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AN INHOMOGENEOUS JARNÍK TYPE THEOREM FOR PLANAR
CURVES

DZMITRY BADZIAHIN†, STEPHEN HARRAP†, AND MUMTAZ HUSSAIN∗

Abstract. In metric Diophantine approximation there are two main types of ap-
proximations: simultaneous and dual for both homogeneous and inhomogeneous
settings. The well known measure-theoretic theorems of Khintchine and Jarník are
fundamental in these settings. Recently, there has been substantial progress towards
establishing a metric theory of Diophantine approximations on manifolds. In partic-
ular, both the Khintchine and Jarník type results have been established for planar
curves except for only one case. In this paper, we prove an inhomogeneous Jarník
type theorem for convergence on planar curves and in so doing complete the metric
theory for both the homogeneous and inhomogeneous settings for approximation on
planar curves.

1. Introduction

Classical metric Diophantine approximation deals quantitatively with the density
of the rational numbers within the real numbers. The higher dimensional theory of
Diophantine approximation for systems of m linear forms in n variables combines
two different types of classical Diophantine approximation: simultaneous and dual.
Simultaneous Diophantine approximation comprises the component-wise approxim-
ation of points y = (y1, . . . , ym)

T ∈ R
m by m-tuples of rational numbers {p/q :

(p, q) ∈ Z
n × N}, whereas dual Diophantine consists of the approximation of points

x = (x1, . . . , xn) ∈ R
n by ‘rational’ hyperplanes of the form a1x1 + · · ·+ anxn = a0,

where (a0, a) = (a0, a1, . . . an) ∈ Z×Z
n\{0}. Over the last few years rich and intricate

metric theories have been established relating to both of these types of approximation.
Broadly speaking, both theories have followed similar paths of development with ad-
vances in the dual theory often following quickly from corresponding breakthroughs
in the simultaneous theory, although the methods required are on occasion quite dif-
ferent. In this paper we are concerned with a problem in dual approximation whose
development was until recently very far behind the simultaneous analogue. We are
able to bring the state of the dual theory in line with the simultaneous theory in this
case.

1.1. Inhomogeneous dual approximation. Throughout, ψ : N → R
+ will denote

a real positive decreasing arithmetic function such that ψ(n) → 0 as n→ ∞. We will
refer to ψ as an approximating function for reasons that will become apparent. Given
an approximating function ψ and a real function λ : Rn → R (which will be referred
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to as the inhomogeneous function), define the set

W (λ, ψ) :=

{

x = (x1, . . . , xn) ∈ R
n :

|a0 + a1x1 + · · ·+ anxn + λ(x)| < ψ(|a|)
for i.m. (a0, a) ∈ Z× Z

n \ {0}

}

,

where ‘i.m.’ stands for ‘infinitely many’ and |a| = max{|a1|, . . . , |an|} is the standard
supremum norm. Any vector x ∈ R

n will be called ψ−approximable (with respect to
λ) if it lies in the set W (λ, ψ). Additionally, in the special case that ψ(r) = r−τ for
some τ > 0 we say that x is τ−approximable (with respect to λ) and denote W (λ, ψ)
by W (λ, τ).

When the inhomogeneous function satisfies λ ≡ 0 the set W (ψ) := W (0, ψ) rep-
resents the classical homogeneous set of ψ-approximable vectors within the theory
of dual Diophantine approximation. On the other hand, when λ is constant the set
W (λ, ψ) represents what would usually be referred to as the classical inhomogeneous
set of ψ−approximable vectors (in the context of dual approximation). In both of
these cases the metric theory associated with the set W (λ, ψ) is well understood. In
particular, the following is a modern version of a combined statement of three clas-
sical theorems of Khintchine ([27], 1924), Groshev ([22], 1926) and Jarník ([26], 1931)
and is due to many contributions by many authors at various stages (for example,
see [8, 9, 12]). It provides an elegant but simple criterion for the ‘size’ of W (λ, ψ)
expressed in terms of s-dimensional Hausdorff measure Hs. For the definitions of
Hausdorff measure and dimension we refer the reader to §2.1.

Theorem 1 (Khintchine-Groshev-Jarník). Let ψ be an approximating function, let
λ(x) = λ0 ∈ R be constant and let s ∈ (n− 1, n]. Then,

Hs(W (λ0, ψ)) =



















0 if
∞
∑

q=1

ψ(q)s−n+1q2n−s−1 <∞.

Hs(Rn) if
∞
∑

q=1

ψ(q)s−n+1q2n−s−1 = ∞.

Note that when s = n, the measure Hn is equivalent to n-dimensional Lebesgue
measure. The convergent case of Theorem 1 is actually an easy consequence of the
Borel-Cantelli lemma from probabiliy theory; the main substance of the theorem lies
in the much more difficult divergent part. Before we proceed, it is worth mentioning
that the analogue of Theorem 1 has been obtained in the setting of simultaneous
Diophantine approximation. Here, instead of W (λ, ψ) one may consider the set

(1) S(λ, ψ) :=
{

y ∈ R
m :

max
16i6m

|qyi − pi + λ(y)| < ψ(q)

for i.m. (q, p1, . . . , pn) ∈ N× Z
n

}

for some inhomogeneous function λ : Rm → R and an approximating function ψ.
More generally, one can combine the two viewpoints (dual and simultaneous) and
in the case that λ is constant establish a result akin to Theorem 1 for the resulting
system of m linear forms in n variables– see [8] for a detailed account. Due to the
path of development, results concerning the Lebesgue measure of ψ-well approximable
points are often referred to as being of Khintchine type for the setting of simultaneous
Diophantine approximation and of Groshev type for the setting of dual Diophantine
approximation. On the other hand, results concerning the Hausdorff measure of such
sets are often referred to as being of Jarník type.
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In this paper we consider a problem in the setting of ‘functional’ inhomogeneous
dual approximation; that is, the setup where the inhomogeneous function λ is not
constant and so depends on each point x ∈ R

n being approximated. Measure-theoretic
considerations corresponding to this difficult variant of classical dual Diophantine
approximation do not seem to have received any explicit treatment in the literature,
even for the case ‘s = n’ corresponding to Lebesgue measure. However, by appealing
to modern techniques we are able to provide a precise criterion for the Hausdorff
measure of the part of the set W (λ, ψ) lying on any sufficiently well behaved planar
curve.

1.2. Diophantine approximation on manifolds. The problem of estimating the
size of the set of ψ–approximable points is more intricate if one restricts x ∈ R

n to
lie on some m–dimensional submanifold M ⊆ R

n. Such a restriction implies that the
points of interest x must be functionally related. Consequently, problems of this type
were classically referred to as ‘approximation of dependent quantities’. Naturally, one
must appeal to the induced m-dimensional Lebesgue measure Λ on the manifold in
question, for otherwise the relevant measure-theoretic statements would be trivial -
when m < n the n-dimensional Lebesgue measure of M ∩ W (λ, ψ) is always zero,
irrespective of the approximating function ψ.

In what follows, as usual, C(n)(I) will denote the set of n-times continuously differ-
entiable functions defined on some interval I of R.

1.2.1. The classical results. The exploration of (homogeneous) Diophantine approx-
imation on manifolds dates back to a profound conjecture of Mahler [29] in 1932,
which can be rephrased in terms of the ‘extremality’ of the Veronese curve Vn :=
{(x, x2, . . . , xn) : x ∈ R}. A manifold M ⊂ R

n is said to be extremal if Λ(W (0, ψ) ∩
M) = 0 for any τ > n, and Mahler’s conjecture was precisely the statement that Vn is
extremal. One should observe that from a measure-theoretic perspective the property
of being extremal is actually a weaker property than the convergent part of The-
orem 1, although of course it embodies the added difficulty that the points x must be
dependent upon one another.

Mahler’s conjecture was solved completely by Sprindžuk [31] in 1965, although the
special cases n = 2 and n = 3 had been settled earlier. Schmidt [30] extended Mahler’s
problem to the case of all sufficiently curved C(3) planar curves, leading to a reasonably
general theory of Diophantine approximation on manifolds. To be precise, Schmidt
required that for each local parametrisation C = Cf := {(f1(x), f2(x)) : x ∈ I},
where I ⊂ R is some closed interval, the curve Cf is non-degenerate; that is, the set of
points x ∈ I at which f ′

1(x)f
′′
2 (x)− f ′′

1 (x)f
′
2(x) = 0 is a set of Lebesgue measure zero.

Following on from this, Sprindžuk conjectured that any analytic manifold satisfying a
similar ‘non-degeneracy’ condition should also be extremal. The heuristic meaning of
non-degeneracy in this context is that each manifold is smooth and ‘curved enough’
so as to deviate from any given hyperplane; see [5, 28] for a precise formulation. Even
though particular cases of Sprindžuk’s conjecture were known, it was not until 1998
when it was solved in full generality by Kleinbock & Margulis [28]. Building on this
breakthrough, progress has subsequently been dramatic. In particular, the following
Lebesgue measure analogue of Theorem 1 for Diophantine approximation on manifolds
was proved iteratively in the papers [5, 15, 18], whilst [5] gave an alternative proof of
Sprindžuk’s conjecture.



4 DZMITRY BADZIAHIN†, STEPHEN HARRAP†, AND MUMTAZ HUSSAIN∗

Theorem 2 (Beresnevich-Bernik-Kleinbock-Margulis). Let M ⊂ R
n be a non-degenerate

manifold of dimension m and let ψ be an approximating function. Then,

Λ(W (0, ψ) ∩M) =















0 if
∞
∑

q=1

ψ(q)qn−1 < ∞.

Λ(M) if
∞
∑

q=1

ψ(q)qn−1 = ∞.

Unlike Theorem 1, the convergence case of Theorem 2 (which was independently
proved in [5] and [18]) required very delicate covering and counting arguments to
reduce it to a situation where the Borel-Cantelli lemma was applicable; this was a
highly non-trivial task. The divergence part was first established for the Veronese
curves in [4] and later for arbitrary non-degenerate manifolds in [15]. The statement
of Theorem 2 was first conjectured by Baker in 1975.

Obtaining a full Hausdorff measure analogue of Theorem 1 for Diophantine ap-
proximation on manifolds represents a deep open problem and is often referred to
as the Generalized Baker-Schmidt Problem for Hausdorff measure. However, whilst
establishing a general framework for attacking problems of this type, Beresnevich,
Dickinson & Velani were remarkably able to verify the conjecture in the case of diver-
gence (see Theorem 18 of [9]) leading to the following unified statement.

Theorem 3 (Beresnevich-Dickinson-Velani). Let M ⊂ R
n be a non-degenerate man-

ifold of dimension m and let ψ be an approximating function. Then, for any s ∈
(m− 1, m] we have

Hs(W (0, ψ) ∩M) = Hs(M) if

∞
∑

q=1

ψ(q)s−m+1qn+m−s−1 = ∞.

A convergence counterpart of Theorem 4 currently remains out of reach. Indeed, it
is only very recently that any progress has been made. In 2014 it was finally shown by
Huang [24] that the convergence part of the Generalized Baker-Schmidt Problem for
Hausdorff measure holds for all C(2) non-degenerate planar curves. The only previously
known result of this type was for the special case of parabolas [25].

1.2.2. ‘Functional’ inhomogeneous Diophantine approximation on manifolds. The most
difficult variant of dual Diophantine approximation on manifolds concerns functional
inhomogeneous approximation. Until a short time ago the theory in this setting has
been almost non-existent, even in the case where the inhomogeneous function λ is con-
stant and non-zero; i.e., even in the setting of classical inhomogeneous approximation.
The concept of inhomogeneous extremality (for λ taking a non-zero constant value)
was recently introduced and discussed in [13, 17], where a classical inhomogeneous
version of Kleinbock & Margulis result was proven. Moreover, Badziahin, Beresnevich
& Velani [2] were later able to establish a general result implying the following func-
tional inhomogeneous statement for arbitrary non-degenerate manifolds. It contains
both Theorems 2 & 3 as special cases (λ ≡ 0) - see also Theorem 1 of [1].
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Theorem 4 (Badziahin-Beresnevich-Velani). Let M ⊂ R
n be a non-degenerate man-

ifold of dimension m and let ψ be an approximating function. Then, for any inhomo-
geneous function λ satisfying λ|M ∈ C(2) and any s ∈ (m− 1, m] we have

Hs(W (λ, ψ) ∩M) = Hs(M) if

∞
∑

q=1

ψ(q)s−m+1qn+m−s−1 = ∞.

Furthermore, in the case that s = m and so Hs ≡ Λ we have

Hm(W (λ, ψ) ∩M) = 0 if

∞
∑

q=1

ψ(q)qn−1 <∞.

At the time of writing, this represented the state of the art in solving the functional
inhomogeneous analogue of the Generalized Baker-Schmidt Problem for Hausdorff
measure. To reiterate, the following problem represents the main remaining hurdle in
establishing a complete Hausdorff measure theory for Diophantine approximation on
differentiable manifolds.

Problem 1. Let M ⊂ R
n be a non-degenerate manifold of dimension m and let ψ

be an approximating function. Then, for any inhomogeneous function λ satisfying
λ|M ∈ C(2) and any s ∈ (m− 1, m] verify that

Hs(W (λ, ψ) ∩M) = 0 if

∞
∑

q=1

ψ(q)s−m+1qn+m−s−1 <∞.

1.2.3. Further remarks. Similar breakthroughs to those outlined above have been
made in the setting of simultaneous Diophantine approximation on manifolds. Here,
the focus is concentrated on the set S(λ, ψ) introduced in (1) and progress has largely
followed a parallel, although often slower moving, arc. For brevity we do not include
full details of every result here, suffice to say that a complete analogue of Theorem 3
and an analogue of the divergence part of Theorem 2 for simultaneous Diophantine
approximation on analytic manifolds were both proven by Beresnevic in the recent
seminal paper [7]. This followed the establishing of these statements in the special case
of non-degenerate planar curves in both the case of convergence [32] (for C(2) curves)
and divergence [10] (for C(3) curves) - see also [14]. Classical inhomogeneous versions
of the latter two results appeared shortly afterwards in the paper [16]. Consequently,
the theory of simultaneous Diophantine approximation for S(λ0, ψ) ∩ C is essentially
complete. A simultaneous analogue of the convergence part of Theorem 2 and a
simultaneous analogue of Theorem 4 for arbitrary non-degenerate analytic manifolds
remain open problems.

We end our discussion with brief mention of a related research direction. In 1970,
Baker & Schmidt [3] obtained a lower bound for the Hausdorff dimension of sets arising
from Mahler’s problem. They also conjectured that their bound was sharp. The
original Baker-Schmidt conjecture was settled by Bernik [19]. It was the extrapolation
of this problem which led to the question of determining the Hausdorff measure of
Diophantine sets restricted to a manifold. However, the special case of determining
the Hausdorff dimension of such sets has also been of great interest. We refer the
reader to [1] and [2] and the references therein for details and further discussion.
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1.3. Statements. Before stating our main result, we elaborate on the natural restric-
tions which we will impose on each planar curve.

Without loss of generality, we may assume that each C(2) planar curve C := Cf =
{(x, f(x)) : x ∈ I} can be given as the graph of a C(2) map f : I → R, where I is
some compact interval of R. Given s ∈ (0, 1] we say that a C(2) planar curve C is non-
degenerate (with respect to Hs) if the set of points on C at which the curvature vanishes
is a set of s-dimensional Hausdorff measure zero; i.e., if Hs ({x ∈ I : f ′′(x) = 0}) = 0.
It is readily verified that in the case ‘s = 1’ this condition is equivalent to that required
by Schmidt as described earlier - see [6, 28] for further discussion.

For C ∈ C(2)(I), the above observations allow us to re-express the intersection
W (λ, ψ) ∩ C as the one parameter set W (C, λ, ψ) given by

W (C, λ, ψ) =
{

x ∈ I :
|a2f(x) + a1x+ a0 + λ|C(x)| < ψ(|a|)
for i.m. (a0, a) := (a0, a1, a2) ∈ Z× Z

2 \ {0}

}

.

We may now state our main result.

Theorem 5. Let ψ be an approximating function and let C be a C(2)(I) non-degenerate
planar curve. Then for any inhomogeneous function λ satisfying λ|C ∈ C(2) and any
s ∈ (0, 1) we have

(2) Hs(W (C, λ, ψ)) = 0 if
∞
∑

q=1

ψ(q)sq2−s <∞.

Together with Theorem 4, we obtain the following combined corollary upon recalling
that Hausdorff measure is invariant (up to a constant) under bi-Lipshitz bijections
such as the co-ordinate map f : I → Cf : x→ (x, f(x)).

Corollary 6. Let ψ be an approximating function and let C be a C(2)(I) non-degenerate
planar curve. Then for any inhomogeneous function λ satisfying λ|C ∈ C(2) and any
s ∈ (0, 1] we have

Hs(W (λ, ψ) ∩ C) =



















0 if
∞
∑

q=1

ψ(q)sq2−s <∞.

Hs(C) if
∞
∑

q=1

ψ(q)sq2−s = ∞.

Remark. We remark that the assumption s ∈ (0, 1) in Theorem 5 is absolutely neces-
sary. The case ‘s = 1’ in Corollary 6 corresponds to the result of Badziahin, Beres-
nevich & Velani, and in the case ‘s > 1’ the string of inequalities Hs(W (C, λ, ψ)) ≤
Hs(C) = 0 holds for any approximating function ψ without the requirement of any
sum condition.

The above theorem brings the theory of dual approximation on non-degenerate
curves in line with the advances in simultaneous Diophantine approximation on non-
degenerate planer curves in [16], and also generalises the result of Huang [24] concern-
ing dual Diophantine approximation on non-degenerate planer curves to the functional
inhomogeneous setting. In doing so, we provide a complete solution to Problem 1 in
the special case ‘M = C, n = 2’. Indeed, our proof synthesises the ideas of [24] with
those presented in [1].
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2. Preliminaries

To simplify notation in the proofs the Vinogradov symbols ≪ and ≫ will be used
to indicate an inequality with an unspecified positive multiplicative constant. If a≪ b
and a≫ b we write a ≍ b, and say that the quantities a and b are comparable.

2.1. Hausdorff measure and dimension. For completeness we give a very brief
introduction to Hausdorff measures and dimension. For further details see [20]. Let
F ⊂ R

n. Then, for any ρ > 0 a countable collection {Bi} of balls in R
n with diameters

diam(Bi) 6 ρ such that F ⊂ ⋃iBi is called a ρ-cover of F . Let

Hs
ρ(F ) = inf

∑

i

diam(Bi)
s,

where the infimum is taken over all possible ρ-covers {Bi} of F . It is easy to see
that Hs

ρ(F ) increases as ρ decreases and so approaches a limit as ρ → 0. This limit
could be zero or infinity, or take a finite positive value. Accordingly, the Hausdorff
s-measure Hs of F is defined to be

Hs(F ) = lim
ρ→0

Hs
ρ(F ).

It is easily verified that Hausdorff measure is monotonic and countably sub-additive,
and that Hs(∅) = 0. Thus it is an outer measure on R

n. Furthermore, for any subset
F one can easily verify that there exists a unique critical value of s at which Hs(F )
‘jumps’ from infinity to zero. The value taken by s at this discontinuity is referred to
as the Hausdorff dimension of F is denoted by dimF ; i.e.,

dimF := inf{s ∈ R
+ : Hs(F ) = 0}.

When s is an integer, n say, then Hn coincides with standard n-dimensional Le-
besgue measure, which we will denote | . |. Hausorff s-measure, like Lebesgue meas-
ure, is preserved (up to a constant) by certain well behaved maps. In particular,
if g : E → F is a bi-Lipshitz bijection between two sets in Euclidean space then
Hs(E) ≍ Hs(F ).

2.2. Auxiliary lemmas. We now group together two important results that we ap-
peal to in the course of proving Theorem 5. Firstly, we state the Hausdorff measure
version of the famous Borel-Cantelli lemma (see Lemma 3.10 of [20]) which will be
key to our method. It allows us to estimate the Hausdorff measure of certain sets via
calculating the s-Hausdorff sum of a ‘nice’ cover.

Lemma 7. Let Hi be a sequence of hypercubes in R
n and suppose that for some s > 0

we have
∑

i

|Hi|s < ∞.

Then,

Hs

(

∞
⋂

r=1

∞
⋃

i=r

Hi

)

= 0.

Secondly, the following famous lemma can be found in [23, Lemma 9.7] and is
originally attributed to Pyartly. We will use it several times throughout the proof.
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Lemma 8 ([23]). Let h(x) ∈ C(2)(I) be such that min
x∈I

|h′(x)| = δ1 and min
x∈I

|h′′(x)| =
δ2. For η > 0, define

E(η) := {η ∈ I : |h(x)| < η}.
Then we have

|E(η)| ≪ min

(

η

δ 1
,

√

η

δ 2

)

.

2.3. Further observations. We next make some standard simplifications. Without
loss of generality we can assume that there exist positive absolute constants c1 and c2
such that

(3) c1 ≤ |f ′′(x)| ≤ c2 ∀x ∈ I.

Indeed, since the set {x ∈ I : f ′′(x) = 0} is compact, its complement {x ∈ I :
f ′′(x) 6= 0} is a countable union of intervals Jα, α ∈ Z such that

∀α ∈ Z ∃c1(α), c2(α) > 0 such that ∀x ∈ Jα, c1(α) 6 |f ′′(x)| 6 c2(α).

So if we prove that Hs(W (C, λ, ψ)) = 0 on every interval Jα then this together with the
fact that Hs ({x ∈ I : f ′′(x) = 0}) = 0 will give us that W (C, λ, ψ) has zero Hausdorff
s-measure on the whole interval I. Additionally, since λ|C is C(2) we may also assume
a similar set of inequalities hold for this restriction of the inhomogeneous function.
For convenience, we will from here on abuse notation by simply writing λ for λ|C.

As required by the theorem, we assume throughout that

(4)
∞
∑

q=1

ψ(q)sq2−s <∞.

Since ψ is a monotonic function, a Cauchy condensation argument yields that

(5)

∞
∑

t=1

ψ(2t)s 2(3−s)t ≍
∞
∑

q=1

ψ(q)sq2−s < ∞.

In particular, we have ψ(2t)s 2(3−s)t → 0, whence

(6) ψ(q) < q1−
3
s for sufficiently large q.

On the other hand, by following the arguments from [24], without loss of generality
we may assume for small ǫ > 0 that

(7) ψ(q) > q1−
3+ǫ
s .

Indeed, if ψ does not satisfy (7) one can instead consider the auxiliary function

Ψ(q) := max
{

ψ(q), q1−
3+ǫ
s

}

,

which is an approximating function satisfying both (7) and

∞
∑

q=1

Ψ(q)sq2−s <∞.
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3. Proof of Theorem 5

Our general strategy will be to carefully construct a cover of each set W (C, λ, ψ)
with a collection of bounded intervals. We will then estimate the measure of each
element of the cover and their number. This measure will not be uniform over all
types of interval in the cover and the number of intervals of a given size will vary.
Calculating an estimate for every type of interval will then allow us to find an estimate
for the Hausdorff measure of the entire set.

For notational convenience let F (x) := F(a0,a)(x) := a2f(x) + a1x+ a0 for any fixed
triple (a0, a) := (a0, a1, a2) ∈ Z× Z

2 \ {0} . Given any such function F denote

∆(F, λ, ψ) := {x ∈ I : |F (x) + λ(x)| < ψ(|a|)}.
It follows that the sets ∆(F, λ, ψ) form a cover of W (C, λ, ψ); indeed, we have that

(8) W (C, λ, ψ) =
⋂

N∈N

⋃

r≥N

⋃

(a0,a):
|a|=r

∆(F, λ, ψ),

is precisely the set of points x ∈ I that lie in infinitely many of the sets ∆(F, λ, ψ).
However, to apply Lemma 7 we must find a cover by intervals (one-dimensional hy-
percubes). One can readily verify that each set ∆(F, λ, ψ) comprises a finite union of
disjoint intervals. Given a fixed triple (a0, a) we denote by K(F ) := K(F, λ, ψ) the
collection of such intervals H inside ∆(F, λ, ψ) and by k(F ) their number. In other
words, we have

∆(F, λ, ψ) =
⊔

H ∈K(F )

H and k(F ) = #K(F ).

In this way, a cover for the set W (C, λ, ψ) by intervals has easily been constructed for
each N ∈ N. Let K(N) be the collection of all intervals in this cover; that is, let

K(N) =
⋃

r≥N

⋃

(a0,a):
|a|=r

K(F )

By Lemma 7 and reformulation (8), in order to prove Theorem 5 it therefore suffices
to demonstrate that for some N ∈ N we have

(9) S(C, λ, ψ,N) : =
∑

H ∈K(N)

|H|s ≪
∑

r≥N

∑

(a0,a):
|a|=r

∑

H ∈K(F )

|H|s < ∞.

Notice that for any fixed (a0, a) we have
∑

H ∈K(F )

|H|s ≤ k(F ) · |∆(F, λ, ψ)|s.

Moreover, as we will see later the number of intervals k(F ) for any F is uniformly
bounded by an absolute constant. This implies that for any collection I0 of triples (a0, a)
we have

(10)
∑

(a0,a)∈ I0

∑

H ∈K(F )

|H|s ≪
∑

(a0,a)∈ I0

|∆(F, λ, ψ)|s.

In many cases this crude estimate will be enough for us, but there are many instances
where we will first need to refine the cover formed by the intervals in K(N) by re-
fining certain collections K(F ). During such a process it should be understood that
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demonstrating the final inequality of (9) holds for any refinement of K(N) will still
be sufficient to prove Theorem 5.

In practice we will only be interested in polynomials F with ∆(F, λ, ψ) 6= ∅, so
certainly we may assume for a = (a1, a2) large enough that |F(a0,a)(x) + λ(x)| <
ψ(|a|) < |a|1−3/s < 1 for some x ∈ I. Consequently, for a fixed a there are only
finitely many a0 such that ∆(F(a0,a)(x), λ, ψ) 6= ∅. Moreover, upon setting

κ := max
x∈I

{|x|+ |f(x)|+ |λ(x)|+ 1}

we have for every such a0 that

(11) |a0| ≤ κ|a|.

Now, for every fixed a we may assume

|F ′(x) + λ′(x)| ≥ |a1| − |a2f ′(x) + λ′(x)| ≥ |a1| − 2|a2|M,

where M := max
x∈I

{|f ′(x)| + |λ′(x)|} is a fixed constant. As a consequence, we split

the possible choices for the pair of integers (a1, a2) ∈ Z
2 \ {0} into two exhaustive

subsets; let
I1 := {(a1, a2) ∈ Z

2 \ {0} : |a1| > 4M |a2|},
and

I2 := {(a1, a2) ∈ Z
2 \ {0} : |a1| ≤ 4M |a2|}.

One can see that for each (a1, a2) ∈ I1 and for each x ∈ I we have

(12) |F ′(x) + λ′(x)| > |a1|/2.
Futhermore,

(13) |a| ≍ |a1|
for each a = (a1, a2) in I1.

We now analyze the sum S(C, λ, ψ,N) arising in (9) and split the summand into
two natural cases according to whether a lies in I1 or I2. To be precise, let

S(I)(C, λ, ψ,N) =
∑

r≥N

∑

(a0,a):
a∈ I1, |a|=r

|∆(F, λ, ψ)|s,

and
S(II)(C, λ, ψ,N) =

∑

r≥N

∑

(a0,a):
a∈ I2, |a|=r

∑

H ∈K(F )

|H|s.

In view of (10) one can readily verify that

(14) S(C, λ, ψ,N) ≪ S(I)(C, λ, ψ,N) + S(II)(C, λ, ψ,N),

whence, the desired statement that Hs(W (C, λ, ψ)) = 0 will follow upon establishing
separately

Case I : S(I)(C, λ, ψ,N) <∞.

Case II : S(II)(C, λ, ψ,N) <∞.

We now split our proof into two parts, each corresponding to one of the above cases.
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3.1. Establishing Case I. We begin by establishing the much easier Case I. In doing
so we appeal to Lemma 8, one consequence of which is that for every a = (a1, a2) ∈ I1
we have

|∆(F, λ, ψ)| ≪ ψ(|a|)
minx∈I |f ′(x) + λ′(x)|

(12)

≤ 2ψ(|a|)
|a1|

(13)≍ ψ(|a|)
|a| .

For sufficiently large N it follows from (11) and (13) that there are at most ≪ r2

triples (a0, a1, a2) with a ∈ I1 and |a| = r. Furthermore, it follows from (12) and (3)
that each set ∆(F, λ, ψ) with a ∈ I1 comprises a single interval; i.e., k(F ) = 1. Hence,

S(I)(C, λ, ψ,N) ≪
∑

r≥N

∑

(a0,a):
a∈I1, |a|=r

(

ψ(|a|)
a

)s

=
∑

r≥N

(

ψ(r)

r

)s
∑

(a0,a):
a∈I1, |a|=r

1

≪
∑

r≥N

ψ(r)sr−s · r2 <∞,

by (4) as required.

3.2. Preliminaries for Case II. Establishing Case II is much more difficult and will
involve various further refinements to the cover. Firstly, observe that in Case II we
have by the definition of the set I2 that

(15) a2 ≍ |a|.
For notational convenience we denote F(x) := Fa(x) := a1x+ a2f(x) + λ(x), so that
for any a0 ∈ Z we have Fa(x) + a0 = F(a0,a)(x). Since λ′′ is bounded on I from above
and below by absolute constants (that is, |λ′′(x)| ≪ 1 for x ∈ I), inequalities (3)
and (15) imply that for |a| large enough

(16) |F ′′(x)| = |a2f ′′(x) + λ′′(x)| ≍ |a| for x ∈ I.

This observation implies that each set ∆(F, λ, ψ) arising from a triple (a0, a) with
a ∈ I2 large enough comprises at most two intervals; i.e., k(F ) ≤ 2 for all such (a0, a).
It also follows that for |a| large enough the function F ′(x) = a2f

′(x) + a1 + λ′(x) is
monotonic. Given a pair (a1, a2) ∈ I2 we define x0 := x0(a) as the root of the equation

F ′(x) = 0.

If such a root does not exist we conventionally set x0 = ∞ and F(x0) = ∞.

As in [24], we proceed by assuming a′0 to be a unique integer such that that −1/2 <
F(x0) − a′0 6 1/2. For any given triple (a0, a1, a2) there are two possibilities; either
a0 6= a′0 or a0 = a′0. The final case will prove to be the most difficult scenario to
deal with therefore we split our calculation into two further subcases. In fact, we
will repeat this procedure several more times in the latter subcase. Observe that (10)
implies that

(17) S(II)(C, λ, ψ,N) ≪ S(IIa)(C, λ, ψ,N) + S(IIb)(C, λ, ψ,N),

where

S(IIa)(C, λ, ψ,N) =
∑

r≥N

∑

(a0,a): a0 6=a′0,
a∈ I2, |a|=r

|∆(F, λ, ψ)|s,
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and
S(IIb)(C, λ, ψ,N) =

∑

r≥N

∑

(a0,a): a0=a′0,
a∈ I2, |a|=r

∑

H ∈K(F )

|H|s.

Thus, the desired statement that S(II)(C, λ, ψ,N) < ∞ will follow upon establishing
separately

Case IIa : S(IIa)(C, λ, ψ,N) <∞.

Case IIb : S(IIb)(C, λ, ψ,N) <∞.

As before, we split the remaining proof into two distinct parts.

3.3. Establishing Case IIa. We begin with an important lemma.

Lemma 9. For each x ∈ I and for every a = (a1, a2) ∈ I2 with |a| sufficiently large
we have

|F ′(x)| ≍ |a2(F(x)− F(x0))|1/2
and

|F(x)− F(x0)| ≫ |a0 − a′0|.

A proof of this lemma follows from the proof of [24, Lemma 3] and the calculation
immediately succeeding it with straightforward modifications. For brevity we do not
include full details here, suffice to say that one only needs to incorporate observa-
tion (16).

By applying Lemma 9 we have for any (a0, a) ∈ Z × I2 with |a| sufficiently large
that

|F ′(x)| ≫ (|a2| · |a0 − a′0|)1/2.
In turn, Lemma 8 then yields

(18) |∆(F, λ, ψ)| ≪ ψ(|a|)
(|a2| · |a0 − a′0|)1/2

(15)≍ ψ(|a|)
(|a| · |a0 − a′0|)1/2

.

Next, for a given r ≥ N there are at most ≪ r choices for (a1, a2) ∈ I2 with |a| = r.
Hence, for N sufficiently large it follows from (11) and (18) that

S(IIa)(C, λ, ψ,N) ≪
∑

r≥N

∑

(a0,a): a0 6=a′0,
a ∈ I2, |a|=r

|∆(F, λ, ψ)|s

≪
∑

r≥N

∑

a∈I2:
|a|=r

∑

a0≤κr:
a0 6=a′0

(

ψ(|a|)
|a|1/2 (|a0 − a′0|)

−1/2

)s

=
∑

r≥N

(

ψ(r)

r
1
2

)s
∑

a0≤κr:
a0 6=a′0

(|a0 − a′0|)
−s/2

∑

(a1,a2)∈I2:
|a|=r

1

≪
∑

r≥N

ψ(r)s r1−
s
2

∑

a0≤κr:
a0 6=a′0

(|a0 − a′0|)
−s/2

.
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Finally, observe that for each r ≥ N the final sum

∑

a0≤κr
a0 6=a′0

(|a0 − a′0|)
−s/2 ≪

κr
∑

t=1

t−s/2,

which is by partial summation bounded above by a constant times r1−s/2 for suffi-
ciently large N . Hence, as required the above calculation yields

S(IIa)(C, λ, ψ,N) ≪
∑

r≥N

ψ(r)s r1−
s
2 · r1−s/2 =

∑

r≥N

r2−sψ(r)s
(4)
< ∞.

3.4. Preliminaries for Case IIb. The proof in Theorem 5 now follows upon finding
a suitable bound for the sum

(19) S(IIb)(C, λ, ψ,N) =
∑

r≥N

∑

(a0,a): a0=a′0,
a∈ I2, |a|=r

∑

H ∈K(F )

|H|s.

For notational convenience, for r ≥ N let Ar denote the set of triples appearing in
the above sum with |a| = r; that is, let

Ar : = {(a0, a) ∈ Z× I2 : a0 = a′0, |a| = r} .
Note that there is only one choice for a0 for a given a ∈ I2. In other words, for any
r ≥ N we have #Ar ≪ r.

Case IIb is by far the most difficult and will require rather intricate treatment. We
will first need to decompose the collections K(F ) in a sophisticated way. How we
deal with points in a set ∆(F, λ, ψ) for some triple (a0, a) appearing in the summand
of (19) will depend upon the behaviour of the derivative F ′(x) on each of the intervals
H ∈ K(F ) of which ∆(F, λ, ψ) comprises. For this reason we proceed by first dividing
the collection of sets ∆(F, λ, ψ) associated with (19) into two exhaustive subsets. For
each triple (a0, a) under consideration let

∆1(F, λ, ψ) := {x ∈ ∆(F, λ, ψ) : |F ′(x)| > |a|1−1/s}
and

∆2(F, λ, ψ) := ∆(F, λ, ψ)\∆1(F, λ).

This process will inevitably split points in some intervals H ∈ K(F ) between the two
categories. To be specific, in view of observation (16) the set ∆1(F, λ, ψ) naturally
comprises of a collection K1(F ) of at most four intervals of the form H ∩∆1(F, λ, ψ)
for some H ∈ K(F ). For this reason, as in (10) we will in this case freely use the
estimate

(20)
∑

(a0,a)∈Ar

∑

H ∈K1(F )

|H|s ≪
∑

(a0,a)∈Ar

|∆1(F, λ, ψ)|s.

It is also the case that each set ∆2(F, λ, ψ) may consist of at most four intervals of
the form H ∩∆2(F, λ, ψ), the collection of which we denote by K2(F ). However, an
estimate such as (20) will prove too crude to apply in our method. We will first need
to further refine the cover.

Without loss of generality we may refine the cover formed by intervals in the col-
lection K(N) by replacing intervals from a given K(F ) by intervals from K1(F ) and
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K2(F ) in the volume sum S(IIb2)(C, λ, ψ,N). Accordingly, we may specialise once
again by setting

S(IIb1)(C, λ, ψ,N) =
∑

r>N

∑

(a0,a) ∈ Ar

|∆1(F, λ, ψ)|s,

and

S(IIb2)(C, λ, ψ,N) =
∑

r>N

∑

(a0,a) ∈ Ar

∑

H ∈K2(F )

|H|s.

It follows from observation (20) that

S(IIb)(C, λ, ψ,N) ≪ S(IIb1)(C, λ, ψ,N) + S(IIb2)(C, λ, ψ,N).

We now aim to show that the two latter series converge.

3.4.1. Establishing subcase IIb1. Since we are assuming |F ′(x)| > |a|1−1/s for every
x ∈ ∆1(F, λ, ψ) it follows from Lemma 8 that

|∆1(F, λ, ψ)| ≪ ψ(|a|)
|a|1−1/s

.

Recalling that for any r ≥ N the number of triples (a0, a1, a2) ∈ Z × I2 for which
|a| = r is at most ≪ r, this in turn implies that for N sufficiently large we have

S(IIb1)(C, λ, ψ,N) ≪
∑

r≥N

∑

(a0,a) ∈ Ar

|∆1(F, λ, ψ)|s

≪
∑

r≥N

∑

(a0,a) ∈ Ar

(

ψ(|a|)
|a|1−1/s

)s

≪
∑

r≥N

ψ(r)s r2−s < ∞.

3.5. Establishing subcase IIb2. All that remains is to demonstrate the conver-
gence of the sum S(IIb2)(C, λ, ψ,N). In turn this will establish Case IIb, Case II and
Theorem 5 respectively. In this subcase we have |F ′(x)| < |a|1−1/s. Recall that ob-
servation (16) implies that we may assume |F ′′(x)| ≫ |a| for |a| sufficiently large. So,
by Lemma 8 we have

(21) |∆2(F, λ, ψ)| ≪
(

ψ(|a|)
|a|

)1/2

.

First, we split the triples into dyadic blocks 2t 6 |a| < 2t+1 and consider all func-

tions F arising in this way. For notational convenience, let At :=
⋂2t+1−1
r=2t Ar; that is,

let

At : =
{

(a0, a) ∈ Z× I2 : a0 = a′0, |a| = r, 2t ≤ r < 2t+1
}

.

Then, we may re-express the sum S(IIb2)(C, λ, ψ,N) as

(22) S(IIb2)(C, λ, ψ,N) ≍
∑

t≥⌊log2N⌋

∑

(a0,a) ∈At

∑

H ∈K2(F )

|H|s.

Before proceeding, we must further refine the intervals from the collections K2(F )
appearing in (22). Let c = 1 + ǫ1, where ǫ1 is some very small positive constant. For
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every t we split the interval I into ≪ 2ct subintervals J
(t)
i of the same length. So, for

each such subinterval J
(t)
i ⊂ I we have

(23) |J (t)
i | ≪ 2−ct.

We will denote by J(t) the number of subintervals created (and so J(t) ≪ 2ct).

We refine K(N) by replacing each collection of intervals

K2(F ) = {H ∩∆2(F, λ, ψ) : H ∈ K(F )} ⊂ K(N)

appearing in (22) with the collections

Ki
2(F, λ) : =

{

H ′ ∩ J (t)
i : H ′ ∈ K2(F )

}

,

for i = 1, . . . , J(t). Redefining S(IIb2)(C, λ, ψ,N) accordingly, we have

S(IIb2)(C, λ, ψ,N) ≍
∑

t≥⌊log2N⌋

J(t)
∑

i=1

∑

(a0,a) ∈ At

∑

H ∈Ki
2(F, λ)

|H|s,

and in view of the discussion immediately succeeding (10) it suffices to show that this
new series converges. It will be sufficient to utilise the crude estimate #Ki

2(F, λ) ≤
#K2(F ) ≤ 4, yielding

(24) S(IIb2)(C, λ, ψ,N) ≪
∑

t≥⌊log2N⌋

J(t)
∑

i=1

∑

(a0,a) ∈ At

|∆2(F, λ, ψ) ∩ J (t)
i |s.

Next, we fix another very small parameter ǫ2 > 0 and divide the subintervals J (t)

(for i = 1, . . . J(t)) into two categories in the following way:

• ‘Good’ Intervals. An interval J (t) ⊂ I is called Good if it intersects at most
2(3/2−c−ǫ2)t sets of the form ∆2(F(a0,a), λ, ψ) for (a0, a) ∈ At.

• ‘Bad’ Intervals. An interval J (t) ⊂ I is called Bad if it intersects more
than 2(3/2−c−ǫ2)t sets of the form ∆2(F(a0,a), λ, ψ) for (a0, a) ∈ At.

In accordance with this classification we split our volume sum once more into two
parts. Indeed, setting

S
(IIb2)
G (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Good intervals J(t)

∑

(a0,a) ∈ At

|∆2(F, λ, ψ) ∩ J (t)|s,

and

S
(IIb2)
B (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Bad intervals J(t)

∑

(a0,a) ∈At

|∆2(F, λ, ψ) ∩ J (t)|s,

it is easy to see in view of (24) that

S(IIb2)(C, λ, ψ,N) ≪ S
(IIb2)
G (C, λ, ψ,N) + S

(IIb2)
B (C, λ, ψ,N).

Once more we split our proof into two parts.
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3.5.1. The case of Good intervals. We first estimate the measure of the sets ∆2(F, λ, ψ)
lying inside a given Good interval J (t). Recall that ψ is decreasing and for every t
the number of sets ∆2(F, λ, ψ) satisfying (a0, a) ∈ At and ∆2(F, λ, ψ) ∩ J (t) 6= ∅ is by
definition ≪ 2(3/2−c−ǫ2)t. Also note that by (21) we have for every (a0, a) ∈ At and
every Good or Bad interval J (t) that

(25) |∆2(F, λ, ψ) ∩ J (t)|s ≪
(

ψ(|a|)
|a|

)s/2

≪ ψ(2t)s/2 2−st/2.

Recalling that the total number J(t) of possible intervals, Good or Bad, satisfies
J(t) ≪ 2ct, we certainly have for N sufficiently large that

S
(IIb2)
G (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Good intervals J(t)

∑

(a0,a) ∈ At

|∆2(F, λ, ψ) ∩ J (t)|s

≪
∑

t≥⌊log2N⌋

J(t) · 2(3/2−c−ǫ2)t · ψ(2t)s/2 2−st/2

≪
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2( 32− s

2
−ǫ2)t

(6)
≪

∑

t≥⌊log2N⌋

2−ǫ2t ≪
∑

r≥N

r−(1+ǫ2) < ∞.

3.5.2. The case for Bad intervals. Assume we are given a Bad interval J (t) and some
(a0, a) ∈ At for which ∆2(F, λ, ψ) intersects J (t). Then, there must exist a point
y0 ∈ ∆2(F, λ, ψ) ∩ J (t) satisfying

(26) |F(y0)| < ψ(2t) and |F ′(y0)| < 2(1−1/s)t.

Since s ∈ (0, 1), for ǫ1 small enough we may assume that 3/s − 1 > 2 + 3ǫ1. This
and (6) together imply that

(27) ψ(2t) < 2(1−3/s)t < 2−(2+3ǫ1)t = 2(1−3c)t.

We also have that 1− 1/s < −ǫ1 = 1− c.

Now, for any fixed (a0, a) ∈ At satisfying ∆2(F, λ, ψ) ∩ J (t) 6= ∅ and any x ∈ J (t)

Taylor’s Theorem tells us that there exist points y1 and y2 both lying between x and y0
satisfying

F(x) = F(y0) + (x− y0)F ′(y0) + (x− y0)
2F ′′(y1)/2

and

F ′(x) = F ′(y0) + (x− y0)F ′′(y2)

respectively. Combining this with inequalities (26), (23) and (16) yields

|F(x)| ≪ ψ(2t) + 2−ct · 2(1−1/s)t + (2−ct)2 · |a|/2
≪ 2(1−3c)t + 2(1−2c)t + 2(1−2c)t−1

≪ 2(1−2c)t,(28)

and also

(29) |F ′(x)| ≪ 2(1−1/s)t + 2−ct · |a| ≪ 2(1−c)t + 2(1−c)t ≪ 2(1−c)t,

for any such (a0, a) and every x ∈ J (t). To conclude our proof we use similar arguments
to those presented in [1, pp. 346-351].
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3.5.3. Further auxiliary lemmas and preliminaries. We begin by listing a collection
of useful geometric lemmas from [1] that remain unchanged in our setup.

Lemma 10 (Lemma 7, [1]). Consider the plane in R
3 defined by the equation Ax1 +

Bx2 + Cx3 = D, where A,B,C,D are integers with gcd(A,B,C) = 1. Then the area
S of any triangle on this plane with integer vertices is at least 1

2

√
A2 +B2 + C2.

Next, we appeal to a further lemma that follows immediately from arguments
presented in [1].

Lemma 11 ([1], pp. 346). Fix positive real numbers t1, t2 and t3 and let P be some
affine plane in R

3 given by the equation Ax1+Bx2+Cx3 = D. For any functions f, λ ∈
C(2)(I) and any fixed x ∈ I consider the parallelepiped R formed by the system of
inequalities

(30)











|a2f(x) + a1x+ a0 + λ(x)| ≤ t1,

|a2f ′(x) + a1 + λ′(x)| ≤ t2,

|a2| ≤ t3,

where a0, a1, a2 are viewed as real variables. Choose a pair of integers (j, k) ∈ {1, 2, 3}
satisfying j < k. Then, the area Sjk of intersection of P with figure defined by the jth
and kth equations in the system (30) satisfies

Sjk ≍ tjtk
√
A2 +B2 + C2

|Tjk|
,

where

T12 := f ′(x)(B − Ax)− (C −Af(x)), T1,3 := B − Ax and T2,3 := A.

Note that the area of intersection of the plane P with the parallelepiped R as
defined in the lemma is not greater than the smallest of Sjk.

Finally, we present a lemma specific to the setting of this paper.

Lemma 12. For every J (t) as above, all integer points (a0, a) ∈ At such that ∆2(F, λ, ψ)∩
J (t) 6= ∅ lie on a single affine plane.

This final lemma is extremely similar to [1, Lemma 9] and the proof follows almost
immediately upon replacing the set A3(a0, a1, a2) from [1] with our set ∆2(F(a0,a), λ, ψ).
One must simply observe that the analogous proof in [1] only uses the fact that for
all x ∈ J (t) the function F satisfies |F(x)| 6 2(1−2c)t and |F ′(x)| 6 2(1−c)t, and that
is precisely what we have shown for our setup via (28) and (29). In fact, the lemma
actually holds for all integer triples from the set

At∗ : =
{

(a0, a) ∈ Z× I2 : 2t ≤ |a| < 2t+1, |a| = r
}

.

Moreover, note that the discussion of the case of Bad intervals case thus far has
also been independent of the assumption a0 = a′0. (This has actually been true
for the entirety of subcase IIb2.) For this reason we will drop this assumption and

overestimate the sum S
(IIb2)
B (C, λ, ψ,N) by replacing At with At∗. As we shall see, this

will not affect our ability to demonstrate the convergence of S
(IIb2)
B (C, λ, ψ,N).

Upon applying Lemma 12 it is apparent that there are two final possibilities for
each fixed bad interval J (t):
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(i) The integer points (a0, a) ∈ At∗ for which ∆2(F, λ, ψ) ∩ J (t) 6= ∅ do not lie on a
line.

(ii) The integer points (a0, a) ∈ At∗ for which ∆2(F, λ, ψ) ∩ J (t) 6= ∅ do lie on a line.

We say J (t) is a Bad(i) interval if it satisfies property (i) and a Bad(ii) interval if it
satisfies property (ii). For one final time we split our volume sum into two cases. Let

S
(IIb2)
B(i) (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Bad(i) intervals J(t)

∑

(a0,a) ∈ At
∗

|∆2(F, λ, ψ) ∩ J (t)|s,

and

S
(IIb2)
B(ii) (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Bad(ii) intervals J(t)

∑

(a0,a) ∈ At
∗

|∆2(F, λ, ψ) ∩ J (t)|s.

Clearly we have

S
(IIb2)
B (C, λ, ψ,N) ≪ S

(IIb2)
B(i) (C, λ, ψ,N) + S

(IIb2)
B(ii) (C, λ, ψ,N),

and so to complete the proof of Theorem 5 we must demonstrate that the latter two
series converge for N large enough.

3.5.4. Dealing with Bad(i) intervals. Let the equation of the plane P in R
3, on which

the points (a0, a) ∈ At satisfying ∆2(F, λ, ψ) ∩ J (t) 6= ∅ lie, be given by Ax1 +Bx2 +
Cx3 = D for some integers (A,B,C,D) ∈ Z

4. Recall that for any (a0, a) ∈ At∗ for
which ∆2(F, λ, ψ) ∩ J (t) 6= ∅ and any x ∈ J (t) inequalities (28), (29) and

(31) |a2| ≍ |a| ≪ 2t

all hold. Since the integer points (a0, a) do not all lie on a line, their maximum number
within the parallelepiped R defined by equations (28), (29) and (31) is bounded above
by the maximum number of triangles with integer vertices that may lie in P ∩ R. It
follows upon combining Lemmas 10 & 11 that for any Bad(i) interval J (t) this number
N of triples (a0, a) ∈ At∗ for which ∆2(F, λ, ψ) ∩ J (t) 6= ∅ satisfies

(32) N ≪ min (S12, S13, S23)√
A2 +B2 + C2

≪ min

(

2(2−3c)t

|T12|
,
2(2−2c)t

|T13|
,
2(2−c)t

|T23|

)

.

However, since J (t) is assumed to be a Bad interval (and so N > 2(3/2−c−ǫ2)t) we
therefore have for x ∈ J (t) that

(33) |T12| = |f ′(x)(B − Ax)− (C − Af(x))| ≪ 2(1/2−2c+ǫ2)t,

(34) |T13| = |B −Ax| ≪ 2(1/2−c+ǫ2)t,

and

(35) |T23| = |A| ≪ 2(1/2+ǫ2)t.

Moreover, combining (33) with (34) yields

(36) |C −Af(x))| ≤ |T12|+ |f ′(x)T13| ≪ 2(1/2−2c+ǫ2)t + 2(1/2−c+ǫ2)t ≪ 2(1/2−c+ǫ2)t.

Next, let Pt denote the set of all integer triples (A,B,C) that appear as coefficients
of a plane associated to some Bad(i) interval J (t) and by Mt their number; i.e., let
Mt = #Pt. Then, since any such triple must satisfy (34) and (36) it follows from the
analogous arguments in [1] that Mt ≪ |A| so long as ǫ2 is taken to be sufficiently
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small so that ǫ2 < c − 1/2. In particular, in view of (35) and a well known upper
bound for the partial sums of the harmonic series we have

(37)
∑

(A,B,C)∈Pt

1

|A|2 ≪
⌊2(1/2+ǫ2)t⌋
∑

A=1

1

A
≪
(

1

2
+ ǫ2

)

· t ≪ t.

Furthermore, inequality (34) implies that for any two Bad(i) intervals J
(t)
1 and J

(t)
2

whose associated planes have the same coefficients (A,B,C) that

|A(x− y)| = |(B − Ax)− (B −Ay)| ≪ 2(1−2c)t/2,

for x ∈ J
(t)
1 and y ∈ J

(t)
2 . In turn,

|x− y| ≪ 2(1/2−c+ǫ2)t

|A| , x ∈ J
(t)
1 , y ∈ J

(t)
2 .

We conclude that for fixed (A,B,C) ∈ Pt a given point x lying in any set ∆2(F, λ, ψ)
under consideration may fall only within some interval of length ≪ 2(1/2−c+ǫ2)t |A|−1.
Therefore, in view of (23) the number of Bad(i) intervals associated with the triple
(A,B,C) ∈ Pt is at most ≪ 2(1/2+ǫ2)t |A|−1.

Upon utilising the bounds (32), (25) and (37) respectively, we deduce that for N

sufficiently large the quantity S
(IIb2)
B(i) (C, λ, ψ,N) is bounded above by

∑

t≥⌊log2N⌋

∑

Bad(i) intervals J(t)

∑

(a0,a) ∈ At
∗

|∆2(F, λ, ψ) ∩ J (t)|s

≤
∑

t≥⌊log2N⌋

ψ(2t)s/2

2st/2

∑

(A,B,C)∈Pt

∑

Bad(i) intervals J(t)

associated with (A,B,C)

∑

(a0,a) ∈ At
∗:

∆2(F,λ,ψ)∩J(t) 6=∅

1

≪
∑

t≥⌊log2N⌋

ψ(2t)s/2

2st/2

∑

(A,B,C)∈Pt

2(1/2+ǫ2)t|A|−1 · 2(2−c)t|A|−1

=
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2( 32− s

2
+ǫ2−ǫ1)t

∑

(A,B,C)∈Pt

|A|−2

≪
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2( 32− s

2
+ǫ2−ǫ1)t · t

≪
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2( 32− s

2
+2ǫ2−ǫ1)t.

Finally, take ǫ2 small enough in terms of ǫ1 so that ǫ := 2ǫ1 − 4ǫ2 > 0. Then, by (7)
we have

ψ(2t) ≥ 2(1−
3+ǫ
s

)t,

and in turn
ψ(2t)

s
2 ≥ 2(

s
2
− 3+ǫ

2
)t = 2(

s
2
− 3

2
+2ǫ2−ǫ1)t.

So, by (5) we deduce

S
(IIb2)
B(i) (C, λ, ψ,N) ≪

∑

t≥⌊log2N⌋

ψ(2t)s 2(3−s)t < ∞,

as required.
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3.5.5. Dealing with Bad(ii) intervals. In this final subcase we consider Bad inter-
vals J (t) for which all integer points (a0, a) ∈ At∗ satisfying ∆2(F, λ, ψ) ∩ J (t) 6= ∅ lie
on some affine line in R

3. For a fixed Bad(ii) interval J (t) let L = α+ ℓβ denote this
associated line, where ℓ is the real parameter and α,β ∈ R

3. Without loss of gener-
ality we may assume that α = (α0, α1, α2) is an integer vector and β = (β0, β1, β2) is
an integer vector connecting α and the nearest integer point to α on L. Indeed, the
line L must contain integer points by definition. It follows that all vectors (a0, a) ∈ At∗
associated with J (t) must be of the form

(a0, a1, a2) = (α0 + kβ0, α1 + kβ1, α2 + kβ2), k ∈ Z.

Moreover, since J (t) is a Bad interval there are at least 2(3/2−c−ǫ2)t distinct values
of k taken. Therefore, there exist k1 and k2 such that |k1 − k2| ≥ 2(3/2−c−ǫ2)t. Let
(a′0, a

′
1, a

′
2) and (a′′0, a

′′
1, a

′′
2) be the triples associated with k1 and k2 respectively.

Recalling inequalities (11) and (31), we have for every triple (a0, a1, a2) under con-
sideration that |aj| ≪ 2t for j = 0, 1, 2. It follows that

|βj(k1 − k2)| = |a′j − a′′j | ≪ 2t, j = 0, 1, 2,

and in turn that
|βj | ≪ 2(c+ǫ2−1/2)t, j = 0, 1, 2.

In particular, we have

(38) max (|β0|, |β1|, |β2|) ≪ 2(c+ǫ2−1/2)t.

Furthermore, inequality (28) yields

|(β2f(x) + β1x+ β0)(k1 − k2)| = |F(a′0,a
′
1,a

′
2)
(x)−F(a′′0 ,a

′′
1 ,a

′′
2 )
(x)| ≪ 2(1−2c)t,

and inequality (29) yields

|(β2f ′(x) + β1)(k1 − k2)| = |F ′
(a′0,a

′
1,a

′
2)
(x)− F ′

(a′′0 ,a
′′
1 ,a

′′
2 )
(x)| ≪ 2(1−c)t.

In turn, since |k1 − k2| ≥ 2(3/2−c−ǫ2)t we have

(39) |β2f(x) + β1x+ β0| ≪ 2(ǫ2−c−1/2)t ≪ 2(ǫ2−1/2)t,

and

(40) |β2f ′(x) + β1| ≪ 2(ǫ2−1/2)t.

We now appeal to one final lemma.

Lemma 13 ([1], pp. 349). Fix any non-degenerate f ∈ C(2), any δ ∈ (0, 1) and
a positive real parameter r. Then for any fixed β2 ∈ Z \ {0} the number of integer
solutions (β0, β1, β2) to the system of inequalities

(41)











|β2f(x) + β1x+ β0| ≤ r−δ,

|β2f ′(x) + β1| ≤ r−δ,

max (|β0|, |β1|, |β2|) ≤ r,

is ≪ |β2|.

The proof of this lemma follows upon minor modification to the argument on
page 349 of [1] and appeals to the change of variables exhibited in [1, Lemma 6].
We apply Lemma 13 taking r = 2(c+ǫ2−1/2)t and

δ =
1− 2ǫ2

2c+ 2ǫ2 − 1
, so that r−δ = 2

−
(1−2ǫ2)(c+ǫ2−1/2)t

2c+2ǫ2−1 = 2(ǫ2−1/2)t.
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This yields that for every fixed β2 the number of integer points (β0, β1, β2) which
appear as parameters in a line L associated to some Bad(ii) interval J (t) is ≪ |β2|.

Equation (39) holds for all x inside a given interval J (t). However, one can find
a point x ∈ J (t) for which the estimate can be improved. By definition, the Bad
interval J (t) must intersect more than 23/2−c−ǫ2 sets of the form ∆2(F(a0,a), λ, ψ) for
some (a0, a) ∈ At∗. If follows from the pigeon-hole principle that there must exist two
numbers x1 ∈ ∆2(F(a′0,a

′), λ, ψ) and x2 ∈ ∆2(F(a′′0 ,a
′′), λ, ψ) both satisfying (26) such

that

(42) |x1 − x2| 6 2(−c−3/2+c+ǫ2)t = 2(−3/2+ǫ2)t

for some triples (a′0, a
′) and (a′′0, a

′′) from At∗ satisfying ∆2(F(a′0,a
′), λ, ψ)∩J (t) 6= ∅ and

∆2(F(a′′0 ,a
′′), λ, ψ) ∩ J (t) 6= ∅ respectively. Then, by utilising Taylor’s formula and all

of the inequalities (26), (27), (16), (6) and (42), one has

|F(a′0,a
′)(x2)| ≪ ψ(2t) + |x1 − x2| · 2(1−1/s)t +

|x1 − x2|2
2

· 2t ≪ 2−dt,

where

d := min

{

1

2
+

1

s
− ǫ2, 2− 2ǫ2,

3

s
− 1

}

.

Since s ∈ (0, 1), one can then take ǫ2 and ǫ1 so small that

(43) d > 3/2 + 4ǫ1 + 4ǫ2.

By subtracting F(a′0,a
′)(x2) from F(a′′0 ,a

′′)(x2) we get from (26) and (27) that

|β2f(x2) + β1x2 + β0| ≪ |F(a′0,a
′)(x2)− F(a′′0 ,a

′′)(x2)| ≪ 2−dt + ψ(2t)

≪ 2−dt + 2(1−3c)t

≪ 2−dt.(44)

In other words, for each Bad(ii) interval J (t) there must exist at least one number x

inside it which satisfies (44). Now, consider two Bad(ii) intervals J
(t)
1 and J

(t)
2 such

that their associated lines L1 and L2 share the same parameters (β0, β1, β2). Then

there are numbers x ∈ J
(t)
1 and y ∈ J

(t)
2 such that they both satisfy estimate (44).

Since |F ′′
β0,β1,β2

(x)| = |β2f ′′(x)| ≫ |β2|, by Lemma 8 the measure of numbers satisfying
it is at most

(2dt|β2|)−1/2.

Since F ′′
β0,β1,β2

(x) does not change sign, the set of numbers x satisfying (44) is the

union of at most two intervals and therefore the number of Bad(ii) intervals J (t)

whose associated line has parameters (β0, β1, β2) is

(45) ≪ 2(c−d/2)t|β2|−1/2.

Finally, let Lt denote the set of all integer triples (β0, β1, β2) which appear as para-
meters in a line L associated to some Bad(ii) interval J (t). Observe that |α2+kβ2| ≪ 2t

for every k associated to one of the triples (a0, a) under consideration. It follows
that for a fixed integer point (β0, β1, β2) ∈ Lt there are at most ≪ 2t|β2|−1 triples
(a0, a) ∈ At∗ for which ∆2(F, λ, ψ) ∩ J (t) 6= ∅. Also, upon applying Lemma 13 and



22 DZMITRY BADZIAHIN†, STEPHEN HARRAP†, AND MUMTAZ HUSSAIN∗

utilising the bound (38) we have

(46)
∑

(β0,β1,β2)∈Lt

1

|β2|3/2
≪

⌊2(c+ǫ2−1/2)t⌋
∑

β2=1

1

|β2|1/2
≪ 2(c/2+ǫ2/2−1/4)t.

In view of the above discussion, it follows from (25), (45), (46), (7) and (43)
respectively that for a large enough N and a small enough ǫ1 and ǫ2 we have

S
(IIb2)
B(ii) (C, λ, ψ,N) =

∑

t≥⌊log2N⌋

∑

Bad(ii) intervals J(t)

∑

(a0,a) ∈ At
∗

|∆2(F, λ, ψ) ∩ J (t)|s

≪
∑

t≥⌊log2N⌋

ψ(2t)s/2

2st/2

∑

(β0,β1,β2)∈Lt

2t

|β2|
∑

Bad(ii) intervals J(t)

associated with (β0,β1,β2)

1

≪
∑

t≥⌊log2N⌋

ψ(2t)s/2

2st/2

∑

(β0,β1,β2)∈Lt

2t|β2|−1 · 2(c−d/2)t|β2|−1/2

=
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2t( 54− s

2
−ǫ1−2ǫ2)

∑

(β0,β1,β2)∈Lt

|β2|−
3
2

≪
∑

t≥⌊log2N⌋

ψ(2t)
s
2 · 2( 32− s

2
− 1

2
ǫ1−

3
2
ǫ2)t

≪
∑

t≥⌊log2N⌋

2−( 1
2
ǫ1+

3
2
ǫ2)t < ∞,

and the proof is complete.
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