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1 Introduction

Spatially modulated phases, in which spatial symmetries are spontaneously broken, are seen

in a wide variety of materials in Nature. For example the cuprate superconductors exhibit

spin and charge density waves as well as current loop order [1]. Starting with [2, 3] it has

become clear that a wide variety of spatially modulated phases can be realised in strongly

coupled field theories using holographic techniques. These phases are associated with novel

black hole solutions in AdS spacetimes which have spatially modulated horizons,1 with the

first example presented in [5]. Exploring the landscape of such black hole solutions and

elucidating their possible zero temperature crystalline ground states is interesting and still

largely unexplored territory.

In this paper we continue to investigate a class of models in D = 4 spacetime dimen-

sions, which includes the top-down models of [6], that couple a metric to a gauge-field and

a pseudoscalar field. The models all admit an AdS vacuum which is dual to a CFT in

d = 3 spacetime dimensions with an abelian global symmetry. When the CFT is held at

finite chemical potential, µ, with respect to the abelian symmetry, the unbroken spatially

homogeneous and isotropic phase in flat space is dual to the electrically charged AdS-RN

black hole (brane). Depending on the specific couplings of the model, these black holes can

have striped instabilities below a critical temperature Tc [7]. In particular, at T = Tc a

1Sharing some features with the non-holographic solutions of [4].
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static linearised striped mode appears which reveals the existence of new spatially modu-

lated black hole solutions which, furthermore, are associated with abelian and momentum

current density waves. Fully back reacted striped black hole solutions, modulated in one

spatial direction and with the current density waves running along the orthogonal spa-

tial direction, were subsequently constructed in [8–12] by solving a system of PDEs in

two variables.

At the linearised level the static striped modes can be superposed indicating the ex-

istence of black holes with spatial order in two spatial directions. By solving a system of

PDEs in three variables, black hole solutions dual to checkerboard lattices were constructed

in [13], with the currents now running around the unit cell of the checkerboard. It was

also shown that the striped black holes are continuously connected to the checkerboard

black holes via rectangular lattice black holes. Here we will explain how the checkerboard

and rectangular lattice black holes associated with the striped instability of [7], are special

cases of a more general three-dimensional moduli space of spatially modulated lattice black

holes, defined by a two dimensional Bravais lattice. In general these lattices are oblique and

special cases are rectangular, checkerboard, centred rectangular and triangular lattices.

When there is just a chemical potential, it was shown in [13] that the striped phase

is thermodynamically preferred over the checkerboard and rectangular lattices (at least

for the temperatures and lattices considered in [13]). In order to obtain two dimensional

phases that are preferred one can supplement µ with an additional UV deformation. In [13]

it was shown that after adding a homogeneous source, φ0, for the operator dual to the

pseudoscalar, that the checkerboard phase can be preferred over the striped phase. It

would therefore be interesting to further investigate whether other lattices are preferred

over the checkerboard in this context.

In this paper we will not pursue that line of investigation but instead consider the CFT

with µ 6= 0 and also a uniform uniform magnetic field2 of strength B. It was shown in [22]

that the striped instability of [7] can survive when B 6= 0. For a specific value of B/µ2 we

will construct and explore the full three-dimensional moduli space of oblique lattice black

holes. For all these black holes the dual CFT has abelian and momentum magnetisation

currents flowing around the unit cells. The transition from the unbroken phase to the

spatially modulated phase is a first order transition and, interestingly, amongst all of the

lattices we find that the triangular lattice is the thermodynamically preferred structure.

The triangular lattice is a commonly observed lattice since it is associated with minimal

packing of circles in the plane. However, why it is preferred in the present context is not so

clear given that we have a strongly coupled plasma. We have cooled the black hole solutions

down to quite low temperatures and our results indicate the existence of fundamentally

new types of holographic crystalline ground state solutions at T = 0.

In section 2 we introduce the class of models that we study as well as discuss the black

hole solutions that describe the unbroken phase. Section 3 reviews the striped instability

while section 4 discusses a convenient parametrisation of the moduli space of oblique lat-

tices. Section 5 discusses the construction of the lattice black hole solutions and it is shown

2Spatially modulated phases in the presence of magnetic fields have also been discussed in [14–21].
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that the thermodynamically preferred solutions are dual to a triangular phase. In carrying

out our analysis, extending the results of [23], we show that the average stress tensor is

that of a perfect fluid and we argue that this is a general result for spatially modulated

phases. Some technical material, including some details on our numerical implementation,

are presented in two appendices.

2 The setup

We consider a bulk theory in D = 4 which couples the metric to a gauge-field, A, and a

pseudoscalar field, φ, with action given by

S =

∫
d4x
√
−g
(
R− V (φ)− 1

2
(∂ φ)2 − 1

4
Z(φ)F 2

)
− 1

8

∫
d4x
√
−g ϑ(φ)εµ1µ2µ3µ4 Fµ1µ2Fµ3µ4 , (2.1)

yielding the equations of motion

Rµν −
1

2
∂µφ∂νφ−

1

2
V gµν +

1

2
Z

(
1

4
gµν FλρF

λρ − FµρFνρ
)

= 0 ,

∇µ (Z Fµν) +
1

2
∂µ1ϑFµ2µ3ε

µ1µ2µ3ν = 0 ,

�φ− V ′ − 1

4
Z ′ F 2 − 1

8
ϑ′ εµ1µ2µ3µ4 Fµ1µ2Fµ3µ4 = 0 , (2.2)

where F = dA is the field strength of the gauge field. In the coordinates we choose later

we take εtrxy =
√
−g. We have taken 16πG = 1 for convenience.

The numerical solutions we construct in this paper will be for specific choices of the

functions V,Z ≥ 0, ϑ given in (2.9), below. For the moment, though, we just impose some

rather weak conditions on these functions. We demand that φ is a pseudo-scalar field,

which is achieved if V,Z are even functions and ϑ is an odd function of φ:

V (−φ) = V (φ), Z(−φ) = Z(φ), ϑ(−φ) = −ϑ(φ) . (2.3)

We also assume that the equations of motion admit an AdS4 vacuum with φ = A = 0,

which is dual to a d = 3 CFT with an abelian global symmetry and the scalar field is dual

to a pseudoscalar operator Oφ, with scaling dimension ∆φ. For convenience we will choose

V (0) = −6 so that the AdS4 vacuum has unit radius.

Our primary focus will be the thermal phase diagram for the CFT with uniform chem-

ical potential µ and uniform (constant) magnetic field B. The F ∧ F coupling to φ in the

action implies, generically, that the scalar field will get activated in the dual black hole

solutions. In the case that the scalar is dual to a relevant operator, i.e. ∆φ < 3, we can also

consider an additional deformation parameter, φ0, associated to sourcing this operator.

At high temperatures, T/µ, T/B1/2, T/φ
1/(3−∆φ)
0 � 1, the CFT in flat space will be

in an unbroken, homogenous phase which preserves the Euclidean symmetries of the two

– 3 –
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spatial directions. The associated dual black hole solutions are captured by a radial ansatz

of the form

ds2
4 = g−2(r)

(
−f(r)G(r)dt2 + g′2(r) f−1(r)G(r) dr2 + dx2 + dy2

)
,

A = at dt+
B

2
(x dy − y dx) , φ = φ(r) . (2.4)

Notice that this does not fully fix the reparametrisation invariance r → R(r). For our

purposes we found it convenient to choose

g = r−1
+ (1− (1− r)2) , (2.5)

with r+ a free constant which sets a scale in the dual field theory. In these coordinates,

the conformal boundary is at r = 0. Assuming that f,G→ 1 as r → 0, writing r = r+ε/2

and taking ε→ 0 we find that

ds2
4 ∼

dε2

ε2
+

1

ε2
(
−dt2 + dx2 + dy2

)
. (2.6)

If we also expand at = µ + . . . and φ = φ0ε
3−∆φ + . . . , then we identify µ,B, φ0 as the

chemical potential, magnetic field and source for the scalar operator, respectively.

The location of the black hole event horizon is taken to be at r = 1 and we impose the

following expansions

f = cf (1− r)2 +O
(
(1− r)4

)
, G = cg +O

(
(1− r)2

)
,

at = (1− r)2 ca +O
(
(1− r)4

)
, φ = cφ +O

(
(1− r)2

)
. (2.7)

After the Wick rotation t→ iτ we find that this leads to analytic behaviour provided that

we periodically identify τ with period β = 4π
r+cf

, associated with a temperature T = β−1.

In the special case that B = φ0 = 0, the class of theories satisfying (2.3) admits the

exact electric Reissner Nordstrom black brane solution given3 by

f(r) =
1

4r2
+

(1− r)2
(
µ2 (r − 2)3 r3 + 4r2

+

(
1 + 2 r + 3 r2 − 4 r3 + r4

))
,

at(r) = µ (1− r)2 , G = 1, φ = 0 , (2.8)

with temperature T = r+
4π

(
3− µ2

4r2+

)
. We recall that as T → 0 this solution approaches

AdS2 × R2 in the far IR. For general µ,B, φ0, the black holes in the ansatz (2.4) with

boundary conditions (2.6), (2.7) need to be constructed numerically, which can be carried

out using standard shooting techniques (or the techniques outlined in the remaining of

the paper).

The specific choices of the functions V,Z, ϑ that we will focus on in this paper are

given by

V = −6 cosh

(
φ√
3

)
, Z =

1

cosh
(
s
√

3φ
) , ϑ = χ tanh

(√
3φ
)
, (2.9)

where (s, χ) are constants. We will quantise the pseudoscalar field so that ∆φ = 2. If

s = χ = 1 then this is the top-down model discussed in [6] (after rescaling the metric,

gauge-field and Newton’s constant).

3A more standard version of the AdS-RN solution is obtained via r → 1− (1− r+/r)1/2.
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3 The striped instability

It was shown in [7] that when B = φ0 = 0 and µ 6= 0, the electric AdS-RN solution (2.8)

has spatially modulated instabilities below some critical temperature in broad families of

theories satisfying (2.3). The striped instability involves both an electric and momentum

current density wave in a direction that is orthogonal to the direction of a spatially modu-

lated expectation value for the pseudoscalar operator Oφ. A simple way to understand the

instability is to analyse perturbations about the T = 0 AdS2 × R2 solution in the far IR,

seeking modes with non-trivial dependence on the spatial coordinates of R2 that violate the

AdS2 BF bound. For the class of models given in (2.9) the striped instabilities depend on

(s, χ) as displayed4 in figure 1 of [7] and in particular the top-down model with s = χ = 1

is unstable.

When B and φ0 are non-zero, it was shown in [22] that there can be a more general

modulated instability that also involves modulated charge and energy density waves in ad-

dition to the modulated currents and pseudoscalar. The argument in [22] for the existence

of this instability relied on the fact that the near horizon geometry of the extremal black

holes is still AdS2 × R2, which is expected to occur in a regime of small deformations, i.e.

where B1/2 � µ and φ
1/(3−∆φ)
0 /µ � 1. However, the existence of such instabilities for

generic values of B1/2/µ and φ
1/(3−∆φ)
0 /µ is heavily model dependent. In particular, for a

given model it is possible that the T = 0 ground state of the unbroken phase black holes

is no longer AdS2 × R2 and moreover that the new IR geometry is perturbatively stable

against such modes. An explicit example of this possibility was realised in [13] where it

was also shown that, nevertheless, for small enough deformations there can still be finite

temperature spatially modulated instabilities.

We now continue by analysing in more detail the static, perturbative modes about

the unbroken phase black hole solutions (2.4) that correspond to the striped instability.

Specifically, in a particular gauge we consider

δgtt = gtt(r)htt(r) cos(k · x), δgrr = −grr(r)htt(r) cos(k · x) ,

δgti = n̂i ht⊥(r) sin(k · x),

δgij =
(
δij − k̂ik̂j

)
h⊥⊥(r) cos(k · x) + k̂ik̂j h‖‖(r) cos(k · x) ,

δat = ht(r) cos(k · x), δai = n̂i h⊥(r) sin(k · x),

δφ = h(r) cos(k · x), (3.1)

where the indices i, j run over the spatial coordinates (x, y) and

k̂ = k/‖k‖, n̂ · k̂ = 0, ‖n̂‖ = 1 . (3.2)

In addition gtt and grr are the background metric components in (2.4). By adding this

perturbation to the background (2.4) and substituting into the equations of motion for (2.1),

at linear order we are led to a system of second order ODEs for {h⊥⊥, ht⊥, ht, h⊥, h} and

first order ODEs for
{
htt, h‖‖

}
. A solution is therefore specified by twelve integration

4Note that (c1, n) of [7] equals (6
√

2χ, 36s2). In addition m̃2
s = −4 + 36s2.
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constants. For the case of the AdS-RN black hole solution (2.8) (with B = φ = 0), we go

back to the case studied in [7] with only the set {ht⊥, h⊥, h} being non-trivial.

Demanding regularity of the perturbation close to the horizon gives the analytic ex-

pansion at r = 1:

hµµ = cµµ +O
(
(1− r)2

)
, ht⊥ = ct⊥ (1− r)2 +O

(
(1− r)4

)
,

ht = ct (1− r)2 +O
(
(1− r)4

)
, h⊥ = c⊥ +O

(
(1− r)2

)
,

h = c+O
(
(1− r)2

)
, (3.3)

where {cµν , cty, cµ, c} are constants of integration to be determined. In the absence of

sources, with ∆φ = 2, the corresponding UV expansion near r = 0 is given by

hµν = dµν r +O(r2), hµ = dµ r +O(r2), h = d r2 +O(r3) , (3.4)

where {dµν , dµ, d} are additional constants, out of which dtt and dxx are fixed in terms of

the others. In total we have seven constants from the near horizon expansion and another

five from the asymptotic region. Since we are dealing with a linear system of equations, we

can scale the unknown functions to set any of the twelve non-zero constants to one. The

extra constant needed to uniquely specify a solution for fixed values of µ, ‖k‖, B and φ0 is

the critical temperature, Tc/µ, at which the static mode comes into existence, and below

which the black holes are unstable.

We mentioned above that for the electric AdS-RN black hole the top down model with

s = χ = 1 is unstable. For a given value of s, the critical temperature for the instability is

an increasing function of χ. For s = 1, the top-down value χ = 1 is very close to a critical

value χc below which the unstable modes completely disappear. In the rest of the paper

we will therefore take s = 1 and χ = 1.5 in order to improve the numerics, but we expect

that the results for the top-down values will be similar. Setting the scalar deformation to

zero, φ0 = 0, we have numerically constructed black holes dual to the unbroken phase with

µ 6= 0 and B/µ2 = 0.05. One finds that the T = 0 limit of these black holes approaches

a dyonic AdS2 × R2 solution in the IR and hence, using the results of [22], has striped

instabilities. We also constructed the critical temperatures at which the striped instability

appears and the results are presented in figure 1.

4 The moduli space of oblique lattices

Before moving on to the discussion of the back reacted solutions that are associated with

the striped modes given in (3.1) we first discuss the moduli space we wish to explore. It is

clear that at the critical temperature Tc, associated with a fixed value of the magnitude of

the wave-number, k = ‖k‖, there is a one parameter family of such striped modes, related

by a rotation in the (x, y) plane. At the linearised level we can consider an arbitrary

linear superposition of these modes. However, demanding periodicity in the (x, y) plane,

so that the variational problem for the back reacted solutions is well-posed, restricts the

superposition to be the sum of two wave-number vectors, each with magnitude k and in

– 6 –
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Figure 1. For black holes in the unbroken phase with B/µ2 = 0.05 we plot the critical temperature,

Tc, for the onset of a striped instability with wave number k. The bulk model is as in (2.9) with

(s, χ) = (1, 1.5). The maximum temperature for which we find a zero mode is at T/µ = 0.075 with

k/µ = 0.967.

general non-parallel. Thus, the resulting set of zero modes at Tc is parametrised by an

angle between the two vectors.

By including the back reaction we therefore expect a family of periodic spatially mod-

ulated solutions to appear at Tc. For lower temperatures the moduli space of periodic

black hole solutions will be parametrised by two wave-numbers k1 and k2, which no longer

need to have the same magnitude. In other words we allow the spatial periodicities to

change as we lower the temperature. It is always possible to perform a rotation to choose,

for example, k1 to be parallel to the y-direction. This leaves us with a three parame-

ter moduli space of black hole solutions to explore. In the special case that the ki are

parallel, with same magnitude, we have stripes, otherwise we will have a two-dimensional

Bravais lattice. Generically these are oblique periodic lattices, but there are various spe-

cial cases: rectangular lattices, checkerboards, centred rectangular lattices and hexagonal

lattices. The latter is also known as a triangular lattice and is the lattice associated with

minimal packing of circles in the plane. The task is to explore this three-dimensional mod-

uli space of black holes, and identify the configuration that minimises the free energy at

each temperature T ≤ Tc.
It is clear from this discussion that the back-reacted striped black hole solutions con-

structed in [8–12] have additional zero modes associated with the larger moduli space of

solutions corresponding to the two-dimensional lattices. For the special case of µ 6= 0,

φ0 = 0 and B = 0, checkerboard lattices were constructed in [13] but were shown to have

free energy that is sub-dominant to the striped phase. Some additional rectangular lattices

were also constructed in [13] for this case and also shown to be sub-dominant. As an aside,

as far as this paper is concerned, we note that some preliminary investigations which we

have carried out indicate that the striped phase is also preferred over all oblique lattices.

It was also shown in [13] that when µ 6= 0, φ0 6= 0 and B = 0, the checkerboards can

dominate over the stripes and the transition is first order. It remains an interesting open

problem to revisit the analysis of [13] and explore the full three-dimensional moduli space

of periodic lattices when φ0 6= 0 and B = 0.

– 7 –
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In the next section we instead construct back reacted black hole solutions with µ 6= 0,

φ0 = 0 and B 6= 0 and explore the full moduli space of solutions. Before doing that we

briefly discuss a convenient parametrisation of the periodic configurations. Let us now

denote the spatial coordinates (x′, y′) associated with the asymptotic boundary metric

ds2
3 = −dt2 + (dx′)2 + (dy′)2 . (4.1)

Consider wave numbers

kx =
2π

Lx
(sinα, cosα) , ky =

2π

Ly
(0, 1) , (4.2)

with π/2 ≤ α ≤ π. The associated periodic boundary conditions in the (x′, y′) directions

are given by (
x′, y′

)
≡
(
x′ +

Lx
sinα

n1 − cotαLy n2, y
′ + Ly n2

)
, (4.3)

where ni are integers. The parameters Lx, Ly and α are the three moduli for the space

of solutions that we would like to construct. We also note that in the plots involving the

spatial coordinates that we present later we use (x̂, ŷ) ≡ ( x
′

Lx
, y

′

Ly
).

An equivalent parametrisation, which we shall use in the next section, is to impose the

simple periodic boundary conditions

(x, y) ≡ (x+ n1, y + n2) , (4.4)

but demand that the conformal metric asymptotes to

ds2
3 = −dt2 +

1

sin2 α

(
L2
x dx

2 + L2
y dy

2 − 2Lx Ly cosαdx dy
)
. (4.5)

Indeed the two coordinate systems are related by

x = L−1
x

(
cosα y′ + sinαx′

)
, y = L−1

y y′ . (4.6)

Instead of (Lx, Ly, α) we can also parametrise the moduli space of solutions using

(kx, ky, R0) with kx ≡ 2π/Lx, ky ≡ 2π/Ly, R0 ≡ − cotα and R0 ∈ [0,∞). Notice that

R0 = 0 (α = π/2) corresponds to a rectangular lattice and when k1 = k2 it becomes a

checkerboard. As R0 →∞ (α = π) we obtain stripes. The hexagonal, or triangular lattice,

is given by k1 = k2 and R0 = 1/
√

3 (α = 2π/3).

All lattices can be obtained by allowing α to lie in the range π/2 ≤ α ≤ π but there is

some redundancy. Generically we have an oblique lattice. There are the following special

cases with larger symmetry. If kx = ky we have rhombic lattices; if in addition α = 2π/3

it is hexagonal while if α = π/2 it is square. If α = π/2 we have rectangular lattices; if in

addition kx = ky we have a square lattice. If ky/kx = −2 cosα we have centred rectangular

lattices satisfying |ky|2 = −2ky ·kx; if in addition α = 2π/3 it is the hexagonal lattice, while

if α = 3π/4 (i.e. ky =
√

2kx) it is the square lattice rotated by π/4 compared to the previous

two. Finally there are also similar centred rectangular lattices with kx/ky = −2 cosα.

– 8 –
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5 Lattice black holes solutions

We are now in the position to numerically construct the back reacted black hole solutions

for the periodic lattices that we described in the previous section. To achieve this, we use

the following ansatz which has only a time-like Killing vector:

ds2
4 = g−2(r)

(
−f̂(r)Qtt(η

t)2+
g′2(r)

f̂(r)
Qrrdr

2+Q
√

1+R2

[
M(ηx)2+

1

M
(ηy)2

]
+2QRηxηy

)
,

ηt = dt+ L̂xQtx dx+ L̂y Qtydy +Qtrdr ,

ηx = L̂x dx+Qrx dr, ηy = L̂y dy +Qry dr ,

A =
1

4
g′(r)2 at dt+

g′(r)

g(r)
ar dr + L̂xax dx+ L̂yay dy + L̂x L̂y

B

2
(x dy − y dx) ,

φ = g(r)ϕ , (5.1)

where {Qtt, Qrr, Q,R,M,Qtx, Qty, Qtr, Qrx, Qry} and {at, ar, ax, ay, ϕ} are all functions of

r and periodic functions of x = (x, y) with (x, y) ∼ (x + 1, y) ∼ (x, y + 1). The functions

f̂(r) and g(r) that appear in the ansatz (5.1) are fixed by hand for convenience (cf. (2.8))

and their explicit form is taken to be

f̂ =
1

4r4
+

(1− r)2
((
µ2 r2

+ +B2
)

(r − 2)3 r3 + 4r4
+

(
1 + 2 r + 3 r2 − 4 r3 + r4

))
,

g = r−1
+ (1− (1− r)2) . (5.2)

For convenience we will choose

L̂x =
Lx√
sinα

, L̂y =
Ly√
sinα

. (5.3)

Of course, there is a lot of redundancy in this ansatz due to local coordinate and gauge

invariance of the theory (2.1) and this will be dealt with below.

The boundary conditions near the AdS4 boundary, located at r = 0, that we want to

impose are given by

Qtt(0,x) = Qrr(0,x) = Q(0,x) = M(0,x) = 1, R = R0 ≡ − cotα,

Qrx(0,x) = Qry(0,x) = Qtr(0,x) = Qtx(0,x) = Qty(0,x) = 0,

at(0,x) = µ, ar(0,x) = ax(0,x) = ay(0,x) = 0,

ϕ(0,x) = φ0 , (5.4)

and we will only consider φ0 = 0, the case of no scalar deformation. Notice that these

boundary conditions imply that the asymptotic metric approaches (4.1) and we therefore

demand that the coordinates x and y have unit periods, as in (4.4). Also observe that the

B dependent part of the field strength for the gauge field takes the form L̂xL̂yBdx ∧ dy =

Bdx′ ∧ dy′ in the coordinates associated with (4.1) and (4.3).

We will demand that there is an analytic Killing horizon generated by the Killing

vector ∂t, located at r = 1. Analyticity demands that our functions will only depend on
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even powers of (1− r), leading to the Neumann boundary condition ∂rΦ(1, x, y) = 0 for all

functions appearing in the ansatz (5.1) apart from Qtt, for which we impose Qtt (1, x, y) =

Qrr (1, x, y).

In order to get a well defined boundary valued problem for an elliptic, quasi-linear

system of partial differential equations, as well as dealing with the residual coordinate and

gauge invariance, we follow the approach of [24–27] by suitably modifying the equations of

motion. After solving the modified equations, we check that the solutions in fact solve the

unmodified equations.

For the Einstein equations we add the term ∇(µξν) to the left hand side of Einstein’s

equation in (2.2). As in [24] we choose ξµ = gνλ
(
Γµνλ − Γ̄µνλ

)
where the Christoffel symbol

Γ̄µνλ is with respect to a reference metric ḡµν which needs to have a Killing horizon and

the same asymptotics with the solution we would like to construct. In the case of pure

gravity and non-positive cosmological constant, one can actually show [25] that given such

a vector, there is no non-trivial solutions to the modified Einstein’s equation with ξµ non-

trivial. For the more general kind of theories we are considering, though, a corresponding

theorem is not yet available and one has to numerically check that ξµ = 0 a posteriori.

The vanishing of ξµ fixes the choice of coordinates.

Following a similar logic for the gauge field equation of motion, we will introduce a

scalar ψ and, as in [13], add the term Z∇νψ to the left hand side of Maxwell’s equation

in (2.2). With the choice of ξµ above, we choose5 ψ to be given by

ψ = ∇µ
(
Aµ − Āµ

)
+ ξµ

(
Aµ − Āµ

)
,

= ∇µAµ + ξµA
µ − gµν∇̄µĀν . (5.5)

By linearising the metric and the gauge-field about a given configuration one can check that

this modification leads to an elliptic set of equations. In fact this is true whether or not we

include the terms involving Ā: the utility of these terms is that they allow one to choose

Aµ−Āµ conveniently. In the present set up we will choose Ā = L̂x L̂y
B
2 (x dy − y dx) so that

the components of Aµ− Āµ are periodic functions and so that ψ = 0 on the boundary. We

will also choose the reference metric ḡµν to be given by (5.1) with Qtt = Qrr = Q = M = 1,

R = R0, and vanishing {Qtx, Qty, Qtr, Qrx, Qry, }. Notice that ψ is now a periodic function

of x which vanishes at the AdS boundary and satisfies Neumann boundary conditions at

the black hole horizon.

If we take the covariant derivative of the modified Maxwell equations we deduce that

∇µ (Z∇µψ) = 0 . (5.6)

We now multiply this equation by ψ and integrate over r,x. Integrating by parts we find

that the boundary contributions vanish and, with Z ≥ 0, we conclude ∇ψ = 0. Since

ψ = 0 on the AdS boundary we conclude that ψ = 0 everywhere. Similarly to the metric,

vanishing of ψ fixes the gauge invariance.

To summarise, if we solve our modified equations we just need to check that ξµ = 0

to ensure that we have solved the equations of motion (2.2). Since ξµ is spacelike, this is

5This differs from the choice made in [13], which in general does not lead to elliptic PDEs.
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achieved by checking ξ2 = 0. Some details about the asymptotic expansion for the modified

equations are included in appendix A and some discussion of the numerical implementation

and convergence can be found in appendix B.

5.1 Currents and free energy

We can extract the current and stress tensor of the dual field theory from the asymptotic

behaviour of the metric and gauge-field. As shown in appendix A, and following [28], the

spatial components of the abelian and momentum currents are magnetisation currents of

the form
√
γJ i = ∂jM

ij ,
√
γ(T ti − µJ i) = ∂jM

ij
T , (5.7)

where M ij = M [ij] is the local magnetisation density and M ij
T = M

[ij]
T is the local thermal

magnetisation density. This immediately implies that the average current fluxes vanish

J̄ i = T̄ ti = 0, where here, and in the following, the bar refers to a period average e.g.

J̄ i =
sinα

LxLy

∫
d2x′
√
γJ i . (5.8)

Here we are using the periodic coordinates given in (4.3),
√
γ refers to the flat spatial part

of the metric, γij , in (4.1) and we have used the fact that the volume of the unit cell on the

torus is given by sinα/(LxLy). In all of the black hole lattice solutions that we construct

there are both abelian and momentum currents flowing around the unit cells as in figure 4.

In order to calculate the thermodynamically preferred black hole solutions we need to

determine the free energy. The free energy density is given by

w =
sinα

LxLy
TIOS , (5.9)

where IOS is the total Euclidean on-shell action, including contributions from the Gibbons-

Hawking terms as well as standard counter terms. We note that for the black holes of

interest we have w = w(T, µ,B; k1, k2, α). For a fixed type of periodic lattice. i.e. fixing

(k1, k2, α), we have

δw = −sδT − J̄ tδµ−mδB , (5.10)

where s is the entropy density (i.e. entropy per unit cell area), J̄ t is the average charge

density and m is the magnetisation density given by the bulk integral, as in [22],

m = − sinα

LxLy

∫
drdx′dy′

(√
−gF x′y′Z − ϑFtr

)
, (5.11)

In appendix A we derive an expression for the local magnetisation density, M ij , which,

consistent with (5.7), has an ambiguity of the addition of a constant times εij . This constant

can be fixed, thermodynamically, by demanding that m = M̄x′y′ .
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If we instead hold fixed the UV data (T, µ,B) and vary (k1, k2, α), by following the

arguments of [23], we find after switching from (x′, y′) to (x, y) coordinates

k1
δw

δk1
= w +mB + T̄ xx ,

k2
δw

δk2
= w +mB + T̄ yy ,

δw

δα
= cotα(w +mB + T̄ xx + T̄ yy)−

LxLy
sinα

T̄ xy , (5.12)

where T̄ is the period average of the stress tensor. In addition, we also have

w = −sT − J̄ tµ+ T̄ tt . (5.13)

For the thermodynamically preferred black hole solutions, all of the derivatives in (5.12)

vanish, and it is straightforward to show that we have

w = −(mB + p) ,

T̄ ij = pγij , (5.14)

where γij is the spatial part of the flat metric given in the (x, y) coordinates in (4.1)

and the constant p is the average pressure. We mentioned earlier that T̄ ti = 0. It is

interesting to note that in spite of the spatial modulation the average stress tensor for the

thermodynamically preferred phase is that of a perfect fluid.6 We also notice that for the

thermodynamically preferred black holes we have sT + J̄ tµ = T̄ tt + (mB + p).

5.2 Results

With B/µ2 = 0.05 we recall that the critical temperature for the onset of the instability is

given by T/µ = 0.075 (see figure 1). We have constructed various oblique lattice black holes

for temperatures both greater than and less than T/µ = 0.075. Since some oblique lattice

black holes exist for T/µ > 0.075 which are not thermodynamically preferred and since

they are all thermodynamically preferred for T/µ < 0.075, it is clear that the transition

from the homogeneous phase to the spatially modulated phase is a first order transition.

Our principal interest is not to investigate the details of the first order transition (for

example the critical temperature), but rather to investigate the shape of the thermody-

namically preferred lattices and so we just discuss solutions with T/µ < 0.075. In order to

explore the moduli space of black hole solutions, we first consider rhombic lattices (“rhom-

biboards”) for which kx = ky (i.e. Lx = Ly). We present some results for the black hole

solutions that we constructed for the three different temperatures, T/µ = 0.07, 0.05 and

0.04. In the “dactylograms” of figure 2, each of which was made from about 400 individual

black hole solutions, we show the contours of the free energy as a function of kx and R0.

6Although we obtained this result for spatially modulated phases in two flat spatial dimensions, it is

clear that it generalises. Specifically, in d spatial dimensions there will be d conditions analogous to the

first two lines in (5.12) and an additional d(d − 1)/2 conditions for pairs of coordinates analogous to the

last line in (5.12). This will then lead to (5.14).
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k̂
x

=
k̂
y

k̂
x

=
k̂
y

k̂
x

=
k̂
y

RR

R

Figure 2. Free energy of the rhombiboard lattices. The contours display the free energy density

ŵ ≡ w/µ3 as a function of R0 and k̂x = k̂y, where k̂x ≡ kx/µ and k̂y = ky/µ, for temperatures T/µ =

0.07 (top left), T/µ = 0.05 (top right) and T/µ = 0.04 (bottom). Colours with longer wavelength

correspond to contours with larger values. The minimum is at R0 = 1/
√

3, corresponding to

triangular lattices, in all three cases but the period changes with temperature. The minima for the

three cases are located at k̂x = 0.937, k̂x = 0.828 and k̂x = 0.777, respectively.

In all three cases, quite remarkably, we find that the minimum is given7 by R0 = 1/
√

3

with the value of kx decreasing as the temperature is lowered. In other words at all three

temperatures the triangular lattice are the preferred lattices within the class of rhombic

7The minimum can be obtained in two ways. One can construct the free energy, stress tensor and

magnetisation for the individual black holes and then use (5.12) to construct the derivatives on the left

hand side of (5.12) as functions of (kx, α) via an interpolation. The vanishing of these derivatives gives

R0 = 1/
√

3 to about one part in 107. An alternative method is simply to use the free energy density for

the individual black holes to obtain a function w of (kx, α) via an interpolation. Setting the derivatives of

this function to zero gives R0 = 1/
√

3 to about one part in 104.
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R

k̂y

k̂x

Figure 3. Surfaces of constant free energy density ŵ ≡ w/µ3 in the three dimensional module

space (k̂x, k̂y, R0), where k̂x ≡ kx/µ and k̂y = ky/µ. The plot was made for the T/µ = 0.04

case of figure 2. The minimum is for the triangular lattice with R = 1/
√

3 and equal periods

k̂x = k̂y,= 0.777.

lattices. As an aside we notice in figure 2 that for each case there is a saddle point at

R0 = 0, associated with checkerboards.

To explore whether the triangular lattice is preferred in the full three dimensional mod-

uli space, we also constructed additional black holes, about 600, at the lowest temperature

of figure 2, T/µ = 0.04, in a neighbourhood of the triangular lattices. In figure 3 we see

the triangular lattice is indeed a local minimum of the free energy and almost certainly the

global minimum.

It is interesting to display the spatial variation of various expectation values for the

thermodynamically preferred triangular lattices. The general features are the same for all

temperatures that we have considered. In figure 4, for the representative case of T/µ = 0.04,

we display the spatial variation of the operator Oφ, dual to the pseudoscalar field, the

charge density, J t, the energy density, T tt, and also the norm and direction of the spatial

components of the current vector J i. It is interesting to notice that Oφ and J t have a spiky

structure and T tt and J i have dimples at the positions of the spikes.

It would be very interesting to determine the ultimate T = 0 ground state of the

spatially modulated phase. It seems likely that it continues to be a triangular lattice for

all temperatures. Following the argument in section 3.7.5 of [29] we expect that ∂Tkx → 0

as T → 0 and it is plausible this happens at kx 6= 0, leading to a crystalline ground state.

It is numerically challenging to keep reducing the temperature in the systematic manner

that we have described so far. In order to get some additional insight into the ground

state, we constructed the thermodynamically preferred triangular lattice at T/µ = 0.01,

i.e. amongst the triangular lattices we determined the thermodynamically preferred value
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ŷ ŷ

ŷ ŷ

x̂ x̂

x̂ x̂

〈Oφ〉/µ2 J t/µ2

T tt/µ3
J i/µ2

Figure 4. The spatial behaviour of various expectation values for the thermodynamically preferred

triangular lattice at T/µ = 0.04. Top left shows the expectation value of the pseudo scalar operator

〈Oφ〉/µ2, top right shows the charge density J t/µ2, bottom left shows T tt/µ3 and bottom right

shows the flow lines and the norm of the magnetisation currents J i/µ2. The plots are functions of

the spatial coordinates (x̂, ŷ) ≡ ( x
′

Lx
, y

′

Ly
) and colours with longer wavelength correspond to larger

values (the norm of J i/µ2 for the bottom right).

of the wavenumber, finding k/µ = 0.6456. In figure 5 we have plotted the spatial variation

of the pseudoscalar field on the black hole horizon for both this temperature and also

for T/µ = 0.04. The appearance of spikes at the horizon as we lower the temperature,

combined with the structure of the magnetisation current displayed in figure 4, indicates

that the ground state is a fundamentally new type of holographic solution, which will be

studied in more detail in the future.
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x̂ x̂

ŷ ŷ

φ+ φ+

Figure 5. A plot of the spatial dependence of the scalar field on the black hole horizon, φ+ ≡ φ(r+),

as a function of the spatial coordinates (x̂, ŷ) ≡ ( x
′

Lx
, y

′

Ly
). The left plot is for the thermodynamically

preferred triangular lattice at T/µ = 0.04. The right plot is for the preferred triangular lattice at

T/µ = 0.01.

6 Discussion

In this paper we have numerically constructed co-homogeneity three, asymptotically AdS

black holes in four spacetime dimensions. The solutions are holographically dual to d = 3

CFTs at finite chemical potential and in a constant magnetic field, which spontaneously

form a periodic lattice in two spatial dimensions, with magnetisation currents of the

form (5.7) circulating the plaquettes of the lattice. In addition there is also a commen-

surate modulation of the charge density. These features, which were also observed in the

checkerboard lattice of [13], are somewhat reminiscent of the current loop order that is

observed in the cuprates [1].

We showed that the black holes come in three-parameter families which are associ-

ated with different Bravais lattices. For a specific value of the magnetic field we showed

that the triangular lattice is thermodynamically preferred over all other lattices, at least

down to very low temperatures. While this is certainly a very natural lattice to appear,

being associated with close packing of circles in the plane, it is unclear what aspects of the

gravitational model selects this lattice. Perhaps it is possible8 to illuminate this issue by

developing a Landau-Ginzburg type description near the critical temperature. However,

such a description will not be valid at low temperatures. It would be interesting to con-

sider other values of the magnetic field and see if the triangular lattice persists. It would be

particularly interesting to examine what happens as we reduce the magnetic field to zero

since, based on the work of [13], it seems likely that the striped phase is then the preferred

configuration. More generally, it is essentially a wide open question which periodic lattices

in two spatial dimensions can be preferred in the context of more general holographic con-

structions. The possibilities in three spatial dimensions, associated with five dimensional

gravitational models, are richer still.

8Difficulties in relating Landau-Ginzburg theory to holography were recently discussed in [30].
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It would be interesting to examine the transport properties of the new triangular phase

that we have found. Powerful techniques have been recently developed that enable one to

extract the thermoelectric DC conductivity from the black hole horizon [28, 31, 32]. How-

ever, since the triangular phase spontaneously breaks translations, there will be Goldstone

modes and hence the DC conductivity is expected to be infinite. On the other hand the

intricate structure of magnetisation currents in our phase could lead to interesting struc-

tures in the AC conductivity. It should be noted, however, that while it is conceptually

straightforward to calculate the thermoelectric conductivity by perturbing the black holes,

it is technically somewhat involved.

The low temperature limit of the black hole solutions that we constructed also revealed

some striking features. The spatial modulation of the triangular lattice does not got washed

out, but instead persists. Moreover, the spatial modulation at the black hole horizon starts

to develop a spiky structure which certainly deserves to be explored in more detail. Indeed

it suggests that the zero temperature ground state is a triangular crystal that is being

supported by a novel periodic structure on the horizon.
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A Asymptotic expansion of fields

Using the modified equations of motion described in section 5, the expansion of the func-

tions appearing in the ansatz (5.1) near the AdS boundary have the form

Qtt (r, x, y) = 1 + r3 ctt(x, y) + g1(x, y) r(3+
√

33)/2 +O(r4) ,

Qrr (r, x, y) = 1 + g2(x, y) r(3+
√

33)/2 +O(r4) ,

Q (r, x, y) = 1− 1

2
r3 ctt(x, y) + g1(x, y) r(3+

√
33)/2 +O(r4) ,

B (r, x, y) = 1 + r3 cB(x, y) +O(r4), R (r, x, y) = R0 + r3 cR(x, y) +O(r4) ,

Qtr (r, x, y) = r4 ctr(x, y) +O(r4 ln r), Qtx (r, x, y) = r3 ctx(x, y) +O(r4) ,

Qty (r, x, y) = r3 cty(x, y) +O(r4), Qrx (r, x, y) = r4 crx(x, y) +O(r4 ln r) ,

Qry (r, x, y) = r4 cry(x, y) +O(r4 ln r), at (r, x, y) = µ+ r ct(x, y) +O(r2) ,

ar (r, x, y) = r3 cr(x, y) +O(r3 ln r), ax (r, x, y) = r cx(x, y) +O(r2) ,

ay (r, x, y) = r cy(x, y) +O(r2), ϕ (r, x, y) = r cϕ(x, y) +O(r2) . (A.1)

– 17 –



J
H
E
P
0
3
(
2
0
1
6
)
1
4
8

In total we have fifteen functions of x and y which are fixed by integration. Analogues of

the functions g1 and g2 first appeared in a closely related context in [33]. The condition

ξµ = 0 implies a linear relation between g1 and g2 and they can then be removed after

doing a coordinate transformation. Similarly, the functions ctr, cxr, cyr and cr can also

be removed by coordinate and gauge transformation. In particular, these functions do not

appear in the expressions for physical expectation values of the dual field theory.

The components of the abelian current vector can be expressed in terms of the above

expansion via

J t = r+

(
µ− 1

2
ct

)
,

Jx =
r+

2L̂x

(√
1 +R2

0 cx −R0 cy

)
,

Jy =
r+

2L̂y

(√
1 +R2

0 cy −R0 cx

)
. (A.2)

Similarly, the components of the stress energy tensor are given by

T tt = − B2

2r+
− µ2r+

2
− 2 r3

+ +
3

4
r3

+ ctt ,

T xx =
B2

4r+
+
µ2r+

4
+ r3

+ −
3

8
r3

+ ctt +
3

4
r3

+

(
1 +R2

0

)
cB ,

T yy =
B2

4r+
+
µ2r+

4
+ r3

+ −
3

8
r3

+ ctt −
3

4
r3

+

(
1 +R2

0

)
cB ,

T xy =
3Lyr

3
+

4Lx
√

1 +R2
0

(
R0

(
1 +R2

0

)
cB + cR

)
,

T tx =
3

4
L̂x r

3
+ ctx, T ty =

3

4
L̂x r

3
+ cty . (A.3)

In obtaining these results we note that to get the boundary metric in the standard form (2.6)

one needs to scale r = r+ε/2. Note that for the thermodynamically preferred black holes,

satisfying (5.14), we should have

c̄B = c̄R = 0 (A.4)

which we have checked in our numerics.

A.1 Magnetisation currents

Following [28] we show that the spatial components of the abelian and momentum currents

in the dual CFT are magnetisation currents and hence the average current fluxes vanish:

J̄ i = T̄ ti = 0.

Consider the bulk current defined via

Jabulk =
√
−g
[
ZF ar +

1

2
ϑεarρ1ρ2Fρ1ρ2

]
, (A.5)

and observe that when evaluated at the AdS boundary Jabulk is the conserved current

density,
√
γJa, of the dual CFT. We then consider the radial derivative, ∂rJ

i
bulk, use the
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gauge equation of motion on the right hand side and then integrate over r from the horizon

to the asymptotic boundary. After noticing that J ibulk vanishes at the horizon we deduce

that the spatial part of current density of the dual field theory is a magnetisation current:

√
γJ i = ∂jM

ij , (A.6)

where the local thermal magnetisation density, M ij , is given by

M ij = −
∫ ∞

0
dr
√
−g
(
ZF ij + ϑεijtrFtr

)
. (A.7)

In fact this procedure only defines M ij up to a constant times εij . We have fixed this

constant in (A.7) by demanding that the zero mode gives rise to the magnetisation density

m, given in (5.11), and defined by the first law (5.10). We observe that (A.6) implies J̄ i=0.

Thus, in the expansion (A.1), by considering (A.3), we must have c̄tx = c̄ty = 0 for all

black hole solutions, and we have checked this in our numerics.

A similar story unfolds for the heat current. We first define

Gµν ≡ −2∇[µkν] − Zk[µF ν]σAσ −
1

2
(ϕ− θ)

[
ZFµν +

1

2
ϑεµνρ1ρ2Fρ1ρ2

]
, (A.8)

where ϕ ≡ ikA and we write ikF ≡ ψ + dθ for a globally defined function θ. We will take

θ = −At, so that ϕ = −θ = At and ψν = ∂tAν . We find

∇µGµν =

(
V − 1

8
Aσ∇µϑεµσρ1ρ2Fρ1ρ2

)
kν +

1

2
ZF νµψµ

− 1

2
ZAσLk(F νσ)− 1

4
∇µ(ϕ− θ)ϑεµνρ1ρ2Fρ1ρ2 . (A.9)

We now define

Qabulk ≡
√
−gGar , (A.10)

and observe that when evaluated at the AdS boundary Qabulk is the heat current density,
√
γ(T ta − µJa), of the dual CFT. A calculation similar to above implies

√
γ(T ti − µJ i) = ∂jM

ij
T , (A.11)

where the local thermal magnetisation density, M ij
T (x), is given by

M ij
T = −

∫ ∞
0

dr
√
−gGij . (A.12)

In particular, since J̄ i = 0, we can conclude that T̄ ti = 0 also. Hence, in the expan-

sion (A.1), by considering (A.3), we deduce that c̄tx = c̄ty = 0 for all black hole solutions,

and we have checked this in our numerics.
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Figure 6. Convergence plots of the maximum value of |ξ|2max in our computational grid as a

function of grid points in the radial direction r for Chebyshev spectral (left) and fourth order finite

differences (right). Both plots are for T/µ = 0.05, kx = ky = 0.97µ, R0 = 0 and B = 0.05µ2.

B Numerical convergence

In order to solve the system of PDEs with the boundary conditions explained in section 5

we discretise the computational domain [0, 1] × [0, 1] × [0, 1] on Nr, Nx and Ny points

respectively. As we will describe in the next paragraph, after approximating the partial

derivatives on these points by an interpolation method, we are solving the resulting alge-

braic system of equations by using Newton’s method.

Since our boundary conditions are periodic in the x and y directions, we use a Fourier

spectral method in order to approximate the partial derivatives in these directions. This

amounts to placing our points at equal distances 1/Nx and 1/Ny in those directions. For

the discretisation in the “radial” coordinate r we have tested both Chebyshev spectral

method and finite differences.

In figure 6 we present two convergence plots for the maximum value of |ξ|2max in our

computational grid for a representative lattice (in this case a checkerboard lattice). We

have used Nx = Ny = 60 points in the periodic directions for both cases of spectral

and finite difference grids in the radial directions. For both both cases we have found

power law convergence, |ξ|2max ∼ N−12.6 for spectral and |ξ|2max ∼ N−8.01 for fourth order

finite differences. We can understand [33] the lack of spectral convergence (i.e. exponential

convergence) from the non-analytic field expansion close to boundary (see (A.1)). We have

also checked that ψ, defined in (5.5), satisfisfies ψ < 10−10 for all of the solutions we have

constructed.

We have implemented our numerical method in C++. The facility of class templates has

been particularly helpful to accommodate the various numerical precisions we have used at

low temperatures and in the convergence tests. At certain key points of our code we have

specialised our templates to double, long double, and __float128. In order to generate and

manipulate our data resulting from the different points of our domain to different computing

nodes, we have followed a hybrid approach to parallelisation using a combination of MPI

and OpenMP. After obtaining the matrix of variations in Newton’s method implementation,

we used the library PETSc [34] in order to solve the resulting linear system of equations.

– 20 –
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In order to achieve that, we used a block-ILU(0) preconditioner in combination with a

GMRES iterative method. The typical system we had to solve was a ∼ 106 × 106 system

with ∼ 1010 non-zero matrix elements for the matrix we needed to invert.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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