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Jeremy Mould,2,7 Pirin Erdoğdu,8 D. Heath Jones,9 John R. Lucey,10

Lachlan Campbell3 and Christopher J. Fluke7

1International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA 6009, Australia
2ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), University of Sydney, NSW 2006, Australia
3Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia
4School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
5Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
6Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia
7Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia
8Australian College of Kuwait, PO Box 1411, Safat 13015, Kuwait
9School of Physics, Monash University, Clayton, VIC 3800, Australia
10Department of Physics, University of Durham, Durham DH1 3LE, UK

Accepted 2014 August 26. Received 2014 August 26; in original form 2014 March 16

ABSTRACT
We derive peculiar velocities for the 6dF Galaxy Survey (6dFGS) and describe the velocity
field of the nearby (z < 0.055) Southern hemisphere. The survey comprises 8885 galaxies for
which we have previously reported Fundamental Plane data. We obtain peculiar velocity prob-
ability distributions for the redshift-space positions of each of these galaxies using a Bayesian
approach. Accounting for selection bias, we find that the logarithmic distance uncertainty is
0.11 dex, corresponding to 26 per cent in linear distance. We use adaptive kernel smoothing
to map the observed 6dFGS velocity field out to cz ∼ 16 000 km s−1, and compare this to
the predicted velocity fields from the PSCz Survey and the 2MASS Redshift Survey. We find
a better fit to the PSCz prediction, although the reduced χ2 for the whole sample is approxi-
mately unity for both comparisons. This means that, within the observational uncertainties due
to redshift-independent distance errors, observed galaxy velocities and those predicted by the
linear approximation from the density field agree. However, we find peculiar velocities that
are systematically more positive than model predictions in the direction of the Shapley and
Vela superclusters, and systematically more negative than model predictions in the direction
of the Pisces-Cetus Supercluster, suggesting contributions from volumes not covered by the
models.

Key words: surveys – galaxies: elliptical and lenticular, cD – galaxies: fundamental
parameters – cosmology: distance scale – cosmology: large-scale structure of Universe.

1 IN T RO D U C T I O N

The velocity field of galaxies exhibits deviations from Hubble flow
induced by inhomogeneities in the large-scale distribution of matter.
By studying the galaxy peculiar velocity field, we can explore the
large-scale distribution of matter in the local universe and so test
cosmological models and measure cosmological parameters.

The measurement of galaxy peculiar velocities involves evalu-
ating both the redshifts and distances of galaxies, and computing

� E-mail: christopher.springob@icrar.org

the residual component of the velocity that is not accounted for by
Hubble flow. The peculiar velocity is defined as

vpec ≡ czpec (1)

where the peculiar redshift zpec is related to the observed redshift
zobs and the redshift due to the Hubble flow zH through

(1 + zobs) = (1 + zH)(1 + zpec) (2)

(see Harrison 1974). At low redshifts, the peculiar velocity approx-
imates to

vpec ≈ czobs − czH ≈ czobs − H0D (3)
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where H0 is the Hubble constant and D is the galaxy’s comoving
distance. Throughout this paper, we use the exact relation (equation
2) rather than this approximation.

The measurement of the peculiar velocities thus depends on the
use of redshift-independent distance indicators. Many distance in-
dicators have been used over the years (see Jacoby et al. 1992 for
an overview of several of these indicators), but the two that have
yielded the largest number of distance measurements are the Tully–
Fisher relation (TF; Tully & Fisher 1977) and the Fundamental
Plane relation (FP; Dressler et al. 1987; Djorgovski & Davis 1987).
The former is a scaling relation for late-type galaxies that expresses
the luminosity as a power-law function of rotation velocity. The
latter is a scaling relation for galaxy spheroids (including spiral
bulges) that expresses the effective radius as a power-law product
of effective surface brightness and central velocity dispersion.

The earliest wide-angle peculiar velocity surveys included sev-
eral hundred galaxies. Many of these surveys were combined to
create the Mark III catalogue (Willick et al. 1995, 1996, 1997).
The earliest FP peculiar velocity surveys to include more than 1000
galaxies were ENEAR (da Costa et al. 2000; Bernardi et al. 2002),
EFAR (Colless et al. 2001; Saglia et al. 2001), and the Streaming
Motions of Abell Clusters survey (Hudson et al. 2001). The earliest
TF peculiar velocity surveys of comparable size were a set of over-
lapping surveys conducted by Giovanelli, Haynes, and collaborators
(e.g. Giovanelli et al. 1994, 1995, 1997; Haynes et al. 1999a,b).

The largest TF survey used for peculiar velocity studies to date
(and the largest single peculiar velocity survey published until now)
is the SFI++ survey (Masters et al. 2006; Springob et al. 2007),
which included TF data for ∼5000 galaxies (much of which came
from the earlier SFI, SCI, and SC2 surveys). SFI++ has been in-
cluded, along with other surveys using additional techniques, into
yet larger catalogues of peculiar velocities, such as the COMPOS-
ITE sample (Watkins, Feldman & Hudson 2009) and the Extra-
galactic Distance Database (Tully et al. 2009).

Peculiar velocity surveys have long been used for cosmologi-
cal investigations. In addition they have also been used to study
the cosmography of the local universe. Because the existing sam-
ple of galaxy peculiar velocities remains sparse, the most detailed
cosmographic description of the velocity field has been confined
to the nearest distances. Most significantly, the Cosmic Flows sur-
vey (Courtois, et al. 2011b; Courtois, Tully & Heraudeau 2011a)
has been used to investigate the cosmography of the velocity field
within 3000 km s−1 (Courtois et al. 2012). This has now been ex-
tended with the followup Cosmic Flows 2 survey (Tully et al. 2013).
Cosmographic descriptions of the velocity field at more distant red-
shifts have been made, though the sampling of the larger volumes is
sparse (e.g. Hudson et al. 2004). Perhaps the most extensive exami-
nation of the cosmography of the local universe to somewhat higher
redshifts was done by Theureau et al. (2007), who looked at the
velocity field out to 8000 km s−1 using the Kinematics of the Local
Universe sample (Theureau et al. 2005, and references therein).

One focus of study has been the comparison of peculiar velocity
field models derived from redshift surveys to the observed pecu-
liar velocity field. Early comparisons involved models based on the
expected infall around one or more large attractors (e.g. Lynden-
Bell et al. 1988, hereafter LB88; Han & Mould 1990; Mould et al.
2000). The subsequent advent of large all-sky redshift surveys al-
lowed various authors to reconstruct the predicted velocity field
from the redshift-space distribution of galaxies, treating every indi-
vidual galaxy as an attractor. That is, the velocity field was recon-
structed under the assumption that the galaxy density field traced
the underlying matter density field, assuming a linear bias param-

eter b = δg/δm, where δg and δm represent the relative overdensity
in the galaxy and mass distributions, respectively.

Early attempts to compare the observed peculiar velocity field
to the field predicted by large all-sky redshift surveys include
Kaiser et al. (1991), Shaya, Tully & Pierce (1992), Hudson (1994),
and Davis, Nusser & Willick (1996). Subsequent studies exploited
the deeper density/velocity field reconstruction of the IRAS Point
Source Catalogue Redshift Survey (PSCz; Saunders et al. 2000) by
Branchini et al. (1999), e.g. Nusser et al. (2001), Branchini et al.
(2001), Hudson et al. (2004), Radburn-Smith, Lucey & Hudson
(2004), Ma, Branchini & Scott (2012), and Turnbull et al. (2012).
The density/velocity field reconstructions have also been derived
using galaxy samples selected from the 2MASS XSC catalogue
(Jarrett et al. 2000), e.g. Pike & Hudson (2005), Erdoğdu et al.
(2006), Lavaux et al. (2010), Davis et al. (2011). Recently Erdoğdu
et al. (2014), using the deeper Ks = 11.75 limited version of the
2MASS Redshift Survey (2MRS, Huchra et al. 2012), have derived
an updated reconstruction of the 2MASS density/velocity field.

The various density and velocity field reconstructions are able
to recover all of the familiar features of large-scale structures ap-
parent in redshift surveys, though there are some disagreements at
smaller scales. Additionally, the question of whether the velocity
field reconstructions can replicate the full CMB dipole remains un-
resolved, and the degree of agreement between the dipole of the
observed velocity field and both �CDM predictions and the re-
constructed velocity fields from redshift surveys remains in dispute
(e.g. Feldman, Watkins & Hudson 2010; Nusser & Davis 2011).

Deeper redshift and peculiar velocity surveys could help to re-
solve these issues and give us a better understanding of the cos-
mography of the local universe. Most of the deeper surveys to date
include either a very small number of objects or heterogeneous
selection criteria. Real gains can be made from a deep peculiar ve-
locity survey with a large number of uniformly selected objects.
In this paper, we present the results from just such a survey: the
6-degree Field Galaxy Survey (6dFGS).

6dFGS is a combined redshift and peculiar velocity survey of
galaxies covering the entire southern sky at |b| > 10◦ (Jones
et al. 2004, 2005, 2009). The redshift survey includes more than
125 000 galaxies and the peculiar velocity subsample (hereafter
6dFGSv) includes ∼10 000 galaxies, extending in redshift to
cz ≈ 16 000 km s−1. This is the largest peculiar velocity sample
from a single survey to date.

The peculiar velocities are derived from FP data for these galax-
ies. The spectroscopic observations were made with the UK Schmidt
Telescope, and photometric observations come from the Two Mi-
cron All-Sky Survey (2MASS) Extended Source Catalogue (Jarrett
et al. 2000). When plotted in the three-dimensional parameter space
with axes r = log(Re), s = log(σ 0), and i = log(Ie), where Re, σ 0,
and Ie represent effective radius, central velocity dispersion, and
effective surface brightness respectively, the galaxies lie along a
plane that can be expressed in the form

r = as + bi + c (4)

where a, b and c are observationally derived constants. Because r
is a distance-dependent quantity while both s and i are essentially
distance-independent, the FP can be used as a distance indicator,
with the galaxy’s FP offset along the r-direction providing a measure
of its peculiar velocity.

The final data release for 6dFGS redshifts was presented by Jones
et al. (2009). The data release for the FP parameters was Campbell
et al. (2014). The fitting of the FP is described by Magoulas et al.
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(2012), while the stellar population trends in FP space were exam-
ined by Springob et al. (2012).

In this paper, we present the method for deriving the peculiar ve-
locities for the 6dFGSv galaxies, and we provide an overview of the
peculiar velocity cosmography, which will inform the cosmological
analyses that we will undertake in future papers. These papers in-
clude a measurement of the growth rate of structure (Johnson et al.
2014) and measurements of the bulk flow, using different methods
(Magoulas et al., in preparation, Scrimgeour et al., in preparation).

This paper is arranged as follows. In Section 2 we describe both
the 6dFGSv data set and the 2MRS and PSCz predicted velocity
fields to which we will compare our results. In Section 3 we describe
the fitting of the FP and in Section 4 we describe the derivation of
the peculiar velocities. In Section 5 we discuss our adaptive kernel
smoothing, and the resulting 6dFGSv cosmography. Our results are
summarized in Section 6.

2 DATA

2.1 6dFGSv Fundamental Plane data

The details of the sample selection and data reduction are pre-
sented in Magoulas et al. (2012) and Campbell et al. (2014). In
brief, the 6dFGSv includes all 6dFGS early-type galaxies with
spectral signal-to-noise ratios greater than 5, heliocentric redshift
zhelio < 0.055, velocity dispersion greater than 112 km s−1, and J-
band total magnitude brighter than mJ = 13.65. The galaxies were
identified as ‘early-type’ by matching the observed spectrum, via
cross-correlation, to template galaxy spectra. They include both el-
lipticals and spiral bulges (in cases where the bulge fills the 6dF
fibre). Each galaxy image was subsequently examined by eye, and
galaxies were removed from the sample in cases where the mor-
phology was peculiar, the galaxy had an obvious dust lane, or the
fibre aperture was contaminated by the galaxy’s disc (if present), or
by a star or another galaxy.

We have also removed from the sample several hundred galaxies
within the heliocentric redshift limit of zhelio = 0.055 that nonethe-
less have recessional velocities greater than 16 120 km s−1 in the
Cosmic Microwave Background (CMB) reference frame. We do this
because our peculiar velocity analysis is done in the CMB frame,
and we wish the survey to cover a symmetric volume in that frame.
Since the initial survey redshift limit was made in the heliocentric
frame, we must limit the sample to 16 120 km s−1 in the CMB
frame in order to have a uniform redshift limit across the sky. The
final sample has 8885 galaxies.

Velocity dispersions were measured from the 6dFGS spectra, us-
ing the Fourier cross-correlation method of Tonry & Davis (1979).
The method involves convolving the galaxy spectrum with a range
of high signal-to-noise ratio stellar templates, which were also ob-
served with the 6dF spectrograph. From that cross-correlated spec-
trum, we measure the velocity dispersion. As we demonstrate in
Campbell et al. (2014), in cases where a galaxy’s velocity dispersion
has been previously published in the literature, our measurements
are in good agreement with the literature values.

The apparent magnitudes were taken from the 2MASS Extended
Source Catalogue (Jarrett et al. 2000). We have derived the angular
radii and surface brightnesses from the 2MASS images in J, H,
and K bands for each of the galaxies in the sample, taking the total
magnitudes from the 2MASS catalogue, and then measuring the
location of the isophote that corresponds to the half light radius.
Surface brightness as defined here is then taken to be the average
surface brightness interior to the half light radius. We use the J-band

values here, as they offer the smallest photometric errors. Again,
as shown in Campbell et al. (2014), in cases where previously
published photometric parameters are available, our measurements
are in good agreement.

For the purpose of fitting the Fundamental Plane, the angular radii
have been converted to physical radii using the angular diameter
distance corresponding to the observed redshift in the CMB frame.
2666 of the galaxies are in groups or clusters, as defined by the
grouping algorithm outlined by Magoulas et al. (2012). For these
galaxies, we use the redshift distance of the group or cluster, where
the group redshift is defined as the median redshift for all galaxies
in the group.

Several changes have been made to the 6dFGS catalogue since
the earliest 6dFGS FP papers, Magoulas et al. (2012) and Springob
et al. (2012), were published. First, the velocity dispersion errors
are now derived using a bootstrap technique. Secondly, the Galac-
tic extinction corrections are applied using the values given by
Schlafly & Finkbeiner (2011) rather than Schlegel, Finkbeiner &
Davis (1998). Thirdly, ∼100 galaxies with photometric problems
(e.g. either 2MASS processing removed a substantial part of the
target galaxy or the presence of a strong core asymmetry indicated
multiple structures) have been removed from the sample. These re-
visions are discussed in greater detail by Campbell et al. (2014).
Following these changes, the Fundamental Plane has been re-fit,
and the revised FP is discussed in Section 3.

The 6dFGSv sky distribution is shown in Fig. 1. Each point
represents a 6dFGSv galaxy, colour-coded by redshift. As seen
here, 6dFGSv fills the Southern hemisphere outside the Zone of
Avoidance. Fig. 2 shows the redshift distribution for 6dFGSv, in
the CMB frame (which we use throughout the rest of this paper).
As the figure makes clear, the number of objects per unit redshift
increases up to the redshift limit of the sample. The mean redshift of
the sample is 11 175 km s−1. Note that a complete, volume-limited
sample would have a quadratic increase in the number of objects
per redshift bin, and thus a mean redshift of 12 090 km s−1, or
0.75 times the limiting redshift.

2.2 Reconstructed velocity fields

We wish to compare our observed velocity field to reconstructed
velocity field models derived from the redshift-space distribution of
galaxies, under the assumption that the matter distribution traces
the galaxy distribution. We present here two different velocity
field reconstructions, one derived from the 2MASS Redshift Sur-
vey (Erdoğdu et al. 2014), and one derived from the PSCz sur-
vey (Branchini et al. 1999). In a future paper, we will also com-
pare the observed velocity field to other reconstructions, including
the 2M++ reconstruction (Lavaux & Hudson 2011). This follows
Carrick et al. (in preparation), who have made such a comparison
between 2M++ and SFI++.

2.2.1 2MRS reconstructed velocity field

At present, one of the largest and most complete reconstructed
velocity fields is derived from galaxies in the 2MASS Redshift
Survey (2MRS). In the final data release (Huchra et al. 2012), the
2MRS consists of redshifts for 44 699 galaxies with a magnitude
limit of Ks = 11.75 (with a significant fraction of the Southern
hemisphere redshifts coming from 6dFGS). The zone of avoidance
for the sample varies with Galactic longitude, but lies at roughly
|b| ∼ 5 − 8◦, and the sample covers 91 per cent of the sky. We thus
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Figure 1. Distribution of 6dFGSv galaxies in Galactic latitude (l) and longitude (b), shown in an equal-area Aitoff projection. Individual galaxies are colour-
coded by their redshift. The 6dFGSv galaxies fill the Southern hemisphere apart from ±10◦ about the Galactic plane. Some of the large-scale structures in the
6dFGSv volume are also indicated.

make use of the 2MRS reconstructed density and velocity fields of
Erdoğdu et al. (2014; updated from Erdoğdu et al. 2006) which uses
the 2MRS redshift sample to recover the linear theory predictions
for density and velocity.

The method of reconstruction is outlined in Erdoğdu et al. (2006),
where it was applied to a smaller 2MRS sample of 20 860 galax-
ies with a brighter magnitude limit of Ks = 11.25 and a median
redshift of 6000 km s−1. The method closely follows that of Fisher
et al. (1995) and relies on the assumption that the matter distribu-
tion traces the galaxy distribution in 2MRS, with a bias parameter
β = �0.55

m /b that is assumed to take the value 0.4 for the 2MRS sam-
ple. The density field in redshift space is decomposed into spherical
harmonics and Bessel functions (or Fourier–Bessel functions) and
smoothed using a Wiener filter. The velocity field is derived from the
Wiener-filtered density field by relating the harmonics of the grav-
ity field to those of the density field (in linear theory). The recon-
struction gives velocity vectors on a grid in supergalactic Cartesian
coordinates with gridpoints spaced by 8 h−1 Mpc and extending
to a distance of 200 h−1 Mpc from the origin in each direction.
(h is the Hubble constant in units of 100 km s−1 Mpc−1.)

Erdoğdu et al. (2006) explore the issue of setting boundary condi-
tions in the density and velocity field reconstruction. One must make
some assumptions about the calibration of the reconstructed density
field. The density/velocity field reconstruction used in this paper de-
fines the logarithmic derivative of the gravitational potential to be
continuous along the surface of the sphere of radius 200 h−1 Mpc.
This is the ‘zero potential’ boundary condition, as described in the
aforementioned papers. For a perfectly smooth, homogeneous uni-
verse, one would then expect that both the mean overdensity and
mean peculiar velocity within the spherical survey volume would
also be zero. However, because of the particular geometry of local
large-scale structure, both of these quantities deviate slightly from
zero. The mean overdensity within 200 h−1 Mpc is found to be
δ = +0.09 (with an rms scatter of 1.21), and the mean line-of-sight
velocity is found to be +66 km s−1(with an rms scatter of 266
km s−1). (Here, δ represents the local matter density contrast.) In

contrast to what one might naively expect, the slightly positive mean
value of δ induces a positive value to the mean line-of-sight peculiar
velocity. This occurs because many of the largest structures lie at
the periphery of the survey volume.

For comparison with our observed velocities, we convert the
2MRS velocity grid from real space to redshift space. Each real-
space gridpoint is assigned to its corresponding position in redshift
space, and resampled on to a regularly spaced grid in redshift space.
The points on the redshift-space grid are 4 h−1 Mpc apart, and we
have linearly interpolated the nearest points from the old grid on to
the new grid to get the redshift-space velocities.

Because the real-space velocity field is Weiner-filtered on to a
coarsely sampled grid with 8 h−1 Mpc spacing, there are no appar-
ent triple-valued regions in the field. That is, there are no lines of
sight along which the conversion from real space to redshift space
becomes confused because a single redshift corresponds to three dif-
ferent distances, as can happen in the vicinity of a large overdensity.
For triple-valued regions to appear in a grid with 8 h−1 Mpc spacing
one would need velocity gradients as large as 800 km s−1 between
adjacent points in the grid, and this does not occur anywhere in
the velocity field. While the actual velocity field will presumably
include such triple-valued regions around rich clusters, they have
been smoothed out in this model.

2.2.2 PSCz reconstructed velocity field

An alternative reconstruction of the density and velocity fields is
offered by Branchini et al. (1999), who make use of the IRAS Point
Source Catalogue Redshift Survey (PSCz, Saunders et al. 2000).
PSCz includes 15,500 galaxies, with 60 μm flux f60 > 0.6. The
survey covers 84 per cent of the sky, with most of the missing
sky area lying at low Galactic latitudes (see Branchini et al. 1999,
fig. 1.) While the number of galaxies is far fewer than in 2MRS,
Erdoğdu et al. (2006) show that the redshift histogram drops off
far more slowly for PSCz than for 2MRS, so that the discrepancy
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Figure 2. Redshift distribution of galaxies in 6dFGSv in the CMB reference
frame. The bin width is 500 km s−1.

in the number of objects is not as great at distances of ∼100–150
h−1 Mpc, where most of our 6dFGSv galaxies lie.

The density and velocity fields were reconstructed from PSCz
by spherical harmonic expansion, based on a method proposed by
Nusser & Davis (1994). The method uses the fact that, in linear
theory, the velocity field in redshift space is irrotational, and so
may be derived from a velocity potential. The potential is expanded
in spherical harmonics, and the values of the spherical harmonic
coefficients are then derived, again assuming a mapping between the
PSCz galaxy redshift distribution and the matter distribution, with a
bias parameter β = 0.5. The reconstruction gives velocity vectors on
a supergalactic Cartesian grid with spacing 2.8 h−1 Mpc, extending
to a distance of 180 h−1 Mpc from the origin in each direction.
The mean overdensity within the survey volume is δ = −0.11 (with
an rms scatter of 1.11), with a mean line-of-sight velocity of +79
km s−1(with an rms scatter of 156 km s−1).

We convert the PSCz velocity grid from real space to redshift
space, using the same procedure used to construct the 2MRS ve-
locity field. However, in this instance, the velocity grid uses the
same 2.8 h−1 Mpc grid spacing that is used in the real-space field.
While the original grid spacing is finer in the PSCz reconstruction
than in the 2MRS reconstruction, Branchini et al. (1999) minimize
the problem of triple-valued regions by collapsing galaxies within
clusters, and applying a method devised by Yahil et al. (1991) to
determine the locations of galaxies along those lines of sight.

2.2.3 Comparing the model density fields

The two model density fields are shown in Fig. 3. In the left column,
along four different slices of SGZ, we show the reconstructed 2MRS
density field. (SGX, SGY, and SGZ are the three cardinal directions
of the supergalactic Cartesian coordinate system, with SGZ = 0
representing the supergalactic plane.) The field has been smoothed
using a 3D Gaussian kernel, which we explain in greater detail in
Section 5, when we apply this smoothing algorithm to the velocity
field. In the central column, we show the smoothed PSCz field,

and in the right column, we show the ratio of the 2MRS and PSCz
densities. We only show gridpoints with distances out to 161.2
h−1 Mpc, the distance corresponding to the 6dFGSv limiting redshift
of 16 120 km s−1.

In this figure, we also plot the positions of several individual
Southern hemisphere superclusters, as identified in the 6dFGS red-
shift survey. Based on the features identified by Jones et al. (2009),
which itself relies on superclusters identified by Fairall (1998) and
Fairall & Woudt (2006), among others, we highlight the positions
of the Cetus Supercluster, Eridanus Cluster, Sculptor Wall, Hydra-
Centaurus Supercluster, Shapley Supercluster, and Horologium-
Reticulum Supercluster. Note that we mark multiple overdensities
for a single structure in two cases: We mark both of the two main
overdensities of the Shapley Supercluster (as identified by Fairall
1998), and four overdensities of the Sculptor Wall. The figure is
indicative only, since superclusters are extended objects and we
have marked them as points. Nonetheless, the points marked on the
figure provide a useful guide in the discussion in Section 5.1.2, in
which we will compare the locations of these superclusters to the
features of the observed and predicted velocity fields.

A few points that should be made in examining this comparison
of the two models: (1) The Shapley Supercluster appears as the
most prominent overdensity within ∼150 h−1 Mpc, particularly in
the 2MRS model. (2) There is no one particular region of the sky
that shows an unusually strong deviation between the two models.
Rather, the deviations between the models are scattered across the
sky, with the largest differences appearing on the outskirts of the
survey volume. (3) The plot illustrates what was stated in the previ-
ous subsection: the scatter in densities (and velocities) is somewhat
larger in the 2MRS model than the PSCz model, meaning that the
former model includes more overdense superclusters and more un-
derdense voids. This may suggest that the fiducial value of β that
was assumed for the 2MRS model is too large, or that the fiducial
value of β assumed for the PSCz model is too small. We explore
that possibility in greater detail in a future paper (Magoulas et al. in
preparation).

While Fig. 3 shows that the familiar features of large-scale struc-
ture are apparent in both models, we can also ask whether the two
model density fields predict similar peculiar velocities on the scale
of individual gridpoints. In Fig. 4, we show contour plots of 2MRS
model velocities plotted against PSCz model velocities for all grid-
points out to 16 120 km s−1, the redshift limit of 6dFGSv. For
nearby points (cz < 8000 km s−1) the velocities in the two models
are, as expected, positively correlated with a slope close to unity.
However at larger distances the correlation grows weaker, mainly
because the number of galaxies is decreasing rapidly with redshift
for both surveys (again, see the comparison in Erdoğdu et al. 2006).
At redshifts of ∼12 000 km s−1or greater (where roughly half of our
6dFGSv galaxies lie), there is virtually no correlation between the
velocities of the two models on the scale of individual grid points.
This is because the PSCz survey in particular has very sparse sam-
pling at these distances and so is heavily smoothed.

3 FI T T I N G T H E FU N DA M E N TA L PL A N E

3.1 Maximum likelihood methodology

We employ a maximum likelihood method to fit the FP, similar
to the method developed by Colless et al. (2001) and Saglia et al.
(2001) to fit the EFAR sample. The method is explained in detail in
Magoulas et al. (2012), but summarized below.
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Figure 3. Gaussian smoothed versions of the 2MRS matter density field (left), the PSCz matter density field (centre) and the logarithm of the ratio between
the 2MRS and PSCz densities (right) in four slices parallel to the supergalactic plane, covering the ranges (from top to bottom) SGZ>+20 h−1 Mpc,
−20<SGZ<+20 h−1 Mpc, −70<SGZ<−20 h−1 Mpc and SGZ<−70 h−1 Mpc. Note that δ is the density contrast, while 1 + δ is the density in units of the
mean density of the Universe. The slices are arranged so that there are roughly equal numbers of 6dFGSv galaxies in each. Major large-scale structures are
labelled: the Cetus Supercluster (�), the Eridanus Cluster (+), the Horologium-Reticulum Supercluster (©), the Hydra-Centaurus Supercluster (�), the four
most overdense regions of the Sculptor Wall (×), and the two main overdensities of the Shapley Supercluster (�). Only gridpoints for which the distance to
the origin is less than 161.2 h−1 Mpc are displayed, so that the limiting distance shown here matches the limiting redshift of 6dFGSv.

As Colless et al. (2001) noted, when plotted in r-s-i space, early-
type galaxies are well represented by a 3D Gaussian distribution.
This was shown to be true for 6dFGS by Magoulas et al. (2012)
(see e.g. fig. 9 from that paper). Our maximum likelihood method
then involves fitting the distribution of galaxies in r-s-i space to a
3D Gaussian, where the shortest axis is orthogonal to the FP and
characterizes the scatter about the plane, while the other two axes
fit the distribution of galaxies within the plane.

For this functional form, the probability density P (xn) of ob-
serving the nth galaxy at FP space position xn can be computed
according to Magoulas et al. (2012) equation 4,

P (xn) = exp
[− 1

2 xT
n (� + En)−1xn

]
(2π )

3
2 |� + En| 1

2 fn

, (5)

where � is the variance matrix for the 3D Gaussian describing
the galaxy distribution, En is the observational error matrix, xn is

the position in FP space given by (r − r̄ , s − s̄, i − ı̄), and fn is
a normalization term depending on the sample selection function.
(Quantities with n subscripts are specific to the particular galaxy.)
In logarithmic form, this is

ln(P (xn)) = −
[

3

2
ln(2π ) + ln(fn) + 1

2
ln(|� + En|)

+ 1

2
xT

n (� + En)−1xn

]
. (6)

The intrinsic 3D Gaussian distribution of galaxies in FP space
is defined by the variance matrix �, which has eight parameters: a
and b (which determine its orientation), r̄ , s̄, and ı̄ (which set the
centroid), and σ 1, σ 2, and σ 3 (which determine its extent), as given
by the relations provided by Magoulas et al. (2012). Our maximum
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6dFGS: peculiar velocity field and cosmography 2683

Figure 4. Contour plots, comparing the model velocities from 2MRS and PSCz, calculated at individual gridpoints for different redshift slices. The lower
right panel shows all gridpoints with cz < 16, 120 km s−1, which is the redshift limit of 6dFGSv. The remaining three panels show subsets of this volume, with
redshift ranges written at the top of each panel. The colour bars show the number of gridpoints found within a single smoothing length, which corresponds to
40 × 40 km s−1. The white diagonal line in each panel shows the 1-to-1 line. We note that while the velocities from the two models appear to be correlated at
low redshift, that correlation fades way for the gridpoints at higher redshift (where we find the bulk of our 6dFGSv galaxies).

likelihood fitting method involves finding the values of the eight
fitted parameters that maximize the total likelihood,

ln(L) =
∑

n

ln(P (xn)). (7)

This is achieved by searching the parameter space with a
non-derivative multi-dimensional optimization algorithm called
BOBYQA (Bound Optimization BY Quadratic Approximation;
Powell 2006).

The method is described in detail in Magoulas et al. (2012).
However, as explained in Section 2.1 of this paper, the catalogue
has been revised since that paper was published. As a result, the
fitting method has been applied to the revised catalogue, which
yields a best-fitting 6dFGS J-band FP of

r = (1.438±0.023)s + (−0.887±0.008)i + (−0.108±0.047) (8)

where r, s and i are in units of log[h−1 kpc], log[ km s−1], and
log[L� pc−2] respectively. For converting between physical and
angular units, we assume a flat cosmology with �m = 0.3 and
�� = 0.7, though the specifics of the assumed cosmology affect
the FP fit very weakly.

We should also note that in previous papers, we investigated the
possibility of adding one or more additional parameters to the FP fit.
Magoulas et al. (2012) investigated FP trends with such parameters
as environment and morphology. Springob et al. (2012) investigated
the FP space trends with stellar population parameters. The only
supplemental parameter with the potential to improve our FP fit
was stellar age, as explained by Springob et al. (2012). However, as
stated in that paper, while stellar age increases the scatter of the FP,

the uncertainties on the measured ages of individual galaxies are
too large to allow useful corrections for galaxy distances. We thus
do not include any corrections for stellar age, or any other stellar
population parameters, in the FP fitting done here.

3.2 Calibrating the FP zero-point

In the expression r = as + bi + c, the value of c gives us the
zero-point, and the calibration of the relative sizes of the galaxies
depends on how one determines the value of c. As we are using
the FP to measure peculiar velocities, it also gives us the zero-
point of peculiar velocities (or more specifically, the zero-point of
logarithmic distances). We need to make some assumption about the
peculiar velocity field, in order to set the zero-point of the relation.
When we fit the FP in Magoulas et al. (2012), for example, we
assumed that the average radial peculiar velocity of the galaxies is
zero.

For a large all-sky sample, the assumption that the average pe-
culiar velocity of the sample is zero is equivalent to assuming that
the velocity field includes no monopole term, since a monopole
(an error in the expansion rate given by H0) is completely degener-
ate with an offset in the FP zero-point. As long as the galaxies are
evenly distributed across the whole sky, this assumption only im-
pacts the velocity field monopole, and we can still measure higher
order multipoles. The situation is somewhat different in the case of
a sample that only includes galaxies in one hemisphere, however.
In this case, assuming that the mean velocity of the galaxies in
the sample is zero means suppressing the polar component of the
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dipole. In the case of a Southern hemisphere survey with a dipole
motion directed along the polar axis, for example, assuming that
the mean velocity of the galaxies is zero corresponds to calibrating
out the entire dipole.

6dFGS is of course just such a hemispheric survey. We can essen-
tially eliminate this FP calibration problem, however, if we set the
zero-point using only galaxies close to the celestial equator. Such a
‘great circle’ sample is, like a full-sphere sample, only degenerate
in the monopole – even if the velocity field includes a dipole with
a large component along the polar direction, this component has
negligible impact on the radial velocities of galaxies close to the
celestial equator.

How do we then set the zero-point with such a great circle sample?
Recall that the zero-point c is not represented by any of the eight
parameters in our 3D Gaussian model alone. Rather, it is a function
of multiple FP parameters (explicitly, c = r̄ − as̄ − bī). However,
if we fix the other FP parameters to the fitted values for the entirety
of the sample, then the zero-point is represented by r̄ . This is a
quantity that we measured to be r̄ = 0.184 ± 0.005 for the whole
sample. However, because of degeneracies between r̄ , s̄, ī, and the
slopes a and b, 0.005 dex does not represent the true uncertainty in
the zero-point.

We define our equatorial sample as the Ng = 3781 galaxies with
−20◦ ≤ δ ≤ 0◦, and fit the FP zero-point (r̄) after fixing the other
coefficients that define the FP (a, b, s̄, ı̄, σ1, σ2, σ3) to the best-
fitting values from the full sample. The best-fitting value of the
mean effective radius for the equatorial subsample is r̄ = 0.178.
For this equatorial sample, the uncertainty on r̄ would be 0.007 dex
if we were fitting for all eight FP parameters. However, because we
constrain all parameters except for r̄ , the uncertainty is only 0.003
dex, and this represents our uncertainty in the zero-point of the
relation. This measurement of the uncertainty assumes a Gaussian
distribution of peculiar velocities in the great circle region, with no
spatial correlation.

Despite the fact that we have calibrated the zero-point of the FP
relation using the galaxies in the range −20◦ ≤ δ ≤ 0◦, to mitigate
the possibility of a large dipole motion biasing the zero-point, we
cannot rule out the possibility of a monopole in the velocity field
within that volume creating such a bias. In Section 5.1.2, we explore
the possibility of an offset in the zero-point of the FP relation in
greater detail.

Finally, we note that there is the potential for some bias in the
zero-point due to the fact that −20◦ ≤ δ ≤ 0◦ is not exactly a
great circle. The extent of this bias depends on the size of the bulk
flow’s polar component relative to the mean velocity dispersion of
galaxies. If we assume that the mean velocity dispersion of galaxies
is ∼300 km s−1, then we estimate that a comparably large bulk flow
of ∼300 km s−1along the celestial pole would introduce a bias of
0.0007 dex in the zero-point. This is much smaller than our 0.003
dex uncertainty, however, and a ∼300 km s−1bulk flow along the
polar direction alone is most likely a pessimistically large estimate.

4 D E R I V I N G PE C U L I A R V E L O C I T I E S

4.1 Bayesian distance estimation

When measuring a galaxy distance, authors typically derive a sin-
gle number, along with its error. If the distance estimates have
a Gaussian distribution, these two numbers fully characterize the
probability distribution for the galaxy distance. However, it is often
more natural to estimate the logarithm of the distance, particularly if
it is this quantity that has a Gaussian error distribution. This in fact

applies to distance estimates using the FP, which is fit in logarithmic
r-s-i space.

However, because of the various selection effects and bias correc-
tions, the probability distribution is not exactly Gaussian in logarith-
mic distance. Thus in order to retain all the available information,
we choose to calculate the full posterior probability distributions
for the distance to each galaxy. This requires that we have a clear
understanding of the definitions being used in the previous section.

We have referred to ‘Fundamental Plane space’, by which we
mean the 3D parameter space defined by r, s and i. r, s and i can be
described either as observational parameters or physical parameters.
That is, galaxy radius, velocity dispersion, and surface brightness
are all clearly observational parameters, but they are also (when
defined appropriately) physical properties that the galaxy possesses
independent of any particular set of observations. When we fit the
FP we are simultaneously fitting an empirical scaling relation of
observable quantities for our particular sample and deriving a scal-
ing relation of physical quantities that should hold for any similarly
selected sample.

There is, however, a distinction that needs to be made for r. The
observed quantity is actually rz, or the physical radius (in logarith-
mic units) that the galaxy would have if it was at its redshift distance.
(The actual observables here are angular radius and redshift, but rz is
a convenient and well-defined function of those observables.) Using
the definition of angular diameter distance dA (in logarithmic units),
we have rz − rH = dA

z − dA
H , where dA

z and dA
H are the logarithms of

the angular diameter distances corresponding (respectively) to the
observed redshift of the galaxy and the Hubble redshift (cf. equa-
tion 2 and Colless et al. 2001 equation 8). However, the relevant
distance for our purposes (i.e. for measuring peculiar velocities) is
logarithmic comoving distance, d, which is related to logarithmic
angular diameter distance by d = dA + log (1 + z). Hence

rz − rH = dz − dH − log[(1 + z)/(1 + zH)] (9)

where z is the observed redshift and zH is the redshift corresponding
to the Hubble distance of the galaxy. The log [(1 + z)/(1 + zH)] term
thus accounts for the difference between angular diameter distance
and comoving distance. At this point, we define the shorthand


r = rz − rH (10)


d = dz − dH (11)


z = log[(1 + z)/(1 + zH)]. (12)

Our goal is to derive P(dH, n|rz, n, sn, in), which is the probability
distribution of the nth galaxy’s comoving distance dH, given the
observational parameters rz (the galaxy’s size, assuming it is at the
distance corresponding to its observed redshift), s, and i. For any
given galaxy, rz and dz are observed directly, but rH and dH must be
determined.

How then do we calculate the probability distribution for dis-
tance? Because equation (5) provides the probability distribution
of physical radius for given values of velocity dispersion and sur-
face brightness, the simplest approach available to us is to calculate
P(
rn|rz, n, sn, in) over an appropriate range of 
r values, and
then use a transformation of variables to get P(
dn|rz, n, sn, in).
P(
rn|rz, n, sn, in) is the posterior probability that the ratio of the
nth galaxy’s size at its redshift distance to its size at its true co-
moving distance (in logarithmic units) is 
rn. P(
dn|rz, n, sn, in) is
the corresponding posterior probability for the ratio of comoving
distances for galaxy n. Since the redshift of the galaxy is given and
dz is known, P(
dn|rz, n, sn, in) is equivalent to P(dH, n|rz, n, sn, in).
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6dFGS: peculiar velocity field and cosmography 2685

We implement this approach in the following manner.

(1) Specify the FP template relation using our fitted 3D Gaus-
sian model, as described by the eight parameters a, b, r̄ , s̄, ı̄, σ 1,
σ 2, and σ 3. The best-fitting values of these parameters are given
in Magoulas et al. (2012) for various samples and passbands. For
the full J-band sample that we are using here, the best-fitting val-
ues are: a = 1.438, b = −0.887, r̄ = 0.178, s̄ = 2.187, ı̄ = 3.175,
σ 1 = 0.047, σ 2 = 0.315, and σ 3 = 0.177. The value of r̄ was specif-
ically fit to the region −20◦ ≤ δ ≤ 0◦, as explained in Section 3.2.

(2) For each individual galaxy n, loop through every possible
logarithmic comoving distance dH, n that the galaxy could have.
Distance is of course a continuous quantity, but in practice we
are limited to examining a finite number of possible distances. We
consider 501 evenly spaced values of 
dn, between −1.0 and +1.0
in steps of 0.004 dex, and compute the corresponding values of 
rn.
These steps correspond to 1 per cent in relative distance.

(3) For each of these possible logarithmic ratios of radius, use
Bayes’ theorem to obtain the posterior distribution for the nth
galaxy’s size as a function of the observables,

P (
rn|rz,n, sn, in) = P (rz,n, sn, in|
rn)P (
rn)

P (rz,n, sn, in)
. (13)

Given our assumed physical radius rH, n, we can evaluate P (xn) in
equation (5), on the assumption that P (xn) = P (rz,n, sn, in|
rn),
so long as the xn in question uses the physical radius corresponding
to the distance dH, n. That is, while equation (5) is written in such a
way that it suggests that there is a single probability density P (xn)
for galaxy n, we now suggest that for galaxy n, we must consider
many possible distances that the galaxy could be at, each of which
corresponds to a different radius and different xn.

Having evaluated P(rz, n, sn, in|
rn), we multiply by the prior,
P(
rn), assumed to be flat, and apply the proper normalization
(that is, normalizing the probabilities so that the total probability
across all possible radii is unity), to give us the posterior probability
P(
rn|rz, n, sn, in).

(4) Convert the posterior probability distribution of sizes,
P(
rn|rz, n, sn, in), to that of distances, P(
dn|rz, n, sn, in), by chang-
ing variables from r to d. To do so, we use the fact that

P (
dn) = P (
rn)
d[
rn]

d[
dn]
. (14)

Let us now define Dz, n and DH, n as the linear comoving distances
of the galaxy n in units of h−1 Mpc, corresponding (respectively)
to the observed redshift and the Hubble redshift of the galaxy. That
is, they are the linear equivalents of the logarithmic dz, n and dH, n.
From the chain rule, we have

d
r

d
d
= 1 − d
z

d
d
= 1 − d
z

dzH

dzH

dDH

dDH

d
d
. (15)

d
z/dzH and dDH/d
d can be evaluated relatively easily. How-
ever, in order to evaluate dDH/d
d, we must examine the relation-
ship between redshift and comoving distance. Assuming a standard
�CDM cosmology with �m = 0.3 and �� = 0.7, we numerically
integrate the relations given by Hogg (1999), to get the following
low redshift approximation, relating the redshift in km s−1to the
comoving distance in h−1 Mpc:

cz ≈ k1DH + k2D
2
H (16)

where k1 = 99.939 and k2 = 0.00818. Evaluating the relevant deriva-
tives gives us

P (
dn) ≈ P (
rn)

(
1 − k1DH + 2k2D

2
H

c(1 + zH)

)
(17)

with c expressed in units of km s−1. We use this numerical ap-
proximation in computing the peculiar velocities for the 6dFGS
galaxies, as it is extremely accurate over the range of redshifts of
interest. However, we note that the approximate formula of LB88
also provides adequate precision and can be used with different
cosmological models through its dependence on q0.

The question of how to calculate the different normalization terms
fn in equation (5) is addressed in the following subsection. However,
it should be noted that whether one needs to include this term at all
depends on what precisely the probability distribution in question
is meant to represent. If we were interested in the probability distri-
bution of possible distances for each individual galaxy considered
in isolation, then the fn term should be omitted. In this case, how-
ever, we are computing the probability distribution of the comoving
distance corresponding to the redshift-space position of galaxy n,
and so the fn term must be included.

4.2 Selection bias

Malmquist bias is the term used to describe biases originating from
the spatial distribution of objects (Malmquist 1924). It results from
the coupling between the random distance errors and the apparent
density distribution along the line of sight. There are two types of
distance errors that one must consider. The first of these is inhomo-
geneous Malmquist bias, which arises from local density variations
due to large-scale structure along the line of sight. It is most pro-
nounced when one is measuring galaxy distances in real space. This
is because the large distance errors cause one to observe galaxies
scattering away from overdense regions, creating artificially inflated
measurements of infall on to large structures. By contrast, when the
measurement is done in redshift space, the much smaller redshift
errors mean that this effect tends to be negligible (see e.g. Strauss
& Willick 1995).

For the 6dFGSv velocity field as presented in this paper, we are
measuring galaxy distances and peculiar velocities in redshift space
rather than real space. In this case, inhomogeneous Malmquist bias
is negligible, and the form of Malmquist bias that we must deal
with is of the second type, known as homogeneous Malmquist bias,
which affects all galaxies independently of their position on the sky.
It is a consequence of both (1) the volume effect, which means that
more volume is covered within a given solid angle at larger distances
than at smaller distances, and (2) the selection effects, which cause
galaxies of different luminosities, radii, velocity dispersions etc.,
to be observed with varying levels of completeness at different
distances. We note, however, that different authors use somewhat
different terminology, and the latter effect described above is often
simply described as ‘selection bias’.

The approach one takes in correcting for this bias depends in
part on the selection effects of the survey. If the selection effects
are not well defined analytically, then the bias correction can be
complicated, though still possible. For example, Freudling et al.
(1995) use Monte Carlo simulations to correct for Malmquist bias
in the SFI sample (Giovanelli et al. 1994; Giovanelli et al. 1995).

In our case, however, we have explicit analytical expressions
for the intrinsic distribution of physical parameters, and explicit
and well-defined selection criteria. It is thus possible, at least in
principle, to correct for selection bias analytically. However, as we
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will see, in practice we are obliged to use mock samples for the
purposes of evaluating the relevant integral.

Our bias correction involves applying an appropriate weighting
to each possible distance that the galaxy could be at in order to
account for galaxies at those distances that are not included in our
sample due to our selection criteria. One complication is that certain
regions of FP space are not observed in our sample because of our
source selection. The expression for the likelihood that we give
in equation (5) includes a normalization factor fn that ensures the
integral of P (xn) over all of FP space remains unity, even when
certain regions of FP space are excluded by selection cuts.

Let us consider one such selection effect. Suppose there is a lower
limit on s, which we call scut, above which we observe all galaxies
and below which we observe none. Then P (xn) = 0 for s < scut,
and P (xn) follows equation (5) for s ≥ scut. We must include the
normalization factor fn here, which in this case is

fn =
∫ ∞

−∞

∫ ∞

scut

∫ ∞

−∞

exp
[−0.5xT

n (� + En)−1xn

]
(2π )1.5|� + En|0.5

di ds dr (18)

In practice, because P(dH, n|rz, n, sn, in) is normalized to 1 (across the
range of dH, n values for each galaxy), the fn only comes into play if
it varies for different distances. It thus turns out to be irrelevant in
this case, because s is distance-independent and scut does not change
as a function of galaxy distance or peculiar velocity.

We next consider what happens when, in addition to the s cut,
we also have an apparent magnitude cut. At a particular logarithmic
distance d, this corresponds to a cut in absolute magnitude, Mcut(d).
At that distance, we observe all galaxies with s greater than scut

and M brighter than Mcut(d), whereas we miss all others. A cut in
absolute magnitude corresponds to a diagonal cut in r-s-i space,
since absolute magnitude is a function of both r and i. We can
incorporate this cut into the equation for fn by integrating i from
−∞ to ∞, but r from rcut(i) to ∞, where rcut(i) is the radius at the
surface brightness i corresponding to Mcut.

We can then rewrite the expression for fn as

fn =
∫ ∞

rcut(i)

∫ ∞

scut

∫ ∞

−∞

exp
[−0.5xT

n (� + En)−1xn

]
(2π )1.5|� + En|0.5

di ds dr. (19)

Unfortunately, there is no easy way to evaluate this integral analyti-
cally. We thus determine fn using a large Monte Carlo simulation of
a FP galaxy sample (with Ng = 105) drawn from the best-fitting J-
band FP values and our 6dFGS selection function. The entire mock
sample of galaxies is used to calculate the value of fn as a function
of distance, as seen in Fig. 5.

Note that each galaxy has its own individual error matrix, En, and
we should be using the specific En matrix for galaxy n. However,
running such an Ng = 105 Monte Carlo simulation separately for all
∼9000 galaxies is computationally impractical. As a compromise,
when we run the Monte Carlo simulation, we assign measurement
errors to every mock galaxy parameter according to the same algo-
rithm specified for 6dFGS mock catalogues explained in Magoulas
et al. (2012) section 4. This treats the mock galaxy measurement
errors as a function of apparent magnitude.

4.3 Peculiar velocity probability distributions

In Fig. 6 we show the posterior probability density distributions as
functions of logarithmic distance for 10 randomly chosen 6dFGSv
galaxies.

Because the probability distributions are nearly Gaussian, we fit
Gaussian functions to the distribution for each galaxy, and calculate
the mean value 〈
d〉 and the width of the Gaussian εd (and thus,

Figure 5. The normalization factor used to correct selection bias as a func-
tion of distance, derived from a mock sample with 100 000 galaxies.

Figure 6. For 10 randomly chosen galaxies in 6dFGSv, we show the prob-
ability density distribution of 
dn = log (Dz/DH)n, which is the logarithm
of the ratio of the comoving distance associated with galaxy n’s redshift to
the true comoving distance of the galaxy. The exact probability distributions
are represented by circles, whereas the approximations from equation (21)
are represented by solid lines.

the error on the logarithmic distance ratio). While the skewness of
the distributions is sufficiently small that ignoring it and assuming
a simple Gaussian distribution should be adequate for most cos-
mological applications, we do also calculate the parameter α for
each galaxy to characterize the skewness. α describes the skewness
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6dFGS: peculiar velocity field and cosmography 2687

Table 1. 6dFGSv logarithmic distance ratios, and associated parameters. The columns are as follows: (1) source name in
6dFGS catalogue; (2, 3) right ascension and declination (J2000); (4) individual galaxy redshift in the CMB reference frame;
(5) group redshift in the CMB reference frame, in cases where the galaxy is in a group (set to −1 for galaxies not in groups);
(6) group identification number (set to −1 for galaxies not in groups); (7) the logarithmic distance ratio 〈
d〉 = 〈log (Dz/DH)〉;
(8) the error on the logarithmic distance ratio, εd, derived by fitting a Gaussian function to the 
d probability distribution; (9)
the skew in the fit of the Gaussian function, α, calculated using equation (22). The full version of this table is available in the
electronic version of the journal.

6dFGS name R.A. Dec. czgal czgroup Group number 〈
d〉 εd α

(deg.) (deg.) ( km s−1) ( km s−1) (dex) (dex)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

g0000144-765225 0.05985 − 76.8736 15941 − 1 − 1 +0.1039 0.1296 −0.0200
g0000222-013746 0.09225 − 1.6295 11123 − 1 − 1 +0.0870 0.0954 −0.0066
g0000235-065610 0.09780 − 6.9362 10920 − 1 − 1 +0.0282 0.1073 −0.0116
g0000251-260240 0.10455 − 26.0445 14926 − 1 − 1 +0.0871 0.1065 −0.0111
g0000356-014547 0.14850 − 1.7632 6956 − 1 − 1 −0.0743 0.1165 −0.0112
g0000358-403432 0.14895 − 40.5756 14746 − 1 − 1 −0.0560 0.1532 −0.0217
g0000428-721715 0.17835 − 72.2874 10366 − 1 − 1 −0.0486 0.1123 −0.0135
g0000459-815803 0.19125 − 81.9674 12646 − 1 − 1 −0.0131 0.1201 −0.0153
g0000523-355037 0.21810 − 35.8437 15324 14646 1261 −0.0219 0.1145 −0.0083
g0000532-355911 0.22155 − 35.9863 14725 14646 1261 +0.0421 0.1077 −0.0098

according to the Gram–Charlier series (see e.g. Cramer 1946). We
begin with the standard Gaussian distribution

P (
d) = G(
d, εd) = e−(
d−〈
d〉)2/2ε2
d

εd

√
2π

(20)

which is then modified to take the form

P (
d)

= G(
d, εd)

[
1 + α

((

d − 〈
d〉

εd

)3

− 3(
d − 〈
d〉)
εd

)]
.

(21)

To compute α for galaxy n, we evaluate αn, i in the ith bin of 
d for
that galaxy, sampled across a subset of the same 501 evenly spaced
values between −1.0 and +1.0 that are described in Section 4.1:

αn,i =
[

PDF (
dn,i)

G(
dn,i , εd,n)
− 1

]

×
[


dn,i − 〈
dn〉
εd,n

3

− 3(
dn,i − 〈
dn〉)
εd,n

]
(22)

where PDF(
dn, i) is the probability density at 
dn, i for galaxy
n as described in Section 4.1, with the selection bias correction
applied as in Section 4.2. This is calculated across the range
〈
d〉 − 2εd < 
d < 〈
d〉 + 2εd, but excluding the range
〈
d〉 − 0.1εd < 
d < 〈
d〉 + 0.1εd because the function is unde-
fined for 
d = 〈
d〉. The mean value of α is −0.012, and it has a
1σ scatter of 0.011.

The values of 〈
d〉, εd, and α are given in Table 1. The interested
reader can reconstruct the probability distributions from equation
(21). However, note that this is an approximation, which breaks
down in the wings of the distribution, as it can yield (physically
impossible) negative values when the function approaches zero.
The reconstructed probability distributions from equation (21) for
the 10 galaxies shown in Fig. 6 are represented in that figure by
solid lines.

Note that while we use the group redshift for galaxies found in
groups, we provide here the individual galaxy redshifts in Table 1
as well. As explained in Section 2.1, we refer the interested reader
to Magoulas et al. (2012) for a more detailed description of the
grouping algorithm.

Figure 7. Distribution of 〈
dn〉 = 〈log (Dz/DH)n〉, the expectation values
of the logarithm of the ratio of redshift distance to Hubble distance 
dn for
each of the 8885 galaxies in the 6dFGSv sample.

In Fig. 7, we show the histogram of the probability-weighted
mean values of the logarithm of the ratio of redshift distance to
Hubble distance 
dn for each of the 8885 galaxies in the 6dFGSv
sample; put another way, this is the histogram of expectation values
〈
dn〉. The mean of this distribution is +0.005 dex, meaning that we
find that the peculiar velocities in the survey volume are very slightly
biased towards positive values. The rms scatter is 0.112 dex, which
corresponds to an rms distance error of 26 per cent. As explained
in Magoulas et al. (2012), one might naively assume that the 29 per
cent scatter about the FP along the r-axis translates into a 29 per
cent distance error, but this neglects the fact that the 3D Gaussian
distribution of galaxies in FP space is not maximized on the FP
itself at fixed s and i. The distance error calculated by Magoulas
et al. (2012) neglecting selection bias is 23 per cent, but the bias
correction increases the scatter to 26 per cent.
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We note that while all of our analysis is conducted in logarithmic
distance units, some applications of the data may require conver-
sion to linear peculiar velocities. The interested reader is invited
to convert these logarithmic distance ratios accordingly, accounting
for the fact that the measurement errors are lognormal in pecu-
liar velocity units. Further elaboration on this point is provided in
Appendix A.

5 PECULIAR V ELOCITY FIELD
C O S M O G R A P H Y

In a future paper we will perform a power spectrum analysis on the
peculiar velocity field in order to extract the full statistical infor-
mation encoded in the linear velocity field. In this paper, however,
we display the data in such a way as to illuminate these correla-
tions, and to give us a cosmographic view of the velocity field. We
approach this goal using adaptive kernel smoothing.

We impose a 3D redshift-space grid in supergalactic Cartesian
coordinates, with gridpoints 4 h−1 Mpc apart. At each gridpoint
we compute adaptively smoothed velocities from both the 2MRS
predicted field and the 6dFGSv observed field using the following
procedure. It draws on methods used by Silverman (1986) and
Ebeling, White & Rangarajan (2006), but we have adjusted these
approaches slightly to produce smoothing kernels that, on average,
lie in the range ∼ 5–10 h−1 Mpc, as that appears to highlight the
features of the velocity field around known features of large-scale
structure most effectively.

If v(r i) is the logarithmic line-of-sight peculiar velocity of grid-
point i at redshift-space position r i , then our smoothing algorithm
defines v(r i) according to the relation

v(r i) =
∑Nj

j=1 vj cos θi,j e−rri,j /2 σ−3
j∑Nj

j=1 e−rri,j /2 σ−3
j

(23)

where σ j is the smoothing length of the 3D Gaussian kernel for
galaxy j; θ i, j is the angle between the r vectors for the gridpoint
i and galaxy j; and rri, j is the square of the distance between the
gridpoint i and galaxy j in units of σ j. The index j is over the Nj

galaxies in the sample for which rri, j < 9 (i.e. those galaxies within
three smoothing lengths of gridpoint j).

The smoothing length σ j is defined to be a function of a fiducial
kernel σ ′ and a weighting depending on the local density δj

σj = 2σ ′
[

exp(
∑N

l=1 ln δl/N )

δj

] 1
2

(24)

where

δj =
Nk∑
k=1

e−rrj,k/2 (25)

and rrj, k is the square of the distance between galaxies j and k in
units of σ ′. The summation on k is over the Nk galaxies within 3σ ′

of galaxy j, while the summation on l is over all N galaxies in the
survey. Thus the bracketed term in equation (24) is the mean density
for all galaxies divided by the local density δj. In our case, we set
σ ′ = 10 h−1 Mpc, though we find that the actual smoothing length
σ j depends fairly weakly on the fiducial length σ ′. The histogram of
smoothing lengths is shown in Fig. 8. The mean smoothing length
is 〈σ j〉 = 8.2 h−1 Mpc.

Figure 8. Distribution of smoothing lengths, σ j, for all 6dFGSv galaxies,
following equation (24).

5.1 Features of the velocity field

In Figs 9 and 10, we show the reconstructed 2MRS and PSCz
velocity fields alongside the 6dFGS observed field. In each case,
the velocity field has been smoothed, using the adaptive kernel
smoothing described above. In Fig. 9, the four panels on the left
column show the smoothed velocity field predicted by 2MRS, in
slices of SGZ. The four panels in the central column show the
observed 6dFGS velocity field, smoothed in the same manner.
The four panels in the right column show the difference between the
2MRS velocity field and the 6dFGS velocity field. Fig. 10 follows
the same format, but with the PSCz field in place of 2MRS. That
is, the left column corresponds to the velocity field predicted by
PSCz, and the right column corresponds to the difference between
the PSCz field and the 6dFGS field. In each case the colour-coding
gives the mean smoothed logarithmic distance ratio averaged over
SGZ at each (SGX,SGY) position. We note that while Fig. 4 showed
that the correlation between the 2MRS and PSCz model velocities
weakens at higher redshifts, we see in Figs 9 and 10 that both mod-
els make qualitatively similar predictions for the velocity field on
large scales.

In addition to displaying the velocity fields in SGZ slices as in
Figs 9 and 10, we would also like to view the fields in a fully 3D
manner. Fig. 111 shows the smoothed 3D 6dFGSv peculiar velocity
field.

We note that because of the adaptive smoothing, the mean error
on the 
d value for a given gridpoint is relatively uniform across
the survey volume. We find that the mean error, averaged over all
gridpoints, is 0.02 dex in the 3D grid. However, because Figs 9 and
10 involve additional averaging of gridpoints, in that we collapse
the grid on to four SGZ slices, the mean 
d error in those plots is

1This plot is an interactive 3D visualization, generated using custom C code
and the S2PLOT graphics library (Barnes et al. 2006) following the approach
described in Barnes & Fluke (2008). View and interact with this 3D figure
using Adobe Reader Version 8.0 or higher.
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6dFGS: peculiar velocity field and cosmography 2689

Figure 9. Adaptively smoothed versions of the reconstructed 2MRS velocity field, as derived by Erdoğdu et al. (2014) (left), the observed 6dFGS velocity
field (centre) and the observed 6dFGS field minus the 2MRS reconstruction (right), in the same four slices of SGZ that are displayed in Fig. 3. In each case, the
velocity field is given in logarithmic distance units (
d = log (Dz/DH), in the nomenclature of Section 4.1), as the logarithm of the ratio between the redshift
distance and the true Hubble distance. As shown in the colour bars for each panel, redder (bluer) colours correspond to more positive (negative) values of 
d,
and thus more positive (negative) peculiar velocities. Gridpoints are spaced 4 h−1 Mpc apart.

0.009. Thus features in that plot that vary by less than ∼0.009 may
simply be products of measurement uncertainties.

5.1.1 Velocity field ‘monopole’

One must be careful in defining the terminology of the velocity
moments when considering an asymmetric survey volume, such
as the hemispheric volume observed by 6dFGS. In general, the
zeroth order moment of the velocity field, or ‘monopole’, cannot
be measured by galaxy peculiar velocity surveys. This is because
the calibration of the velocity field usually involves an assumption
about the zero-point of the distance indicator which is degenerate
with a monopole term. The same logic applies to velocity field
reconstructions, such as the 2MRS and PSCz reconstructions used
in this paper.

In Section 2.2, we noted that the mean peculiar velocity of grid-
points in the 2MRS reconstruction is +66 km s−1. This value is of
course dependent on the fact that we have assumed that the average

gravitational potential is zero along the surface of a sphere of radius
200 h−1 Mpc. We now note that for the particular set of gridpoints
located at the redshift-space positions of galaxies in our sample, the
mean is actually somewhat more positive: +161 km s−1, with an
rms of 297 km s−1. When converted into the logarithmic units of

d and smoothed on to the 3D grid shown in Fig. 9, we find a mean
value of 〈
d〉 = +0.007 dex for the smoothed 2MRS gridpoints.
This is close to the mean value of 〈
d〉 = +0.005 found in the
smoothed 6dFGS gridpoints. Similarly, for PSCz, the mean pecu-
liar velocity of all gridpoints is +79 km s−1, while the mean at the
positions of our 6dFGS galaxies is +135 km s−1, with an rms of
172 km s−1. This corresponds to 〈
d〉 = +0.005. That is, in both
the 2MRS and PSCz predictions and in the 6dFGS observations,
we find that the mean peculiar velocities at the redshift-space posi-
tions of the galaxies in our sample skew somewhat towards positive
values.

This is not, however, indicative of a monopole in the velocity
field, as our survey only covers the Southern hemisphere. Rather, it
is an indication that the model predicts a net positive mean motion
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Figure 10. Same as Fig. 9, but with the PSCz velocity field (Branchini et al. 1999) in place of the 2MRS field.

of galaxies in the Southern hemisphere, at least within the hemi-
sphere of radius ∼160 h−1 Mpc covered by the survey, and that
our observations show a similarly positive mean motion of galaxies
in the same hemispheric volume. (And, of course, the latter result
depends on the assumption that the mean logarithmic comoving
distance ratio, 〈
d〉, is zero along a great circle in the celestial
equatorial region.)

While the mean value of 〈
d〉 is the same for both the predicted
and observed fields, the standard deviation is not. As noted in Sec-
tion 4.3, the scatter in 〈
d〉 for the 6dFGSv galaxies is 0.112 dex.
With the adaptive kernel smoothing, this scatter is reduced to 0.023
dex, whereas for the smoothed 2MRS and PSCz predicted fields,
the scatter is only 0.009 and 0.007 dex, respectively. So, while the
three fields have the same mean value for 〈
d〉, the 〈
d〉 values in
the predicted field have a scatter which is comparable to their mean
offset from zero, resulting in very few points with negative values.
The scatter is much larger in the observed field, resulting in many
more gridpoints with negative values.

The offset of 〈
d〉 from zero then does not necessarily indicate
the existence of a velocity field monopole, but may simply reflect
the existence of higher order moments such as the dipole, with net
positive motion towards the Southern hemisphere. We consider the

velocity field dipole in the context of the origin of the bulk flow in
the following subsection.

5.1.2 Velocity field dipole and comparison with models

Measurements of the peculiar velocity field dipole, or ‘bulk flow’,
have been a source of some controversy in recent years. Despite
differences in the size and sky distribution of the various pecu-
liar velocity catalogues, there is general agreement among authors
on the direction of the bulk flow in the local universe. For exam-
ple, Watkins et al. (2009), Nusser & Davis (2011), and Turnbull
et al. (2012), among others, all find a bulk flow whose direction,
in supergalactic coordinates, points towards sgl ∼ 160◦, sgb ∼
−30◦, roughly between the Shapley Supercluster and the Zone of
Avoidance.

Disagreement remains, however, about the magnitude of the bulk
flow, and the extent to which the value may be so large as to rep-
resent a disagreement with the standard model of �CDM cosmol-
ogy. Watkins et al. (2009), for example, claim a bulk flow of ∼400
km s−1on a scale of 50 h−1 Mpc, which is larger than predicted by the
standard �CDM parameters of Wilkinson Microwave Anisotropy
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6dFGS: peculiar velocity field and cosmography 2691

Figure 11. The smoothed 6dFGSv peculiar velocity field in 3D, plotted on a grid in supergalactic Cartesian coordinates, with gridpoints colour-coded by the
value of 
d = log (Dz/DH). Adobe Reader version 8.0 or higher enables interactive 3D views of the plot, allowing rotation and zoom.

Probe (WMAP) (Hinshaw et al. 2013) and Planck (Planck Collabo-
ration et al. 2013a). Others, such as Nusser & Davis (2011), claim
a smaller value that is not in conflict with the standard model.

If the bulk flow is larger than the standard cosmology predicts,
then it may be because the standard cosmological picture is in-
complete. In a ‘tilted universe’ (Turner 1991), for example, some
fraction of the CMB dipole is due to fluctuations from the pre-
inflationary Universe. In that case, we would expect to observe
a bulk flow that extends to arbitrarily large distances. (Though it
should be noted that the results of Planck Collaboration et al. 2013b
cast the plausibility of the titled universe scenario into doubt.)

However, a large bulk flow could instead have a ‘cosmographic’
rather than a ‘cosmological’ explanation. The geometry of large-
scale structure near the Local Group may be such that it induces
a bulk flow that is much larger than would typically be seen by
a randomly located observer. In particular, there has been debate
regarding the mass overdensity represented by the Shapley Super-
cluster (e.g. Hudson 2003; Proust et al. 2006; Lavaux & Hudson
2011), which, as seen in Fig. 3, represents the most massive struc-
ture within ∼150 h−1 Mpc. (We should note, however, that the
dichotomy between a cosmological and cosmographic explanation
for a large bulk flow expressed above is somewhat incomplete. A
cosmographic explanation could have its own cosmological origins,
in that a deviation from �CDM could impact the local cosmogra-
phy. Nonetheless, certain cosmological origins for the bulk flow,
such as a tilted universe, would not necessarily have such an impact
on the cosmography.)

Whether we are able to identify the particular structures respon-
sible for the bulk flow thus bears on what the origin of the large
bulk flow might be. Most previous data sets were shallower than

6dFGSv, so this is of particular interest in this case. Our survey
volume covers most of the Shapley Supercluster, allowing us to
compare the predicted and observed velocities in the Shapley re-
gion. In Magoulas et al. (in preparation) and Scrimgeour et al. (in
preparation), we will make quantitative measurements of both the
bulk flow and the ‘residual bulk flow’ (the component of the ve-
locity dipole not predicted by the model velocity field), but those
results will be informed by our cosmographic comparison here.

The first question is whether the velocity field models provide a
good fit to the velocity field data. For each of the 6dFGSv galaxies,
we fit the 
d probability distributions to a Gaussian function. We
define 
ddata as the mean value of 
d in the Gaussian fit, and ε as
the width of the Gaussian. The corresponding 
d from either the
2MRS or PSCz models is then 
dmodel. We then define the reduced
χ2 statistic,

χ2
ν =

N∑
n=1

[

ddata

n − 
dmodel
n

εn

]2

/N (26)

for the N = 8885 galaxies in the sample. We find χ2
ν = 0.897 for

2MRS and χ2
ν = 0.893 for PSCz. Both values are ∼1, and thus rep-

resent a good fit of the data to the model. This is not surprising. The
uncertainties in the observed peculiar velocities are substantially
larger than the predicted velocities, and so comparisons are bound
to yield χ2

ν ∼ 1. However, we note that the FP scatter as measured
in Magoulas et al. (2012) assumes that the 6dFGS galaxies are at
rest in the CMB frame, and so χ2

ν ∼ 1 by construction. The fact
that both 2MRS and PSCz show smaller values of χ2

ν thus indicates
an improvement over a model in which the galaxies have no pecu-
liar velocities at all. To compare between the models, we look at
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Figure 12. Same as Fig. 11, except that we only show gridpoints with 
d = log (Dz/DH) either greater than +0.03 or less than −0.03, in order to highlight
the regions with the most extreme values. We also label each of the features of large-scale structure labelled in Fig. 3. Though they are outside the survey
volume, we include labels for the Vela and Horologium-Reticulum superclusters, as they exert influence on the local velocity field. To toggle the visibility of
individual superclusters in the interactive figure (Adobe Reader), open the Model Tree, expand the root model, and select the required supercluster name.

the total χ2, χ2
tot = Nχ2

ν . In this case, χ2
tot = 7970 for 2MRS and

χ2
tot = 7934 for PSCz. PSCz is thus the preferred model with high

significance.
Rather than simply compute a global χ2

ν , we can also investigate
the agreement between data and model along particular lines of
sight. Note that most of the Southern hemisphere structures high-
lighted in Fig. 3 lie roughly along two lines of sight, ∼130◦ apart.
Hereafter, we refer to these directions as the ‘Shapley direction’
(the conical volume within 30◦ of (sgl, sgb) = (150.◦0, −3.◦8))
and the ‘Cetus direction’ (the conical volume within 30◦ of (sgl,
sgb) = (286.◦0, +15.◦4)). These sky directions correspond to the po-
sitions of the more distant concentration of the Shapley Supercluster
and the Cetus Supercluster, as identified in Fig. 3, respectively.

We can see the velocity flows along both of these directions in 3D
in Fig. 11. However, even with such an interactive plot, one cannot
easily see deep into the interior of the survey volume. To mitigate
this problem, we have created Fig. 12, which is identical to Fig. 11,
except that only certain gridpoints are highlighted. In this figure, we
display only those gridpoints with extreme values of 
d (greater
than +0.03 or less than −0.03 dex). We also highlight the positions
of each of the superclusters highlighted in Fig. 3, in addition to the
position of the Vela Supercluster (see below).

As seen in these figures, we find mostly positive peculiar veloc-
ities along the Shapley direction, and negative peculiar velocities
along the Cetus direction. Does this agree with the models? In the
Shapley direction alone, χ2

ν = 0.920 for 2MRS and 0.917 for PSCz.
Whereas in the Cetus direction alone, χ2

ν = 0.914 for 2MRS and
0.898 for PSCz. Thus the agreement between data and models is

somewhat worse along each of these lines of sight than it is in the
survey volume as a whole.

We investigate the agreement between the observations and mod-
els further in Fig. 13. As shown in this figure, we have binned the
6dFGSv galaxies in 10 h−1 Mpc width bins along various directions,
including the Shapley and Cetus directions. In each bin, we average
the values of 
d for all galaxies in the bin. We then assign error
bars according to εbin as a function of the εn values of the galaxies
within each redshift bin (where εn is the same εn used in equation
26), according to:

ε2
bin =

Nbin∑
n=1

ε2
n/Nbin (27)

where Nbin is the number of galaxies in the bin. We compare these
to the corresponding average values of 
d at the redshift-space
positions of the same galaxies in both the 2MRS and PSCz models.
As we see in this figure, there is a systematic offset in 
d in the
Cetus direction (a more significant disagreement for 2MRS than for
PSCz), with 
d being, on average, 0.020 and 0.010 dex lower than
the 2MRS and PSCz predictions, respectively. We note that there
is a somewhat smaller systematic offset in the Shapley direction as
well, with 
d being, on average, 0.007 and 0.005 dex higher than
the 2MRS and PSCz predictions, respectively.

As a point of comparison, we have generated similar plots for
several additional lines of sight, shown in the remaining panels in
Fig. 13. We show the binned 
d values along the directions of
the Norma Cluster, the Hydra-Centaurus Supercluster, the Hydra
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Figure 13. Averaged 
d = log (Dz/DH) for 6dFGS observations, as compared to both the 2MRS and PSCz models, in redshift-space distance bins along
the Shapley Supercluster, Cetus Supercluster, Norma Cluster, Hydra-Centaurus Supercluster, Hydra Cluster, Vela Supercluster, Abell 3158, and Horologium-
Reticulum Supercluster directions. Each bin is 10 h−1 Mpc wide, and the directions are defined as the regions within 30◦ of the coordinates listed at the bottom
of each panel. For each bin, we have averaged the values of 
d for all 6dFGSv galaxies within the bin, and display the averaged value as the black circle.
The error bar is then given by equation (27). The averaged 
d values as given by the 2MRS and PSCz models are represented by the red and blue squares,
respectively. Red and blue lines connect the points. We also draw a black line at 
d = 0, and dotted lines to show the 
d values corresponding to ±400, 800,
and 1200 km s−1, as indicated along the right-hand side of the plot.

Cluster, and the Vela Supercluster. The first three structures are fa-
miliar features of the local large-scale structure, noted by numerous
past authors (e.g. LB88; Tully et al. 1992; Mutabazi et al. 2014).
Vela is less well know, but Kraan-Korteweg et al. (in preparation)
find preliminary observational evidence for a massive overdensity
in that direction at cz ∼ 18 000–20 000 km s−1. Each of these four
sky directions lies closer to the Shapley direction than the Cetus
direction. They also lie close to both the Zone of Avoidance and the
bulk flow directions observed by various authors, such as Feldman
et al. (2010), Nusser & Davis (2011), and Turnbull et al. (2012).
Additionally, they each show a similar trend to the one seen in the
Shapley direction: the 
d values lie above the model predictions
from both 2MRS and PSCz.

The remaining two panels in Fig. 13 show the velocity field along
the directions towards Abell 3158 and the Horologium-Reticulum
Supercluster. These are much closer to the Cetus direction than the
Shapley direction, and they show a similar trend to the one seen for
Cetus: 
d values which lie below the model predictions from both
2MRS and PSCz. Like Cetus, they also show a somewhat larger
divergence between the 2MRS and PSCz model predictions, with
PSCz lying closer to our observed 
d values.

These plots confirm what can be seen in Figs 9 and 10 as
well. There is a gradient of residuals from the model, going from
somewhat negative residuals in the Cetus direction, to more pos-
itive residuals in the Shapley direction, with the Cetus direction

representing a particularly large deviation between the data and
model for 2MRS, at least in terms of the mean value of 
d, even
if the χ2

ν value in that region is no worse than the corresponding
value in the Shapley direction. This suggests a residual bulk flow
from both the 2MRS and PSCz models, pointing in the vicinity
of the Shapley Supercluster, which is explored in greater detail by
Magoulas et al. (in preparation).

One might worry that the apparent direction of this residual bulk
flow lies close to the Galactic plane. Might erroneous extinction cor-
rections be creating a systematic bias, which skews our results? As
noted in Section 2.1, a previous iteration of this catalogue made use
of the Schlegel et al. (1998) extinction map rather than the Schlafly
& Finkbeiner (2011) extinction map. We find virtually no change in
the cosmography, when using the Schlegel et al. (1998) corrections
rather than those of Schlafly & Finkbeiner (2011). Magoulas et al.
(in preparation) investigates this issue further, measuring the bulk
flow when the extinction corrections are changed by as much as three
times the difference between the Schlegel et al. (1998) and Schlafly
& Finkbeiner (2011) corrections, finding only small changes in both
the magnitude and direction of the bulk flow between one extreme
and the other. It thus seems unlikely that the apparent residual bulk
flow is an artefact of erroneous extinction corrections, unless the
Schlafly & Finkbeiner (2011) extinction map includes systematic
errors across the sky far larger than the difference between those
values and those of Schlegel et al. (1998).
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Figure 14. χ2
tot as a function of the zero-point offset for 2MRS (red) and

PSCz (blue). The best-fitting zero-point offsets are +0.0080 and +0.0102
dex for 2MRS and PSCz, respectively. These mean that the values of 
d
would be shifted correspondingly lower in each case.

So, in summary, the global χ2
ν is ∼1 for both models, though

lower for PSCz than for 2MRS. Both models systematically predict
peculiar velocities that are too negative in the Shapley direction,
and too positive in the Cetus direction. This suggests a ‘residual
bulk flow’ that is not predicted by the models.

The residual bulk flow suggests that either the models may be
underestimating features of large-scale structure within the survey
volumes of both 2MRS and PSCz, or the velocity field is being in-
fluenced by structures outside the survey volume. However, the fact
that the larger discrepancy in mean 
d occurs in the Cetus direc-
tion rather than the Shapley direction would seem to argue against a
more-massive-than-expected Shapley Supercluster being the main
cause of the residual bulk flow, unless we are underestimating the
zero-point of the FP by much more than the 0.003 dex uncertainty
derived in Section 3.2.

We did note in Section 3.2, however, that the calibration of
the FP zero-point depends on the assumption that the sample of
galaxies within the equatorial region (those galaxies in the range
−20◦ < decl. < 0◦) exhibit no monopole feature in the velocity
field. We could ask, at this point, whether shifting the zero-point
might change the agreement between data and model.

We thus calculate χ2
tot for both the 2MRS and PSCz models, al-

lowing the zero-point of 
d to vary as a free parameter. As seen in
Fig. 14, the best-fitting zero-point for 2MRS and PSCz, respectively,
would be +0.0080 and +0.0102 dex higher than our nominal value.
This ‘higher zero-point’ means that the 
d values would be corre-
spondingly lower (i.e. the redshift distance is less than the Hubble
distance). Thus, allowing the zero-point to float as a free parameter
in the comparison to both 2MRS and PSCz models would have the
effect of improving the overall fit, but making the offset in the mean
value of 
d between data and models in the Cetus direction worse.

Finally, is there anything that we can say about the differences
between the two velocity field models, and why PSCz offers a
better fit to the 6dFGSv velocities than 2MRS does? To see why the
2MRS and PSCz velocity fields differ, it is instructive to look at the
respective density fields, as shown in Fig. 3.

As seen in that figure, while the same basic features of large-
scale structure appear in both models, they differ in the details,
with a mean rms of the log density ratio on a gridpoint-by-gridpoint
basis being 0.73 dex. (The scatter appears somewhat smaller than
this in Fig. 3, because we have averaged gridpoints at a given
SGX, SGY position on to our four SGZ slices.) The deviations are
greatest at the edges of the survey volume, though relatively evenly
spread across the sky, with no one particular feature of large-scale
structure dominating the differences between the models. Within
161 h−1 Mpc, the mean overdensity 〈δ〉 is −0.07 in 2MRS and
−0.15 in PSCz. With PSCz being, on average, less dense than
2MRS near the limits of the 6dFGS survey volume, it features more
negative peculiar velocities in both the Shapley and Cetus directions,
perhaps accounting for some of the better agreement with 6dFGSv
in the Cetus direction.

We should note that, as seen in the original 2MRS and PSCz pa-
pers (Erdoğdu et al. 2006; Branchini et al. 1999), both surveys have
very few galaxies at redshifts of cz ∼ 15 000 km s−1and greater,
leading to considerable uncertainty in the density/velocity model at
those redshifts. A future paper will improve on this limitation by
comparing the observed velocity field to the deeper 2M++ recon-
struction (Lavaux & Hudson 2011). In the future, deeper all-sky red-
shift surveys, such as WALLABY (Duffy et al. 2012) and TAIPAN
(Beutler et al. 2011; Colless, Beutler & Blake 2013), should be able
to provide more accurate models of both the density and velocity
fields at the distance of structures such as Shapley. Those same
surveys will also provide significantly more peculiar velocities than
are presently available, which may be enough to resolve the source
of any residual discrepancies between data and models.

6 C O N C L U S I O N S

We have derived peculiar velocity probability distributions for 8885
galaxies from the peculiar velocity subsample of the 6dFGS. We
have presented a Bayesian method for deriving the probability dis-
tributions, which are nearly Gaussian with logarithmic distance.
The Bayesian approach allows us to take advantage of the full prob-
ability distribution, accounting for the fact that it is not perfectly
Gaussian in logarithmic units (and certainly not in linear units). In
the units of the logarithmic distance ratio, 
d, we find a mean value
of 
d equal to +0.005, in agreement with the slightly positive val-
ues for Southern hemisphere galaxies given by the 2MRS and PSCz
models. The mean scatter in 
d for individual galaxies is 0.112 dex,
corresponding to a 26 per cent distance error in linear units.

The peculiar velocities are then smoothed using an adaptive Gaus-
sian kernel to give 3D maps of the observed velocity field. We sim-
ilarly smooth the 2MRS and PSCz predicted velocity fields, and
compare them to the 6dFGSv field. We find χ2

ν = 0.897 for 2MRS
and χ2

ν = 0.893 for PSCz. The difference in total χ2 is 36, favour-
ing the PSCz model with high significance. Though χ2

ν ∼ 1 in both
cases, the agreement is not uniform across the survey volume. The
observed field shows a stronger dipole signature than is seen in
either of the predicted fields, with systematically positive peculiar
velocities being found in the vicinity of the Shapley Supercluster,
as well as other neighbouring structures, such as the Norma Cluster
and Vela Supercluster. Several previous authors (e.g. Feldman et al.
2010; Nusser & Davis 2011) have found that the bulk flow of the
local universe points in the vicinity of these structures. We find that
these more positive than expected peculiar velocities are offset by
more negative than expected peculiar velocities in the direction of
the Pisces-Cetus Supercluster (‘Cetus direction’), ∼130◦ away.
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The larger than expected dipole signature across the sky may
have either a cosmological or cosmographic origin. The latter in-
terpretation would suggest that the models either overestimate or
underestimate features of large-scale structure within the survey
volume, or that some features of large-scale structure outside the
survey volume have a large impact on the velocity field. We note
that the bulk of the 6dFGSv galaxies lie at distances greater than
100 h−1 Mpc, whereas the number counts in both the 2MRS and
PSCz surveys peak at nearer distances. Thus, the contribution to
the models from more distant structures is dependent on a compara-
tively small number of objects. It does not appear, however, that any
mismatch between data and models results from a straightforward
underestimate of the Shapley Supercluster in the models, as, though
χ2

ν in the Shapley direction alone is larger than the global χ2
ν , the

discrepancy in the mean of all logarithmic distances ratios is greater
in the Cetus direction than the Shapley direction. In fact, when we
allow the zero-point of the FP to float as a free parameter, we find
greater agreement between data and models when the observed ve-
locities are pushed towards more negative values, thus making the
agreement between data and models in the Cetus direction worse.

We are currently investigating improved density and velocity
field models, to advance our understanding of any discrepancies
between data and models. In the forthcoming paper (Magoulas
et al., in preparation), we examine the bulk flow, and residual bulk
flow from both 2MRS and PSCz models, in greater quantitative
detail. Additionally, future all-sky redshift surveys will improve the
knowledge of the density to a greater depth than can be studied by
the current generation of surveys.
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A P P E N D I X A : TH E L O G N O R M A L
D I S T R I BU T I O N O F P E C U L I A R V E L O C I T I E S
F RO M A G AU S S I A N D I S T R I BU T I O N O F
F U N DA M E N TA L PL A N E O F F S E T S

In this Appendix, we address the distribution of peculiar velocities
arising from Fundamental Plane distance estimates. Specifically, we
derive the lognormal distribution of peculiar velocities that results
from a Gaussian error distribution for the offsets in logarithmic dis-
tance ratio from the Fundamental Plane. We compare these results
with the original work of LB88, noting similarities and differences.
We discuss the particular biases that arise from the asymmetry of the
lognormal distribution, but leave it up to the reader to decide how
best to account for this in using the 6dFGS data set for a particular
application.

For simplicity, the following derivation considers the peculiar ve-
locity distribution of galaxies that derives from their nominal offset
from the Fundamental Plane and its Gaussian uncertainty. It ignores

the fact that for our 3D Gaussian model the maximum likelihood
offset for a fixed i and s is not the offset from the Fundamental Plane
itself (a matter discussed in section 8.3 of Magoulas et al. 2012), as
that does not affect the general argument made here. It also ignores
complicating effects due to selection bias. All these complications
are dealt with in the detailed algorithm used to derive the posterior
velocity distributions discussed in the main text; the point of this
Appendix is to derive a simple but relevant analytic result to inform
the reader’s understanding.

A1 Peculiar velocities from Fundamental Plane offsets

First we derive from basic principles the relationship between a
galaxy’s peculiar velocity and its offset from the Fundamental Plane.

A galaxy’s peculiar redshift zp is related to its observed redshift z

and its Hubble redshift zH (the redshift corresponding to its distance)
by

(1 + z) = (1 + zH)(1 + zp). (A1)

We measure distances from the standard ruler provided by the Fun-
damental Plane through the relation

Rθ = Rz

dA(z)
= RH

dA(zH)
(A2)

where Rθ is the angular size of the galaxy, Rz and RH are the cor-
responding physical sizes if the galaxy is at angular diameter dis-
tances dA(z) and dA(zH) given by the observed and Hubble redshifts
(RH is the galaxy’s true physical size because zH corresponds to its
true distance). In practice we infer Rz from the observed redshift as
Rθ dA(z).

The ratio of the true and observed physical sizes is thus

RH

Rz

= dA(zH)

dA(z)
= d(zH)

d(z)

1 + z

1 + zH
= d(zH)

d(z)
(1 + zp), (A3)

where d(z) and d(zH) are the comoving distances corresponding to z

and zH, and we have used the general relations dA(z) = d(z)/(1 + z)
and, from equation (A1), (1 + zp) = (1 + z)/(1 + zH).

We infer the (logarithmic) true size from the Fundamental Plane
relation

log RH = rH = a(s − s̄) + b(i − ī) + r̄ . (A4)

We assume that any offset from the Fundamental Plane is due to the
peculiar velocity, so that

log Rz = rz = a(s − s̄) + b(i − ī) + r̄ + δ. (A5)

Thus

log Rz − log RH = δ and so
Rz

RH
= 10δ. (A6)

Up to this point we have made no approximations, but now we
make use of the low-redshift approximation d(zH) ≈ czH/H0 (or,
more precisely, the approximation d(zH)/d(z) ≈ zH/z), which turns
equation (A3) into

RH

Rz

= d(zH)

d(z)
(1 + zp) ≈ zH

z
(1 + zp). (A7)

Using equation (A1) to eliminate zH = (z − zp)/(1 + zp) and
equation (A6) for the relation between the distance ratio and the
Fundamental Plane offset we obtain

RH

Rz

≈ z − zp

z
≈ 10−δ. (A8)
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Solving for zp gives zp ≈ z(1 − 10−δ), so the inferred peculiar
velocity for a galaxy at observed redshift z having an offset δ from
the Fundamental Plane is

vp = czp ≈ cz(1 − 10−δ). (A9)

This is the standard approximate relation for the peculiar velocity
based on the low-redshift Hubble law [see e.g. LB88 and Colless
et al. (2001)]. Note that δ corresponds to 〈
d〉, the mean logarith-
mic distance ratio given in Table 1 (δ here has the opposite sign
convention to that adopted in Colless et al. 2001).

In determining the 6dFGS peculiar velocities we in fact use the
exact distance relation, but this approximation provides a simple and
precise analytic formula to work with. If zH/z = (1 + ε)d(zH)/d(z)
then czp = (1 + ε)cz(1 − 10−δ), and so the relative error in the
peculiar velocity is 
czp/czp = ε. Direct numerical comparison
with the exact relation shows that the approximation is very good:
the resulting relative error in peculiar velocity is less than 5 per cent
at all redshifts (i.e. less than 15 km s−1 for a peculiar velocity of
300 km s−1 and less than 50 km s−1 for a peculiar velocity of
1000 km s−1), and less than 1 per cent for all cz > 3000 km s−1.

A2 The lognormal distribution of peculiar velocities

As we have noted both in this paper and in our investigation of the
properties of the Fundamental Plane (Magoulas et al. 2012), the
error distributions for the offsets of galaxies from the Fundamental
Plane (combining observational errors and intrinsic scatter about the
relation) are very closely approximated by a Gaussian. Equations
(A8) and (A9) then imply that the posterior distributions of relative
distances and peculiar velocities inferred from the Fundamental
Plane offsets will have lognormal distributions.

To derive the peculiar velocity distribution corresponding to a
Gaussian distribution N(δ|μ, σ ) for the Fundamental Plane offset δ,
we note that the quantity u given by u = e−δ is lognormal distributed
as ln[N(u|μ, σ )], with

P (u) = ln[N(u|μ, σ )] = 1√
2πuσ

exp
−(ln u − μ)2

2σ 2
. (A10)

This means that the peculiar velocity given by

v = cz(1 − 10−δ) = cz(1 − e−δ ln 10) = cz(1 − uln 10) (A11)

is distributed as

P (v) = P (u)

∣∣∣∣du

dv

∣∣∣∣ . (A12)

By equation (A11) we have

u = (1 − v/cz)
1

ln 10 , (A13)

and thus∣∣∣∣du

dv

∣∣∣∣ = 1

cz ln 10
(1 − v/cz)

1
ln 10 −1. (A14)

Inserting these expressions for u and |du/dv| into equation (A12),
we obtain

P (v) = 1√
2πσv(cz − v)

exp
−(ln(cz − v) − μv)2

2σ 2
v

= ln[N(cz − v|μv, σv)] (A15)

where μv = ln (cz10μ) = ln (cz), in the usual case where the error
distribution has μ = 0, and σ v = σ ln 10.

Hence the peculiar velocities have a lognormal distribution in
cz − v, which is the Hubble approximation to the comoving distance

in velocity units [H0d(zH) ≈ czH ≈ cz − czp = cz − v]; for v < cz
this is a good approximation.

The mean of this lognormal distribution is

Mean[cz − v] = exp(μv + σ 2
v /2) = cz10

1
2 σ 2 ln 10, (A16)

implying

Mean[v] = cz(1 − 10
1
2 σ 2 ln 10). (A17)

The standard deviation is

SD[cz − v] = Mean[cz − v]
√

exp(σ 2
v ) − 1

= Mean[cz − v]
√

10σ 2 ln 10 − 1, (A18)

implying

SD[v] = cz10
1
2 σ 2 ln 10

√
10σ 2 ln 10 − 1. (A19)

From equation (A17), even if μ = 0 the mean peculiar veloc-
ity is non-zero and depends on the scatter about the Fundamental
Plane. For example, for the canonical 20 per cent scatter about
the Fundamental Plane we would have σ = 0.08 dex, and in that
case v̄/cz = 1 − 100.082 ln 10/2 ≈ −1.7 per cent, which corresponds
to −170 km s−1 if cz = 10 000 km s−1.

LB88 obtained a similar result when deriving the radial velocity
distribution at a given distance corresponding to an offset from the
Dn–σ relation (a close relative of the Fundamental Plane). However
the approximation they provide (LB88 equation 2.9) is a Gaussian
distribution with mean (LB88 equation 2.11) and standard devia-
tion (LB88 equation 2.10) identical to those given above for the
lognormal distribution (allowing for differences in nomenclature
and ignoring complications due to Malmquist bias and intrinsic
scatter about the Hubble flow).

In fact, LB88 do not appear to have realized that the velocity
distribution is actually lognormal. They certainly do not explicitly
identify it as such, even though they derive the first four moments
(LB88 Appendix D). They neglect the distribution’s skewness and
kurtosis in adopting a Gaussian approximation, arguing that the
deviations from Gaussian form are not significant. While this may
be true at small distances, the effect becomes significant at the dis-
tances of most of the galaxies in the 6dFGS sample. Moreover, the
cumulative effect of the small asymmetries in the peculiar velocity
distributions can have a significant biasing effect on the likelihood
of the sample as a whole, and must be properly accounted for in a
careful analysis of this data set.

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Table 1. 6dFGSv logarithmic distance ratios, and associated param-
eters (http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/
mnras/stu1743/-/DC1).
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