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Abstract

Molecular binding in post-Kohn-Sham orbital-free DFT is investigated, using non-

interacting kinetic energy functionals that satisfy the uniform electron gas condition

and which are inhomogeneous under density scaling. A parameter is introduced that

quantifies binding and a series of functionals are determined from fits to near-exact

effective homogeneities and/or Kohn-Sham non-interacting kinetic energies. These are

then used to investigate the relationship between binding and the accuracy of the

effective homogeneity and non-interacting kinetic energy at the equilibrium geometry.

For a series of 11 molecules, the binding broadly improves as the effective homogeneity

improves, although the extent to which it improves is dependent on the accuracy of the

non-interacting kinetic energy; optimal binding appears to require both to be accurate

simultaneously. The use of a Thomas-Fermi-von Weizsäcker form, augmented with a

second gradient correction, goes some way towards achieving this, exhibiting molecular
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binding on average. The findings are discussed in terms of the non-interacting kinetic

potential and the Hellmann-Feynman theorem. The extent to which the functionals can

reproduce the system-dependence of the near-exact effective homogeneity is quantified

and potential energy curves are presented for selected molecules. The study provides

impetus for including density scaling homogeneity considerations in the design of non-

interacting kinetic energy functionals.

Introduction

The non-interacting kinetic energy, Ts, is a key component of the electronic energy in density

functional theory (DFT). In regular Kohn–Sham calculations, Ts is evaluated exactly using

the Kohn–Sham orbitals,1

Ts[{φi}] = −1

2

∑
i

∫
φi(r)∇2φi(r)dr, (1)

leaving the exchange-correlation energy and potential to be approximated. Unfortunately,

the solution of the Kohn–Sham equations that yields the orbitals has a computational cost

that scales formally with the cube of system size, limiting the size of system that can be stud-

ied. If Ts could instead be accurately approximated as an explicit functional of the electron

density ρ, then the need for the orbitals could be eliminated, reducing the computational

cost and expanding the size of system that can be studied. It is therefore highly desirable to

develop accurate non-interacting kinetic energy density functionals, Ts[ρ], for use in so-called

orbital-free DFT, and this has been the subject of much research effort.2–22 Such functionals

also play a key role in frozen density embedding approaches.23–25

Recently, we have been investigating26–28 the scaling behaviour of Ts[ρ], in the hope that

it may provide information that can aid the development of improved functionals. The

most common type of scaling is coordinate scaling.29 It is well-known that the exact Ts[ρ] is
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homogeneous of degree 2 under coordinate scaling, meaning that it satisfies

Ts[ρλ] = λ2Ts[ρ], (2)

where the coordinate scaled density is

ρλ(r) = λ3ρ(λr). (3)

All functionals in the present study satisfy Eqn. (2) and this type of scaling will not be

discussed further.

Our research has instead focussed on a less-well-known form of scaling, termed density

scaling (or more precisely, ensemble density scaling;28 see also Ref. 30). A functional Ts[ρ]

is homogeneous of degree k under density scaling if it satisfies

Ts[ξρ] = ξkTs[ρ], (4)

or equivalently (for k 6= 0),31

k =

∫
ρ(r) δTs[ρ]

δρ(r)
dr

Ts[ρ]
, (5)

where δTs[ρ]
δρ(r)

is the non-interacting kinetic potential. Evaluation of the quantity k using

Eqn. (5) therefore provides a simple mechanism for quantifying the behaviour of any func-

tional Ts[ρ] under density scaling. If the value of k is system-independent then the functional

is homogeneous of degree k. If the value of k is system-dependent, then the functional is

inhomogeneous and in such cases k is termed an ‘effective homogeneity’.32 The degree of

system-dependence provides a measure of the degree of inhomogeneity.

The exact Ts[ρ] is inhomogeneous under density scaling as can be readily seen by eval-

uating Eqn. (5) for two disparate systems: the uniform electron gas is described exactly

by Thomas-Fermi theory,2,3 for which k = 5/3, whereas one-electron systems are described

exactly by the von Weizsäcker functional form,33 for which k = 1. In a recent study,26 we
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further quantified the system-dependence of k for the exact Ts[ρ] by evaluating Eqn. (5)

using experimental and near-exact calculated data for a series of atoms and small molecules

at equilibrium geometries. We concluded that the influence of the integer discontinuity was

small and that the values of k associated with the potential that averages over the integer

discontinuity – which is most appropriate for the development of a continuum functional

such as a generalised gradient approximation (GGA) functional – did not exhibit significant

system dependence for systems with more than a few electrons; the functional is only mildly

inhomogeneous for the systems considered. The average near-exact effective homogeneity

was k = 1.55, notably lower than the Thomas-Fermi value of k = 5/3.

In a subsequent paper,27 we investigated the influence of imposing this average near-exact

value, paying particular attention to the degree of molecular binding in three small molecules

in a post-Kohn–Sham approach. Binding is a key consideration in orbital-free DFT, since it

is absent in Thomas-Fermi theory34 and is also absent in most (though not all) generalised

gradient approximation (GGA) forms. We considered a single-term functional

Ts[ρ] = cT ′
s [ρ] (6)

where

T ′
s [ρ] =

∫
ρ5/3(r)xn(r)dr. (7)

Here, x = |∇ρ|
ρ4/3

is the usual dimensionless quantity and c and n are parameters. The functional

in Eqn. (6) is homogeneous of degree k = 1
3

(5− n) for all values of c. A value of n was

therefore chosen and the value of c was subsequently determined through a linear regression

to Kohn–Sham Ts[{φi}] values for a series of atoms and molecules at equilibrium geometries.

We observed that when n = 0, i.e. the functional was homogeneous of degree k = 5/3, it

did not bind any of the three molecules, consistent with Thomas-Fermi theory. By contrast,

when n = 0.343, i.e. the functional was homogeneous of degree k = 1.55, all three molecules

were bound, albeit without quantitative accuracy. Furthermore, when the power n was
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chosen to optimise the values of Ts – rather than the value of k – two of the molecules failed

to bind. See Ref. 27 for full details. The key conclusion of the study was that forcing k to

be near-exact may be beneficial for molecular binding.

The purpose of the present study is to develop the approach introduced in Ref. 27 and

to provide a thorough investigation of molecular binding in post-Kohn–Sham orbital-free

DFT. We have two specific aims. The first aim is to improve the functional form and

behaviour under density scaling. The form in Eqn. (6) used in Ref. 27 has limited flexibility;

it does not satisfy the uniform electron gas (UEG) condition; and it is homogenous under

density scaling, whereas we know that the exact Ts[ρ] is inhomogeneous. We shall therefore

use a flexible form that satisfies the UEG and is inhomogeneous, meaning that the k values

associated with the functional are system-dependent. A key question is how well the system-

dependence of the near-exact k can be reproduced. The second aim is to investigate the

functional characteristics that affect binding. The results of Ref. 27 suggest that forcing

k to be near-exact may be beneficial, but it is important to note that the optimal binding

was obtained using a functional where the value of Ts at the equilibrium geometry was also

optimised, through the choice of the prefactor c in Eqn. (6). We shall investigate the role

of both k and Ts in binding. We commence by describing our methodology. The results are

then discussed and conclusions are drawn.

Methodology

Computational details

Following Ref. 27 and other studies,19,35–37 all calculations are performed in a post-Kohn–

Sham manner, using densities/orbitals determined using the Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional38 and the aug-cc-pVTZ basis set.39–41 These densities ap-

proximate those that would be obtained from a solution of the Euler equation using the

exact Ts[ρ]. The total electronic energy associated with an approximate functional T approx
s is
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obtained as

Eapprox = EPBE − Ts[{φPBE
i }] + T approx

s [ρPBE] (8)

where a superscript ‘PBE’ indicates a PBE quantity computed from a regular Kohn–Sham

calculation. In all cases, the accuracy of T approx
s and Eapprox are quantified by comparing

with the Kohn-Sham values. For molecules, all the Ts and k values used in the functional

development and presented in the Figures were determined at the equilibrium geometries of

Ref. 26. All calculations use a spin-restricted formalism.

In order to investigate the factors that affect binding, it is helpful to define a parameter

that quantifies the degree of binding in a given molecule. If our concern is the energy of the

molecule relative to that of completely separated atoms, then the atomisation energy would

be the appropriate parameter. However, the incorrect dissociation arising from errors in the

PBE description of exchange-correlation would necessitate an unrestricted spin-polarised

formalism and this is beyond the scope of the present study, since our near-exact k for

open-shell systems were determined in a spin-restricted formalism. In practical calculations

where one is computing a molecular geometry, it can be sufficient to ask whether the energy

of the molecule reduces in the vicinity of the experimental geometry, without reference to

the energy of completely separated atoms. For diatomic molecules, this can be naturally

quantified using the following parameter,

b =

(
Eapprox(2re)− Eapprox(re)

EPBE(2re)− EPBE(re)

)
× 100 (9)

where re is the experimental bond length. (Similar results would be obtained if the PBE re

value were to be used, but we choose to use the experimental value since this is the geometry

at which our near-exact k were computed). For polyatomic molecules, whose symmetry is

such that there is only one bond length, the same expression can again be used, providing the

other internal coordinates are kept fixed throughout (i.e. it provides a measure of binding
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along one chosen pure bond stretching coordinate). Throughout this study, we shall therefore

use b as a measure of ‘binding’ in our calculations using approximate functionals. A positive

value of b signifies that the approximate functional correctly predicts a decrease in energy

(i.e. binding) in moving from 2re to re, whereas a negative value signifies an incorrect increase

(i.e. repulsion). The optimal value is b = +100%.

Our investigation of binding will focus largely on the diatomics Cl2, F2, CO, N2, HCl,

HF, and the polyatomics H2S, H2O, PH3, NH3 and CH4, for which near-exact k values are

available in the supplementary material of Ref. 26. We define the average binding parameter

for these 11 molecules as

B =
1

11

11∑
i=1

bi, (10)

where bi is the value of b for system i.

Approximate Ts[ρ] functionals

We consider a flexible generalised gradient approximation (GGA) functional form,

Ts[ρ] = TTF
s [ρ] + c1T

W
s [ρ] + c2T

′
s [ρ] (11)

where

TTF
s [ρ] = CTF

∫
ρ5/3(r)dr (12)

is the regular Thomas-Fermi functional with CTF = 3
10

(3π2)2/3, which is homogeneous of

degree k = 5/3. The functional

TW[ρ] =
1

8

∫
ρ5/3(r)x2(r)dr (13)
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is the regular von Weizsäcker functional, which is homogeneous of degree k = 1 (and is

the second-order correction in the gradient expansion). And T ′
s [ρ] is the functional defined

in Eqn. (7), which is homogeneous of degree k = 1
3

(5− n). The first two components

are, of course, special cases of T ′
s [ρ]. We choose to use the simple form in Eqn. (11) for

several reasons. The fact that it comprises a linear combination of homogeneous functionals

means that Eqn. (5) is easily evaluated, yielding an expression for k in terms of the energy

components,

k =
5
3
TTF
s [ρ] + c1T

W
s [ρ] + c2

3
(5− n)T ′

s [ρ]

TTF
s [ρ] + c1TW

s [ρ] + c2T ′
s [ρ]

(14)

where we have used the fact that the individual components are homogeneous of degree

k = 5/3, 1, and 1
3

(5− n) , respectively. For c1 6= 0 or c2 6= 0, the value of k does not

reduce to a constant and so system-dependence is naturally introduced − the functional is

inhomogeneous, as required. Furthermore, given that the first two components in Eqn. (11)

are homogeneous of degree 5/3 and 1, a linear combination of the two will yield a value

of k that is intermediate between the two values, as required. The addition of the third

term provides further flexibility. Finally, Eqn. (11) satisfies the UEG, because x = 0 for this

system.

We consider two forms forms based on Eqn. (11). The first has c1 6= 0; c2 = 0, and so

represents a Thomas-Fermi-von Weizsäcker form; this form will hereafter be denoted the

‘two-term’ form, defined by a single parameter, c1. The second is a more flexible form with

c1 6= 0; c2 6= 0, which will hereafter be denoted the ‘three-term’ form, defined by three

parameters, c1, c2, and n. A key consideration is how to determine these parameters. Given

that we wish to quantify the influence of k and Ts on binding − and that both of these

quantities depend on all the parameters defining the functional − it is natural to define the

parameters as those that minimise

Ω = αΩk + (1− α)ΩTs (15)
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where Ωk and ΩTs are the mean absolute percentage errors in k (determined using Eqn.

(14)) and Ts (determined using Eqn. (11)), respectively, relative to the near-exact system-

dependent k values (averaged over the integer discontinuity) from Ref. 26 and the Kohn–

Sham Ts[{φi}], respectively, for a training set. (Note that one could alternatively define Ωk

relative to k values determined using PBE, rather than experimental/near-exact quantities;

we have verified that this alternative approach yields essentially identical functionals and

conclusions because the k values from the two approaches are very similar for all but the

lightest atoms). Following Ref. 27, we define our training set to be He, Be, Ne, Mg, Ar,

SO2, Cl2, F2, CO, PH3, H2S, N2, HCl, NH3, HF, H2O, and CH4. The set comprises the

11 molecules used in Eqn. (10), plus 5 atoms and the additional SO2 molecule, which was

omitted from Eqn. (10) due to convergence problems at stretched bond lengths. By varying

the parameter α from 0 to 1, a series of functionals can be determined whose emphasis

shifts from optimal Ts, through a more balanced description of Ts and k, to optimal k. The

minimisation of Ω was performed using the Mathematica program.42

Results and Discussion

We commenced by determining a series of two- and three-term functionals, each associated

with an α value in the range 0 ≤ α ≤ 1, in steps of 0.01, and then quantifying the average

binding over the 11 molecules. We define new quantities Ωmol
k and Ωmol

Ts
to be the mean

absolute percentage errors in k and Ts, respectively, relative to the near-exact/Kohn–Sham

values, for the 11 molecules. Figures 1(a) and 1(b) present the values of Ωmol
k and Ωmol

Ts
,

respectively, determined using each functional, as a function of α. Figure 1(c) presents

the average binding, B in Eqn. (10), determined using each functional, as a function of α.

Each point corresponds to an individual optimisation; the raw data is presented, rather than

smoothly interpolated curves.

First consider the two-term functionals. As α increases from 0 to about 0.7, there is
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little variation in the three quantities. The value of Ωmol
k is approximately 4% whilst Ωmol

Ts

is approximately 0.1%. The value of the average binding parameter B is close to −50%,

indicating strongly repulsive interactions. As α increases beyond about 0.7 (i.e. as the fitting

procedure increasingly emphasises k over Ts) the k values improve, with Ωmol
k reducing to

approximately 0.6%, although this is obtained at the expense of a less accurate Ts, with

Ωmol
Ts

increasing to over 10%. The average binding parameter B increases, to approximately

−22%, indicating a reduction in repulsion, on average.

Next consider the more flexible, three-term functionals. At small α, the results are very

similar to those of the two-term functionals. As α increases beyond about 0.2, however, the

quantity Ωmol
k decreases notably to approximately 0.6% , with only a minimal increase in Ωmol

Ts

to approximately 1%, and this behaviour is maintained up to α = 0.99. This is associated

with an increase in the average binding parameter B to approximately +12%. The positive

value indicates binding on average, albeit significantly underestimated. Interestingly, when

α = 1, i.e. when the fit is purely to k, with no Ts information used, both Ωmol
Ts

and B jump

abruptly to the two-term value, with no discernible change in Ωmol
k . Examination of the

functional parameters indicates that the three-term functional has essentially collapsed to

the two-term functional. A marginal improvement in k can therefore be achieved (to the

significant detriment of Ts) by eliminating the third term in the functional.

Overall, Figure 1 suggests that, on average, improving k at the equilibrium geometry does

improve binding, although the extent that the binding improves is dependent on the accuracy

of Ts at that geometry. For the two-term functional, the improvement in k is associated with

a significant degradation in Ts and the binding improvement is modest. For the three-term

functional, however, the improvement in k is associated with minimal degradation in Ts

(except at α = 1) and the improvement in binding is much more pronounced. Optimal

binding would therefore appear to require k and Ts to be accurate simultaneously, which is

consistent with Ref. 27, where the functional that exhibited optimal binding was optimised

against both k (via the exponent) and Ts value (via the prefactor) independently.
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Insight into this observation may be obtained from a consideration of Eqn. (5). The

numerator contains the non-interacting kinetic potential δTs[ρ]
δρ(r)

, which, in a rigorous Euler

formulation of orbital-free DFT, is a key quantity in molecular binding − it governs the

accuracy of the density and hence the nuclear forces and the shape of the potential energy

curve via the Hellmann-Feynman theorem. An accurate numerator is not a sufficient condi-

tion to ensure an accurate kinetic potential, but it is clearly desirable. If k is accurate but

Ts is inaccurate then the numerator will also be inaccurate. Only when k and Ts are both

accurate can we be sure that the numerator is accurate.

Having considered the average behaviour and dependence on α in Figure 1, we now

go on to consider individual molecules for selected functionals. We consider the two- and

three-term functionals evaluated using α = 0, since these provide a benchmark for what

happens when no homogeneity information is used in the fit; these functionals will hereafter

be denoted ‘two-term [α = 0]’ and ‘three-term [α = 0]’. We also consider the two functionals

that exhibit the optimal (i.e. maximum) value of B in Figure 1(c), namely the two-term

functional with α = 1 and the three-term functional with α = 0.99; these functionals will

hereafter be denoted ‘two-term [α = αopt]’ and ‘three-term [α = αopt]’. The parameters

defining these four functionals are presented in Table 1. It is noteworthy that for the two-

term [α = 0] functional, the von Weizsäcker prefactor is c1 = 0.120, close to the exact

first-order gradient expansion of 1/9. The three-term [α = 0] functional is a very similar

functional with c1 = 0.115 and a very small c2 value of 0.006. Figure 2 plots the enhancement

factor22 Fs(x), defined by

Ts[ρ] =

∫
ρ5/3Fs(x)dr, (16)

as a function of x, for the four functionals. The initial negative slope for the three-term [α =

αopt] functional is a consequence of the negative c2 coefficient. In light of the above discussion

of the kinetic potential and Hellmann-Feynman theorem, we are presently investigating the

potentials associated with these four functionals, comparing them with near-exact potentials

and also establishing whether the small n values in the three-term functionals can lead to
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any numerical issues. Results will be presented in a forthcoming publication.

Figure 3 presents a scatter plot of absolute percentage error in Ts vs absolute percentage

error in k for the four functionals; each point corresponds to one of the 11 molecules. Con-

sistent with Figure 1, the two-term [α = 0] and three-term [α = 0] functionals both yield

high quality Ts, but relatively large errors in k. We note that for the [α = 0] functionals

the Ts errors are generally slightly larger for three-term, rather than two-term, which seems

counterintuitive, given the extra flexibility. However, this is simply a consequence of the fact

that the functionals were defined by minimising Ω in Eqn. (15), which holds both atomic

and molecular information. The minimised value of Ω at α = 0 is marginally smaller for

the three-term form, as expected. The two-term [α = αopt] functional yields significantly

improved k at the expense of inaccurate Ts. Only the three-term [α = αopt] functional yields

relatively good quality k and Ts, simultaneously.

Figure 4 presents the binding parameters of individual molecules, b, as a function of

absolute percentage error in k. Again, each point corresponds to one of the 11 molecules.

First consider the two-term [α = 0] and three-term [α = 0] results. The results from the

two functionals are rather similar, with the binding broadly increasing as the error in k

reduces. Indeed, we observe that a linear regression leads in both cases to an intercept of

b ≈ 80%, suggesting that were the functionals able to reduce the error in k sufficiently,

then the binding would be reasonably reproduced! Unfortunately, neither functional is able

to reduce k sufficiently to test this. The results clearly illustrate our view that accurate

binding requires accurate k and accurate Ts: both functionals yield accurate Ts throughout

(see Figure 3) and so the determining factor is the accuracy of k.

Next consider the two-term [α = αopt] and three-term [α = αopt] results. Both functionals

significantly reduce the error in k and exhibit a broad increase in binding as that error

reduces, although the binding is uniformly underestimated, particularly for the two-term

[α = αopt] functional. Again, this can be understood from a consideration of the accuracy

of k and Ts: both functionals are able to reduce the error in k down to below 0.5% for most
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of the systems, but the errors in Ts are large for the two-term functional and smaller, but

still significant, for the three-term functional (see Figure 3). This is reflected in the binding,

which improves from two-term to three-term, but remains underestimated. If the errors in Ts

could be further reduced without degradation of k, then we would anticipate that the binding

would be further improved. This provides a clear impetus for future functional development.

Another aim of the present study is to assess how well the system-dependence of the near-

exact k can be reproduced by approximate functionals. Having identified four functionals,

we can now quantify this. Figures 5(a) and 5(b) present k values for the [α = 0] and

[α = αopt] functionals, respectively, compared to the near-exact values of Ref. 26. Also shown

are the Thomas-Fermi values of k = 5/3. The two- and three-term results are essentially

indistinguishable. The α = 0 functionals in Figure 5(a) yield k values that are smaller

than 5/3, which is simply a consequence of adding the von Weizsäcker term (homogeneous

of degree 1) to Thomas-Fermi (homogeneous of degree 5/3). The results are, however,

significantly larger than the near-exact values. By contrast, the [α = αopt] functionals in

Figure 5(b) yield k values that are in much better agreement with the near-exact values. For

the majority of the molecules, the k values are in excellent agreement with the near-exact

values. The notable exceptions are H2O, HF, and F2, and it is these molecules that exhibit

the smallest b values in Figure 4 for both functionals. Neither functional reproduces the

system-dependence for the atoms.

The emphasis in this study has been on binding, as probed by the parameters b and

B. We close by presenting full potential energy curves for representative systems, aligned

at the longest bond length in each case. Figures 6 and 7 present curves for CO and F2,

respectively, which are both in the training set used to determine the functionals. Figure 8

presents curves for P2, which is not in the fitting set. Parts (a) and (b) of each figure show

results determined using the [α = 0] and [α = αopt] functionals, respectively. Also shown are

the curves from Thomas-Fermi theory and the Kohn–Sham curves.

The same observations are made for all three molecules. The two-term [α = 0] and three-
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term [α = 0] functionals yield virtually indistinguishable curves that are highly repulsive,

though less repulsive than Thomas-Fermi. By contrast, the two-term [α = αopt] and three-

term [α = αopt] functionals are distinguishable, with the three-term being closer to the

Kohn–Sham curve in all cases. Of course, quantitative accuracy has not been achieved and

we note that the [α = αopt] curves for CO in Figure 6(b) exhibit the same unphysical maxima

at large r that was observed in Ref. 27. The results in Figures 6, 7, and 8 are fully consistent

with the average and individual molecule results discussed above.

Conclusions

Molecular binding in post-Kohn-Sham orbital-free DFT has been investigated, using non-

interacting kinetic energy functionals that satisfy the uniform electron gas condition and

which are inhomogeneous under density scaling. A parameter was introduced that quan-

tifies binding and a series of functionals were determined from fits to near-exact effective

homogeneities and/or Kohn–Sham non-interacting kinetic energies. These were then used to

investigate the relationship between binding and the accuracy of the effective homogeneity

and non-interacting kinetic energy at the equilibrium geometry. For a series of 11 molecules,

the binding broadly improves as the effective homogeneity improves, although the extent to

which it improves is dependent on the accuracy of the non-interacting kinetic energy; optimal

binding appears to require both to be accurate simultaneously. The use of a Thomas-Fermi-

von Weizsäcker form, augmented with a second gradient correction, goes some way towards

achieving this, exhibiting molecular binding on average. The findings were discussed in terms

of the non-interacting kinetic potential and the Hellmann-Feynman theorem. The extent to

which the functionals can reproduce the system-dependence of the near-exact effective ho-

mogeneity was quantified and potential energy curves were presented for selected molecules.

The study provides impetus for including density scaling homogeneity considerations in the

design of non-interacting kinetic energy functionals.
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Table 1: Parameters defining selected functionals; see Eqn. (11).

two-term [α = 0] two-term [α = αopt] three-term [α = 0] three-term [α = αopt]
c1 0.119832 0.273776 0.115166 0.268960
c2 - - 0.006118 −0.230783
n - - 0.299001 0.298851
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Figure 1: (a) Mean absolute percentage errors in k; (b) mean absolute percentage errors in
Ts; and (c) average binding parameters B, for 11 molecules, plotted as a function of α in
Eqn. (15)
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Figure 2: Enhancement factors for the four functionals in Table 1.
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Figure 3: Scatter plot of absolute percentage errors in Ts and k, for 11 molecules.
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Figure 4: Individual molecular binding parameters, plotted as a function of absolute per-
centage errors in k, for 11 molecules.
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Figure 5: k values from two- and three-term functionals and the Thomas-Fermi functional,
compared to near-exact values from the supplementary material of Ref. 26
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Figure 6: Potential energy curves of CO determined using two- and three-term functionals
and the Thomas-Fermi functional, compared to the Kohn-Sham curve.
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Figure 7: Potential energy curves of F2 determined using two- and three-term functionals
and the Thomas-Fermi functional, compared to the Kohn-Sham curve.
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Figure 8: Potential energy curves of P2 determined using two- and three-term functionals
and the Thomas-Fermi functional, compared to the Kohn-Sham curve.

26


