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The increasing penetration of electric vehicles over the coming decades, taken together

with the high cost to upgrade local distribution networks and consumer demand for home

charging, suggest that managing congestion on low voltage networks will be a crucial com-

ponent of the electric vehicle revolution and the move away from fossil fuels in transporta-

tion. Here, we model the max-flow and proportional fairness protocols for the control of

congestion caused by a fleet of vehicles charging on two real-world distribution networks.

We show that the system undergoes a continuous phase transition to a congested state as

a function of the rate of vehicles plugging to the network to charge. We focus on the or-

der parameter and its fluctuations close to the phase transition, and show that the critical

point depends on the choice of congestion protocol. Finally, we analyse the inequality in

the charging times as the vehicle arrival rate increases, and show that charging times are

considerably more equitable in proportional fairness than in max-flow.
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I. INTRODUCTION

Electric vehicles may become competitive, in terms of total ownership costs, with internal-

combustion engine vehicles over the next couple of decades. Studies in the United States and the

UK suggest the current power grid has enough generation capacity to charge 70% of cars and light

trucks overnight, during periods of low demand [1]. A recent survey suggests, however, vehicle

owners prefer home charging, would consider charging their vehicles during the day (typically

between 6 and 10 pm), and are unwilling to accept a charging time of 8 hours [2]. The time to

fully charge the battery of an electric vehicle at home currently varies from 18 hours (Level 1, in the

United States at 110 V and 15 A with a charge power of 1.4 kW) to 4 hours (Level 2, at 220 V, 30

A with a charge power of 6.6 kW). Alternatively, electric vehicles could charge at public charging

stations at Level 3 in less than 30 minutes [3]. Taken together, consumer behaviour and advances

in battery technology may lead to a rise in peak demand with the increasing penetration of electric

vehicles, overloading distribution networks and requiring local infrastructure reinforcement [4–

7]. To reduce the cost of upgrades to the last mile of cables, network operators may need to

coordinate charging strategies in a way that is both technically and socially acceptable. To achieve

this goal, network designers could implement charging protocols that prioritise the access of a

fleet of electric vehicles to electric power, thus simultaneously managing network congestion and

accounting for the fairness of user allocations.

Through a series of papers, the power grid has recently gained increased visibility in the sci-

entific community [8, 9], and physicists have helped to increase our understanding of its synchro-

nization [10, 11] and stability [12, 13]. In parallel, recent advances in optimization and phase

transitions [14, 15] suggest that the tools of critical phenomena and optimization can be merged,

opening up new horizons. From the point of view of the distribution network operator, the problem

of vehicle charging is to manage congestion on distribution networks, while respecting Kirchhoff’s

laws and keeping voltage drops bounded. Here, we explore two congestion control mechanisms:

max-flow and proportional fairness. We show that if too many vehicles plug-in to the network,

charging takes too long, more cars arrive than leave fully charged, and the system undergoes a

continuous phase transition to a congested state [16, 17], where the critical point depends on the

choice of congestion control algorithm. By gaining insights into the critical behaviour that nat-

urally emerges with the increase of the number of vehicles, we hope to help network designers

decide which algorithms to implement in the real-world.
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II. THE MODEL

Physicists are familiar with simulated annealing, a global optimization method that can avoid

becoming trapped in a local optimum. In principle, it converges to the global optimum, but in prac-

tice this is not guaranteed (see e.g. [18–21]) because the required theoretical cooling schedules are

too slow to use in implementations. In contrast, convex optimization always finds the solution,

if it exists, independently of the starting point. Convex optimization problems can be solved effi-

ciently (typically in polynomial time), even for problems with hundreds of variables and thousands

of constraints, using interior-point methods [22]. The burgeoning field of convex optimization in

electricity networks [23–25] is a good example of an application of the mathematical framework

developed over the last 20 years. Indeed, the extensive numerical simulations we present here are

only possible due to techniques developed since 2012 [24–26]. The networks that we study are

relatively small. The stochasticity of vehicle arrival times, however, implies solving an optimiza-

tion problem in each time step if the state of the system changes. Hence, to gain insights into the

steady state of vehicle charging, efficient algorithms are a necessity at the design stage. Of course,

real-world implementations also depend on efficient algorithms, which would need to run online,

often in large urban distribution networks.

An optimization problem is determined by a function of a set of variables (the objective func-

tion), for which we seek a minimum, and a set of upper bound constraints that restrict the domain

(or feasible set) of those variables [22]. A point is feasible if it belongs to the feasible set, and is

optimal if it is the minimum of the objective function in the feasible set. An optimization problem

is convex if both the objective function and the constraints are convex, in which case the objective

function has a global minimum. A convex relaxation of an optimization problem P is a convex

optimization problem P′ with an enlarged feasible set. If the optimum of P′ is feasible for P,

it is also the optimum for P and we say the relaxation is exact. Hence, convex relaxations are

more attractive than approximate methods, such as linearisations, because the feasibility of the

relaxed optimum of P′, which can be verified either analytically or numerically, is a certificate of

the exactness of the relaxation.

Consider a tree topology, such that electric power is distributed from a root node to electric

vehicles that charge at the nodes. Let P(t) be the feasible set of power allocations at time t, i.e. the

set of all allocations of power to electric vehicles that do not violate the operational constraints

of the distribution network. Each feasible allocation P(t) ∈ P(t) is a vector P(t) = (Pl(t) : l =
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1, . . . ,N(t)), where N(t) is the number of vehicles in the network at time t. Vehicle l derives

a utility Ul(Pl(t)) from the allocated charging power Pl(t), and we wish to select the allocation

that maximises the sum of vehicle utilities [27]. This allocation acts as a network protocol that

distributes network capacity among users, and solves the following problem:

maximise
N(t)∑
l=1

Ul(Pl(t))

subject to P(t) ∈ P(t).

(1a)

(1b)

Here we explore two user utility functions. First, we consider the non-unique max-flow allocations

given by Ul (Pl(t)) = Pl(t), i.e. we maximise the instantaneous aggregate power sent from the root

node to the vehicles, which is a benchmark of efficient network throughput [28]. Such allocations,

however, can also leave users with zero power, which is considered unfair from the user point of

view. Hence, we next consider the proportional fairness allocation. Mathematically, the problem

is to find the feasible allocation that maximises the sum of the logarithm of user rates, that is

Ul (Pl(t)) = log(Pl(t)). The proportional fairness allocation is especial, because the users and the

network operator simultaneously maximise their utility functions [27]. Furthermore, the problem

is convex, and so can be solved in polynomial time [22], and it can be naturally extended by adding

positive weights to each term in the objective function Eq. (1a), to account for diversity in user

demand or for more than one user at some nodes [27]. For the compact and convex set P(t), it can

be shown that the allocation PPF(t) that maximises Eq. (1a), satisfies [27, 29]:
N(t)∑
l=1

Pl(t) − PPF
l (t)

PPF
l (t)

≤ 0. (2)

This allocation is known as proportionally fair, because the aggregate of proportional changes

with respect to all other feasible allocations is non-negative. In other words, Eq. (2) implies that

to increase the instantaneous power allocated to a vehicle by a percentage ε, we have to decrease a

set of other power allocations, such that the sum of the percentage decreases is larger or equal to ε.

In contrast, in max-flow, to increase the instantaneous power allocated to a vehicle by ε, we have

to decrease the sum of instantaneous powers allocated to other vehicles at least by ε. It turns out

that fairness and congestion control are two sides of the same coin, because the existing algorithms

for fair allocations also manage network congestion [27, 30–35]. Moreover, in the analysis of the

parallel problem for communication networks, proportional fairness has emerged as a compromise

between efficiency and fairness with an attractive interpretation in terms of shadow prices and a

market clearing equilibrium [27, Section 7.2].
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FIG. 1. Schematic illustration of (a) a distribution network, (b) the circuit of a network edge. Electric

vehicles choose a charging node with uniform probability, and plug-in to the node until fully charged, as

illustrated by the electric vehicle icons on the network. Network edge ei j has impedance Zi j = Ri j + iXi j.

The power consumed by the subtree t ( j) rooted at node j (area shaded in purple) is S t( j) = Pt( j) + iQt( j),

where vehicles consume real power only, but network edges have both active (real) and reactive (imaginary)

power losses.

The simplest flow model in electricity networks is the DC power flow, which is a linearisation

of the AC power flow equations, and thus can be solved with tools of linear programming. It

assumes that voltage amplitude is constant on all nodes, a good approximation at the level of the

high-voltage transmission network, but a poor one on local distribution networks. Indeed, voltage

drops are significant in distribution networks, and determine the network capacity, which leads us

to using models of power flow specific to distribution networks [36]. We abstract the distribution

network to a rooted directed tree t (r) with node (often called bus) setV, edge (also called branch)

set E, and a root node r (feeder) that injects power into the tree [46]. Edge ei j ∈ E connects node i

to node j, where i is closer to the root than j, and is characterised by the impedance Zi j = Ri j + iXi j,

where Ri j is the edge resistance and Xi j the edge reactance. The power loss along edge ei j is given

by S i j(t) = Pi j(t) + iQi j(t), where Pi j(t) is the real power loss, and Qi j(t) the reactive power

loss. Electric vehicle l receives active power Pl(t) until charged, but does not consume reactive

power [37] —see Fig. 1(a). The vector V(t) denotes the voltage allocated to the nodes. The voltage

drop ∆Vi j down the edge ei j is the difference between the amplitude of the voltage phasors Vi and

V j, assuming node i is closer to the root r than node j [36]. Let t ( j) denote the subtree of the
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distribution network rooted in node j, with node set Vt( j) and edge set Et( j). Let Pt( j) denote the

active power, and Qt( j) the reactive power consumed by the subtree t ( j)—see Fig. 1. Kirchhoff’s

voltage law applied to the circuit in Fig. 1(b) yields (see Appendix A):

Vi(t)V j(t) − V2
j (t) − Pt( j)(t)Ri j − Qt( j)(t)Xi j = 0. (3)

Vehicle l has a battery with capacity B that charges with the instantaneous power Pl(t) from

empty (at arrival time) to full (at departure time), and the level of battery charge is the time integral

of instantaneous power. Vehicles arrive to the network, choose a node to charge randomly with

uniform probability, charge until their battery is full, an lastly leave the network. At each time step,

the network solves the congestion control problem to allocate instantaneous power to the vehicles.

The max-flow problem maximises the instantaneous aggregate power sent from the root node to

the electric vehicles, respecting the constraints of distribution networks: the voltage drop along

edges obeys Eq. (3), and node voltages are within ((1 − α)Vnominal, (1 + α)Vnominal) for α ∈ (0, 1),

with α = 0.1 typically [36]. Thus, to find the max-flow allocation of power to the vehicles, we

solve the optimization problem for fixed t:

maximise
V(t)

U(t) =

N(t)∑
l=1

Pl(t)

subject to (1 − α)Vnominal ≤ Vi(t) ≤ (1 + α)Vnominal, i ∈ V

Vi(t)V j(t) − V j(t)V j(t) − Pt( j)(t)Ri j − Qt( j)(t)Xi j = 0, ei j ∈ E.

(4a)

(4b)

(4c)

Constraint (4b) sets the limits on the node voltage. Equation (4c) is the physical law coupling

voltage to power, generalized from Eq. (3) for the subtree t ( j), and encodes both Kirchhoff’s

voltage law on network edges and Kirchhoff’s current law applied recursively at each node of the

subtree (see Appendix B). We do not need to apply Kirchhoff’s voltage law on network loops,

however, because local distribution networks are approximately trees, and thus are cycle-free.

Constraint (4c) is quadratic, hence not convex in general, which implies that the problem is not

directly solvable by polynomial time methods. To overcome this limitation, we make a change

of variables in problem (4) by defining a weighted adjacency matrix W(t), such that edge ei j

corresponds to the 2 × 2 principal submatrix W(ei j, t) defined by [38, 39]:

W(ei j, t) =

Vi(t)

V j(t)

 (Vi(t) V j(t)
)

=

 V2
i (t) Vi(t)V j(t)

V j(t)Vi(t) V2
j (t)

 =

Wii(t) Wi j(t)

W ji(t) W j j(t)

 , (5)



7

where Wi j(t) = W ji(t), because Vi(t),V j(t) ∈ R. The matrices W(ei j, t) are positive semidefinite,

because their eigenvalues (λ1 = 0 and λ2 = V2
i + V2

j ) are non-negative, and rank one because

they are of the form vvT . Hence, constraint (4c) can be replaced by three constraints: the first

substitutes the quadratic terms in the voltages with linear terms in the W(ei j, t), and the second and

third constraints guarantee that the W(ei j, t) are positive semidefinite and rank one.

The solution of problem (4) is on the Pareto frontier [47], since we maximise an increasing

function in the objective. The rank one constraint is nonconvex, but it does not change the Pareto

frontier or the optimum [25, 40], and we remove it to relax problem (4) to:

maximise
W(t)

U(t) =

N(t)∑
l=1

Pl(t)

subject to ((1 − α)Vnominal)2
≤ Wii(t) ≤ ((1 + α)Vnominal)2 , i ∈ V

Wi j(t) −W j j(t) − Pt( j)(t)Ri j − Qt( j)(t)Xi j = 0, ei j ∈ E

W(ei j, t) � 0, ei j ∈ E,

(6a)

(6b)

(6c)

(6d)

where the generalized inequality in constraint (6d) means the W(ei j, t) matrices are positive

semidefinite [41].

The problem of allocating power to vehicles in a proportional fair way has the same constraints

as problem (6), however, the objective function is the sum of the logarithm of the power. It turns

out, however, that it is computationally more efficient to aggregate vehicles at the nodes, and to

maximise the sum of power allocated to the nodes, rather than the vehicles. To show this, we

observe that all vehicles are equivalent, and thus the power Pi(t) allocated to node i is divided

equally among the vehicles charging on the node at each time step. Hence, if one or more vehicles

is charging on node i, each gets the instantaneous power:

Pl(t) =
Pi(t)
wi(t)

, (7)

where wi(t) =
∑N(t)

l=1 ∆il(t) is the number of electric vehicles charging on node i at time t, and

∆il(t) = 1 if electric vehicle l is charging on node i at time t and zero otherwise. Hence, the
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proportional fair allocation is given by (see Appendix C):

maximise
W(t)

U(t) =
∑
i∈V+

wi(t) log Pi(t)

subject to ((1 − α)Vnominal)2
≤ Wii(t) ≤ ((1 + α)Vnominal)2 , i ∈ V

Wi j(t) −W j j(t) − Pt( j)(t)Ri j − Qt( j)(t)Xi j = 0, ei j ∈ E

W(ei j, t) � 0, ei j ∈ E,

(8a)

(8b)

(8c)

(8d)

where V+ is the subset of nodes with at least one vehicle, and we can recover the instantaneous

power allocated to electric vehicle l, located at node i, from Eq. (7). The complexity of the prob-

lem (8) thus scales with the number |V| of nodes, which is typically smaller than the number N(t)

of vehicles for large arrival rates λ. Similarly, we also aggregated vehicles in the implementation

of problem (6), but omit the proof.

To study the behaviour of max-flow and proportional fairness as a function of the number of

vehicles arriving at the network to be charged, we implement a discrete simulator that solves

the congestion control problem in discrete time steps, starting with no vehicles charging on the

network. Vehicles arrive at the network in continuous time (following a Poisson process with rate

λ) and with empty batteries, choose a node with uniform probability amongst all nodes (excluding

the root), and charge at that node until their battery is full, at which point in time they leave the

network. Once a vehicle plugs into a node, the congestion control algorithm will allocate it an

instantaneous power, which is a function of the network topology and electrical elements, as well

as the location of other vehicles.

At each time step, we first check whether the number of charging vehicles changed (i.e. vehicles

left the network fully charged, or new vehicles arrived to be charged), and if it has, we solve the

max-flow problem (6) and the proportional fairness problem (8), which allocate a constant power

during the time step to each of the charging vehicles. Next, we update the status of batteries at

the end of the time step. The simulation terminates when the simulation time reaches the time

horizon. We simulated vehicles charging on the realistic SCE 47-bus and SCE 56-bus distribution

networks [38], which are detailed in Fig. 2. To characterise the system behaviour in detail, we

varied the arrival rate λ from 0 to 1 in steps of 0.05 (0.005 close to the critical points), and for

each λ value we simulated an ensemble of 25 independent realisations of simulation runs, each

simulation running for 15,000 time units (150,000 time units close to the critical point). We ran the

simulations using CVXOPT [42] on the ETHZ Brutus cluster [48] due to the high computational
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FIG. 2. Topology of the (a) SCE 47-bus and (b) SCE 56-bus networks. Node indexes identify the edges, and

edge resistance and reactance is taken from [38]. Node 1 is the root node in both networks. Nodes 13, 17,

19, 23 and 24 of the SCE 47-bus network (in lighter colour) are photovoltaic generators, and we removed

them from the network.

requirements. The computational time is comparable for max-flow and proportional fairness and

for the 47-bus and 56-bus networks, but it is grows with λ. For example, to simulate 5,000 time

units of the proportional fairness algorithm for λ = 1.0 on the 47-bus network takes approximately

40 hours, but 4 minutes for λ = 0.05 .

We set the battery capacity B = 1 for all vehicles, and the nominal voltage Vnominal = 1. Scaling

Vnominal by β, for β ∈ (0,∞), implies scaling both the the power delivered to vehicles and the

battery capacity by β2. To see this, observe that problems (4) and (8) are invariant upon the scaling

V ′nominal = βVnominal, V ′i (t) = βVi(t) for all nodal voltages, P′l(t) = β2Pl(t), P′
t
(t) = β2Pt(t) and

Q′
t
(t) = β2Qt(t), and B′ = β2B. Considering these scaling properties, our simulations can be

extended to values of Vnominal , 1, provided the vehicle capacity B is rescaled accordingly, and we

use this property to rescale the problem when convenient.

III. NUMERICAL RESULTS

We find critical behaviour that resembles results found in communication networks, in that both

systems undergo a continuous phase transition [43]. In order to characterize this phase transition,

we adopt the order parameter η(λ) that represents the ratio at the steady state between the number

of uncharged vehicles and the number of vehicles that arrive at the network to be charged [43]:

η(λ) = lim
t→∞

1
λ

〈∆N(t)〉
∆t

, (9)
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FIG. 3. (a) Order parameter η as a function of the arrival rate λ, for the SCE 56-bus (filled symbols) and 47-

bus (unfilled symbols) networks, where we apply the max-flow (circular symbols) and proportional fairness

(square symbols) algorithms for the simulation horizon of 1.5×104 time units. We plot a zoom of the critical

region for the (b) 56-bus network and (c) 47-bus network for the longer horizon of 105 time units. Panel

(c) suggests the critical arrival rate is different for the max-flow and proportional fairness algorithms in the

47-bus network. Symbols show average values over an ensemble of 25 runs and shaded areas represent 95%

confidence intervals.

where ∆N(t) = N(t + ∆t) − N(t) and 〈. . .〉 indicates an average over time windows of width ∆t.

We calculate η(λ) in the steady state, that is limt→∞ ∆N(t) ∝ ∆t. For arrival rates λ < λc, all

vehicles that plug-in to the network with empty batteries within a large enough time window leave

fully charged within that period (free flow phase), but for λ > λc some vehicles have to wait for
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increasingly long times to fully charge (congested phase). The order parameter characterises the

phase transition: η(λ) = 0 in the free-flow regime, and η(λ) > 0 in the congested phase, a higher

order parameter meaning that queues of charging vehicles build up more rapidly.

Figure 3 is a plot of the order parameter for the 47 and 56-bus networks and the two conges-

tion control methods, as a function of λ. Simulation results shown in Figs. 3(a) suggest that λc

depends on several factors (the network topology, the complex impedance on the edges, battery

capacity, Vnominal, as well as the position of vehicles on the network). At this resolution of the

control parameter, it is unclear, however, whether the critical point is the same for max-flow and

proportional fairness in both networks. To clarify this, we studied the order parameter with higher

resolution close to the critical points—see Figs. 3(b) and (c). The critical point is numerically

indistinguishable for max-flow and proportional fairness in the 56-bus network. In the 47-bus

network, however, we find that λc is larger for proportional fairness than for max-flow.

The number N(t) of charging vehicles at time t fluctuates widely close to the critical point,

and thus it is difficult to determine λc from Fig. 3. To overcome this limitation, we adopt the

susceptibility-like function [43]:

χ(λ) = lim
∆t→∞

∆t ση(∆t), (10)

where ∆t is the length of a time window, andση(∆t) is the standard deviation of the order parameter

η. To compute χ(λ), we first consider a long time series and split it into windows with length

∆t. We next determine the value of the order parameter in each window, and finally calculate

the standard deviation of these values. The susceptibility displays a singular point at λc (see

Fig. 4) , allowing us to study the dependencies of the critical arrival rates on the congestion control

algorithm, as well as network topology and size.

Similarly to our analysis of η(λ), the values of λc are indistinguishable in the 56-bus network.

In contrast, however, in the 47-bus network the singular point of χ(λ) is smaller for max-flow than

for proportional fairness. This suggests that proportional fairness charges a slightly larger number

of vehicles than max-flow, and is thus marginally more efficient, on a neighbourhood of its critical

point. To support this conclusion, we show in Figs. 4(c) and (d) four representative instances of

the time series of the number of vehicles charging on the 47-bus network at λ = 0.39. The number

N(t) of vehicles grows linearly with time in max-flow in all four cases, suggesting that the critical

point is below λ = 0.39 for this algorithm. In contrast, N(t) oscillates in proportional fairness,

suggesting that the critical point is above λ = 0.39, in agreement with the analysis of χ(λ).

The two congestion control algorithms lead to different allocations of instantaneous power, with



12

FIG. 4. Susceptibility χ(λ) as a function of the arrival rate λ, for the for the (a) SCE 56-bus (filled symbols)

and (b) 47-bus (unfilled symbols) networks, where we apply the max-flow (circular symbols) and propor-

tional fairness (square symbols) algorithms for the time horizon of 105 time units. Vertical lines show the

value of the critical points for max-flow (MF) and proportional fairness (PF). Panel (b) shows the differ-

ence in the critical arrival rate for the two congestion control algorithms. To illustrate this difference, we

plot in (c) and (d) representative time series for the 47-bus network for λ = 0.39, showing that, within the

time horizon, max-flow is supercritical, whereas proportional fairness is subcritical. Symbols show average

values over an ensemble of 25 runs and shaded areas represent 95% confidence intervals.

vehicles charging in different order and over different time intervals. If there are vehicles on a path

p between the root and a leaf node, the voltage drops with increasing distance from the root, the

lower limit voltage constraint (4b) is fulfilled at equality for one node on p, and nodes further away

than that will not receive any power. The objective function of proportional fairness guarantees

that each vehicle gets a positive power allocation, thus the lower limit voltage constraint is satisfied

at equality on the occupied node that is the most distant from the root on p. In max-flow, however,
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FIG. 5. Gini coefficient G of the charging time as a function of the electric vehicle arrival rate λ, for the

SCE 47-bus (unfilled symbols) and 56-bus (filled symbols) networks, where we apply the max-flow (circular

symbols) and proportional fairness (square symbols) algorithms. We run the simulation for 15,000 times

units, and compute the Gini coefficient from the charging time of vehicles that have charged fully during

the simulation. To reduce the effect of a transient regime, we consider only vehicles that are fully charged

after iteration 1000. Vertical lines show the value of the critical points for max-flow (MF) and proportional

fairness (PF) identified from the susceptibility χ(λ) for both networks. Symbols show average values over

an ensemble of 25 runs and shaded areas represent 95% confidence intervals.

to maximise the aggregate power allocated to vehicles that can take all instantaneous power they

are allocated (elastic demand), on a network with bounded voltage drops (i.e. capacity), implies

also minimizing the power losses, and this is achieved by allocating all power on p to the closest

occupied node from the root on that path. For max-flow, this implies vehicles on the path p further

away from the root than the closest occupied node will only receive power after all vehicles on

this node have left the network fully charged. In other words, under max-flow, users experience

a charging time that depends strongly on their location on the network: vehicles close to the root

charge faster, and vehicles on the tree leaves may take a very long time to charge. In contrast,

under proportional fairness, the charging times are more homogeneous, because vehicles receive

instantaneous powers that are also more uniform.

To characterise inequalities in the user experience, we analyse the Gini coefficient of charging

time. Originally devised as a measure of inequality in income distributions, the Gini coefficient is
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defined as [44]:

G =
1

2µ
E [|u − v|] =

1
2µ

∫ ∞

0

∫ ∞

0
|u − v| f (u) f (v) du dv, (11)

where u and v are independent identically distributed random variables with probability density

f and mean µ. In other words, the Gini coefficient is one half of the mean difference in units

of the mean. The difference between the two variables receives a small weight in the tail of the

distribution, where f (u) f (v) is small, but a relatively large weight near the mode. Hence, G is

more sensitive to changes near the mode than to changes in the tails. For a random sample (xi,

i = 1, 2, . . . , n), the empirical Gini coefficient, Ĝ, may be estimated by a sample mean

Ĝ =

∑n
i=1

∑n
j=1

∣∣∣xi − x j

∣∣∣
2n2µ

. (12)

The Gini coefficient is used as a measure of inequality, because a sample where the only non-zero

value is x has µ = x/n and hence Ĝ = (n − 1)/n → 1 as n → ∞, whereas Ĝ = 0 when all data

points have the same value.

We observe in Fig. 5 that the Gini coefficient of the charging time is larger in max-flow than in

proportional fairness, for each of the networks. Moreover, the Gini coefficient increases faster in

max-flow than in proportional fairness in the non-congested regime, showing that, when the system

is stable, vehicles will experience a faster increase in the inequality of charging times in max-flow

than in proportional fairness, with the increase of the vehicle arrival rate λ. For comparison with

well-known measures of income inequality, Sweden has a Gini of 0.26, the United States has

a Gini of 0.41 and the Seychelles has the highest Gini of 0.66 [45]. The proportional fairness

algorithm reaches a maximum Gini of 0.45, which is comparable with the level of inequality in

the US society, and thus may be judged sociable acceptable. The max-flow algorithm, however,

reaches a Gini of 0.91, which measures a level of inequality considerably higher than present in

any contemporary society.

IV. DISCUSSION

In conclusion, we modelled the max-flow and proportional fairness protocols for the control

of congestion caused by a fleet of vehicles charging on distribution networks. We analysed the

second order phase transition that occurs with the increase of the number of electric vehicles that

arrive at the network with empty batteries to be charged, and found that the critical arrival rate

λc depends on the congestion control method. Indeed, we showed numerically on the 47-bus bus
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network that the onset of congestion takes place for larger values of λ in proportional fairness than

in max-flow. This result is surprising, because one would expect that, for a chosen arrival rate

λ, the maximisation of the aggregate instantaneous power would also lead to a maximisation of

the energy (the time integral of power), and hence to a maximisation of the number of charged

vehicles. This discovery, illustrates how the greediness of max-flow can be sub-optimal in relation

to proportional fairness, which is an example of a fair allocation of instantaneous power.

We analysed the inequality in the charging times as the vehicle arrival rate increases, and

showed that charging times are considerably more equitable in proportional fairness than in max-

flow. Indeed, vehicles close to the root get all the power allocation in max-flow, leaving other

vehicles excluded from the network and unable to charge. Hence, proportional fairness is prefer-

able to max-flow, not only because it does not exclude users from the network, but also because

the charging times are more equitable, and it can serve a higher number of vehicles. In conclusion,

proportional fairness is a promising candidate protocol to manage congestion in the charging of

electric vehicles.
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Appendix A: Voltage drop on one edge

The angle θ between Vi and V j is small in distribution networks [36] (see Fig. 6), and hence

the phases of Vi and V j are approximately the same, and can be chosen so the phasors have zero

imaginary components. Since the phasors are real, we can derive the voltage drop from Kirchhoff’s
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voltage law applied to the circuit in Fig. 1(b),

∆Vi j =|Vi|−|V j| ' Vi − V j =

= <
(
Ii j Zi j

)
= <

 Ii j Zi j V∗j
V∗j

 = <

S ∗
t( j) Zi j

V∗j

 =

= <

 (Pt( j) − iQt( j))(Ri j + iXi j)
V∗j

 ' Pt( j)Ri j + Qt( j)Xi j

V j
, (A1)

where the superscript asterisk denotes the complex conjugate transpose.

FIG. 6. The difference Ii jZi j between the Vi and V j phasors, decomposed along the V j vector and its

orthogonal direction. The phase angle θ difference between Vi and V j is small, and hence the voltage drop

can be approximated by ∆Vi j ' <
(
Ii j Zi j

)
.

Appendix B: Active and reactive loads on a subtree

From Kirchhoff’s current law, the active and reactive power consumed by the loads in the

subtree rooted in node k can be computed as:

Pt(k) =
∑

i∈Vt(k)

N(t)∑
l=1

∆il(t)Pl(t) +
∑

i∈Vt(k)

∑
j:ei j∈Et(k)

Pi j(t), (B1)

and

Qt(k) =
∑

i∈Vt(k)

∑
j:ei j∈Et(k)

Qi j(t), (B2)
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where Pi j(t) is the active and Qi j(t) the reactive power dissipated on a cable connecting nodes i

and j. The complex power is given by:

S i j(t) = Pi j(t) + iQi j(t) = (Vi(t) − V j(t))I∗ =

= (Vi(t) − V j(t))
(
Vi(t) − V j(t)

Ri j + iXi j

)∗
=

=
(
Vi(t) − V j(t)

) (
Vi(t) − V j(t)

)∗ Ri j − iXi j

R2
i j + X2

i j

∗ =

=
(
Wii(t) −Wi j(t) −W ji(t) + W j j(t)

) Ri j + iXi j

R2
i j + X2

i j

. (B3)

Since, the voltages are real, Wi j(t) = W ji(t), and thus

Pi j(t) =
(
Wii(t) − 2Wi j(t) + W j j(t)

) Ri j

R2
i j + X2

i j

, (B4)

and

Qi j(t) =
(
Wii(t) − 2Wi j(t) + W j j(t)

) Xi j

R2
i j + X2

i j

. (B5)

Appendix C: Aggregation of vehicles at the nodes

In proportional fairness, we maximise the sum of the logarithm of the instantaneous power

allocated to electric vehicles:
N(t)∑
l=1

log Pl(t) =
∑
i∈V+

N(t)∑
l=1

∆il(t) log
Pi(t)∑N(t)

l=1 ∆il(t)
, (C1)

where Pl(t) is the instantaneous power allocated to electric vehicle l, and Pi the instantaneous

power allocated to node i. To maximise Eq. (C1), we solve a problem with gradient and Hessian

matrices that grow in size with the number of electric vehicles on the network. A more efficient

way to approach the problem is to aggregate cars for each node i, then solve the optimization

problem for the nodes (as if they were ‘super-cars’), and finally distribute the power allocated to

each node among the cars on the node. To do this, we remove constant terms in the objective

function Eq. (C1), yielding:

U(t) =
∑
i∈V+

N(t)∑
l=1

∆il(t) log Pi(t) =
∑
i∈V+

wi(t) log Pi(t). (C2)
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