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Abstract This paper examines the impact of animal manure
on δ15N and δ13C values in a legume, Celtic Black broad bean
(Vicia faba). In a field experiment, V. faba was cultivated in
plots treated with farmyard manure and pure sheep manure.
The results indicate that highly intensive manuring can in-
crease δ15N values in beans, stems, leaves and pods. In com-
parison, manuring had a relatively small impact on δ13C
values. In terms of palaeodietary reconstructions, the high
δ15N values in very intensively manured beans (+3‰) are
equivalent to the trophic-level effect. Based on the experimen-
tal results, it is suggested that high δ15N values in
archaeobotanical remains of V. faba may be attributable to
small-scale cultivation with intensive manuring.
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Introduction

Stable isotope analysis is becoming increasingly widespread
in archaeobotanical research as a powerful method for inves-
tigating agricultural practices and land use patterns (Aguilera
et al. 2008; Bogaard et al. 2013; Fraser et al. 2013; Heaton
et al. 2009; Kanstrup et al. 2014; Masi et al. 2014; Vaiglova
et al. 2014). Plant stable carbon (δ13C) and nitrogen (δ15N)
isotope ratios vary in relation to a range of environmental
factors (Dawson et al. 2002) including agricultural practices,
and these variations can be analysed in archaeobotanical re-
mains (Fiorentino et al. 2015; Szpak 2014). In particular, re-
cent research has been directed towards the identification of
manuring in cereals and pulses (Bogaard et al. 2007, 2013;
Fraser et al. 2011; Kanstrup et al. 2011, 2014). Sincemanuring
is closely linked to intensive land use patterns, it is an impor-
tant area of research into past crop husbandry regimes
(Bogaard 2012).

Field experiments and farm studies indicate that animal ma-
nuring increases cereal δ15N values (≥6‰) (Bogaard et al.
2007; Bol et al. 2005; Fraser et al. 2011; Kanstrup et al.
2011). In comparison, manuring has minimal effect on δ15N
values in legumes, except where very intensively applied over
a long duration (Fraser et al. 2011; Styring et al. 2014). There is
a requirement to further examine the relationship between ma-
nuring intensity and legume δ15N values (Styring et al. 2014). In
terms of palaeodietary reconstructions, it is important to assess
the impact of manuring on legume δ15N values as a source of
15N enrichment in animal and human tissues (Bogaard et al.
2007; Fraser et al. 2011; Hedges and Reynard 2007).

Plant δ13C values have been primarily applied to investigate
crop water management practices (Fiorentino et al. 2015). How-
ever, other environmental factors that alter δ13C need to be con-
sidered (Stokes et al. 2011). The relationship between plant δ13C
values andmanuring is not clearly understood with both positive
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and negative shifts observed in δ13C (Kanstrup et al. 2011;
Senbayram et al. 2008; Szpak et al. 2012b; Wallace et al. 2013).

The aim of this study is to analyse the influence of manuring
on δ13C and δ15N values in the legume, Celtic Black broad
bean (Vicia faba L.). V. faba is frequently recovered in
archaeobotanical assemblages across the Near East and Europe
from the Neolithic and Bronze Age onwards (see Colledge and
Conolly 2007; Stika and Heiss 2013). A recent study identified
extensive evidence for V. faba in Britain in the Neolithic-Iron
Age, totalling over 70 archaeobotanical assemblages contain-
ing Celtic Bean, and suggested that, in some areas, it may have
been cultivated on a small ‘garden’ scale in intensively man-
aged plots treated with animal manure (Treasure 2014). In order
to accurately assess the relationship between δ13C and δ15N
values in V. faba and manuring, it is necessary to undertake
field experiments where the rates of manure application can
be quantified.

Methodological background

Nitrogen isotopes (δ15N)

Plant δ15N values reflect the net effect of a range of factors,
including the form of nitrogen acquired (NH4

+, NO3
−, N2) and

the method of nitrogen assimilation (uptake of soil nitrogen,
fixation of atmospheric N2) (Evans 2001; Högberg 1997).

Pulses are harvested from leguminous plants which can as-
similate nitrogen through fixation of atmospheric N2 via symbi-
otic bacteria (rhizobia) in the roots (Franche et al. 2009; Howard
and Rees 1996). As N2 fixation involves minimal fractionation,
legumes dependent on fixation as a source of nitrogen have
δ15N values typically around 0‰, reflecting atmospheric N2

(i.e., δ15Nair=0‰) (Kohl and Shearer 1980; Shearer and Kohl
1986; Virginia and Delwiche 1982). A range of factors, howev-
er, can influence N2 fixation, in particular, soil nitrogen avail-
ability (Liu et al. 2011). In soil N-rich environments, N2 fixation
is inhibited and legumes preferentially take up nitrogen from the
soil (Ledgard et al. 1996; Peoples et al. 2009; Vinther 1998). The
nitrogen isotopic composition of legumes taking up nitrogen
from soil (rather than N2 fixation) will reflect the δ15N value
of the soil nitrogen (Andrews et al. 2011). As manuring in-
creases soil mineral nitrogen and δ15N values (Choi et al.
2003; Simpson et al. 1999; Watzka et al. 2006), it has the po-
tential to increase δ15N values in legumes above 0‰.

In cereals (non-N2-fixing plants), animal manure signifi-
cantly increases δ15N values (up to +10‰) due to the uptake
of 15N-enriched soil (Bogaard et al. 2007; Bol et al. 2005;
Fraser et al. 2011; Kanstrup et al. 2011, 2012). In comparison,
a recent study suggests that only very intensive animal manure
application, in excess of >20–35 t/ha, alters δ15N in V. faba
due to the preferential fixation of atmospheric N2 (Fraser et al.
2011; Styring et al. 2014). The largest increase in V. faba δ15N

values (+2.2±1.4‰) was observed in a farm study in Evvia,
Greece, where very intensive manuring creates artificial
‘dung-soil’ (Fraser et al. 2011). However, the rate of manure
application (t/ha) was not measured in the Evvia farm study.

Carbon isotopes (δ13C)

During photosynthesis, C3 plants (cereals, legumes) discrimi-
nate against 13C due to the preferential use of 12C by the en-
zyme RuBisCO during carbon fixation (Lloyd and Farquhar
1994; O’Leary 1981). The amount of 13C discrimination is
closely linked with stomatal conductance (intrinsic water use
efficiency) (Farquhar and Sharkey 1982; Farquhar et al. 1989;
O’Leary 1988). Restricted water availability increases stomatal
closure and reduces 13C discrimination (Chaves 1991; Farquhar
et al. 1989). In comparison, during high water availability, sto-
mata are open, increasing 13C discrimination (Chaves 1991;
Farquhar et al. 1989). Studies have identified a causal link
between δ13C values in plants and water availability in green-
house and farm studies (Araus et al. 1997; Farquhar and
Richards 1984; Flohr et al. 2011; Wallace et al. 2013).

However, a wide range of other environmental factors can
alter δ13C values in plants including salinity, light intensity,
temperature and nitrogen availability (Condon et al. 1992;
Gröcke 1998, 2002; Heaton 1999; O’Leary 1981; Tieszen
1991). The relationship between plant δ13C values and ma-
nuring is complex with both positive and negative relation-
ships observed (Kanstrup et al. 2011; Senbayram et al. 2008;
Szpak et al. 2012b;Wallace et al. 2013). At present, there is no
published data which specifically focuses on the impact of
manuring on δ13C values in V. faba.

Materials and methods

Experimental design

Celtic Black broad beans (V. faba L.) were cultivated in three
1-m2 outdoor plots at Durham University Botanic Gardens
between May and September 2013. The Celtic Black broad
beans used are a heritage variety which produces small-
rounded seeds which are morphologically similar to prehistor-
ic finds of V. faba. One plot acted as a control, and two plots
were treated withmanure and decomposed leaf litter (Table 1).
All the available plants were harvested and the plant height,
number of ripe/un-ripe pods, number of beans and dimensions
of each bean were recorded.

One plant from each plot was randomly selected for isoto-
pic analysis and air-dried. Samples of bean cotyledons, bean
testae, pods, leaves and stem were analysed. All of the pods
and beans available for each selected plant were analysed. The
cotyledon was sampled separately, as the testa is rarely pre-
served in archaeobotanical remains of V. faba. The position of
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each pod on the plant and each bean within individual pods
was recorded. This detailed sampling methodology enables
analysis of within-plant δ13C and δ15N variation. Dried soil
and manure samples were sieved at <1 mm. All samples were
homogenised in an agate pestle and mortar.

Stable isotope analysis

Stable isotope measurements were performed at Durham Uni-
versity using a Costech Elemental Analyser (ECS 4010)
coupled to a Thermo Finnigan Delta V Advantage isotope
mass spectrometer. Carbon isotope ratios are Craig-corrected
for 17O contribution and reported in standard delta (δ) notation
in per mil (‰) relative to VPDB. Nitrogen isotope ratios are
reported relative to AIR. Data accuracy is monitored through
routine analyses of in-house standards, which are stringently
calibrated against international standards (e.g., USGS 40,
USGS 24, IAEA 600, IAEA N1, IAEA N2). Analytical un-
certainty for δ13C and δ15N measurements is typically ±0.1‰
for replicate analyses of the international standards and typi-
cally <0.2‰ on replicate sample analysis. Total organic car-
bon and nitrogen data was obtained as part of the isotopic
analysis using an internal standard (i.e., glutamic acid,
40.82 % C and 9.52 % N).

Results

Biomass analysis

The results of the biomass analysis are presented in Table 2. Six
plants from the midden plot suffered insect damage and did not
produce any pods. Plants in the amended plot were taller than in
the control plot. In comparison, the heights of plants in the con-
trol and midden plots are identical (though this may be due to
insect damage in the midden plants). Pod and bean yield was
highest in plants in the amended plot. The comparative results
for the midden plot are significantly lower, though, as noted
above, this may be due to insect damage. Bean dimensions in-
creased (particularly length) in the amended and midden plots.

Stable isotope analyses

Mean δ13C and δ15N values for the samples analysed are
presented in Table 3. Figure 1 presents the δ13C and δ15N

values for all the plant and soil samples analysed. The supple-
mentary data includes the results for each sample in addition
to C/N atomic ratio, %C and %N results.

Soil and manure analyses

Mean soil δ15N values in the amended (5.5±0.4‰) and mid-
den (8.1±1.7‰) plots are significantly higher than in the con-
trol plot (4.6±0.2‰). Mean δ15N values for the farmyard
manure were 7.7±0.3‰ and, for the sheep manure, 7.5±0.2
‰. In the amended and midden plots, mean δ13C values are
lower than in the control plot.

Plant analyses

Mean δ15N values in the control samples varied between −1
and 0.7‰. Mean δ15N values in cotyledons were 1.5±0.2‰
in the amended samples and 2.6±0.3‰ midden samples.
Pods, stems and leaves were 15N enriched in the amended
and midden samples. There is small variation in δ15N values
between cotyledons sampled from the same pod and plant.
δ15N variation between leaves, stems and pods was typically
≤1‰, with the largest offset (1.7‰) between the midden pod
and midden stem samples (see Electronic supplementary
material). Testa δ15N values are significantly lower than cot-
yledon δ15N values. Manuring intensity and δ15N values are
positively correlated.

Mean δ13C values in the amended and midden samples are
similar to the control samples, with small increases observed
in some samples of up to 1.7‰. Within-plant δ13C variation
between leaves, stems and pods was minimal. There is only a
small variation in δ13C values between cotyledons sampled
from the same pod and plant.

Discussion

Soil and manure δ13C and δ15N variability

In agreement with previous studies, manuring increased soil
δ15N values (Bol et al. 2005; Kanstrup et al. 2011; Senbayram
et al. 2008; Watzka et al. 2006). The mean δ15N values for the
farmyard manure (7.7±0.3‰) and sheep manure (7.5±0.2‰)
are high for animal manure (cf. Szpak 2014). Mean δ13C
values were lower in amended and midden plots as animal

Table 1 Field treatments for the plots used in this study

Treatment (t/ha) Detail

Plot 1 Control n/a No amendment.

Plot 2 Amended 70 14 l of farmyard manure (animal manure/straw) with 14 l of decomposed leaf litter mixed into the soil

Plot 3 Midden 100 20 l of pure sheep manure (approx.) with 20 l of decomposed leaf litter not mixed into the soil
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manure is 13C-depleted (Bol et al. 2005). Previous studies
have observed decreases in δ13C values in manured soils
(Gerzabek et al. 1997; Senbayram et al. 2008).

Plant δ13C variability

Plant δ13C values were minimally affected by manuring,
displaying only small increases, typically around +1‰. These
results are consistent with previous studies which indicate that
manuring may be a source of small variation in 13C values
(Senbayram et al. 2008; Szpak et al. 2012b; Wallace et al.

2013). Small increases in δ13C values in response to nitrogen
fertilisation observed in previous studies may be related to
increased plant biomass which can limit stomatal conductance
causing less 13C discrimination (Jenkinson et al. 1995; Serret
et al. 2008).

Plant δ15N variability

The results presented in this study indicate that very intensive
animal manuring (>70 t/ha) can increase δ15N values (+3‰)
in V. faba. There is little δ15N variation between plant tissues,

Table 2 Biomass analysis of the
Celtic Black broad beans from
this study

Control Amended Midden

Number of plants 19 20 19

Height (cm) 45±10 56±9** 45±10

Number of pods 33 40 21

Number of beans 101 129 56

Dimensions of beans (mm) Width 6.64±0.86 6.81±0.72 6.79±0.79

Length 9.04±1.26 9.54±1.02** 10.05±1.18***

Depth 7.53±1.14 7.79±0.87 8.14±0.90**

Plant height and dimensions of beans were statistically compared between the control plot and amended plot, and
the control plot and midden plot using an unpaired samples t test. ± is one standard deviation

*p<0.05; **p<0.01; ***p<0.001

Table 3 δ15N and δ13C analysis
of the Celtic Black broad beans
from this study

Tissue Plot Number of samples δ13C δ15N

Cotyledon Control 7 −30.2±0.1 0.7±0.1

Amended 7 −29.2±0.2*** 1.5±0.2***

Midden 3 −28.8±0.3*** 2.6±0.3***

Testa Control 7 −32.1±0.3 −1.0±0.5
Amended 7 −31.3±0.2*** −1.0±0.4
Midden 3 −31.1±0.1*** 0.9±0.3***

Pod Control 2 −31.9±0.5 0.2±0.1

Amended 2 −31.9±0.0 1.4±0.0**

Midden 1 −31.3 1.7

Leaf Control 2 −31.6±0.2 −0.1±0.1
Amended 2 −31.6±0.0 1.1±0.1**

Midden 1 −31.2 3.0

Stem Control 2 −31.0±0.4 −0.3±0.1
Amended 1 −30.9 0.7

Midden 3 −29.3±0.3* 3.0±0.7**

Soil Control 4 −25.3±0.1 4.6±0.2

Amended 4 −26.7±0.5** 5.5±0.4**

Midden 4 −29.9±1.3*** 8.1±1.7**

Farmyard manure Amended 2 −29.3±0.2 7.7±0.3

Sheep manure Midden 2 −30.0±0.2 7.5±0.2

Results were statistically compared (excluding the manure samples) between the control plot and amended plot,
and the control plot and midden plot using an unpaired samples t test. ± is one standard deviation

*p<0.05; **p<0.01; ***p<0.001
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with the exception of testa samples, comparable with results
from previous studies (López-Bellido et al. 2010; Nebiyu et al.
2014). Control sample δ15N values varied between 0±1‰
and are consistent with fixation of atmospheric N2 in V. faba
(Fan et al. 2006; López-Bellido et al. 2011; Nebiyu et al. 2014;
Tryderman et al. 2004; Unkovich 2013). In contrast, the ele-
vated δ15N values in the amended and midden samples indi-
cate preferential uptake of soil mineral nitrogen in comparison
to atmospheric N2 fixation. The δ15N values in the midden
plot are higher than in the amended plot due to the application
of pure manure compared to farmyard manure (i.e., a mixture
of straw and manure).

The results presented here agree with a previous study
which indicated that only very intensive manuring can signif-
icantly alter δ15N values in V. faba due to the preferential
fixation of atmospheric N2 (Fraser et al. 2011; Styring et al.
2014). Fraser et al. (2011) only observed a large increase in
δ15N values for V. faba in a farm study at Evvia, Greece,
where very intensive manuring (sheep/goat dung) creates an
artificial dung-soil. The quantity of manure applied (t/ha) in
the Evvia farm study could not be measured, though the soil
conditions appear to be similar to the midden plot in this study.

The relationship between N2 fixation and animal manuring
in legumes is an area which requires further research. It is not
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clear why δ15N values in legumes are only altered by very
intensive manuring as it requires less energy to take up soil
mineral nitrogen compared to fixing atmospheric N2 (An-
drews et al. 2009). A possible explanation may be due to
ability of certain varieties of V. faba to continue atmospheric
N2 fixation in the presence of high soil mineral nitrogen
(Köpke and Nemecek 2010). Recently, Szpak et al. (2014)
observed large 15N enrichment (+16‰) in a legume (common
garden bean, Phaseolus vulgaris L.) amended with seabird
guano which has a very high δ15N value (> +20‰) compared
with animal manure (Szpak et al. 2012a; Szpak 2014). This
indicates that manures which are high in plant available nitro-
gen and have high δ15N values can significantly enrich 15N in
legumes and suppress N2 fixation compared to animal manure
(Szpak et al. 2014). In comparison, a recent study demonstrat-
ed that animal manure increased N2 fixation in peas (Pisum
sativum L.; Jannoura et al. 2014).

Archaeological implications

The results of this study suggest that intensive manuring of
V. fabamay be identifiable in archaeobotanical remains using
nitrogen isotope analysis (cf. Fraser et al. 2011). The high
intensity of manuring required to effect the nitrogen isotopic
composition of pulses indicates that pulse δ15N values can
reflect the scale of cultivation. In recent farming contexts,
intensity of manuring is closely correlated with the scale of
cultivation, with smaller plots receiving intensive manure ap-
plication (Bogaard et al. 2000; Jones 2005). In Evvia, Greece,
V. faba is cultivated in small infield (garden) areas, some of
which are very intensively manured, creating an artificial
dung-soil (Jones et al. 1999). Similarly, in Asturias, Spain,
V. faba is cultivated in small intensively manured plots that
are rotated with cereals (Charles et al. 2002). It is suggested
that high δ15N values in archaeobotanical remains of V. faba
may indicate small-scale cultivation with very intensive ma-
nuring. The results of this study should be viewed as prelim-
inary in character, and further research is currently ongoing to
explore δ13C and δ15N variability between plants cultivated in
the same plot. For example, Wallace et al. (2013) have dem-
onstrated large variation in δ13C values in V. faba cultivated
under similar conditions. Variation in plant isotope values is
expected in traditional farming regimes where growing con-
ditions can be variable (Wallace et al. 2013)

In terms of palaeodietary reconstructions, measurement of
plant δ15N values is necessary in order to accurately recon-
struct baseline data and interpret δ15N values in animal and
human tissues (Casey and Post 2011; Hedges and Reynard
2007). In particular, Fraser et al. (2013) have demonstrated
that the plant component of diets can be assessed with greater
accuracy through direct measurement of archaeological plant
δ15N values. The impact of manuring on cereal δ15N values
(up to 10‰) is significantly higher than the Celtic Black broad

beans analysed in this study. Despite this, the enrichment in
δ15N between the control and the midden samples (~3‰) is
equivalent to the trophic-level effect (3–5‰, Bocherens and
Drucker 2003) and, hence, could subsequently cause 15N en-
richment in animal and human tissues. This is particularly
significant as palaeodietary studies typically consider legumes
to have δ15N values around 0‰ (DeNiro and Epstein 1981;
van Klinken et al. 2002).

In manured cereals, there is a large offset in δ15N values
between the grain and chaff (2.4±0.8‰), suggesting that the
use of chaff for animal fodder and grain for human consump-
tion will result in significantly different nitrogen isotopic sig-
natures between animals and humans (Bogaard et al. 2007;
Fraser et al. 2011). In comparison, the results of this study
indicate a comparatively small offset in δ15N values of ma-
nured V. faba between different plant components. This is
significant as ethnographic evidence indicates that V. faba
was used as a source of fodder, either the seeds, chaff or whole
plants (Forbes 1996; Halstead 2014).

Conclusion

The results of this study indicate that highly intensive animal
manuring can increase δ15N values in legumes. Celtic Black
broad beans (V. faba) displayed significantly higher δ15N
values in intensively manured plots. In comparison, manure
minimally affected δ13C values, indicating that manuring may
only be a source of small variation in δ13C values. In terms of
palaeodietary reconstructions, manuring increased δ15N
values on a scale equivalent to a single step in trophic level.
Based on the experimental results presented here, it is sug-
gested that high δ15N values in archaeobotanical remains of
V. faba should be attributed to small-scale cultivation with
very intensive manuring.
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