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Abstract 19 

The Re-Os isotopic system is applied for the first time to the sulfide ores and the overlying 20 

black-shales at the Küre volcanogenic massive sulfide deposit of the Central Pontides, 21 

Northern Turkey. The ore samples collected include predominantly pyrite, accompanied by 22 

chalcopyrite, sphalerite and other species. Massive ore is almost free of gangues, whereas the 23 

stockwork ore includes quartz and calcite gangue. The composition of sphalerite is similar to 24 

ancient and modern massive sulfide mineralizations globally. Microthermometric studies 25 
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from quartz from the stockwork ore has shown two populations of two-phase fluid inclusions 26 

with vapor/liquid ratios between 4 to 28%, low to intermediate Th (161.5-317.0°C) and low 27 

salinities (0.9-5 wt % NaCl equiv.) which are mostly in good agreement with the ranges for 28 

volcanogenic massive sulfide mineralizations. These studies also suggest a H2O-CaCl2-KCl-29 

MgCl2 ore-forming fluid system in a shallower subsurface near the seafloor vents. The Re-Os 30 

dating of the LLHR sulfides yield a nominal depositional age of upper Toarcian for the 31 

massive sulfide mineralization. Two largely different model ages obtained are attributed to 32 

other pyrite crystallization events prior to and postdating the main sulfide deposition. Some 33 

lower homogenization temperatures (<200°C) from the quartz of the stockwork may also 34 

similarly be related to the post-VMS events.  It is concluded that a submarine volcanic 35 

extrusion episode has continued until upper Toarcian in the Küre Basin, when it has entered a 36 

stagnation period that allowed the discharge of hydrothermally circulated sulfide-laden fluids 37 

from the seafloor vents. This age data promotes the paleotectonic models interpreting the 38 

Küre Basin as a Permian-early Jurassic marginal back-arc basin of the Devonian-Triassic 39 

Karakaya Ocean. The Re-Os data from the overlying black-shale provide a glimpse to the 40 

initial Os isotope ratio of the water column at the time of the sedimentation (0.45-0.46 for 180 41 

Ma). The lack of common Os from the sulfides does not let us to infer a source of Os and 42 

initial 
187

Os/
188

Os ratios from the black shale are not statistically robust to make a significant 43 

deduction. A further detailed study on the isotopic composition of the black shale strata may 44 

help us to make an apporach to the Os source(s) in the deposition environment of the Küre 45 

VMS deposit. 46 

Keywords: Re-Os geochronology, low level highly radiogenic sulfide, black shale, Cyprus- 47 

type massive sulfide deposits, Küre, Central Pontides 48 

 49 
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1. Introduction 51 

Volcanogenic massive sulfide (VMS) deposits range from lens shaped to sheet-like 52 

bodies of polymetallic massive sulfide accumulations that form at or near the seafloor in 53 

submarine volcanic environments by introduction of metal-enriched fluids associated with 54 

seafloor hydrothermal convection (cf. Galley et al., 2007). To classify the VMS deposits 55 

worldwide, several methods/schemes have been proposed generally considering using one or 56 

more of the following three criteria: the metal contents (e.g., such as Cu- Zn, Zn-Cu and Zn-57 

Pb-Cu subtypes; Franklin et al, 1981 ; Large, 1992; Franklin et al, 2005),  host-rock 58 

lithologies (e.g., mafic-felsic-bimodal volcanic and/or siliciclastic rocks; Piercey, 2010; 2011) 59 

and the tectonic settings (e.g., extensional and/or compressional regimes related to oceanic 60 

rifting-spreading, island-arc formation;cf. Misra, 2000 and references therein). One of the 61 

oldest and well-known classification schemes present a combination of the host-lithology and 62 

the tectonic setting (e.g., Sawkins, 1976) in which the VMS deposits are sub-divided in 63 

Kuroko-, Cyprus-, and Besshi-type deposits (cf. Pirajno, 2009). Recently, the scheme by 64 

Barrie and Hannington (1999) and Franklin et al. (2005) that classifies the VMS deposits 65 

according to their host lithologies as: back-arc mafic, bimodal-mafic, pelitic-mafic, bimodal-66 

felsic, felsic-siliciclastic and hybrid bimodal-felsic (cf. Galley et al., 2007) groups is well-67 

accepted and used as a standard. However, studies on the Turkish VMS deposits generally 68 

uses the scheme by Sawkins (1976) and subdivided the VMS deposits of Turkey mainly into 69 

Kuroko- and Cyprus-types (cf. Yiğit, 2006). As type conversion of these Turkish VMS 70 

deposits would be a subject of another detailed study, we will continue with the current usage 71 

of Sawkins (1976) classification for Turkish VMS deposits hereafter. 72 

The Kuroko-type deposits of Turkey (including Murgul, Cerattepe, Çayeli, Lahanos) 73 

that are accompanied by several porphyry Cu-Au mineralizations, are mainly located in the 74 

Eastern Pontides segment lying along northeastern Turkey (Fig. 1a). These deposits are 75 
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located in felsic lavas and pyroclastics of calc-alkaline submarine volcanism. The occurrence 76 

of these deposits are usually attributed to the formation of the Late Cretaceous magmatic arc 77 

in the region. The Cyprus-type VMS deposits of Turkey, related to mafic submarine rocks 78 

(usually tholeiitic pillow lavas) on the contrary, are mainly concentrated in the Southern 79 

Anatolian Ophiolite Belt (Fig. 1a) that is interpreted as an eastern extension of the Troodos 80 

Massif (Cyprus) suture zone (Erler, 1984; Yiğit, 2006) again formed during the closure of the 81 

Tethys Ocean. Most important examples of this Cyprus-type VMS in this region are the 82 

Ergani and Madenköy Cu deposits. The Küre VMS deposit represents the sole Cyprus-type 83 

VMS occurrence, standing alone in the Central Pontides, just west of the Kuroko-type and 84 

porphyry deposits of the Eastern Pontides (Fig. 1a). The deposit is located in the Küre 85 

ophiolite which is considered as a remnant of a back-arc ocean that opened during the pre-86 

Lias (Lower Jurassic) and closed in the early Dogger (Middle Jurassic) as part of the Tethyan 87 

realm (Sarıfakıoğlu et al., 2013).  88 

The Küre VMS Deposit comprises several VMS occurrences; namely the Aşıköy, 89 

Kızılsu, Toykondu, Bakibaba, and Mağaradoruk mineralizations (Fig. 2; cf. Altun et al., 90 

2015). The copper rich-massive sulfide ore bodies in the Küre region, mainly of the Bakibaba 91 

area, had been mined throughout the ancient history of the Anatolia. However, modern 92 

geological mapping and prospecting studies had been initiated shortly after the foundation of 93 

the Republic of Turkey and resulted in the exploration of the Aşıköy and Kızılsu areas and 94 

some virgin parts of the Bakibaba area (cf. Nikitin, 1926; Kovenko, 1944; Güner, 1980). The 95 

mining and prospecting continued sporadically by the governmental authorities (Maden 96 

Tetkik ve Arama Genel Müdürlüğü, Etibank, Karadeniz Bakır İşletmeleri) until 2004. Several 97 

deposits are currently being exploited by the Eti Bakır Joint-Stock Corporation, a subsidiary 98 

body of the Cengiz Holding (Turkey). Previous studies have documented the geology, 99 

geochemistry, mining geology, and ore paragenesis of many of the areas (e.g., Nikitin, 1926; 100 
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Kovenko, 1944; Güner, 1980; Çağatay et al., 1980; Pehlivanoğlu, 1985; Ustaömer and 101 

Robertson, 1994; Çakır, 1995; Kuşçu and Erler, 2002; Çakır et al., 2006; Altun et al., 2015); 102 

However, there is a lack of direct radiometric dating of the sulfides that comprise the 103 

mineralization of these VMS systems. 104 

The age of ore deposition in a mineral deposit is one of the most important data that 105 

enlighten the history of the ore formation and its tectonic history. However, the ore deposition 106 

ages in VMS deposits are generally poorly constrained by indirect radiometric dating methods 107 

(e.g., 
40

Ar-
39

Ar, Rb-Sr, Sm-Nd) of the heavily altered and sometimes metamorphosed 108 

volcanic host rocks, and/or by the paleontological data from the sedimentary strata (cf. Hou et 109 

al., 2003). All of these methods concentrate on the silicate-gangue mineralogy of the host rock 110 

or the fossils, but not the ore. Thus, recent developments in direct dating of the sulfide phases 111 

have opened a new window of opportunity. The relatively new and continuously developing 112 

Re-Os method is nowadays considered as a powerful tool for radiometric dating of the sulfide 113 

phases as both of these elements present siderophile and chalcophile nature and tend to enrich 114 

in sulfide minerals (e.g., Walker et al., 1994; Suzuki et al., 1996; Mathur et al., 1999; Stein et 115 

al., 2000; Hannah et al., 2004; Morelli et al., 2005; Kato et al., 2009; Selby et al., 2009; 116 

Nozaki et al., 2010). The method is principally optimal in dating molybdenite (MoS2) bearing 117 

Mo-Cu hydrothermal systems owing to the high Re enrichment (ppm) and only radiogenic Os 118 

in molybdenite. However, lately the method has been successfully applied to low Re and Os 119 

bearing (ppb and ppt, respectively) sulfide phases such as pyrite and arsenopyrite (cf. Arne et 120 

al., 2001; Stein et al., 2000; Liu et al., 2004; Yu et al., 2005; Selby et al., 2009; Guo et al., 121 

2011) in VMS systems (e.g.; Terakado, 2001a, 2001b; Hou et al., 2003; Nozaki et al., 2010, 122 

2014). These sulfides are mainly termed as “low-level highly radiogenic” (LLHR) sulfides 123 

(Stein et al., 2000) and provide a precise Re-Os dating tool in the absence of molybdenite, as 124 

they can include little or no initial Os content (Kerr and Selby, 2010). While pyrite and 125 
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arsenopyrite are accepted as reliable, sphalerite is mainly considered as an unreliable media 126 

for LLHR sulfide Re-Os geochronology (cf. Morelli et al., 2004; Morelli et al., 2005; Kerr 127 

and Selby, 2010). The Re-Os dating is also an important tool in dating of the organic material-128 

rich black-shales (e.g., Ravizza and Turekian,  1989; Ravizza et al., 1991; Cohen et al., 1999; 129 

2004; Singh et al., 1999; Creaser et al., 2002; Selby and Creaser, 2003; Hannah et al., 2004; 130 

Fu et al., 2008). The method is especially very useful when the fossil distribution is limited 131 

and/or unclear (e.g., Kendall et al., 2006; Zhu et al., 2010). Re and Os are mainly included in 132 

sulfides and organic materials of the mud deposited in anoxic or euxinic marine 133 

environments, with the decay of 
187

Re to 
187

Os providing a radiometric clock that records the 134 

time of shale deposition (Hannah et al., 2008). 135 

As the Küre VMS deposit in northern Turkey has a unique lithostratigraphy including 136 

huge pyrite-rich massive sulfide lenses that are constrained by the organic matter-rich black 137 

shale-sandstone alternations and pillow lavas, this geological setting provides one of the 138 

locations for applying the Re-Os isotope system. In this study, we present the first Re-Os 139 

isotopic data from both the pyrite and the black-shale of the Küre VMS deposit to constrain 140 

the age of main sulfide deposition and understand the depositional environment. In addition, 141 

we also present mineralogical and microthermometric data. With these new data, we further 142 

contribute to the origin of the Küre VMS mineralization and the understanding on the 143 

evolutionary history of its depositional environment. 144 

 145 

2. Geological Setting  146 

 The Küre VMS deposit is located 61 km north of the Kastamonu City (central northern 147 

part of the Turkey, Figs. 1a and b) in the central part of the Pontides of the Tethyside system. 148 

The Pontides is an east-west trending orogenic belt located at the northernmost part of Turkey 149 

that comprise the Cimmeride and Alpide orogenic events in the Mediterranean realm related 150 
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to the closure and opening of the Paleo- and Neo-Tethyan oceanic basins, respectively (cf. 151 

Yılmaz et al., 1997). The Pontides is generally divided in three main sectors; the western, the 152 

central, and the eastern Pontides.  153 

The Küre Complex, located in the central Pontides, is defined as a thick wedge of late 154 

Palaeozoic-early Mesozoic mainly siliciclastic sediments interleaved with a dismembered 155 

ophiolite, named the Küre Ophiolite (Ustaömer and Robertson, 1994; Figs. 2a and 2b). The 156 

Küre Ophiolite comprises the Akgöl Group, İpsinler Basalt of the Küre Ocean Unit and the 157 

Elekdağ Ophiolite (cf. Kozur et al., 2000 and the references therein) and hosts the Küre VMS 158 

deposit. It is mainly interpreted as a metamorphosed and dismembered ophiolitic assemblage 159 

created by the geodynamics of the Paleo-Tethyan Ocean (e.g., Şengör et al., 1984; Ustaömer 160 

and Robertson, 1994; 1997; Yiğitbaş et al., 1999; 2004). The Küre Ophiolite mainly 161 

comprises serpentinized tectonites (harzburgite to dunite), intrusive gabbro and lherzolites, 162 

and spilitic basalts and diabase (e.g., Çakır, 1995; Terzioğlu et al., 2000; Çakır et al., 2006; 163 

Fig. 2). The tectonites, basalts and siliciclastic sedimentary rocks of the Küre Complex are 164 

mainly cross-cut by isolated diabase dykes, with the true sheeted dyke complex cross-cutting 165 

the isotropic microgabbros of the assemblage (e.g., Ustaömer and Robertson, 1993, 1994; 166 

Çakır et al., 2006). Terzioğlu et al. (2000) and Kozur et al (2000) also indicate existence of a 167 

small amount of trondhjemite-granophyres and altered plagiogranites in the complex. All of 168 

these units are intruded by Middle Jurassic granitoids-dacitic dikes (Boztuğ et al., 1995; 169 

Yılmaz, 1980; Kuşçu and Erler, 2002), and uncomformably covered by Middle-Late Jurassic 170 

basal conglomerates that are overlain by Late Jurassic limestones (e.g., Güner, 1980; 171 

Pehlivanoğlu, 1985; Aydın et al., 1986;Ustaömer and Robertson, 1994; Çakır, 1995; Çakır et 172 

al., 2006; Figs. 2a and b). 173 

Owing to the extensive tectonism, the contacts of the Küre Complex rocks are 174 

generally disrupted and primary ophiolitic succession is missing. The tectonites are found 175 
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thrusted over the basaltic and siliciclastic sedimentary rocks; likewise the basalts are 176 

commonly thrusted onto their siliciclastic sedimentary cover (cf. Çakır, 1995; Çakır et al., 177 

2006). However, there are localities where the primary contact relations are observable (see 178 

below). 179 

The basalts consist of massive to pillow lavas and hyaloclastites, and are covered 180 

conformably by a “shale-sandstone” (cf. Çakır, 1995; Çakır et al., 2006) or “black shale-181 

subgraywacke” unit (Ketin and Gümüş, 1963; Güner, 1980; Kuşçu and Erler, 2002). This 182 

bottom to top original contact relationships between the basalt, the ore and the overlying 183 

sedimentary cover is only preserved locally at the Aşıköy mine area (cf. Çakır et al., 2006; 184 

Altun et al., 2015). Basaltic flow intercalations are common in the lower levels of the black 185 

shale-subgraywacke unit and vice versa (e.g., Tüysüz, 1986; Pehlivanoğlu, 1985), suggesting 186 

contemporaneous deposition of the lower segment of the black shales and the upper segment 187 

of the basalts (e.g., Çakır, 1995) in their original depositional setting. The ore bodies and their 188 

adjacent lithologies are steeply tilted (60-85°) and locally deformed, as seen by the black 189 

shale-subgraywacke and the pillow lava contact at the batters and berms of Bakibaba open pit 190 

(Fig. 3) and is also reported by Altun et al. (2015). According to Ustaömer and Robertson 191 

(1995), the upper contacts of the basalts with the sedimentary cover are commonly 192 

undeformed sedimentary and conformable contacts. These records of undeformed segments in 193 

the basalt-shale contacts, both at the surface and the drifts in the Bakibaba region, support a 194 

primary sedimentary and late stage tectonic character for the contacts probably related to the 195 

different rheological behavior of these lithologies during the emplacement of the Küre 196 

Complex (cf. Çakır, 1995). 197 

The pillow lavas of the basaltic sequence gradationally changes into non pillowed, 198 

massive flows downwards, and the well-developed pillows decrease successively upwards, 199 

with the increasing hyaloclastites towards the black shale-subgraywacke contacts (cf. Güner, 200 
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1980; also see Fig. 2b). The primary mineralogy of the basalts comprises small lath-shaped 201 

(somewhat microlitic) plagioclase, interstitial clinopyroxene and opaque phases accompanied 202 

by chlorite and secondary amphibole after clinopyroxene. Ophitic-subophitic and/or variolitic 203 

textures are common in basalts (e.g., Figs. 4a and b). Güner (1980) indicates that the whole 204 

basaltic sequence has been subjected to considerable hydrothermal alteration. Indeed, an 205 

advanced chloritic alteration is especially common in the basalts adjacent to the massive 206 

sulfide lenses. The mafic phases are almost totally replaced by the chlorite and plagioclase is 207 

generally absent (Figs. 4c, d, e, f) being preserved only in some samples as thin laths of 208 

plagioclases (Fig. 4d). Secondary quartz and calcite are ubiquitous as infills and veinlets. The 209 

subgraywacke of the overlaying black shale-subgraywacke unit includes quartz, feldspar, rock 210 

fragments, chert and opaque phases embedded in a matrix of sericite, chlorite and limonite, 211 

whereas the almost unfossiliferous and very fine grained black shale is composed of illite, 212 

quartz, chlorite, siderite, and muscovite with accessory opaque phases (cf. Güner, 1980; Altun 213 

et al., 2015 and references therein). 214 

The Küre VMS deposits contain massive, stockwork and disseminated ore, the former 215 

mainly located along the faults and contact planes between the basaltic lava (İpsinler Basalt) 216 

and the siliciclastic sedimentary rocks (Akgöl Group/Formation; Fig. 2). The originally 217 

uppermost basaltic lavas seems to be mostly overlain by massive sulfide ore bodies. The bun-218 

like or loaf-shaped masses of high grade massive sulfide are dominantly pyrite and 219 

chalcopyrite, and are commonly underlain by stockworks and disseminated pyrite-rich 220 

sulfides, quartz and carbonates (cf., Güner, 1980; Kuşçu and Erler, 2002; Altun et al., 2015). 221 

Previous studies report that the chalcopyrite rich segment of the ore body is controlled by pre-222 

existing faults (e.g., Bailey et al., 1966; Kuşçu and Erler, 2002). Kuşçu and Erler (2002) 223 

described cataclastic, thermal-annealing and fracture-filling textures in the pyrites of the 224 

massive sulfide mineralization interpreting deformational and late deformational stages of 225 
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prograde metamorphism at greenschist (or even amphibolite) facies conditions, probably 226 

related to regional thrusting and folding of the Küre ophiolite.  They also note that their 227 

observation is in good agreement with observations of Aydın et al. (1986), who report the 228 

metamorphosed nature of the black shale-subgraywacke unit at greenschist facies conditions, 229 

indicating that the Küre VMS was also metamorphosed at this facies conditions. 230 

The Aşıköy deposit contains 11.8 million tonnes of pyrite ore with average grades of 231 

1.69% Cu and 39.41% S (e.g., Yiğit, 2011), whereas the Bakibaba deposit contains 1.5 232 

million tonnes of ore comprising average grades of 3.42% Cu and 43.49% S (Demirbaş and 233 

Ağaoğlu, 1980; Çağatay et al., 1980). Co, Au and Ag grades reported from both deposits are 234 

0.3%, 2.48 g/t and 10 g/t, respectively (cf. Çağatay et al., 1980; Yiğit, 2011). The much 235 

smaller, but more Cu-rich Toykondu deposit, contains 176 000 tonnes of ore with an average 236 

ore grade of 4% Cu and 40.6% S (Çakır, 1995). Recently, Altun et al. (2015) reported huge 237 

additional ore reserves from Mağaradoruk deposit (up to 29 millions of tonnes) with average 238 

grades of 5.07%Cu, 0.56% Co, 2.10 g/t Au and 10.38 g/t Ag. 239 

Current age constraints on the timing of mineralization comes from the deposit hosting 240 

stratigraphy. It has been suggested that the formation of the Küre VMS deposit is pre-Middle 241 

Jurassic (Kovenko, 1944; Güner, 1980). Based on their Rb-Sr and K-Ar radiometric ages, 242 

Terzioğlu et al. (2000) suggested existence of at least two different types of basalts in the 243 

Küre Complex, both in origin and in age (Bajocian; 170±6 Ma, 168±5 Ma and Berriasian-244 

Valanginian; 137±3, 136±6 Ma; analytical media unspecified).These results were in good 245 

agreement with previous findings of CENTO group (Sarıcan, 1968) suggesting two major 246 

basaltic volcanic pulses clearly separated in time (cf. Güner, 1980). However, Kozur et al. 247 

(2000), on basis of stratigraphic relationships, noted that the mafic volcanic rocks in the Küre 248 

Complex should be older than Late Triassic (possibly middle Triassic). They disagreed with 249 

the Bajocian ages due to the low potassium contents of basalts and possible hydrothermal 250 
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alteration effects and regarded the much younger Berriasian-Valanginian aged basalts as 251 

products of a later extensional process. Çakır et al. (2006) similarly suggested a careful 252 

approach to these data due to the probable low-temperature alteration effects, although noting 253 

that these are also supported by the paleontological data of Önder et al. (1987). The age 254 

interval pronounced for the black shale-subgraywacke ranges from Lower Permian to early 255 

Jurassic (cf. Koç et al., 1995; early Jurassic - Ketin, 1962; Yılmaz, 1979,1980; Permian - 256 

Güner, 1980; pre-early Jurassic - Pehlivanoğlu, 1985). However, correlations with the 257 

surrounding strata and few fossil findings suggest a Late Triassic to Middle Jurassic interval 258 

(Kovenko, 1944; Ketin, 1962; Aydın et al., 1986, 1995; Önder et al., 1987), as the older 259 

Upper Carboniferous to Lower Permian palynomorphs reported earlier (Kutluk and 260 

Bozdoğan, 1981) are largely considered to be reworked material from older lithologies 261 

(Yılmaz and Şengör, 1985; Ustaömer and Robertson, 1994; Kozur et al., 2000; Çakır et al., 262 

2006). 263 

 264 

3. Sampling and Analytical Methods 265 

A total of seventeen samples were collected from the Küre VMS deposits. Nine of 266 

these samples are taken from different levels of a deep drill hole (M-256), two of them are 267 

from outcrops and six of them are from drifts. A schematic summary of the sample locations, 268 

types, depths, and lithologies are given in Figure 5. Each sample group represents different 269 

segments of the deposit. The drill hole M-256 presents a very thick black-shale sequence due 270 

to the tilted and folded orientation of the strata. This sequence is followed by a relatively thin 271 

massive and stockwork sulfide mineralization presumably marking originally a thinning distal 272 

edge of a larger massive sulfide lens. The ore samples gathered from this drill hole are 273 

composites from 961.50 to 968.10 meters. The drift samples are from 645 to 710 m levels, 274 

whereas the outcrop samples are collected from the batters and berms in the Bakibaba pit. 275 
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Twelve pieces of ore samples were selected from the massive and the stockwork ore 276 

and mounted in 1 inch diameter epoxy plugs and grinded-polished for both reflected light 277 

microscopy and micro-analytical studies. Also, six doubly polished thin sections (27x46 cm 278 

and ca. 100–200 μm thick) were prepared for microthermometric studies. These samples were 279 

selected from the suitable stockwork networks where several stages of overprinting quartz and 280 

calcite are found as veinlet fillings. The samples collected for Re-Os geochronology are 281 

selected from the massive sulfide ore, the sulfide-rich parts of the stockwork and the 282 

overlying black shale-subgraywacke unit. Six pyrite-rich sulfide concentrates were prepared 283 

and analyzed from the massive and the stockwork ore. The selected sulfide ore samples from 284 

the massive sulfide lenses and the stockwork ore were crushed and sieved to obtain five 285 

different size fractions. This is done to help to free different sizes of pyrites from their 286 

surrounding interlocking media to ease the handpicking process. Approximately 2000 mg of 287 

mineral separates rich in pyrite is obtained by handpicking for each sample. Three 0.2-1 288 

meters of fine-grained and unmineralized black shale cores were also selected from the M-256 289 

drill hole for whole-rock Re-Os analysis. Although there are large black shale-subgraywacke 290 

outcrops in the area (see Figure 3), core samples from M-256 drill hole are selected for 291 

analysis in order to avoid effects of weathering and oxidation. 292 

The wavelength-dispersive spectrometry (WDS) analyses on selected sulfide minerals 293 

were carried out by a Cameca SX-100 electron-probe micro-analyzer (EPMA) installed at the 294 

Department of Earth and Environmental Sciences, Ludwig-Maximilians-University of 295 

Munich (Germany). The accelerating voltage, the probe current and the beam spot size were 296 

set to 15 keV, 40 nA and <1 m, respectively. Pure metals were used as standards for Cu, Se, 297 

Te, Cd, Co, Ag, Au and Bi, whereas the rest of the standards were sphalerite for Zn and S, 298 

GaAs for As, Sb2S3 for Sb, and PbS for Pb. The X-ray lines used in the analyses are L for 299 

As, Se, Sb, Te, Cd and Ag, K for S, Fe, Ni, Zn, Co and Cu, and M for Au, Pb and Bi. 300 
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Microthermometric studies were carried out at the Fluid Inclusion and Ore 301 

Microscopy-Petrography Laboratory in the Department of Geological Engineering, Dokuz 302 

Eylul University (İzmir, Turkey). The studies were performed by a Linkam THMGS-600 303 

heating-freezing stage mounted on a binocular Leica DMLP microscope with a maximum 304 

magnification of 1000X. The system is equipped with a Linkam TMS94 temperature 305 

controller and LNP94/2 liquid nitrogen pump. The temperature range of the stage used was 306 

−196°C to +600°C with a temperature stability and accuracy of ±0.1°C. Stage calibration was 307 

controlled by a set of standard resistances (for known temperatures values of -196.5, -44.5, 308 

0.0, 117.2, 557.7 and 336.7 °C) provided by the Linkam Scientific Instruments Limited. 309 

Six pyrite and two black shale samples were analyzed for their Re-Os abundances and 310 

isotope compositions. The analyses were performed at the Laboratory for Sulfide and Source 311 

Rock Geochronology and Geochemistry at the Durham Geochemistry Centre at Durham 312 

University, UK. The analytical protocols used follow those outlined by Selby et al. (2009; 313 

pyrite), and Selby and Creaser (2003), and Cumming et al. (2013; shale). In brief, ~50 mg of 314 

pyrite and ~1 g of black shale were loaded into a carius tube with a known amount of a tracer 315 

solution comprising 
190

Os and 
185

Re. For the pyrite samples 3 mL of 11N HCl and 6 mL of 316 

15N HNO3 was added to the carius tube. For the black shales samples 8 mL of 0.25 g/g CrO3 317 

in 4N H2SO4 was added to the carius tube. The carius tubes were sealed and placed in an oven 318 

at 220˚C for 48 hours. For both pyrite and black shale samples Os was isolated and purified 319 

from the acid medium using solvent extraction (CHCl3) and micro-distillation methods. For 320 

the pyrite samples the Re fraction was isolated using anion chromatography. The Re fraction 321 

for the black shale samples was isolated using a 5N NaOH:Acetone solvent extraction 322 

followed by anion chromatography. Isotopic measurements were performed using a 323 

ThermoScientific TRITON mass spectrometer with static Faraday collection for Re and ion-324 

counting using a secondary electron multiplier in peak-hopping mode for Os. Total procedural 325 
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blanks for pyrite analysis are 3.0 ± 0.2 pg Re and 0.10 ± 0.02 pg Os (1 SD, n = 2), with an 326 

average 
187

Os/
188

Os 0.25 ± 0.02. For the black shale analysis the procedural blanks are 14 ± 1 327 

pg Re and 0.50 ± 0.1 pg Os (n = 1), with 
187

Os/
188

Os 0.25 ± 0.10. In-house Re (
185

Re/
187

Re = 328 

0.5983 ± 0.001; n = 2) and Os (DROsS, 
187

Os/
188

Os = 0.16094 ± 0.003; n = 2) solutions run 329 

during the course of this study are both identical, and within uncertainty, to those previously 330 

reported (Du Vivier et al., 2014 and the references therein). 331 

 332 

4. Results and Discussion 333 

4.1. Sample Paragenesis and Ore Textures 334 

As the main focus of this study is the Re-Os geochronology from the LLHR sulfides 335 

of the Küre VMS deposit, it is important to understand the paragenetic sequence and 336 

succession in the samples studied. Thus, we have completed detailed ore microscopic studies 337 

from the samples of the drill hole M-256 and the drifts. Çağatay et al. (1980), whom studied 338 

ore samples from both the Bakibaba and Aşıköy deposits, interpreted that the ore paragenesis, 339 

textures and structures of both mineralizations are similar and present a mineral paragenesis 340 

rich in primary sulfides, minor oxide phases as well as secondary sulfides, oxides and 341 

carbonates. The sample paragenesis we observed in our samples is similar to the previous 342 

work (e.g., Çağatay et al., 1980; Altun et al., 2015) with minor differences. 343 

The samples investigated in this study are mainly dominated by pyrite and 344 

chalcopyrite that are accompanied by other sulfides, oxides and native metals. The massive 345 

ore samples are almost free of gangue phases, whilst the stockwork ore samples include 346 

veinlets of mainly quartz and calcite with accompanying opaque phases. Three distinct 347 

stages/processes are observable from the samples investigated. Chromite, anatase, hematite 348 

(Hm) and magnetite (Mgt) comprise the accessory pre-mineralization opaque phases in the 349 

basaltic host rocks. The ore assemblage is dominated by pyrite (Py) in all ore types, which is 350 
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accompanied by subordinate chalcopyrite (CcpI and CcpII), sphalerite (SphI and SphII), 351 

cobaltite (Co), bravoite (Brv), marcasite (Mrc), melnikovite-pyrite (Mel-Py), bornite (Bo), 352 

hematite (Hm)  and native gold (Au). Quartz (Qz) and calcite (Cal) are abundant in stockwork 353 

ore whereas chlorite (Chl) is found in basalts as an alteration mineral after ferromagnesian 354 

silicates. Deformation and recrystallization textures are attributed to post-mineralization 355 

folding, shearing, regional metamorphism and ophiolite obduction. 356 

The pre-mineralization accessory opaque phase magnetite is partially and/or totally 357 

replaced by hematite (Fig. 6a). The hematite also shows flaky anhedral or needle-like/acicular 358 

forms and is occasionally found in the quartz veinlets and/or in the euhedral pyrite grains of 359 

the stockwork ore as small clots and inclusions (Fig. 6b). Pyrite is the oldest and the most 360 

dominant phase of both the massive and the stockwork ore. In the massive ore, pyrite (Py) is 361 

crystallized as euhedral, subhedral and anhedral aggregates ranging in size of hundreds of 362 

micrometers to millimeters (Fig. 6c). Pyrite grains are porous, relatively zoned and 363 

cataclastic, associated with the brittle deformation. Although chalcopyrite is by far the second 364 

most abundant sulfide in both ore types, it is more abundant in the massive ore than in the 365 

stockwork ore. The pyrites are embedded in a chalcopyrite dominated matrix (CcpI; Fig. 6c) 366 

and replaced by chalcopyrite and other sulfides along their edges and fractures. As reported 367 

by Kuşçu and Erler (2002), it appears that some fracture-filling chalcopyrite were formed as a 368 

result of remobilization during late-stage deformation. Sphalerite can be divided into two 369 

generations as SphI and SphII; the former showing intergrowths of chalcopyrite (CcpII) also 370 

known as “chalcopyrite disease”, and the latter being free of chalcopyrite (Figs. 6d, e and f). 371 

Bornite is present in trace amounts in massive ore. Where it is present, intergrowths of bornite 372 

with chalcopyrite exhibit complex exsolution textures (CcpII; Figs. 6f and g). The pyrites are 373 

also usually found interlocked with mostly euhedral/subhedral cobaltite grains (Co; Fig. 6h). 374 

In these pyrites, linear zones of bravoite (Brv; Fig. 6h) seperates the individul layers of pyrite. 375 
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Melnicovite-pyrite partially replaces pyrite (Py) and chalcopyrite (CcpI) and is replaced by 376 

pyrite, cobaltite and marcasite (Figs. 7a, b and c). Native gold is mainly found at the borders 377 

of pyrite and chalcopyrite (CcpI) and as minute inclusions in pyrite (Figs. 7d, e and f). 378 

 379 

4.2. Compositions of the Main Sulfide Phases 380 

Selected compositional data from the main ore phases (pyrite, chalcopyrite and 381 

sphalerite) are given in Table 1. Pyrite contains average values of 53.23 wt % S and 46.71 wt 382 

% Fe (n = 45). The pyrites correspond to the calculated structural formula (Fe0.97-1.03Cu0.00-383 

0.02Zn0.00-0.01Co0.00-0.03)(As0.00-0.01S1.97-2.00). The micro-chemical data also shows elevated 384 

contents of Co, Ag, Au and As in some of the pyrites. The Co content reaches up to 1.39 wt % 385 

(0.38 wt % on avg.), while the Ag and Au contents in pyrites reaches 0.09 and 0.11 wt % 386 

(0.08 and 0.11 wt % on avg.), respectively. Up to 0.57 wt % of As (avg. 0.16 wt %) is 387 

detected in pyrites. There is a significant negative correlation between Co and Fe (r = -0.565) 388 

and a significant positive correlation between Co and As (r = 0.625) showing substitution of 389 

Co for Fe and introduction of As in pyrite. Further Co-Fe exchange and As introduction is 390 

also visually traceable with the existence of cobaltite (CoAsS) intergrowths within pyrite (Fig. 391 

6h). 392 

The chalcopyrites include 34.70 wt % S, 30.24 wt % Fe and 33.57 wt % Cu on 393 

average (n=22). The calculated structural formula of chalcopyrite is (Cu0.91-1.00Fe0.99-1.03Zn0.00-394 

0.01)S1.99-2.05.  395 

Sphalerites mainly comprise 33.10 wt % S, 60.42 wt % Zn and 3.41 wt % Fe in 396 

average (n = 5). The Cu contents in the sphalerite are also significantly high (1.16-3.77 wt%) 397 

leading to a calculated structural formula of (Zn0.84-0.93Fe0.04-0.10Cu0.02-0.06)S1.00-1.02. Zn/Cd ratio 398 

of the sphalerite has been previously tested several times as an indicator for the genesis of the 399 

ore deposits (Jonasson and Sangster, 1978 ; Xuexin, 1984; Brill, 1989; Xu, 1998). The Cd 400 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

 

content of the sphalerite mainly depends on the Cd/Zn ratio, ligand activities, and temperature 401 

of the ore forming fluids (Schwartz, 2000). The Zn/Cd ratios of the analyzed Küre VMS 402 

deposit sphalerites range in between 372 to 1417 with majority of the calculated ratios 403 

between 372 and 625 and an arithmetic average of 677. The sphalerite with the highest Zn/Cd 404 

ratio of 1417 presents a very low Cd content (0.04 wt %). This sphalerite is also richer in Fe 405 

(5.55 wt %) than the rest of the analyzed sphalerites (Fe contents between 2.41 to 3.5 wt %). 406 

The Zn/Cd ratios calculated from the sphalerites are presented in Figure 8 for comparison 407 

with the data from previous studies elsewhere and are in good agreement with the previous 408 

Zn/Cd data from volcano-sedimentary associations, volcanogenic massive sulfide deposits 409 

and their modern analogues. The ratios are also compare well with the whole-rock Zn/Cd 410 

ratios from basalts from elsewhere and partially correspond with mineralization systems 411 

including basaltic metal sources. 412 

 413 

4.3. Fluid Inclusions Petrography and Microthermometry 414 

The basaltic pillow lava host presents extensive chlorite alteration including fine-415 

grained opaque phases. The quartz and calcite bearing veinlets comprising the stockwork ore 416 

in the chloritized host shows multiple episodes of hydrothermal fluid input with overlapping 417 

and overprinting quartz and calcite occurrences. We have determined two main episodes of 418 

fluid input from the stockwork ore samples that is interpreted by differing and 419 

overprinting/cross-cutting quartz occurrences and opaque mineral precipitation. The early 420 

quartz veinlets are >500 m in thickness, and are cross-cut by thinner late-stage veinlets (Fig. 421 

9a; Qz1 and Qz2 veinlets, respectively). The early-stage veinlets are also divided into two 422 

quartz occurrences overprinting each other (Fig. 9b; 1a and 1b, respectively). The former 423 

quartz occurrences (1a) in the early stage Qz1 veinlets include larger (>300m) and zoned 424 

quartz grains and limited opaque phases such as hematite (Figs. 9c and d). The latter quartz 425 
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phase in the Qz1 veinlets (1b) comprise finer (microcrystalline) quartz grains and introduction 426 

of more extensive opaque phases representing the sulfide mineralization in the stockwork ore. 427 

The thinner Qz2 veinlets cross-cutting/overlapping the Qz1 veinlets also include sulfide 428 

mineralization (Fig. 9a). Calcite seems to be the latest phase in the stockwork veinlets as it 429 

crosscuts the former quartz occurrences and the ore minerals (Fig. 4d). 430 

Microthermometric measurements are performed on fluid inclusions from quartz 431 

dominated stockwork ore obtained from the core samples of drill hole M-256 in the interval 432 

between 962 and 968 m above sea level. The fluid inclusions in the quartz veinlets of the 433 

stockwork (either Qz1 or Qz2) are scarce, extremely small and it is not possible to do 434 

microthermometric studies in most of the inclusions. The acquired microthermometric results 435 

from available fluid inclusions are given in Table 2. Inclusions from the quartz samples of 436 

stockwork ore are generally irregular-shaped inclusions and typically range in length from 5 437 

to 20 μm. Petrographic examination of the thin section shows two-phase inclusions in quartz 438 

with vapor/liquid ratios between 4 to 28%. We have not observed any diagnostic features 439 

related to the secondary fluid inclusion formation. Due to the small sizes and scarcity of the 440 

fluid inclusions, it is also not possible to group and correlate fluid inclusions according to 441 

their quartz host phases (e.g., Qz1 and Qz2). However, two populations of fluid inclusions are 442 

determined solely on the base of homogenization temperatures versus salinity diagram (Fig. 443 

10). The vapor bubbles from first population are variable in size and occupies about 20% of 444 

the inclusion volume (up to 30%). Fluid inclusions from first population homogenize to the 445 

liquid phase between 270.9°C and 317.0°C, with a mean of 289.9°C (Fig. 10). The final 446 

melting of the ice occurred with a final temperature range of -3 to -0.5°C which yielded 447 

salinities between 5.0 and 0.9% wt NaCl equiv. In second population, total homogenization 448 

into the vapor phase has been observed between 161.5 and 245.7°C with an average of 449 

202.6°C. These inclusions showed final ice-melting temperatures varying between−2.4°C and 450 
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−1.2 °C which indicates salinities from 4.0 to 2.1% wt NaCl equiv. The average first melting 451 

temperatures (Tmf) of first and second population are at −48.2 °C and −37.2 °C, indicating a 452 

H2O-CaCl2-KCl-MgCl2 ore-forming hydrothermal fluid system (Goldstein and Reynolds, 453 

1994; Shepherd et al., 1985).  454 

 455 

4.4. Re-Os Isotopes 456 

The Re and Os concentrations and isotope compositions of the six separated pyrite-457 

rich concentrates and two black shale samples are given in Table 3. The Re concentrations of 458 

the sulfides range between 132.9 to 630.9 ppb and total Os values range between 250.6 to 459 

1175.2 ppt. In comparison, the black shale samples possess very low Re contents (0.63 and 460 

1.15 ppb) and low Os (157.5-195.5 ppt) concentrations. The sulfide 
187

Re/
188

Os and 461 

187
Os/

188
Os ratios show wide ranges from 44545.1 to 329370.4 and 126.1 to 1614.1, 462 

respectively. The 
187

Re/
188

Os ratios for the black shales are 20.1 and 29.9 and the 
187

Os/
188

Os 463 

ratios obtained are 0.5171 and 0.5402. All sulfide samples have large 
187

Re/
188

Os and highly 464 

radiogenic 
187

Os/
188

Os ratios indicating the bulk of the 
187

Os in the sample is radiogenic 465 

(Table 3). The Re and Os data of the sulfide concentrates indicate that the sulfides had 466 

minimal common Os at the time of formation. As a result, the initial 
187

Os/
188

Os value cannot 467 

be determined to investigate the source of Os and by inference the ore metals. In addition to 468 

the samples possessing 
187

Re/
188

Os values much greater than 5000 and highly radiogenic 469 

187
Os/

188
Os resulting in highly correlated uncertainties between the isotope ratios (rho; Table 470 

3), two of the sulfide samples present widely different 
187

Re/
188

Os and 
187

Os/
188

Os values. As 471 

such no geological age using a traditional plot of 
187

Re/
188

Os vs. 
187

Os/
188

Os could be 472 

determined from the Re-Os data for all six samples (Fig. 11a). 473 

The Re-Os data for the sulfide samples have features consistent with the low level 474 

highly radiogenic sulfides (LLHR; Stein et al., 2000). For such samples it is suggested that the 475 
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Re-Os isochron age should be determined in 
187

Re-
187

Os
r
 (radiogenic 

187
Os) space to avoid 476 

uncertainties from the very low and difficult determinations of 
188

Os (Stein et al., 2000; Selby 477 

et al., 2009; Nozaki et al., 2010). The 
187

Os
r
 abundance (Table 3) was achieved using the 478 

initial 
187

Os/
188

Os value calculated from using four of the six samples that display a positive 479 

correlative between 
187

Re/
188

Os vs. 
187

Os/
188

Os (Fig. 11b). The regression of the Re-Os data 480 

for the four samples yield an age of 176 ± 22 Ma (initial 
187

Os/
188

Os = -6 ± 37; MSWD = 481 

11.2). A 
187

Re-
187

Os
r
 plot of Küre sulfides yields the same age, with uncertainty, as the 482 

traditional Re-Os plot (175 ± 19 Ma), but with significantly less scatter (MSWD = 0.23, Fig. 483 

11c). The 
187

Re-
187

Os
r
 plot also indicates the near absence of common 

187
Os (initial 

187
Os

r
, 2 ± 484 

68 ppt). Additionally the 
187

Re and 
187

Os
r
 data permit model ages to be determined. Model 485 

ages for the four samples are nominally different, but identical within uncertainty (Table 3). A 486 

weighted average of the model ages is 176 ± 11 Ma (6.1%, with a confidence level of 95%; 487 

MSWD = 0.16; Fig. 11d). All of these Re-Os data suggests a nominal age of upper Toarcian 488 

(uppermost early Jurassic). The remaining two discordant samples (BK-US and M256/V1) 489 

present largely different model ages (320.8 ± 37.4 and 138.2 ± 7.2 Ma, respectively; Table 3). 490 

The older model age is from an outcrop sample with disseminated ore and the younger one is 491 

from a stockwork sample from the drill hole. 492 

Two samples selected and analyzed from the black shale-subgraywacke strata, 493 

overlying the massive sulfide lens, possess low Re values and are not useful for 494 

geochronological constraints. However, the data may facilitate to make a preliminary 495 

approach to the initial Os isotope ratio [
187

Os/
188

Os(i)] of the contemporaneous seawater, as the 496 

chemical and isotopic compositions of marine sediments/precipitates are expected to reflect 497 

the conditions of the seawater in which they had been accumulated (e.g., Cohen et al., 1999). 498 

The initial Os isotope ratios of the black shale samples at 180 Ma are 0.45 and 0.46. 499 

 500 
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4.5. Age of the Sulfide Mineralization and Implications 501 

The late Paleozoic to early Mesozoic paleogeographic history of the Tethyan realm in 502 

northern Turkey is an important topic of debate. Within this debate, the geodynamic setting 503 

and geological history of the Sakarya Terrane that include the Küre and the Karakaya 504 

Complexes is extensively discussed in the literature (cf. Göncüoğlu, 2010 and the references 505 

therein; Fig. 12a). In summary, the Sakarya Terrane is assumed to have rifted from Gondwana 506 

and accreted to Eurasia during the Late Palaeozoic (Robertson and Ustaömer, 2009). In this 507 

context, the Karakaya Complex is believed to represent a Permo-Triassic accretionary 508 

complex sliced with other Late Paleozoic-Triassic accretionary complexes of the Paleotethyan 509 

active margin (Göncüoğlu, 2010). The Mid-Triassic-Mid Jurassic Küre Complex on the other 510 

hand, is also correlated with the Karakaya Complex and is generally regarded as a back arc 511 

basin that has opened behind the volcanic arc (e.g., Robertson and Ustaömer, 2009). 512 

Previous researchers has provided various paleogeographic models and 513 

reconstructions of the region. These models regard the Küre ophiolitic complex as a remnant 514 

of a subduction zone, mainly conflicting on either the interpretation of the subduction 515 

direction or the setting of the contemporaneous Küre and Karakaya basins. In one of the 516 

models, the Küre Complex is described as the remnant of the southward subducting Late-517 

Paleozoic-Triassic Paleo-Tethys, proposing that the units of the Karakaya complex originated 518 

from a rift-related narrow oceanic marginal basin (Bingöl et al.,  1975, Şengör, 1979, Şengör 519 

and Yılmaz, 1981; Şengör, 1984; 1985; Şengör et al, 1980a,b; Şengör et al, 1984; Yılmaz et 520 

al, 1994 a, b.; Okay and Mostler, 1994; Genç and Yılmaz, 1995; Yılmaz et al., 1997; Yiğitbaş 521 

et al, 1999; Kozur et al., 2000). In a second model, the Karakaya Basin is contrastingly 522 

interpreted as the remnant of the Paleo-Tethys, and the Küre Basin as the small back-arc basin 523 

that opened by the northward subduction of the Karakaya oceanic lithosphere (e.g., Pickett et 524 

al., 1995; Pickett and Robertson, 1996; Ustaömer and Robertson, 1994; 1995; 1997; 1999; 525 
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Okay et al., 1996; Kozur et al., 2000). According to Şengör and Yılmaz (1981) opening and 526 

closure of Karakaya Ocean is restricted in the Triassic. The advocates of the second model 527 

asserted that Küre back-arc basin was opened during Permian to early Jurassic by the 528 

northward subduction of the oceanic lithosphere of the Karakaya Ocean, which is regarded as 529 

a large long-lived (Devonian to Triassic) Paleo-Tethyan ocean (cf. Ustaömer and Robertson, 530 

1994; Kozur et al., 2000 and references therein). A third model (Okay and Tüysüz, 1999; 531 

Okay, 2000) disparately considers both oceanic basins as relics of the same single large Paleo-532 

Tethys and suggests that they have separated with later events (Kozur et al., 2000).  The 533 

Karakaya complex is interpreted as a subduction-accretion complex, which is being formed 534 

by the northward subduction of Karakaya oceanic lithosphere beneath Laurasia by Okay 535 

(2000). Kozur et al. (2000), arguing on the grounds of the fossil and stratigraphic data, 536 

suggest that none of the assumptions and suggestions in all these three models are fully 537 

correct. These authors remark that: (1) the Karakaya Basin is a latest Permian-Upper Triassic 538 

oceanic rift basin, (2) the Küre Basin is a Lower Triassic-Middle Jurassic southward 539 

subducting back-arc basin, and (3) no field data is available on the northward subduction of a 540 

combined Karakaya-Küre Ocean (a single and huge Carboniferous-Middle Jurassic Paleo-541 

Tethys). More recent, newer reconstructions for the region involve a multi-armed 542 

(Paleotethys, Küre, Meliata, Maliac, Pindos, etc) Late-Paleozoic-Triassic Tethys with an 543 

additional oceanic branch between the Taurides (s.s.) and the Anatolides with no clear 544 

consensus on the number, locations, life-spans and subduction polarities of these oceanic 545 

branches/marginal basins and the Karakaya Complex as a product of the closure (cf. 546 

Göncüoğlu, 2010 and the references therein; Fig. 12b).  547 

The Re-Os isotopic study of the LLHR sulfides from the Küre VMS Deposit has given 548 

a nominal age of upper Toarcian (uppermost early Jurassic) for sulfide mineralization. Both 549 

the Küre Complex and the Küre VMS deposit were previously interpreted to be subjected at 550 
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least to regional greenschist facies conditions during/after their emplacement/accretion (e.g., 551 

Aydın et al., 1986; Kuşçu and Erler, 2002), and metamorphic processes are known to disturb 552 

the Re-Os systematics, especially for minerals such as sphalerite and pyrrhotite (e.g., Morelli 553 

et al., 2004, 2010; Nozaki et al., 2013). However pyrite and chalcopyrite from samples that 554 

underwent greenschist facies metamorphism, can yield reliable Re-Os ages preserving the 555 

primary Re-Os isotope composition from the time of its formation (Brenan et al., 2000; Selby 556 

et al., 2009; Nozaki et al., 2013). Given that all of the sulfides analyzed for the Re-Os isotopes 557 

in this study are from the handpicked separates of pyrite-chalcopyrite dominated sulfide 558 

mineralization, we interpret these results to represent original depositional ages. Although, we 559 

cannot totally rule out minor (e.g., overlooked) presence of any other sulfides that may 560 

slightly disturb the Re-Os isotope system, both isochron plots in the 
187

Re/
188

Os vs. 561 

187
Os/

188
Os and the 

187
Re-

187
Os

r
 space yield very similar ages within their uncertainties, and 562 

are interpreted to represent the depositional age of sulfide mineralization. The results are also 563 

in agreement with the previous field based pre-Middle Jurassic interpretation of Kovenko 564 

(1944), and the Permian-early Jurassic age interval pronounced for the lifespan of Küre back-565 

arc basin (e.g., Ustaömer and Robertson, 1994). 566 

In light of the likely primary upper Toarcian age for the mineralization, the simplest 567 

inference is the continuation of the extensional regime in the Küre Basin during setting of the 568 

VMS deposition. However, the Re-Os geochronological data also supports the second 569 

paleogeographic model discussed above (e.g., Pickett et al., 1995; Pickett and Robertson, 570 

1996; Ustaömer and Robertson, 1994; 1995; 1997; 1999; Okay et al., 1996), which interpreted 571 

the Küre Basin as a back-arc marginal basin of a northward subducting Karakaya Ocean; this 572 

appears to be the more likely model for the setting of the Küre VMS deposit. Data from an 573 

outcrop sample and a drilled stockwork sample with largely different model ages that are 574 

rejected from the isochron plots (BK-US; 320.8 ± 37.4 and M256/V1; 138.2 ± 7.2 Ma, 575 
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respectively) may be affiliated with some other pyrite crystallization events prior to and 576 

postdating the main sulfide deposition. Unfortunately, our data does not allow us to make a 577 

correlation between the ages and the chemical compositions of the pyrites. Hence, we prefer 578 

to avoid commenting on the nature of the older model age of the outcrop sample. However, 579 

the younger pyrite age from the stockwork may be questioned in relation to the fluid 580 

inclusions microthermometry from the quartz veinlets of the stockwork. 581 

In volcanogenic massive sulfide (VMS) systems, physicochemical characteristics of 582 

fluid inclusions depend on PVTX conditions of the location where the fluid inclusions are 583 

trapped within the hydrothermal system. In VMS environment, the characteristics of the fluid 584 

inclusions can vary systematically from location to location and even within the same 585 

paragenesis and the fluid inclusion temperatures in VMS stockworks are typically in the range 586 

200-400°C (Hannington et al., 1998; Lüders et al., 2001). Above the two-phase zone, along 587 

the rising plume, fluid inclusions are liquid-rich with salinity slightly higher than or lower 588 

than that of seawater, and have homogenization temperatures between 200 and 400°C (Steele-589 

MacInnis et al., 2012). In Küre, the fluid inclusions of quartz from the stockwork zone are 590 

two-phase inclusions. Most of the measured homogenization temperatures fall in between 591 

200-300 °C (n=17). The inclusions are liquid-rich and contain vapor bubbles occupying about 592 

up to 30 volume percent of the inclusion. The lack of coexisting vapor-rich and halite-bearing 593 

inclusions indicates ore formation in shallower subsurface near the seafloor vents (up to 0.5 594 

km in depth) where the inclusions are liquid-rich. The low salinities reflect mixing between 595 

sea water and phase separated brine and/or vapor from the deeper part of the system. The 596 

similarity of fluid salinity to normal seawater (3.5 wt % NaCl equiv) further suggests the 597 

input of a large amount of cold seawater into the Küre hydrothermal system. These data show 598 

that the bulk of the microthermometric data is in good agreement with the above given 599 

literature. However, lower homogenization temperatures below 200 °C (n=4) and the younger 600 
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pyrite age from the stockwork may still suggest that at least some of the stockwork veinlets in 601 

the deposit are younger and are related to the post-VMS deformation/mineralization events.  602 

The new depositional age data partially contradicts with previous arguments of Kozur 603 

et al. (2000) that suggest older than Late Triassic (possibly middle Triassic) age for the mafic 604 

volcanic rocks of the Küre Complex. However, we must note that the new isotopic data we 605 

present gives the direct age of deposition for the Küre VMS Deposit, and may also imply an 606 

upper age limit for the basaltic volcanism (Fig. 12c). We may suggest that a submarine 607 

volcanic extrusion episode continued up to upper Toarcian, reaching a period of stagnation, 608 

allowing a continuous and long-term seawater circulation and hydrothermal fluid discharge 609 

for the formation of the Küre sulfide mounds. The Middle Jurassic ages obtained from the 610 

basalts (Bajocian; 170±6 Ma and 168±5 Ma; Terzioğlu et al., 2000) are also in good 611 

agreement with the Re-Os isotopic ages obtained in this study within errors. It appears with 612 

the current data that the beginning of the closure of the Küre Basin had not been initiated 613 

before the uppermost early Jurassic. Hence, the early Cretaceous (Berriasian-Valanginian: 614 

137±3, 136±6 Ma) ages by Terzioğlu et al. (2000) present a different late episode of volcanic 615 

activity, as indicated by previous researchers (e.g., Sarıcan, 1968; Güner, 1980; Terzioğlu et 616 

al. 2000; Kozur et al., 2000). 617 

We were unable to constrain the depositional age of the black shale-subgraywacke 618 

strata of the hemipelagic muds and terrigenous turbidites that are interpreted to blanket the 619 

Küre ocean basin following volcanic and hydrothermal activity (e.g., Ustaömer and 620 

Robertson, 1994). However, the depositional age for the siliciclastic sediments of the Küre 621 

Complex has been previously reported to span mainly in a Late Triassic to Middle Jurassic 622 

interval (Kovenko, 1944; Ketin, 1962; Aydın et al., 1986, 1995; Önder et al., 1987). Kozur et 623 

al. (2000) managed to further confine the age of the lower and middle segments of the 624 

siliciclastic sediments from middle Carnian to middle Norian interval (Late Triassic). They 625 
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also noted that the age interval of the upper segment should be between middle Norian and 626 

Late Jurassic. Hence, the proposed depositional age range of the siliciclastic sediments and 627 

the seafloor volcanism prior to the deposition of the sulfides seem to partially overlap (Fig. 628 

12c). This is in good agreement with the previously presented lithological evidences on 629 

contemporaneous deposition of the lower segment of the organic-matter rich sediments and 630 

the upper segment of the basaltic volcanic rocks (e.g., Tüysüz, 1986; Pehlivanoğlu, 1985; 631 

Çakır, 1995) and again may support a stagnation period in the submarine volcanic extrusion 632 

during the upper Toarcian. 633 

The 
187

Os/
188

Os ratios of the sulfide samples are highly radiogenic and do not to allow 634 

us to propose a source for Os. On the other hand, the large variations in the initial Os isotope 635 

ratios [
187

Os/
188

Os(i)] of seawater are usually attributed to inputs by continental, mantle 636 

(volcanic and hydrothermal), and cosmogenic events, the former one resulting in very 637 

radiogenic (1.0-1.5; Peucker-Ehrenbrink and Jahn, 2001) and the latter two concluding in very 638 

unradiogenic Os isotopic ratios (e.g., 0.12-0.13; Allègre and Luck, 1980) (Tejada et al., 2009). 639 

The very limited 
187

Os/
188

Os(i) data (0.45 and 0.46, calculated for 180 Ma) from two black 640 

shale samples blanketing the Küre VMS deposit are in agreement with the wide 
187

Os/
188

Os(i)  641 

interval of the Early Jurassic seawater (from ~0.4 to ~1.0; Cohen et al., 2004), coinciding with 642 

the lower limit range.  However, the available data is statistically inadequate to make a 643 

significant deduction. Hence, the reply to this question currently stays unresolved. More data 644 

from the black shale strata is needed to constraint the Os isotopic composition of the 645 

contemporaneous seawater and the source(s) of Os in the depositional environment of the 646 

Küre VMS deposit. 647 

 648 

 649 

 650 
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5.  Conclusions 651 

This study presents new paragenetic, compositional, microthermometric and 652 

geochronological datasets from the Küre VMS deposit located in Central Pontide region, 653 

northern Turkey. The massive and stockwork ore selected for the dating studies were pyrite-654 

dominant with subordinate chalcopyrite, sphalerite and other sulfide species. Stockwork ore 655 

included quartz and calcite gangue veinlets, while the massive ore is almost free of gangues. 656 

Mineral chemistry of the sphalerites show typical ranges described for the ancient 657 

volcanogenic massive sulfide deposits/mineralizations and their modern analogues elsewhere. 658 

Microthermometric data provided from the quartz gangue of the stockwork ore showed low to 659 

intermediate homogenization temperatures (Th) and low salinities, also being mostly in good 660 

agreement to the ranges encountered in volcanogenic massive sulfide mineralizations. The 661 

average first melting temperatures (Tmf) obtained from the microthermometry pointed out a 662 

H2O-CaCl2-KCl-MgCl2 ore-forming hydrothermal fluid system. The salinity data (slightly 663 

greater or less than that of seawater) obtained from the two-phase inclusions and the lack of 664 

coexisting vapor-rich and halite-bearing inclusions are used to constraint a depth for the 665 

sampled stockwork ore formation, which is presumably at a shallower subsurface 666 

environment near the seafloor vents (up to 0.5 km in depth). 667 

This first attempt of Re-Os dating of the LLHR sulfides from the Küre VMS Deposit 668 

yield a nominal age of upper Toarcian (uppermost early Jurassic) for this well-known Cyprus-669 

type massive sulfide mineralization located in the Central Pontides in northern Turkey. The 670 

studies are conducted on handpicked pyrite concentrates obtained from the crushed sulfide ore 671 

fractions to minimize effects of regional metamorphism on the mineralization.  No geological 672 

age could be determined from the Re-Os data for all six samples using a traditional plot of 673 

187
Re/

188
Os vs. 

187
Os/

188
Os. However, four of the six sulfide samples displayed a positive 674 

correlation between 
187

Re/
188

Os vs. 
187

Os/
188

Os and yielded an age of 176 ± 22 Ma. The Re-Os 675 
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isochron age is also determined in 
187

Re-
187

Os
r 
(radiogenic

187
Os) space and yield the same 676 

age, with uncertainty, as the traditional Re-Os plot (175 ± 19 Ma). Thus, the upper Toarcian 677 

age is considered to present the timing of the main sulfide deposition. Two largely different 678 

model ages in two of sulfide samples (320.8 ± 37.4 and 138.2 ± 7.2 Ma) are attributed to some 679 

other pyrite crystallization events prior to and postdating the main sulfide deposition. Some 680 

lower homogenization temperatures from the quartz of the stockwork (<200°C, n=4) may also 681 

be correlated to the post-VMS events. The upper Toarcian depositional age of the Küre VMS 682 

deposit implies that the ongoing submarine volcanic extrusion episode in the Küre basin has 683 

presumably entered a stagnation stage during upper Toarcian allowing the hydrothermal 684 

circulation and discharge of the sulfide-laden fluids to the ocean floor. Hence, the data also 685 

support the paleotectonic models that interpret the Küre Ocenic Basin as a Permian-early 686 

Jurassic back-arc basin of a northward subducting Devonian to Triassic Karakaya Ocean.  687 

The lack of common Os from the sulfides does not let us to infer a source of Os form 688 

this data. Still, the limited Re-Os isotopic knowledge obtained from the black-shale strata 689 

blanketing the mineralization provides us an idea on the initial 
187

Os/
188

Os ratio of 690 

contemporaneous sea water (0.45-0.46 for 180 Ma). A further detailed study focusing on the 691 

isotopic composition of the black shale strata may help to constrain the Os isotopic 692 

composition of the contemporaneous seawater and the source(s) of Os in the depositional 693 

environment of the Küre VMS deposit. 694 
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Figure Captions 1092 

Figure 1. (a) Distribution of submarine volcanic, ophiolitic and acidic to intermediate 1093 

intrusive host rock assemblages and related VMS and Porphyry Deposits of Turkey, with 1094 

respect to the Paleo-tectonic units (after Yigit, 2009).  STZ: Strandja Zone, WP: Western 1095 

Pontides, CP: Central Pontides, EP: Eastern Pontides, BFZ: Bornova Flysch Zone, TZ 1096 

Tavşanlı Zone, MM: Menderes Massif, MTP: Menderes-Taurus Platform, AZ: Afyon Zone; 1097 

CACC: Central Anatolian Crystalline Complex, EAAC: Eastern Anatolian Accretionary 1098 

Complex, IAES: İzmir-Ankara-Erzincan Suture, BS: Bitlis Suture, IPS: Intra-Pontide Suture. 1099 

(b) Regional Geological Map of the Küre and surroundings (modified after Aydın et al., 1995; 1100 

Kozur et al., 2000). Fm: formation, M: member, Gr: Group. 1101 

Figure 2. (a) Geological map of the Küre VMS deposit and its surroundings (after Güner, 1102 

1980; Pehlivanoğlu, 1985; JICA and MMAJ, 1992; Çakır, 1995 and Çakır et al., 2006). (b) 1103 

Generalized columnar section of the Küre ophiolite (modified after Ustaömer and Robertson, 1104 

1994). 1105 

Figure 3. (a) and (b) shows a general view of the Bakibaba Open-pit during the field studies 1106 

in 2012, (b) and (c)  steeply inclined contact of the Black shale-subgraywacke unit (Bs-Sg) 1107 

and the pillow lavas (Pl). (d) Pillow lava outcrop from the Bakibaba Open-pit. (e) Black 1108 

shale-subgraywacke on bench face from the Bakibaba Open-pit. (f) Close-up view of the 1109 

vertical segment of the black shale-subgraywacke - pillow lava contact. 1110 

Figure 4. Photomicrographs of the  (a and b) fresh (unaltered) and (c, d, e, f) altered (heavily 1111 

chloritized) basaltic pillow lavas. Note the overprinting quartz and calcite stockwork veinlets 1112 

in (c, d, e and f). Cpx: clinopyroxene, Plg: plagioclase, Chl: chlorite, Qz: quartz, Ca:calcite. 1113 

Op: opaque phases. Photomicrographs (a, b, e and f) are in (+), (c, d) are in (//) nicols. 1114 

Figure 5. A schematic summary of the sample depths, types, and lithologies. N-S oriented 1115 

cross-section of the Mağaradoruk mineralization is from Altun et al. (2015). 1116 
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Figure 6. Reflected-light images of the ore minerals from massive and stockwork ores of 1117 

sulfide mineralization. (a) Magnetite (Mgt) replaced by hematite (Hm). (b) Flaky and needle-1118 

like and/or acicular hematite (Hm) in euhedral pyrite and the quartz veinlet in the stockwork 1119 

ore. (c) Subhedral/anhedral pyrite (Py) accumulations embedded in chalcopyrite-I (CcpI). (d) 1120 

Subhedral/anhedral pyrite (Py) accumulations embedded in manly sphalerite-I (SphI) that 1121 

include exsolutions/inclusions and/or rhythmic bandings of chalcopyrite-II(CcpII) and 1122 

chalcopyrite-I (CcpI). (e)  Subhedral pyrite (Py) replaced by chalcopyrite-I (CcpI), that is 1123 

further replaced by sphalerite-I (SphI) and chalcopyrite-II (CcpII). (f) Chalcopyrite-I (CcpI) 1124 

and bornite (Bo) inter-growths replacing pyrite (Py) and being replaced by sphalerite-II 1125 

(SphII). (g) Chalcopyrite exsolution lamellae (CcpII) in bornite (Bo). (h) Euhedral/subhedral 1126 

cobaltite (Co)-pyrite (Py) intergrowths, being replaced by chalcopyrite-I (CcpI). Note the 1127 

bravoite (Brv) zoning in pyrite (Py). All photomicrographs are in (//) nicols. Images (a), (g) 1128 

and (h) are in oil immersion. 1129 

Figure 7. Reflected-light images of the ore minerals from massivesulfide mineralization. (a) 1130 

Cobaltite (Co)-pyrite (Py) intergrowths is being replaced by chalcopyrite-I (CcpI) that is 1131 

further replaced by melnicovite pyrite (Mel-Py). (b) Pyrite (Py) being replaced by 1132 

chalcopyrite-I (CcpI) and sphalerite-I (SphI). Chalcopyrite is further replaced by melnicovite 1133 

pyrite (Mel-Py) and marcasite (Mrc). (c) Replacement of melnicovite pyrite (Mel-Py) by 1134 

marcasite (Mrc). Marcasite is followed by sphalerite-I (SphI) that include chalcopyrite-II 1135 

(CcpII) exsolution lamella.  (d) Native gold (Au) at the boundary of pyrite (Py) and 1136 

chalcopyrite-I (CcpI). (e) and (f) Native gold (Au) as minute inclusions in pyrite. All images 1137 

are in (//) nicols. Images (c) and (d) are in oil immersion. 1138 

Figure 8. Zn/Cd distributions of sphalerites from Küre VMS Deposit (*) with the data from 1139 

different ore-forming systems and source rocks. Reference data are: (1) Xu, 1998; (2) 1140 

Jonasson and Sangster, 1978; (3) Xuexin, 1984;(4) Brill, 1989; (5) Zaw and Large, 1996; (6) 1141 
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Gottesman and Kampe, 2007; (7) Goodfellow and Blaise, 1988;(8) Goodfellow and Franklin, 1142 

1993; (9) Hannington and Scott, 1988; (10) Bischoff et al., 1983; (11) Fouquet et al., 1143 

1993;(12) Turekian and Wedepohl, 1961; (13) Vinogradov, 1962; (14) Kay and Hubbard, 1144 

1978, (15) Herzig, 1988. Filled squares represent sphalerite data from massive ore of Küre 1145 

deposit. Zn/Cd interval scheme adapted and modified from Gottesman and Kampe (2007). 1146 

Figure 9. Photomicrographs of the veinlets and the hosted fluid inclusions in the stockwork 1147 

zone of the Küre massive sulfide mineralization.  (a) to (d) show early and late stage quartz 1148 

veinlets (Qz1 and Qz2, respectively) and , (1a) and (1b) represents early and late stage in the 1149 

(Qz1). (e), (f) and (g) show samples of two phase fluid inclusions from the quartz veinlets of 1150 

the stockwork ore, (L and V denotes liquid and vapor phases respectively). 1151 

Figure 10. A diagram-histogram composite of homogenization temperatures (Th) and the 1152 

fluid salinities obtained by the microthermometric measurements from the quartz of the 1153 

stockwork ore of the Küre VMS deposit. 1154 

Figure 11. (a) 
187

Re-
188

Os vs. 
187

Os-
188

Os plot for all of the six Küre VMS pyrite 1155 

concentrates. (b) 
187

Re-
188

Os vs. 
187

Os-
188

Os iscochron for four of the pyrite concentrates. (c) 1156 

187
Re-

187
Os

r 
isochron for the same set of pyrite concentrates. (d) Weighted average of the 1157 

model ages plotted for the Küre VMS deposit samples. The data-point error ellipses in (a), (b) 1158 

and (c), and the box heights in (d) donate 2SE. 1159 

Figure12. (a)  Tectonic map of northern Anatolia showing the distribution of the Late 1160 

Triassic-Early Jurassic Paleo-Tethyan accretionary complex and ophiolite (Karakaya-Küre) 1161 

(from Okay and Göncüoğlu, 2004). Light grey shaded region shows the Pontides. CP: Central 1162 

Pontides, EP: Eastern Pontides, IAES: İzmir-Ankara-Erzincan Suture, IPS: Intra-Pontide 1163 

Suture. (b) Schematic cartoon depicting the western Tethyan realm during Early Norian (from 1164 

Stampfli et al., 2002). (Bd) Beydağları; (Is) Istanbul; (Kk) Karakaya forearc; (KS) Kotel-1165 

Stranja rift; (Mn) Menderes; (Pl) Pelagonian; (Rh) Rhodope; (Sc) Scythian platform; (Sk) 1166 
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Sakarya; (TD) Trans-Danubian. (c) Summary of the Geological history of the volcano-1167 

sedimentary associations of Küre Complex and the Küre VMS Deposit. Reference data are 1168 

from: (1) Kozur et al. (2000); (2) Aydın et al. (1995); (3) Terzioğlu et al. (2000); (4) 1169 

Ustaömer and Robertson (1995); (5) Alişan et al. (1992); (6) Çakır (1995); (*)This study. 1170 
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Table 1. Selected compositional (EPMA) data from some of the main ore phases (pyrite, 1173 

chalcopyrite, sphalerite) in the Küre VMS deposit. 1174 

Table 2. Microthermometric measurements from the quartz of the stockwork ore of the Küre 1175 

VMS deposit. 1176 

Table 3. The Re and Os concentrations and isotope compositions of the six separated pyrite-1177 

rich concentrates and two black shale samples. 1178 
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Table 1 

Element  Pyrite 

      

Chalcopyrite 

     

Sphalerite 

   

 L.O.D.* 

wt %  9-2 9-10 9-12 9-4 5B-10 6BA-14 

 

9-14 9-7 9-6 4A-20 5B-6 5B-12 

 

9-5 5B-19 5B-20 5B-21 5B-22  wt% 

S  53.72 53.66 52.92 53.33 53.23 52.93 

 

34.87 34.97 34.96 35.25 34.65 35.68 

 

33.28 33.17 32.87 32.98 33.18  0.02 

Fe  45.20 46.97 45.62 46.39 46.47 46.62 

 

29.95 29.85 30.21 31.00 30.23 31.31 

 

5.55 3.80 2.41 2.58 2.70  0.08 

Ni  0.00 0.00 0.02 0.01 0.00 0.01 

 

0.00 0.00 0.00 0.00 0.01 0.00 

 

0.00 0.00 0.02 0.00 0.04  0.04 

Zn  0.04 0.11 0.00 0.31 0.00 0.00 

 

0.00 0.08 0.21 0.00 0.00 0.00 

 

56.66 59.51 62.45 61.41 62.06  0.08 

Cu  0.05 0.00 0.18 0.17 0.07 0.42 

 

33.99 33.75 33.88 33.82 33.88 31.38 

 

3.77 1.31 1.34 1.56 1.16  0.09 

As  0.03 0.03 0.14 0.57 0.06 0.05 

 

0.00 0.00 0.00 0.00 0.03 0.05 

 

0.00 0.07 0.00 0.00 0.01  0.07 

Se  0.01 0.01 0.00 0.05 0.05 0.00 

 

0.02 0.00 0.01 0.02 0.00 0.00 

 

0.00 0.00 0.00 0.03 0.01  0.05 

Sb  0.00 0.00 0.02 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 

 

0.13 0.02 0.00 0.00 0.02  0.03 

Te  0.01 0.00 0.02 0.03 0.01 0.00 

 

0.03 0.00 0.01 0.03 0.02 0.01 

 

0.00 0.00 0.00 0.00 0.02  0.06 

Cd  0.03 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 

 

0.04 0.16 0.10 0.11 0.15  0.02 

Co  1.39 0.00 0.64 0.69 0.45 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 

 

0.05 0.05 0.05 0.06 0.02  0.03 

Ag  0.00 0.01 0.02 0.01 0.05 0.09 

 

0.13 0.04 0.00 0.00 0.00 0.00 

 

0.05 0.00 0.02 0.00 0.06  0.06 

Au  0.00 0.05 0.00 0.01 0.11 0.03 

 

0.01 0.00 0.00 0.00 0.06 0.04 

 

0.00 0.00 0.00 0.04 0.00  0.09 

Pb  0.04 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00  0.01 

Bi  0.00 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00  0.01 

Total  100.52 100.84 99.58 101.57 100.50 100.15 

 

99.00 98.69 99.28 100.12 98.88 98.47 

 

99.53 98.09 99.26 98.77 99.43   

Zn/Cd  - - - - - - 

 

- - - - - - 

 

1417 372 625 558 414   

                       

L.O.D.*: Averages of the limits of detection for all samples calculated by 3-sigma (3) approach. 
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Table 2 

 

No Tm(ice) Tfm Th Salinity 

Inclusion 

area 

Vapor 

area 

Vapor/ 

Liquid 

 (°C) (°C) (°C) (wt % NaCI) (µm
2
) (µm

2
)  

     

Fluid inclusions population 1 

     

        

1 -3.0 -50.0 317.0 5.0 636.0 118.0 0.19 

2 -2.0 -43.0 270.9 3.4 608.0 115.0 0.19 

3 -3.0 -59.0 209.0 5.0 1496.0 253.7 0.17 

4 -1.0 -53.0 309.0 1.7 1543.0 203.0 0.13 

5 - - 292.0 - - - - 

6 - - 315.0 - - - - 

7 -1.3 -36.0 284.5 2.2 2182.0 613.0 0.28 

8 -0.9 -53.2 298.4 1.6 2200.0 610.0 0.28 

9 -0.9 -55.5 317.5 1.6 782.0 145.0 0.19 

10 -0.5 -54.0 305.7 0.9 - - - 

11 - - 273.6 - - - - 

12 -1.1 -30.0 285.8 1.9 1073.0 218.0 0.20 

        

Mean -1.5 -48.2 289.9 2.6 1315.0 284.5 0.20 

Median -1.1 -53.0 295.2 1.9 1284.5 210.5 0.19 

     

Fluid inclusions population 2     

        

1 -2.4 -43.0 224.0 4.0 608.0 81.0 0.13 

2 -1.2 -44.0 161.5 2.1 1763.0 74.0 0.04 

3 - - 245.7 - 3763.0 139.0 0.04 

4 - - 245.2 - - - - 

5 - - 209.5 - - - - 

6 -1.7 -34.0 212.4 2.9 1191.0 172.0 0.14 

7 -1.3 - 187.2 2.2 - - - 

8 -1.7 -33.9 169.7 2.9 3974.0 431.0 0.11 

9 -1.7 -31.0 168.0 2.9 1202.0 105.0 0.09 

        

Mean -1.7 -37.2 202.6 2.8 2083.5 167.0 0.09 

Median -1.7 -34.0 209.5 2.9 1482.5 122.0 0.10 

        

(Th): homogenization temperature; (Tfm): initial/first melting temperature; Tm(ice): final ice melting 

temperature.  
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Table 3 

Sample No. 

Lithology/ 

Sample Type Re ± Os ± 187Re ± 187Osr ± %187Osr ± %187Osr 187Re/188Os ± 187Os/188Os ± rho 

model 

age ± 

Initial 
187Os/188Os 

 

 ppb 2SE ppt 2SE ppb 2SE ppt 2SE 

 

2SE (*) 

 

2SE 

 

2SE 

 

Ma 2SE @ 180 Ma 

M256/M1  massive ore/ 
drill core 

336.2 1.2 598.5 272.0 211.3 0.8 595.0 86.4 102.4 14.9 99.2 90711.9 30014.6 249.4 82.5 1.000 168.8 24.5 - 

M256/V1 stockwork ore/ 

drill core 

188.2 0.7 273.3 810.3 118.3 0.4 272.7 14.2 100.8 5.3 - 329370.4 697380.1 753.2 1594.8 1.000 138.2 7.2 - 

BK-US  disseminated ore/ 

outcrop 

225.6 0.8 760.5 1746.4 141.8 0.5 759.8 88.6 100.4 16.4 - 302350.7 492599.8 1614.1 2636.3 0.998 320.8 37.4 - 

KGT-3 massive ore/ 

drift 

132.9 0.5 250.6 137.2 83.5 0.3 247.8 69.5 104.7 29.4 98.4 44545.1 18248.2 126.1 51.7 1.000 177.8 49.9 - 

KGT-4 massive ore/ 

drift 

147.3 0.5 286.5 145.1 92.6 0.3 283.4 75.7 104.5 27.9 98.5 45312.2 17134.1 132.7 50.2 1.000 183.4 49.0 - 

KGT-5 massive ore/ 

drift 

630.9 2.3 1175.2 535.7 396.6 1.4 1171.6 87.2 101.2 7.5 99.6 168744.0 55202.9 492.5 161.1 1.000 177.1 13.2 - 

M256-S2-2 black shale/ 
drill core 

1.15 0.01 195.5 2.0 - - - - -  - 29.9 0.6 0.5402 0.02 0.677 - - 0.45 

M256-S2-6 black shale/ 

drill core 

0.63 0.01 157.5 1.6 - - - - -  - 20.1 0.5 0.5171 0.01 0.633 - - 0.46 

All ore samples are pyrite-rich sulfide concentrates. (*): Calculated with an initial of 2±68 as derived from the isochron. 

Table 3


