangle, depending on the type of element. In Section 4.4 we use the transfinite interpolation
method [25] to handle curved geometries. The generated mesh is allowed to contain at most one hanging
node per edge. We also use the notation E(T ) and E int(T ) ⊂ E(T ) to denote the set of all edges in the
triangulation T and the subset of all interior edges and by EBC(T ) ⊂ E(T ) the subset of all boundary
edges, respectively. In case of quadrilateral elements, we define the following quantities for anisotropic
meshes For each quadrilateral element K ∈ T , we define the two anisotropic vectors v1

K and v2
K . These

vectors reflect the two anisotropic directions of the generic element K and their lengths are denoted by h1
K

and h2
K , respectively. Thus,

h1
K = length

(
v1
K

)
, h2

K = length
(
v2
K

)
.

We also set
hmin,K = min

(
h1
K , h

2
K

)
, hmax,K = max

(
h1
K , h

2
K

)
.

Let MK denote the matrix formed by the anisotropic vectors v1
K and v2

K as

MK =
(

v1
K , v

2
K

)
. (3.2)

Note that the matrix MK is orthogonal and it satisfies

M>
KMK =

 (h1
K)2 0

0 (h2
K)2

 .

Given an edge E ∈ E(T ), for any element K ∈ T , if E ∈ E(K) or E is a part of an elemental edge of K,
we define a local function of the edge E as

h⊥E,K = h3−i
K , if E is parallel to viK , i = 1, 2.

Moreover, for any E ∈ E int(T ), we assume that

h⊥E,K ∼ h⊥E,K′ , E = K ∩K ′, K,K ′ ∈ T . (3.3)

Notice that the assumption (3.3) does not bound the aspect ratios of elements. For any edges E,E′ ∈ E(K)
and E ∩ E′ 6= ∅, hE/hE′ can be significantly large. If E ∈ E(K) is parallel to viK , i = 1, 2, we define

hE,K = hiK , i = 1, 2.

For any edge E ∈ E(T ), we further set

h⊥E =


min

(
h⊥E,K ,h

⊥
E,K′

)
, if E ∈ E int(T ), E = ∂K ∩ ∂K ′,

h⊥E,K , if E ∈ E(T ) \ E int(T ), E = ∂K ∩ ∂Ω.

In our analysis, we allow for irregularly refined meshes T , where each elemental edge E ∈ E(K) may contain
one hanging node in the middle. We then define hmin,E by

hmin,E =


min

(
hmin,K , hmin,K′

)
, if E ∈ E int(T ), E = ∂K ∩ ∂K ′,

hmin,K , if E ∈ E(T ) \ E int(T ), E = ∂K ∩ ∂Ω,
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It is evident that the assumption (3.3) implies that for any edge E ∈ E(T ) and any element K ∈ T , if
E ∈ E(K) or E is a part of one element edge in K, one obtains

h⊥E ∼ h⊥E,K , hmin,E ∼ hmin,K . (3.4)

In case of triangular elements, all the quantities for anisotropic meshes are redefined with isotropic quantities
re-defining the following quantities as:

h1
K = h2

K = hK , h⊥E,K = hE,K ,

where hK is the size of the element and hE,K is the size of the edge E of the element.
Next we introduce the polynomial degrees for the approximation in our DG method. Hence, for each

element K of the mesh T we associate a polynomial degree pK ≥ 1 and we introduce the degree vector
p = { pK : K ∈ T }, with |p| = max

K∈T
pK . We assume that p is of bounded local variation in the sense that

for any pair of neighboring elements K,K ′ ∈ T , we have

%−1 ≤ pK
pK′
≤ %, (3.5)

where % ≥ 1 is a constant independent of the particular mesh in a sequence of meshes. For any E ∈ E(T ),
we introduce the edge polynomial degree pE by

pE =


max (pK , pK′) , if E = ∂K ∩ ∂K ′ ∈ E int(T ),

pK , if E = ∂K ∩ ∂Ω ∈ E(T ) \ E int(T ).

(3.6)

Hence, for a given partition T of Ω and a degree vector p on T , we define the hp-version DG finite element
space by

Vp(T ) =
{
v ∈ L2(Ω) : v|K ∈ QpK (K), K ∈ T

}
,

with QpK (K) denotes the set of all polynomials on the element K of degree less or equal to pK .
Let nK denotes the outward unit normal on the boundary ∂K of an element K. Given an edge

E ∈ E int(T ) shared by two elements K+ and K−, a vector field v ∈ H1/2(Ω)×H1/2(Ω) and a scalar field
v ∈ H1/2(Ω), we define the jumps and the averages of v and v across E by

{v} =
1

2

(
v
∣∣∣
K̄+

+ v
∣∣∣
K̄−

)
, [v] =v

∣∣∣
K̄+

nK + v
∣∣∣
K̄−

nK′ ,

{Av} =
1

2

(
ω−v

∣∣∣
K̄+

+ ω+v
∣∣∣
K̄−

)
, [Av] =ω−v

∣∣∣
K̄+
· nK + ω+v

∣∣∣
K̄−
· nK′ ,

(3.7)

where ω− = A+/(A+ +A−) and ω+ = A−/(A+ +A−), with A+, A− are the values of A on the edge from
either elements. Note that if E ⊂ ∂Ω, we set {v} = v, [v] = v · n, {v} = v and [v] = vn, with n is the
outward unit normal to the boundary ∂Ω.

The derivation of the DG approximation for SP1 and SP3 equations can be performed using similar
techniques as those reported in [5]. Thus, the DG approximation for the SP1 problem reads as follows:
Find φh ∈ Vp(T ) such that

B (φh, vh) +Kh (φh, vh) = (F, vh) +
∑

E∈EBC(T )

∫
E

A

C
Gvh ds, ∀vh ∈ Vp(T ) , (3.8)

where the bilinear forms

B (w, v) =
∑
K∈T

∫
K

(
A∇w · ∇v +Bwv

)
dx +

∑
E∈Eint(T )

2γω+A+p2
E

h⊥E

∫
E
[w] · [v] ds,

Kh (w, v) =−
∑

E∈Eint(T )

∫
E
{A∇w} · [v] + {A∇v} · [w] ds+

∑
E∈EBC(T )

∫
E

AD

C
wv ds,

(3.9)
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and (·, ·) denotes the standard linear form. Similarly, the DG approximation for the SP3 system reads as
follows: Find φh ∈ Vp(T )× Vp(T ) such that

B (φh, vh) +Kh (φh, vh) = (F, vh) +
∑

E∈EBC(T )

∫
E

A

C
Gvh ds, ∀vh ∈ Vp(T )× Vp(T ), (3.10)

where B and Kh are defined in (3.9). Note that in general the penalty parameter in (3.9) γ > 0 is chosen
large enough so that the operator B +Kh is coercive.

In the presence of steep radiative gradients and boundary layers as those obtained by SP1 and SP3

approximations of radiative transfer, the above DG method would need an extremely refined meshes to
resolve these radiative features. To overcome this difficulty in the present work we consider an anisotropic
hp-adaptivity using a residual based a posteriori error estimate. Rigorous proofs for the error estimators
in the SP1 and SP3 equations can be achieved using the same steps in [15] and therefore are omitted here.
Hence, the error estimator for the considered problems is given by

ηerr =

√∑
K∈T

(
η2
R,K + η2

B,K + η2
E,K + η2

J,K

)
, (3.11)

where the four terms under the sum are defined as

η2
R,K = α2

K

∥∥∥Fh +∇ · (A∇φh)−Bφh
∥∥∥2

0,K
,

η2
B,K =

∑
E∈EBC(K)

A−1/2αE

∥∥∥∥A∇φh · nE +
AD

C
φh −

A

C
Gh

∥∥∥∥2

0,E

,

η2
E,K =

∑
E∈Eint(K)

A
−1/2
min αE

∥∥∥[A∇φh]
∥∥∥2

0,E
,

η2
J,K =

1

2

∑
E∈Eint(K)

(
γ2Amaxp

2
E

h⊥E,K
+
Amaxh

⊥
E,Kp

2
E

h2
min,K

+
κminh

⊥
E,K

p2
E

+
Amaxp

2
E

h⊥E,K
+
Amaxγ

2h2
min,Kp

3
E

(h⊥E,K)3

)∥∥∥φh∥∥∥2

0,E
,

with Fh and Gh are the L2 projection of F and G respectively onto the finite element space. Here, Amin

and Amax are the matrices constructed taking respectively the minimum and the maximum component by
component of the definitions of A from the two elements sharing a face and

αK = min
(
hmin,KA

− 1
2 p−1
K , κmin

− 1
2

)
, αE = min

(
h2

min,KAmin
− 1

2 p−1
E

(
h⊥E

)−1
, κmin

− 1
2

)
,

where κmin is the minimum value of κk on the computational domain Ω, ‖ · ‖0,K and ‖ · ‖0,E are respectively
the L2-norm on an element K and on an edge E.

Adopting similar analysis from [15] it is possible to prove that the error estimator is an upper bound
for the reference error in the DG norm ||| · |||T i.e.,

|||φ− φh|||T ≤ C (ηerr + Θ) ,

where C is a positive constant independent of the mesh nor the order of the elements used and

Θ =

√√√√∑
K∈T

h2
min,K

Aminp2
K

∥∥∥F − Fh∥∥∥2

0,K
+

∑
E∈EBC(T )

h2
min,K

Aminp2
Eh
⊥
E,K

∥∥∥G−Gh∥∥∥2

0,E
,

is the data oscillations. Note that in case of SP1 and SP3 equations, the DG norm is defined as

|||u|||T =

∑
K∈T

(
A
∥∥∥∇u∥∥∥2

L2(K)
+B

∥∥∥u∥∥∥2

0,K

)
+

∑
E∈Eint(T )

γ2ω+A+p2
E

h⊥E

∥∥∥[u]
∥∥∥2

0,E
+

∑
E∈EBC(T )

AD

C

∥∥∥u∥∥∥2

0,E

1/2

.
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In the present study, numerical implementation of the error estimator ηerr is carried out using the AptoFEM

software package. The resulting discrete systems of linear equations are solved by exploiting the Multifrontal
Massively Parallel Solver (MUMPS), see for example [2–4]. We consider different adaptive techniques for
the SP1 and SP3 approximations, namely: isotropic h-adaptivity, isotropic hp-adaptivity, anisotropic h-
adaptivity, anisotropic h isotropic/p-adaptivity and uniform h-adaptivity. In all our computations, the
meshes are adapted by marking the elements for refinement according to the size of the local error indicators
(3.11). This is achieved by employing the fixed fraction strategy proposed in [16], with a refinement fraction
of 15%. Thus, for each element K ∈ T marked for refinement the schemes automatically decide whether
the local mesh size hK or the local polynomial degree pK should be adjusted accordingly. The choice to
perform either h- or p-refinement is based on estimating the local smoothness of the (unknown) analytical
solution. To this end, we employ the hp-adaptive strategy developed in [17], where the local regularity of
the analytical solution is estimated from truncated local Legendre expansions of the computed numerical
solution. Furthermore, if anisotropic h-refinement is considered in the scheme, there is a further choice
to make for each element qualified for refinement in h between isotropic h-refinement or anisotropic h-
refinement. In order to make this choice we denote by E1

K , E2
K the two sets containing opposite edges of the

element K, and we define

ηEiK
=

√
η2
E,K

∣∣∣
EiK

+ η2
B,K

∣∣∣
EiK

+ η2
J,K

∣∣∣
EiK
, i = 1, 2.

Then the choice between isotropic h-refinement or anisotropic h-refinement is made comparing the error
quantities ηEiK

(i = 1, 2) as:

(i) If ηE1K
> 100ηE2K

, then the element K is refined anisotropically along the direction v1
K .

(ii) If ηE2K
> 100ηE1K

, then the element K is refined anisotropically along the direction v2
K .

(iii) If none of the above conditions (i) and (ii) is satisfied, the element K is refined isotropically.

4 Numerical results

In this section we present numerical results for several test problems in frequency-dependent radiative
transfer. The main goals of this section are to illustrate the numerical performance of the hp-adaptive
discontinuous Galerkin method described above and to verify numerically its capabilities to solve radiative
transfer problems. In all the computations reported herein, the media is assumed at a given steady tem-
perature T (x, y) and on the domain boundary the temperature Tb(x, y) is fixed. The change between the
media and the ambient temperatures causes a sharp drop in the temperature across a boundary layer which
can be very thin depending on the physical properties of the media. As a thinner layer is considered the
problem becomes more challenging to solve with the conventional finite element methods for which a very
fine mesh is needed. To take this effect into consideration different values ε = 0.5, ε = 0.1 and ε = 0.01 are
considered, which correspond to different optical regimes.

In the sequel, we shall use the terminology isoh, isohp, anisoh, anisohisop and unifh to refer to the
DG method with, isotropic h-adaptivity, isotropic hp-adaptivity, anisotropic h-adaptivity, anisotropic h-
adaptivity/isotropic p-adaptivity and uniform adaptivity, respectively. In addition, the resulting linear
systems of algebraic equations are solved using the direct solver MUMPS. All the computations are per-
formed on an Intel R© Core i7 PC with 16 GB of RAM and 3.60 GHz. The codes only take the default
optimization of the machine, i.e. they are not parallel codes.

4.1 Accuracy test problems

To assess the accuracy of the proposed adaptive DG method, we consider problems with known analytical
solutions. We first solve the SP1 problem in a grey unit squared domain using σ = κ = 1 and r1 = r2 = 0.
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The functions F and G in the right-hand side of equations (3.1) are calculated such that the analytical
solution of the SP1 problem is given by

ϕ(x, y) =

(
e

x−1
A − 1

e−
1
A − 1

+ x− 1

)(
e

y−1
A − 1

e−
1
A − 1

+ y − 1

)
.

We solve this problem for two different values of the diffusion scale ε = 0.5 and ε = 0.1. Note that despite
the above exact solution is smooth it may develop boundary layers on the domain boundary and stronger
boundary layers are expected for smaller values of ε.

In Figure 4.1 we present the convergence of the errors using different refinement techniques for both
values of ε. It is clear that there is a huge difference between the adaptive techniques that involve p-
refinement and the others that use only h-refinement. The formers converge exponentially whereas the
others only polynomially. It should also be stressed that, due to the existence of the boundary layers in this
example, the use of the anisotropic h-refinement seems to be advantageous for the DG method. It is also
interesting to notice that for ε = 0.1, the boundary layers are stronger than the case with ε = 0.5 and the
adaptive techniques which do not use anisotropic adaptivity are almost lost or they start to converge later.
On the other hand, using anisotropic adaptivity the convergence is much faster and much sooner. For the
considered diffusion scales, the anisohisop adaptivity achieves the fasted convergence for this test example
compared to other adaptive techniques.

Figure 4.1: Convergence results in the DG norm using different refinement techniques for the accuracy test
problem for the SP1 model using ε = 0.5 (left) and ε = 0.1 (right).

In order to check how well the error estimator follows the true error, we illustrate in Figure 4.2 the two
best cases from Figure 4.1, namely anisohisop and isohp along with the computed values of the estimator
ηerr. It is clear that the error estimator ηerr follows very well the decay of the error in both cases which
proves that it is a good estimation of the error. For both considered values of ε, the error estimator ηerr is
always an upper bound for the true error. Notice that the gap between the true value of the error and the
error estimator is normal for this kind of error estimators as already analyzed in [15]. Figure 4.3 depicts the
final adapted meshes using anisohisop. For a better visualization, only a zoom on the computational domain
is shown in these plots. Note that the colors in the adapted meshes indicate the order of polynomials used
in each element. As can be seen from these results the boundary layers have been accurately detected and
treated using the anisotropic h-refinement as expected and accordingly to their strength.

Our second accuracy test example consists on solving the SP3 equations with known analytical solution.
Hence, we solve the equations (3.1) on a unit square using σ = κ = 1, α1 = α2 = β1 = β2 = 1 and
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Figure 4.2: Comparison between the DG norm of the error and the error estimator for the accuracy test
problem for the SP1 model using ε = 0.5 (left) and ε = 0.1 (right).

Figure 4.3: Adapted mesh using anisotropic h-refinement and isotropic p-refinement for the accuracy test
problem for the SP1 model using ε = 0.5 (left) and ε = 0.1 (right).

µ1 = µ2 = 1. The right-hand side F and boundary function G in (3.1) are analytically evaluated such that
the exact solution of the SP3 equations is

ψ1(x, y) =

(
e
−x
A − 1

e−
1
A − 1

− x

)(
e
−y
A − 1

e−
1
A − 1

− y

)
,

ψ2(x, y) =

(
e

x−1
A − 1

e−
1
A − 1

+ x− 1

)(
e

y−1
A − 1

e−
1
A − 1

+ y − 1

)
.

Note that for this test example, the solution components ψ1 and ψ2 present boundary layers respectively,
in the upper-right and lower-left regions of the computational domain. This problem is well-suited to test
whether the indicator ηerr is able to pick up the steep gradients near these boundaries using anisotropic
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Figure 4.4: Convergence results in the DG norm using different refinement techniques for the accuracy test
problem for the SP3 model using ε = 0.5 (left) and ε = 0.1 (right).

Figure 4.5: Comparison between the DG norm of the error and the error estimator for the accuracy test
problem for the SP3 model using ε = 0.5 (left) and ε = 0.1 (right).

refinement. As in the previous test problem, we consider the two radiative regimes associated with ε = 0.5
and ε = 0.1. Notice that all the numerical methods developed to solve the SP3 equations solve ψ1 and ψ2

separately, see for example [18,24]. In our approach the system is solved in a fully coupled manner and no
iterations are needed to deal with boundary coupling between ψ1 and ψ2.

Figure 4.4 presents the convergence results in the DG norm using different refinement techniques for
ε = 0.5 and ε = 0.1. The corresponding error estimators for this problem are given in Figure 4.5. In the
very beginning of iterations, the uniform and estimated errors are similar; however, we notice that the errors
decrease generally during the evolving mesh adaptations while on the uniform grid the errors are evolved
constantly. It is clear that for a given precision, the adaptive refinement allows to reduce consequently the
number of unknowns in comparison with the uniform adaption. In addition, we note that both uniform
refinements and adaptive refinements produce good approximate solutions as the number of degrees of
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Table 4.1: Values of κ, σ and boundary functions for different tests in the verification test problems.

σ κ GΓl
(y) GΓr(y) GΓb

(x) GΓt(x)

Test 1 0.99 0.01 0 1 x x

Test 2 99 1 0 1 x x

Test 3 1 10 y 1− y x 1− x

freedom increases, and the convergence orders are nearly optimal. However, to obtain similar accuracy, the
adaptive refinements will use less finite elements. It should also be noted that the discrepancy between
the true and estimated errors is remarkably small as compared to the magnitude of the target functional.
The distribution of error contributions reflects the qualitative behavior of local errors and indicates that
stronger mesh refinement is required in the vicinity of domain boundary as the diffusion scale ε increases.
It is also worth pointing out that the boundary layers for this test example are adapted similarly to those
reported in Figure 4.3 for the SP1 equations and, for brevity in presentation, are not presented here.

4.2 Verification test problems

To assess the performance of the proposed DG method compared to the full radiative transfer, we consider
a class of examples by solving the SP1 and SP3 approximations in a non-reflective grey unit square Ω =
[0, 1]× [0, 1] with F = 0. The boundary functions G in these test examples are defined as

G(0, y) = GΓl
(y), G(1, y) = GΓr(y), for 0 ≤ y ≤ 1,

G(x, 0) = GΓb
(x), G(x, 1) = GΓt(x), for 0 ≤ x ≤ 1.

The coefficients κ, σ, the functions GΓl
, GΓr , GΓb

and GΓt are chosen for three different test problems
according to Table 4.1. Similar test examples have been reported in [24]. Notice that since in these cases
the analytical solutions are not available, we only present the decay of the error estimator ηerr for each test
example. However, as has been clearly shown in the previous test problems with known exact solutions, the
error estimator mimics very well the behavior of the reference error and it is always an upper bound for this
error in all optical regimes. This should give us the confidence in the fact that also the true error is decaying
in a similar way as the error estimator for these problems. Figure 4.6 presents the convergence results of
the error estimator in the DG norm using different refinement techniques for the three test examples using
the SP1 approximation with ε = 0.1 and ε = 0.01. Those results obtained using the SP3 approximation are
presented in Figure 4.7.

It is clear that, since the solution of Test 1 does not present any strong boundary layers for the
SP1 approximation, anisotropic refinement would not give any advantage to the DG method. Clearly the
trajectories of with or without anisotropic h-refinement for Test 1 are exactly the same. This is due
to the fact that also when the anisotropic h-refinement is available, the method automatically prefers the
isotropic h-refinement in this case. However, for the SP3 approximation of this test example, the anisotropic
refinement gives some advantages to the DG method. The corresponding mesh statistics and CPU times
for Test 1 are summarized in Table 4.2 for both diffusion scales. Here the listed CPU time includes the
computational time used to assemble the system, to solve this system and to compute the error estimator.
It is clear that for this test example more degrees of freedom are needed for simulations using ε = 0.01 than
those using ε = 0.1. The convergence in this later case is also slower compared to the case with ε = 0.01.
Similar trends have been observed for results, not reported here, for the SP3 approximation. For Test 2
the solution presents very strong boundary layers along three sides of the computational domain. In this
case anisotropic h-refinement has delivered a very fast convergence, compare the results shown in Figure 4.6
and Figure 4.7. The mesh statistics and CPU times for Test 2 are also summarized in Table 4.3. It should
be noted that at early stage of simulation the advantage of p-refinement is limited for this test example,
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Figure 4.6: Convergence results in the DG norm using different refinement techniques for the three test
examples in the verification test problems using the SP1 approximation with ε = 0.1 (left column) and
ε = 0.01 (right column).
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Figure 4.7: Same as Figure 4.6 but using the SP3 approximation.
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but it becomes very important later in the simulation. This happens very often in presence of boundary
layers in the solution because at the beginning the h-refinement reduces much faster the error, but after the
p-refinement is necessary to continue converging very quickly. This can be seen by examining the couples
anisohisop/anisoh and isohp/isoh refinements.

Table 4.2: Mesh statistics, convergence results and computational times for SP1 approximation of Test 1
using ε = 0.1 and ε = 0.01. The CPU times are given in seconds.

ε = 0.1 ε = 0.01
Mesh # Elems # DoFs ηerr CPU # Elems # DoFs ηerr CPU

1 64 256 1.3979E-02 0.0091 64 256 3.8346E-02 0.0081
2 64 301 1.0832E-02 0.0078 77 318 2.8087E-02 0.0082
3 64 346 8.4505E-03 0.0075 84 386 1.8699E-02 0.0086
4 64 391 6.3190E-03 0.0091 86 468 1.0758E-02 0.0123
5 64 436 4.4319E-03 0.0289 94 540 7.1909E-03 0.0403
6 64 491 2.8531E-03 0.0387 94 674 4.6571E-03 0.0838
7 64 564 1.3970E-03 0.0546 108 792 3.2266E-03 0.0890
8 64 627 6.2494E-04 0.0615 114 898 2.3721E-03 0.1022
9 64 724 3.7774E-04 0.0750 122 1051 1.6219E-03 0.1203
10 64 938 2.3122E-04 0.1114 128 1259 1.0646E-03 0.1559
11 64 1070 1.4875E-04 0.1420 140 1410 7.2542E-04 0.1778
12 64 1354 7.7146E-05 0.1939 146 1832 4.4814E-04 0.2752
13 64 1864 3.5930E-05 0.3406 158 1993 3.3336E-04 0.3019
14 64 2510 2.3879E-05 0.5952 164 2528 2.1258E-04 0.4633
15 64 3332 1.6549E-05 1.0574 172 2702 1.4507E-04 0.4951
16 64 4256 1.2181E-05 1.1823 178 3526 8.5187E-05 0.7843
17 64 5344 9.2216E-06 2.1565 184 4706 4.2266E-05 1.2863
18 64 6560 7.1458E-06 2.4872 193 6187 2.1294E-05 1.9175
19 64 7904 5.6471E-06 4.9827 203 8011 1.0476E-05 2.0939
20 64 9376 4.5382E-06 5.8862 209 10237 5.2391E-06 2.6486
21 64 10976 3.7006E-06 8.3023 209 12909 3.3953E-06 5.8324
22 64 12704 3.0562E-06 12.1656 209 15975 2.6841E-06 7.2831
23 64 14560 2.5525E-06 14.7538 209 19446 2.1933E-06 10.6942
24 64 16544 2.1532E-06 19.5522 209 23287 1.8251E-06 16.3449
25 64 18656 1.8328E-06 27.2656 209 27694 1.5390E-06 24.0526

To further emphasis the high resolution of our DG method to resolve boundary layers for this problem we
present in Figure 4.8 and Figure 4.9 the results obtained for Test 2 using ε = 0.1 and ε = 0.01, respectively.
Here we display the computed radiative mean intensity ϕ and the corresponding anisotropically adapted
meshes. For better insight only small part of the computational domain is presented in these figures. As
can be seen in these figures a thinner boundary layer is detected in the case using ε = 0.01 than using
ε = 0.1 and in both situations our adaptive DG method accurately resolves these radiative regimes. It
is worth remarking the degree of p-refinement in each case as higher polynomial degrees are needed for
the case using ε = 0.1 than using ε = 0.01. Asymptotically, the size of these boundary layers should be
proportional to ε2 and our hp-adaptive DG method is able to accurately capture these boundary layers at
reasonable computational cost. A simple examination of the number of degrees of freedom and the error
estimator in Table 4.3 also reveals that larger number of degrees of freedom and faster convergence have
been observed in the case using ε = 0.01 than using ε = 0.1.

Now we turn our attention to Test 3 and for this test example, boundary layers appear in all four
sides of the computational domain. However, these boundary layers are weaker than those appeared in the
previous Test 2. Based on the results presented in Figure 4.6 and Figure 4.7 the anisotropic h-refinement
achieves some advantages over other adaptive techniques. As in the previous test example, the results show
a decrease in the error estimator as we increase the number of degrees of freedom in the system. The mesh
statistics and CPU times for Test 3 are also presented in Table 4.4. The obtained results for this example
illustrate similar features to Test 2. Comparing the CPU times for the considered tests in this example
it seems that Test 1 is the most costly, this is due to the fact that in Test 1 there is more p-adaptivity
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Table 4.3: Mesh statistics, convergence results and computational times for SP1 approximation of Test 2
using ε = 0.1 and ε = 0.01. The CPU times are given in seconds.

ε = 0.1 ε = 0.01
Mesh # Elems # DoFs ηerr CPU # Elems # DoFs ηerr CPU

1 64 256 1.5063E-00 0.0085 64 256 3.3784E-01 0.0076
2 77 308 9.4895E-01 0.0063 77 308 2.4459E-01 0.0073
3 88 352 6.3489E-01 0.0077 92 368 1.8345E-01 0.0076
4 111 444 4.0510E-01 0.0058 105 420 1.3450E-01 0.0086
5 135 540 2.5413E-01 0.0111 120 480 9.3897E-01 0.0100
6 177 718 1.7896E-01 0.0542 142 568 6.3366E-01 0.0402
7 211 874 1.1115E-01 0.0834 169 676 3.7967E-01 0.0593
8 273 1177 7.7736E-02 0.1125 206 824 2.1087E-01 0.0759
9 308 1466 4.7046E-02 0.1522 254 1016 1.1061E-01 0.0879
10 322 1754 2.6798E-02 0.1781 330 1320 5.8088E-02 0.1151
11 338 2051 1.6907E-02 0.2275 416 1699 3.2812E-02 0.1652
12 352 2508 1.1431E-02 0.2758 474 2086 1.8087E-02 0.1998
13 353 2848 7.1922E-03 0.3104 524 2576 9.1560E-03 0.2720
14 381 3305 4.6886E-03 0.4003 544 3212 4.2720E-03 0.3285
15 456 3934 3.3986E-03 0.4830 603 4241 2.1462E-03 0.4876
16 456 4405 2.2665E-03 0.5375 628 5148 1.1309E-03 0.6021
17 481 5078 1.5170E-03 0.7056 666 6370 6.2564E-04 0.8339
18 503 5691 1.0523E-03 0.8023 709 7522 3.5782E-04 1.0114
19 543 6656 7.0826E-04 1.0647 777 9108 1.9982E-04 1.0855
20 574 7371 4.4950E-04 0.9018 798 10778 1.1091E-04 1.2494
21 611 8616 2.8657E-04 1.2209 821 12758 6.2210E-05 1.7123
22 640 10431 1.7786E-04 1.2933 855 14858 3.8218E-05 1.6812
23 675 11447 1.0997E-04 1.2987 968 17764 2.2105E-05 1.9650
24 692 13453 6.4254E-05 1.9867 1045 21333 1.2376E-05 2.7641
25 724 16193 3.7168E-05 2.3051 1065 25072 6.4624E-06 3.4325

Figure 4.8: Adaptive mesh (left) and numerical solution (right) for the SP1 approximation of Test 2 using
ε = 0.1. Colors in the adapted mesh indicate the order of polynomials used in each element.

than in the other cases. This leads to large dense blocks in the matrix of the linear systems which is a
disadvantage when a direct solver is used as in this case.

Our final concern with this example is to compare the results obtained using the DG method for the
simplified PN models (3.1) to those from a direct solver for the full radiative transfer equation (2.1). To this
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Table 4.4: Mesh statistics, convergence results and computational times for SP1 approximation of Test 3
using ε = 0.1 and ε = 0.01. The CPU times are given in seconds.

ε = 0.1 ε = 0.01
Mesh # Elems # DoFs ηerr CPU # Elems # DoFs ηerr CPU

1 64 256 1.0002E-00 0.0087 64 256 1.1524E-00 0.0079
2 77 308 7.5779E-01 0.0041 77 308 9.1746E-01 0.0060
3 92 368 6.0755E-01 0.0081 92 368 7.6523E-01 0.0071
4 121 484 4.7547E-01 0.0101 105 420 6.4204E-01 0.0094
5 145 580 3.5824E-01 0.0123 124 496 5.3155E-01 0.0104
6 189 756 2.8194E-01 0.0159 142 568 4.2354E-01 0.0420
7 271 1084 2.0071E-01 0.0740 172 688 3.2245E-01 0.0580
8 329 1366 1.5459E-01 0.1338 216 864 2.3375E-01 0.0737
9 400 1740 1.0973E-01 0.1683 278 1112 1.5818E-01 0.0945
10 444 2180 6.7907E-02 0.2330 359 1436 1.0852E-01 0.1210
11 479 2601 4.0467E-02 0.2722 457 1828 7.4276E-02 0.1546
12 506 3287 2.6295E-02 0.3716 597 2388 5.2746E-02 0.2021
13 522 3863 1.6885E-02 0.4377 731 3044 3.5569E-02 0.2893
14 568 4527 1.0963E-02 0.5128 909 3931 2.4549E-02 0.3715
15 679 5596 7.9720E-03 0.7088 1052 4872 1.6543E-02 0.5091
16 756 6692 5.2906E-03 0.8628 1226 6020 1.1377E-02 0.6521
17 800 7720 3.3405E-03 1.0031 1423 7599 7.7668E-03 0.8803
18 844 9030 2.1306E-03 1.1976 1614 9126 5.3718E-03 0.8385
19 880 10386 1.3558E-03 0.9642 1905 11200 3.7803E-03 0.9782
20 944 11768 8.5253E-04 0.9527 2076 13382 2.5535E-03 1.1173
21 1005 13325 5.6303E-04 1.3583 2327 16193 1.6928E-03 1.3366
22 1023 14913 3.7553E-04 1.5266 2542 18748 1.1421E-03 1.5243
23 1023 16646 2.3364E-04 1.5442 2818 21770 7.6463E-04 1.7505
24 1035 18512 1.4641E-04 1.7015 3087 25504 5.1686E-04 1.8113
25 1035 21099 8.2698E-05 1.8316 3286 29272 3.3928E-04 1.8570

Figure 4.9: Same as Figure 4.8 but using ε = 0.01.

end we solve the radiative transfer equation (2.1) using the well-established Diffusion Synthetic Acceleration
(DSA) method. The DSA method uses the diffusion approach to accelerate the source iteration which has
been widely used in computational radiative transfer. We refer to [23, 24] for the implementation of the
method and further discussions on other direct methods can be found therein. The S8 discrete-ordinate
algorithm is selected for the discretization of the angle variable and a mesh of 500× 500 nodes for ε = 0.1
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Figure 4.10: Comparison of cross-sections at y = 0.5 of the mean intensity for the three test examples in
the verification test problems using ε = 0.1 (left column) and ε = 0.01 (right column).
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Figure 4.11: Computational domain and values of σ, κ and T in each sub-domain for the radiative transfer
problem with discontinuous variables.

and 1000 × 1000 nodes for ε = 0.01 are used in our computations, yielding linear systems with 2 × 107

and 8 × 107 unknowns which has to be solved for the case with ε = 0.1 and ε = 0.01, respectively. In
Figure 4.10 we present the cross-sections at y = 0.5 of the mean intensity ϕ obtained by the SP1 and SP3

approximations and the full radiative transfer for the three test problems from Table 4.1. It is evident that
the proposed DG method preserves the radiative structures of the mean intensity at the optical regimes
considered. The boundary features of the mean intensity are also captured by our DG method and they
compare well with those obtained using the DSA solver for the full radiative transfer equation. It is also
clear that the results obtained using the SP1 and SP3 approximations exhibit similar solution trends as
the results obtained using the radiative transfer model. As reported in [24], the accuracy of the simplified
PN approaches and the convergence of the DSA method strongly depend on the optical scale ε and the
scattering ratio γ = σ

σ+κ . Although, the scattering ratio is the same for Test 1 and Test 2 (γ = 0.99),
a large discrepancy is detected in the results obtained using the DSA for SP1 model for Test 1. It seems
that, for the considered test cases, the simplified PN approach asymptotically resolves the radiative transfer
equation as the DSA method does, but with very less computational effort referring to the CPU times. It
should be noted that when γ ≈ 1 the DSA method converges slowly to a tolerance of 10−6, for instance
using ε = 0.1, in Test 2 (γ = 0.99) the DSA method needs 1376 iterations to converge and in Test 3
(γ = 0.09) it needs only 435 iterations. However, in all tests, the DG method for the SP3 model shows fast
convergence with a CPU time about 750 times lower than the DSA method for the full radiative transfer
model.

4.3 Radiative transfer problem with discontinuous variables

The aim of this example is to test the performance of the proposed DG method for radiative transfer
problems with discontinuous variables. Here, the problem statement consists on solving the SP1 and SP3

equations augmented by discontinuous temperature distribution, scattering and absorption coefficients.
Note that for a grey media the Planck function (2.2) reduces to

B(T ) = aRT
4,

where aR = 5.67× 10−8 is the reduced Boltzmann constant. The domain geometry and the values of T , σ
and κ for each sub-domain are illustrated in Figure 4.11. On the boundary the temperature is set to 300 K.
A similar test example has also been considered in [1]. In Figure 4.12 we display the obtained radiative
temperature using the SP1 approximation with ε = 0.1 and ε = 0.01. Those results obtained using the
SP3 approximation are presented in Figure 4.13. Here, the radiative temperature TR is obtained from the
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thermal equilibrium
ϕ = 4πB (TR) ,

where ϕ is the mean radiative intensity computed using either the SP1 or SP3 approximations. As expected
steeper interface layers are present in the results obtained using ε = 0.01 compared to those obtained using
ε = 0.1. These interface layers are more pronounced in the SP1 than the SP3 results. From the results shown
in Figure 4.12 and Figure 4.13, our DG method has automatically detected these internal boundary layers
and the meshes have been adapted consequently. It should also be pointed out that due to the selection of
radiative parameters in the computational domain shown in Figure 4.11, the radiative temperature exhibits
diffusive patterns in the right part of the computational domain which have been well detected by our DG
method as more p-adaptivity is introduced in this part of the domain compared to the remaining parts in the
computational domain. Note that sharper gradients have also been resolved using the SP3 approximation
for this test example compared to the SP1 approximation. To further demonstrate this effect we present
in Figure 4.14 cross-sections of the radiative temperature at y = 0.5 for both diffusive scales ε = 0.1 and
ε = 0.01. It is evident that in the right part of the domain, the SP1 and SP3 approximations produce
the same radiative temperatures. Furthermore, both values of ε yield similar results for SP1 and SP3

approximations. High resolution of boundary layers by our adaptive DG method should also be noted in
the results presented in Figure 4.14. Although there is no available reference to quantitatively assess these
solutions, it can be observed that the results are reasonable and consistent. In addition, the obtained results
reveal the necessity of using hp-adaptation coupled with a posteriori error estimate analysis for sophisticated
radiation simulation quality enhancement. It is expected that for the considered radiative transfer problem,
this procedure allows us to reach significant improvement in accuracy and stability, compared to the uniform
adaptation, within a small number of iterations.

In summary, the adaptive DG method seems to produce satisfactory results and exhibit a typical high-
resolution behavior for all the examples in the considered radiative regimes in grey media. Furthermore,
the obtained results for the considered test examples demonstrate the ability of the presented adaptive
DG method to capture the small solution features within the computational domain using low number of
degrees of freedom and low computational cost without generating nonphysical oscillations at the interfaces
or introducing excessive numerical diffusion in the numerical results.

4.4 Frequency-dependent radiative transfer problem

Our final test example is the problem of radiative transfer in combustion systems in which H2O is the
dominant radiating species. The full simulation of combustion systems requires the solution of the equations
of material, momentum and enthalpy transport along with the radiative transfer equations. Since our focus
in the current work is on developing efficient numerical solvers for radiative transfer, we will consider only
the simplified PN equations. The main aim of this example is to check the performance of the proposed
hp-adaptive DG method for solving frequency-dependent radiative transfer problems in relatively complex
domains. Here, we solve the SP1 and SP3 equations in a circular-shaped reactor with 2 m of radius. The
domain boundary is maintained at the ambient temperature of Tb = 300 K and the interior medium has a
steady temperature exponentially decaying from 2500 K to 2000 K as

T (x, y) = 2000 + 500 exp

(
−
√
x2 + y2

0.08

)
.

In order to handle curved domains in this example, we have curved the elements using the transfinite
interpolation method [25]. It should be noted that the visualization tool that we use to plot the meshes
is not able to draw curved elements, so even if the elements are treated as curved in our DG method, in
the displayed figures they have straight edges. The initial mesh used in our simulations is shown in Figure
4.15. As can be seen in the left plot of this figure, the mesh is constituted with both quadrilateral and
triangular elements. Since we know already that boundary layers can appear along the domain boundary,
quadrilateral elements have been chosen because they can easily be adapted anisotropically. In the interior
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Figure 4.12: Adapted meshes (first row) and the associated radiative temperatures (second row) obtained
for the SP1 approximation using ε = 0.1 (left) and ε = 0.01 (right) for the problem with discontinuous
variables. Colors in the meshes indicate the order of polynomials used in each element.

of the circular domain, triangular elements are used because they can describe any topology. The same
approach can be used for any curved shape for computational radiative transfer in complex domains.

In Figure 4.15 we present the spectrum used in our computations for H2O species [11]. The non-opaque
frequency interval [ν0,∞) is approximated by 67 bands with piecewise constant absorption coefficients as
shown in the right plot of Figure 4.15 . Since the data are originally defined by wavelength intervals
[λk−1, λk], we computed the corresponding frequency bands using the relation

νk =
c0

λk nm
, k = 1, 2, . . . , 67,

where c0 is the speed of light in vacuum. It is evident from this figure that the material is non-grey
and the optical properties strongly change with the wavelength. In addition, H2O is considered to be
non-scattering and opaque to radiation for wavelengths larger than a cut-off wavelength equal to 16 µm.
In all the computations reported herein, we used c0 = 2.9979 × 108 m/s, hP = 6.62608 × 10−34 Js,
kB = 1.38066×10−23 J/K, nm = 1.33 and ε = 0.1. In this study we highlight the effect of an instantaneous
change in the ambient temperature from 2000 K to 300 K, causing a sharp drop in the temperature across
a boundary layer that can be very thin depending on the physical properties of the enclosure. As a thinner
layer is considered the problem becomes more challenging to solve with the conventional finite element
methods.

Figure 4.16 shows the adaptive meshes and the mean radiative intensity ϕ for the selected bands 7,
18, 49 and 63 using the SP1 approximation. The results obtained using the SP3 approximation are shown
in Figure 4.17. As can be seen from the results presented in these figures, the computed mean intensities
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Figure 4.13: Same as Figure 4.12 but for the SP3 approximation.

Figure 4.14: Cross-sections of the radiative temperature at y = 0.5 for the problem with discontinuous
variables with ε = 0.1 (left) and ε = 0.01 (right).
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Figure 4.15: Initial mesh (left) spectral absorption coefficients κ for the species H2O (right).

ϕk (k = 7, 18, 49 and 63) exhibit similar radiative patterns with highest intensity located in center of the
domain and it decays exponentially to the ambient radiation. However, the speed of this decay and the
thickness of the associated boundary layers differ from a band to another. For instance, faster decay and
thicker boundary layer have been observed in the 63th band for ϕ63 compared to other bands in both
simulations using SP1 and SP3 approximations. These features can be clearly seen in Figure 4.18 where
radial cross-sections of mean intensities are performed along the main diagonal in the domain. These
effects can be attributed to the absorption coefficients used in the simulation for each band in the radiative
spectrum. It is also clear from Figure 4.18 that for the considered value of diffusion scale ε, no noticeable
differences are visible between the SP1 and SP3 solutions for bands 7, 18 and 49. This also confirms
the asymptotic analysis used to derive the SPN approximations and one expects that for this class of
simulations, solutions obtained using the full radiative transfer coincide with those obtained using the SP3

approximation but at very heavy computational cost. Our numerical simulations demonstrate that the
coupling of mesh adaptation and a posteriori error estimate allows for an economical and accurate DG
solution of frequency-dependent radiative transfer problems.

In terms of adapted meshes shown in Figure 4.16 and Figure 4.17, it is evident that the hp-adaptation
patterns are different for each band. It seems that for radiative transfer using H2O species, high p-refinement
is observed for boundary layers and low p-refinement for regions with high temperature. The h-refinement
is also taken place inside the circular domain where the temperature reaches high values. It is clear that
the proposed estimator locates the error very well and the maximum error is well captured at the boundary
of the computational domain. In addition, for the considered radiative conditions, we can observe that
the number of degrees of freedom differs from one band to another and the hp-adaptation is automatically
switched on only when it is needed for the concerned band independently of the other bands, which confirms
the relevance of the adaption criteria based on our error estimator. Finally, we summarize in Table 4.5
the number of degrees of freedom and the values of the error estimator on the first 10 adapted meshes for
all four considered bands using the SP1 approximation. As mentioned before, increasing the number of
degrees of freedom results in a decrease in the error estimator. However, faster convergence can be seen
for the 63th band compared to the other bands. It is worth remarking that the high values of the error
estimator in this problem are related to the high values of the numerical solution itself. Similar conclusions
can be drawn from results obtained using the SP3 approximation and not reported here. Note that the
performance of the proposed DG method is very attractive since the computed solutions remain stable and
oscillation-free even for relatively coarse meshes without global refinement for all frequency bands within
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Band 9 Band 9

Band 18 Band 18

Band 49 Band 49

Band 63 Band 63

Figure 4.16: Adapted meshes (left column) and mean radiative intensity (right column) obtained for different
frequency bands using SP1 approximation of the frequency-dependent radiative transfer problem.
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Band 9 Band 9

Band 18 Band 18

Band 49 Band 49

Band 63 Band 63

Figure 4.17: Same as Figure 4.16 but for the SP3 approximation.
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Figure 4.18: Radial cross-sections of mean intensities along the main diagonal for the four considered bands.

the radiative spectrum.

5 Conclusions

A robust class of hp-adaptive discontinuous Galerkin methods is proposed for the numerical solution of sim-
plified PN approximations of radiative transfer in non-grey semitransparent media. The integro-differential
equation of radiative transfer is approximated by the simplified PN equations resulting in a set of equations
independent of directional coordinates and easy to be integrated in existing software packages. The pro-
posed discontinuous Galerkin method is simple and highly accurate. The method is also locally conservative
finite element method whose approximate solutions are discontinuous across inter-element boundaries; this
property renders the method ideally suited for the hp-adaptivity. Numerical results are presented for sev-
eral test problems in frequency-dependent radiative transfer and comparisons between different adaptivity
procedures have been assessed. It is has been found that it is possible to estimate the radiative field with a
computational cost very significantly lower than solving the equations using the conventional finite element
method. In addition, for optically thick media the simplified PN approximations give results which are close
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Table 4.5: Number of degrees of freedom and values of the error estimator on the first 10 adapted meshes
for the four considered bands in the SP1 approximation.

Band 7 Band 18 Band 49 Band 63
DoFs ηerr DoFs ηerr DoFs ηerr DoFs ηerr

896 73150. 896 13997. 896 617.77 896 86.600
1064 43174. 1064 8542.4 1070 368.20 1086 33.575
2097 18155. 1960 1545.4 2100 108.41 1276 14.334
2563 7045.5 2552 519.71 2578 33.099 1494 9.5181
3003 4023.0 3774 364.40 3642 14.748 1704 6.9688
3333 2803.8 4232 240.33 4318 9.5747 1856 4.6333
3626 1893.3 4400 139.71 4486 6.2435 2026 3.6051
4544 962.29 5056 79.821 5854 2.7802 2368 1.3987
6149 459.34 6104 43.898 7032 1.6925 2682 0.95094
7462 265.88 7446 32.114 9352 1.0422 2964 0.52663

to those computed by the full radiative transfer problem.

At present, we are trying to adapt this method to more difficult problems, such as those used in
glass manufacturing. The equations in this model are strongly nonlinear and involve hydrodynamics and
chemistry effects. We believe that these problems may benefit from the hp-adaptive discontinuous Galerkin
method by reducing the number of degrees of freedom needed for convergence. However, this will require
further study and a robust a posteriori error estimator may be required which is a topic of a forthcoming
paper. It is worthwhile to remark that the presented hp-adaptive discontinuous Galerkin solver is designed
in such a way that it can easily be integrated into an existing CFD code for hydrodynamical flow and
heat mass transfer. Finally, we point out that the parallel implementation of the hp-adaptive discontinuous
Galerkin method presented in this study is straightforward and only requires interprocessor communication
to complete the matrix-vector and vector-vector products required for each frequency band.

A Appendix: Boundary condition for simplified PN equations

Here we summarize the variables required in the boundary conditions for the SPN approximations (2.7)
and (2.8). For more details on the asymptotic analysis used to derive these conditions we refer the reader
to [20]. Hence we define the integrals ri, i = 1, . . . 7 by

r1 =

∫ 1

0
µ%(−µ)dµ, r3 =

∫ 1

0
µ3%(−µ)dµ, r6 =

∫ 1

0
P1(µ)P3(µ)%(−µ)dµ,

r2 =

∫ 1

0
µ2%(−µ)dµ, r4 =

∫ 1

0
µP3(µ)%(−µ)dµ, r5 =

∫ 1

0
P3(µ)%(−µ)dµ,

r7 =

∫ 1

0
P3(µ)P3(µ)%(−µ)dµ,

where % is the reflectivity function given by (2.4), P1 and P3 are Legendre polynomials of order 1 and 3
defined as

P1(µ) = µ, P3(µ) =
5

2
µ3 − 3

2
µ.

Hence, the parameters r1 and r2 required in (2.7) for the boundary condition of SP1 approximation are
given above. The constants appeared in (2.8) for the boundary condition of SP3 approximation are listed
as follows:
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µ2
1 =

1

7

(
3− 2

√
6

5

)
, γ1 =

5

7

(
1− 3

√
6

5

)
,

µ2
2 =

1

7

(
3 + 2

√
6

5

)
, γ2 =

5

7

(
1 + 3

√
6

5

)
,

α1 =
C1D4 − C4D1

C3D4 −D3C4
, β1 =

C3D1 − C1D3

C3D4 −D3C4
, η1 =

D4ρ1 − C4ρ3

C3D4 −D3C4
,

α2 =
C3D2 − C2D3

C3D4 −D3C4
, β2 =

C2D4 − C4D2

C3D4 −D3C4
, η2 =

C3ρ3 −D3ρ1

C3D4 −D3C4
,

where

A1 =
1− 2r1

4
, B1 = −1 + 8r5

16
, C1 = w0(γ2A1 −A2),

A2 =
5(1− 8r3)

16
, B2 =

5(1− 8r6)

16
, C2 = w0(−γ1A1 +A2),

A3 =
1 + 3r2

6
, B3 =

3r4

6
, C3 = w0(γ2A3 −A4),

A4 = r4 +
2

9
(1 + 3r2), B4 = r4 +

3

14
(1 + 7r7), C4 = w0(−γ1A3 −A4),

D1 = w0(γ2B1 −B2), D3 = w0(γ2B3 −B4),

D2 = w0(−γ1B1 +B2), D4 = w0(−γ1B3 +B4),

with w0 =
7

36

√
6

5
, ρ1 and ρ3 are given by

ρ1 = (1− 2r1)π and ρ3 = −(
1

4
+ 2r5)π.

Note that the above parameters depend only on the optical reflectivity of the material where the radiation
has to be estimated. They can be calculated in advance and stored to be used whenever a simulation of
solution has to be repeated in the frequency loop.
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