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Abstract Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related
hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The
location of landslides relative to river channels is expected to play an important role in postearthquake
sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan
earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep
Longmen Shanmountain range. Combining a landslide inventory map and geomorphic analysis, we quantify
landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume
estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity,
with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is
linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting)
that regulate landslide size, and substrate effects that may influence both channelization and landslide size.
Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/�7% of
the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (<~0.25mm)
suspended sediment yield across the Longmen Shan catchments is positively correlated to catchment-wide
landslide density, but this correlation is statistically indistinguishable whether or not connectivity is
considered. The weaker-than-expected influence of connectivity on suspended sediment yield may be
related to mobilization of fine-grained landslide material that resides in hillslope domains, i.e., not directly
connected to river channels. In contrast, transport of the coarser fraction (which makes up >90% of the total
landslide volume) may be more significantly affected by landslide locations.

1. Introduction

High-magnitude earthquakes can cause widespread landslides that collectively generate large volumes
of clastic sediment [Keefer, 1984, 1994], contributing significantly to erosion in tectonically active mountain
ranges [Dadson et al., 2004; Korup et al., 2004; Malamud et al., 2004; Yanites et al., 2010; Wang et al., 2015].
Fluvial evacuation of landslide-derived sediment removes mass from mountains, influencing landscape evo-
lution [Pearce and Watson, 1986;Malamud et al., 2004; Korup et al., 2007; Hovius et al., 2011; Parker et al., 2011;
Egholm et al., 2013; Li et al., 2014]. Landslides also impact the terrestrial biosphere [Garwood et al., 1979; Allen
et al., 1999; Clark et al., 2016], and delivery of erodedmaterial to river channels can redistribute essential nutri-
ent elements (e.g., carbon and nitrogen), contributing to tectonic forcing of global biogeochemical cycles
[Hilton et al., 2011; Ramos Scharrón et al., 2012; Jin et al., 2016]. Furthermore, sediment supply from landslides
to rivers may cause prolonged secondary natural hazards, via channel aggradation and enhanced flooding,
and may reduce the storage capacity of downstream reservoirs [Korup et al., 2004; Glade and Crozier, 2005;
Huang and Fan, 2013; Wang et al., 2015].

Several studies have quantified sediment mass flux and the associated residence times of landslide material in
mountain belts using hydrological gauging data [Pearce and Watson, 1986; Dadson et al., 2004; Korup et al.,
2004; Hovius et al., 2011; Tsai et al., 2013; Wang et al., 2015], topographic surveys of individual rivers [Liu
et al., 2015; Yanites et al., 2010], and geochemical measurements such as cosmogenic nuclide inventories
[West et al., 2014; McPhillips et al., 2014]. Other studies have used numerical models to predict the entrainment,
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transport, and deposition of sediment and to predict evacuation rates [e.g., Attal and Lavé, 2006; Cui et al., 2003;
Sutherland et al., 2002; Ferguson et al., 2015]. All of these approaches depend on understanding the amount of
sediment that landslides make available for fluvial transport, which is determined by the number and size of land-
slides as well as by their location. Earthquake-triggered landslides are not distributed evenly across landscapes:
some are directly connected to river channels and thus prone to fluvial transport, whereas others are sequestered
on hillslopes away from the river network, where they are expected to contribute less immediately to the riverine
sediment budget [Meunier et al., 2008; Dadson et al., 2004; Hovius et al., 2011; Huang and Fan, 2013]. Moreover,
earthquake-triggered landslides have a range of sizes [Malamud et al., 2004], potentially affecting their impact
on river systems. The “landslide-landscape relationship” [Dadson et al., 2004; Hovius et al., 2011; Tsai et al., 2013],
which is governed by factors such as the hydrological and topographic characteristics of the landscape, the
location of landslides, and the geometric properties (e.g., size and runout length) of landslides, is expected to
determine the magnitude and duration of associated sediment transport. But key aspects of this relationship
and how it controls sediment dynamics are not completely understood.

Previous studies of landslide spatial distribution have measured landslide locations with respect to channels ver-
sus ridges, demonstrating that landslides cluster in specific landscape positions depending on hillslope topogra-
phy and the landslide triggering mechanism, e.g., earthquake versus rainstorm [Densmore and Hovius, 2000;
Meunier et al., 2008; Huang and Montgomery, 2014]. Other studies have distinguished landslides that are “visibly
connected” to river channels and presumably available for fluvial transport [Hilton et al., 2011; West et al., 2011;
Clark et al., 2016]. For the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, an estimated 8% of the earthquake-
triggered landslide population was connected to channels [Dadson et al., 2004], and this connectivity showed
little spatial variability [Hovius et al., 2011]. The 2008 Mw 7.9 Wenchuan earthquake and associated widespread
landsliding in China provide an opportunity to explore systematically how and why landslide-landscape relation-
ships vary spatially and to assess how this variability might regulate sediment export.

In this paper, we characterize the spatial distribution of coseismic landslides associated with the Wenchuan
earthquake, allowing us to evaluate the extent to which landslide debris is delivered directly to channels, and
we then explore how this distribution affects postearthquake sediment export by rivers. We map hillslope
and channel domains using a digital elevation model of the regional topography, and we identify landslide
populations in each setting using a coseismic landslide inventory. We define and quantify landslide-channel
volumetric connectivity (ξ) for the Wenchuan landslide inventory and use a new catchment-averagedmetric,
the landslide location index (ψ), as a reference for comparison to our calculation of ξ . We find that landslide-
channel connectivity varies across the Longmen Shan region, and we investigate the effects of seismology,
topography, and geology on the spatial variability of ξ , providing general insight into the factors that deter-
mine connectivity between landslides and river channels. Finally, we assess the role that landslide-channel
connectivity may play in determining river sediment yields in the years following the earthquake.

2. Setting
2.1. Topography, Hydrology, and Climate

The Longmen Shan mountain range defines the eastern margin of the Tibetan Plateau and marks the stee-
pest topographic gradient among modern-day plateau edges [Burchfiel et al., 1995; Densmore et al., 2007a]
(Figure 1a). This region is characterized by a steep, high-relief margin on the east, with> 5 km elevation rise
over 50 km horizontal distance from the Sichuan Basin [Burchfiel et al., 2008]. Relief decreases westward
toward the Tibetan Plateau (Figures 2b–2d). Several large rivers, including the Min Jiang, Tuo Jiang, Fu
Jiang, Jialing Jiang, Qingyi Jiang, and Dadu He, drain the Longmen Shan range. River suspended sediment
flux data indicate a denudation rate of ~0.5mm/yr during the decades before the 1990s [Liu-Zeng et al.,
2011], comparable to 10Be-derived millennial denudation rates and geological exhumation rates [Liu-Zeng
et al., 2011; Godard et al., 2010; Ouimet et al., 2009]. The regional climate is dominated by the East Asian
monsoon, with average annual rainfall varying from ~1100mm at the margin to ~600mm on the plateau.
About 70%–80% of the precipitation occurs from June to September [Liu-Zeng et al., 2011].

2.2. Geology

The bedrock geology of the Longmen Shan is dominated by a Proterozoic basement of granitoid and high-
grade metamorphic rocks, a Paleozoic passive margin sequence of metasediments and granitic intrusions,
and a thick Mesozoic foreland basin succession composed of marine and clastic sediments [Burchfiel et al.,
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1995; Li et al., 2003; Densmore et al., 2007a] (Figure 1b). Three large faults, the Wenchuan-Maowen fault, the
Yingxiu-Beichuan fault, and the Pengguan fault, all strike parallel to the Longmen Shan margin (Figure 1b).
These faults were reactivated in the India-Asia collision and have been active as dextral-thrust oblique-slip faults
during the late Cenozoic [Burchfiel et al., 1995; Densmore et al., 2007a; Wang and Meng, 2009]. Before 2008, GPS
measurements showed slow deformation rates across the Longmen Shan range, implying limited strain accumu-
lation and low perceived seismic hazard [Zhang et al., 2004;Meade, 2007; Kirby et al., 2008]. The recurrence time for
large, catastrophic earthquakes like the 2008 Wenchuan event in the Longmen Shan range is estimated to be
~2000–4000 years based on geodetic and paleoseismic observations [Densmore et al., 2007a; Shen et al., 2009].

2.3. Seismology and Landsliding

The Mw 7.9 Wenchuan earthquake occurred on 12 May 2008. Rupture initiated in the southern Longmen Shan
and propagated for ~270 km along segments of the Yingxiu-Beichuan and Pengguan faults (Figure 1c) [Burchfiel
et al., 2008; Shen et al., 2009]. Fault displacements and seismic moment release varied along the rupture trace
but were highest around Yingxiu and Beichuan [Xu et al., 2009; Shen et al., 2009; Liu-Zeng et al., 2009]. The
motion along the fault changed from predominantly thrusting in the southwest, near the epicenter, to strike slip
in the northeast [Shen et al., 2009; Xu et al., 2009]. The strong ground motion and intensive seismic shaking
caused over 60,000 coseismic and immediately postearthquake (defined here as occurring within 6months)
landslides (Figure 1c) [Dai et al., 2011; Parker et al., 2011; Li et al., 2014]. Large increases in sediment fluxes have
been observed after the earthquake from hydrometric gauging of rivers [Wang et al., 2015] and 10Be measure-
ments on detrital quartz from riverbed sediments [West et al., 2014]. These methods both average over the
spatial scale of river catchments that span areas > 1000 km2 and include thousands of landslides.

Figure 1. Maps of the Longmen Shan region of the eastern Tibetan Plateau and adjacent Sichuan Basin. (a) Shaded relief map (from SRTM-derived DEM) of the study
area with the three large river catchments (Min Jiang, Tuo Jiang, and Fu Jiang) outlined in black. (b) Major lithological units and faults of the eastern Tibetan Plateau
region, including mainly Proterozoic (pЄ) granitoids and high-grade metamorphic rocks, Paleozoic (including Є: Cambrian, O: Ordovician, S: Silurian, D: Devonian, C:
Carboniferous, and P: Permian), andMesozoic (including T: Triassic, J: Jurassic, and K: Cretaceous) passive margin and foreland basin sequences, and limited Cenozoic
(including Q: Quaternary) sediment, modified from a 1: 2,500,000 China Geological Base Map [China Geological Survey, 2004]. (c) Epicenter, focal mechanism, after-
shocks, PGA contours [USGS Earthquake Hazard Program, 2008], surface deformation [Fielding et al., 2013], coseismic landslides [Li et al., 2014], and fault rupture
associated with the 2008 Mw 7.9 Wenchuan earthquake [Liu-Zeng et al., 2009].

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003718

LI ET AL. WENCHUAN LANDSLIDE DISTRIBUTION 3



3. Materials and Approach
3.1. Landslide Inventory Mapping and Volume Estimation

Li et al. [2014] produced a coseismic and immediately postearthquake landslide inventory map (Figure 1c) using
high-resolution images collected within 6months of the Wenchuan earthquake from SPOT and DigitalGlobe
satellites. Postearthquake images were compared with those collected before the earthquake. The mapping
technique combined automated algorithms and manual screening, allowing removal of nonlandslide objects
and segmentation of amalgamated landslides, which can significantly bias volume estimates [Li et al., 2014;
Marc and Hovius, 2015]. Landslides were mapped at 10m spatial resolution. At this resolution, it was not possible
to separate depletion zones (i.e., landslide scars) versus accumulation zones (i.e, deposits), so mapped landslide
polygons include both scars and deposits. For this study, we have slightly expanded themapped region reported
previously [Li et al., 2014], based on newly available imagery and using identical techniques (Figure 1c).

Landslide volumes were calculated using empirical area-volume scaling relationships [Guzzetti et al., 2009;
Larsen et al., 2010; Yanites et al., 2010; Parker et al., 2011; Li et al., 2014]:

Vi
ls ¼ α Ai

ls

� �γ
(1)

and

Vls ¼
X
i

α Ai
ls

� �γ
(2)

where Als
i and Vls

i are the area and the volume for one single landslide, respectively, Vls is the total landslide
volume, and α and γ are empirical scaling factors (A list of used symbols is reported in Table 1). The scaling
factors α and γ and related uncertainties were determined in the Longmen Shan based on field measure-
ments of the depths of landslide scars (see supporting information for details) [e.g., Parker et al., 2011;
Whadcoat, 2011]. Uncertainties reported with the original publication of landslide volumes included propa-
gation of uncertainty on the scaling parameters [Li et al., 2014] but did not account for additional uncertainty

Figure 2. Hydrological map and geomorphic swath profiles of the study area. (a) The fluvial network in the study area with basins color coded by areal landslide
density PAls. Yellow lines show the boundaries of subcatchments and tributaries, and black lines show the boundaries of the three main catchments (Min Jiang,
Fu Jiang, and Tuo Jiang). Color shading represents landslide areal density in each subcatchment and tributary, with 17 catchments defined as having significant
landslide impact (L1–L17, Table 2) and the remaining (S1–S9) as having negligible landslide impact. A-A′ represents the trend of 170 km-wide swath profiles
(bounded by white dashed lines) along the steepest topographic gradient shown in Figures 2b–2g. (b) Profile of elevations in the study area, showing maximum,
mean, and minimum elevations. (c) Profile of topographic gradients in the study area, showing mean gradient and the range (grey area) bounded by 1 standard
deviation. (d) Profile of relief in the study area, showingmean relief calculated with a 2.5 km radius circular window (black line) and the range (grey area) bounded by
1 standard deviation. Figures 2e–2g are plotted by projecting the calculated parameters for subcatchments to the trend line A-A′ (Figures 2e–2g). (e) Mean elevations
for subcatchments and tributaries, with shaded background showing the mean, maximum, and minimum elevations in the study area; error bars indicate the 1σ
range of elevations in each subcatchment. (f) Mean gradients for subcatchments and tributaries, with error bars representing 1σ range. (g) Channel densities for
subcatchments and tributaries. Fluvial channel densities are higher (~0.9 km km�2) on the eastern flank of the Longmen Shan and the Sichuan Basin and lower
(~0.6 km km�2) toward the Tibetan Plateau.
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resulting from applying area-volume calibrations defined principally by scar areas to mapped landslide areas
that include both scars and deposits [Cruden and Varnes, 1996]. To constrain this additional uncertainty, we
used high-resolution (0.5m) WorldView images, which allowed identification of scars and deposits. We estimated
scar area as a proportion of total landslide area for>500 landslides. Using this subset of landslides, we find that our
mapping approach that does not distinguish scars versus deposits may overestimate landslide areas by ~15–30%,
depending on assumptions about the proportion of scar areas covered by landslide deposits (see supporting
information). This uncertainty is much smaller than the ~+260%/�70% uncertainty arising from the scaling para-
meters alone [Li et al., 2014]. Since we lack imagery at sufficiently high resolution to distinguish scars from deposits
across the entire Wenchuan study area, in this study we use the uncertainties from scaling factors, consistent with
Li et al. [2014], acknowledging that the definition of landslide areas introduces a minor additional bias. We note
that distinguishing scars from deposits and carefully considering what areas have been used in calibration data
sets [e.g., Larsen et al., 2010] would help reduce uncertainties on volume estimates in future landslide studies.

We have considered only coseismic and immediately postearthquake landslides in this study. Observations of
enhanced postseismic landslide rates have been attributed to rock weakening during shaking [Dadson et al.,
2004;Marc et al., 2015], and postseismic landslides may deliver additional sediment to river systems [Dadson
et al., 2004; Hovius et al., 2011]. However, following earthquakes in Taiwan, Japan, and Papua New Guinea,
postseismic landslides added only a very small proportion (~2–5%) to the volume of coseismic landslides
[Marc et al., 2015]. For the Wenchuan case, local studies (catchments covering< 4% of the total landslide-
impacted area) show that rainfall-triggered, postseismic landslides added 51% to the landslide number,
30% to the landslide area, and ~20% to the coseismic landslide volume (volumetric addition estimated based
on equations (1) and (2)) in 2008, and 5% to the landslide volume in 2010 [Tang et al., 2011; Zhang et al., 2014].
The areas covered in these studies are in the frontal Longmen Shan, with the most favorable conditions for
postseismic landsliding (proximity to the faults, highest coseismic shaking, and most intense rainfall). For the
whole Longmen Shan, we expect postseismic landsliding following the Wenchuan earthquake to be rela-
tively less important, perhaps more analogous to the Chi-Chi case in Taiwan [Marc et al., 2015]. Further work
mapping post-Wenchuan landslides would be needed to better constrain these values, but we do not expect
these additional landslides to significantly change the results and conclusions of this study.

3.2. Topographic and Hydrographic Mapping

For topographic analysis, we used 87m resolution postprocessed SRTM data from the Consultative Group for
International Agricultural Research that includes regional void filling using other data products (local data
sources and SRTM 30 data) and reinterpolation algorithms [Jarvis et al., 2008]. We expect that the digital

Table 1. Notation for Symbols

Symbol Notation Unit

Equation

Introduced

Als Landslide area km2 or m2 1
Vls Landslide volume km3 or m3 1
γ Landslide area-volume scaling factor, m(3� 2α) 1

γ = 1.388 ± 0.087 [Li et al., 2014]
α Landslide area-volume scaling factor, Dimensionless 1

Log10 α =�0.974 ± 0.366 [Li et al., 2014]
A Upstream contributing area km2 3
PAls Landslide areal density % 3
PVls Landslide volumetric density m3 km�2 4
L Channel length km 5
ρ Drainage density km km�2 5
ψ Landslide location index Dimensionless 6
IAc Integrated area for catchment landscapes on distribution plots for A Dimensionless 6
IAls Integrated area for landslides on distribution plots for A Dimensionless 6
m Inverse-gamma function parameter m2 7
s Inverse-gamma function parameter m2 7
q Inverse-gamma function parameter Dimensionless 7
G Gradient ° or mm�1

ξ Landslide-channel volumetric connectivity %
PGA Peak ground acceleration g
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elevation model (DEM) data provide meaningful information about landslide locations in the study area,
since regional hillslope length scales are around 1 km [Kirby et al., 2003]. This length is equivalent to >10
DEM cells, sufficient to define hillslope and channel morphology. We calculated topographic gradient (G)
and upstream contributing area (A) for each DEM raster cell using the Spatial Analyst toolbox in ArcGIS
software package. Although calculated gradients are strongly dependent on DEM resolution [e.g., Larsen
et al., 2014], the biases are systematic and the relative trends between different sites should not be influ-
enced. Since we are most interested in the relative values of gradients and general patterns in this study,
we used uncorrected values derived from the SRTM DEM.

To map hydrographic networks, we used a geographic data set of ordered catchments and drainage basins
from the Chinese Lake and Watershed Data Center [http://lake.geodata.cn/]. We focused on the three main
large river catchments draining the Longmen Shan: the Min Jiang, Tuo Jiang, and Fu Jiang, which together
cover ~90% of the total area affected by Wenchuan coseismic landslides. We mapped 26 subcatchments
and tributary catchments with reference to the geographic data set (Figure 2a). Subcatchments were defined
as constituent segments of a main catchment along the main stem (for example, Min Jiang Pengshan-
Dujiangyan segment, catchment L7 in Figure 2a), and tributary catchments were defined as those secondary
catchments contributing to a main stem (for example, the Yuzixi catchment, catchment L4 in Figure 2a). All
the catchments were analyzed independently. Parts of the studied catchments are monitored by the hydro-
logical gauging network of the Chinese Bureau of Hydrology [Wang et al., 2015] (Table 2).

Using the landslide inventory map, we quantified landslide impact by calculating the landslide areal density
PAls (%) for each catchment:

PAls ¼ Als
A
�100% (3)

where A is the area of a selected catchment and Als is the total area of landslides in the catchment. Seventeen
of the 26 tributary and subcatchments had substantial landslide impacts, with PAls ranging from 0.1% to 5%
(catchments L1–L17, Figure 2a and Table 2). Similarly, we also defined the landslide volumetric density PVls
(m3 km�2) for each catchment:

PVls ¼ Vls

A
(4)

where Vls is the total volume of landslides in the selected catchment.

Channels across the study area were derived from the DEM by using gradient-upstream area relations
[Dadson et al., 2004; Meunier et al., 2008; Huang and Montgomery, 2014]. In this study, we specifically refer
to “fluvial” channels, as distinct from “colluvial” channels and other types of hillslope areas upstream of the
channel head, in order to characterize landslide distribution within the landscape. For each tributary and sub-
catchment, we plotted the G-A relationship for all raster cells (Figure 3) and defined fluvial channels based on
the expected power law G-A relationship [e.g., Montgomery and Foufoula-Georgiou, 1993; Montgomery and
Buffington, 1997; Sklar and Dietrich, 1998;Montgomery, 2001; Stock and Dietrich, 2003; Densmore et al., 2007b]
(e.g., Figure 3a). Specifically, we fit a group of linear relations to segments of the logarithmic G-A plots and
identified five major geomorphic process domains: (1) hillslope, (2) valley head, (3) colluvial, (4) bedrock,
and (5) alluvial [cf. Montgomery, 2001; Brardinoni and Hassan, 2006]. Modifying the “pruning” approach for
determining power law fits on G-A plots [Stock and Dietrich, 2003; Densmore et al., 2007b], we first calculated
a linear fit on logarithmic G-A plots at the smallest upstream areas. We then successively added larger
upstream areas and refit the linear relation until a local optimal fit was identified (based on correlation coeffi-
cient andmean squared residuals). Using this procedure, we identified domains with linear behavior and uni-
form power law exponent on logarithmic G-A plots. We repeated this approach, together with visual
examination, to define successive domains with higher A values in the logarithmic G-A plots (e.g., progressing
from hillslopes to valley heads to colluvial to bedrock and finally to alluvial domains). The A value defining the
transition between the colluvial and bedrock domains (determined as the transition between domains (3)
and (4) [cf.Montgomery, 2001]) was then selected as a threshold area, Amin, to represent a minimum upstream
area for channelization, thus distinguishing fluvial channels from hillslopes (Figure S3 L1–L17 in the support-
ing information) [Montgomery, 2001; Dadson et al., 2004; Brardinoni and Hassan, 2006; Meunier et al., 2008].
We found that most catchments yielded Amin ~ 1 km2. Some catchments showed more scatter and less clear
transitions among domains on the G-A plots (L6, L8, L10, and L12, see supporting information Figure S1), and
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so for those catchments we used a regional channel threshold Amin of 1 km
2, as derived from the G-A relation

combining all Longmen Shan catchments (Figure 3b).

Parts of catchments with A>Amin were defined broadly as channel domains (including alluvial-bedrock
channels and alluvial channels), while parts with A<Amin were defined broadly as hillslope domains, includ-
ing colluvial channels, valley heads, and strictly defined “hillslopes.” The latter are often characterized by a
positive G-A exponent indicating convexity [Montgomery, 2001; Brardinoni and Hassan, 2006], but our general
definition of hillslope as used in this analysis simply refers to those regions outside of the fluvial network,
rather than regions with convex morphology per se.

To quantify the extent of fluvial channelization in each catchment, we calculated the drainage density
(ρ, km km�2) as

ρ ¼ L
A

(5)

where L (km) is the total length of fluvial channels within the catchment [Dingman, 1978]. We observe a
decline in drainage density from the basin toward the plateau (Figure 2g).

We plotted 170 km wide swath profiles (Figures 2b–2g) along the trend of the steepest topographic gradient
(NW-SE, perpendicular to the Longmen Shan faults). We projected mean elevation, relief, gradient, and
catchment-scale drainage density ρ onto the swath trend (A-A′ in Figure 2). Catchment-scale relief was
defined as the range of elevations within a 2.5 km radius circle [e.g., Montgomery and Brandon, 2002;
DiBiase et al., 2010]. The same parameters for each subcatchment and tributary catchment were also
projected onto the swath profile trend A-A′ (Figures 2e–2g).

3.3. Characterizing Landslide Locations and Constraining Uncertainties

To determine the locations of landslides relative to the fluvial network, we compared the maximum
upstream contributing area value within each mapped landslide polygon with the threshold Amin for
channels within that catchment. If the maximum A for a landslide was larger than Amin, the entire
landslide was assigned as connected to or located within the channel domain, while landslides with
maximum A values smaller than Amin were defined as located on hillslopes. This approach provides an
algorithm for estimating whether the toe of a landslide intersects what we have classified as a channel
[e.g., Dadson et al., 2004; Meunier et al., 2008; Huang and Montgomery, 2014]. We then calculated the
proportions of all landslides that are connected to the river system in terms of numbers of landslides

Figure 3. Gradient-upstream contributing area diagrams for the Yuzixi catchment (L4) and for the combined Longmen Shan catchments (compilation of L1–L17,
Table 2). (a) Example of a logarithmic G-A diagram from the Yuzixi catchment, with characterization of domains dominated by different geomorphic processes fol-
lowing Montgomery [2001]. Mean gradients are calculated in each A bin (δlog10 A = 0.1), and the power law exponents between G and A (i.e., the slope of linear
regression on logarithm plots) are reported for each landscape zone. In this and other similar studies [e.g., Dadson et al., 2004; Meunier et al., 2008], bedrock and
alluvial areas are defined as the channel domain, and hillslope (strictly defined by the positive exponent on the G-A diagram), valley head, and colluvial areas are
grouped together as the hillslope domain. (b) A logarithmicG-A diagram combining all Longmen Shan catchments (L1–L17, Table). The regional channel threshold of
Amin ~ 1 km2 is used for catchments where data are noisier, with less clear transitions than shown in these examples. G-A plots for all catchments are shown in the
supporting information.
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(“population connectivity”), landslide area (“areal connectivity”), and landslide volume (“volumetric connectiv-
ity”). To determine volumetric connectivity, we combined the landslide geomorphic classification and the
landslide area-volume scaling relation, using a Monte Carlo random sampling method to estimate uncertainties
sourced from the landslide area-volume scaling parameters α and γ in equation (2). We determined the volu-
metric percentage of channel-connected landslides in the whole landslide inventory and for landslides within
individual catchments; we term this percentage the landslide-channel volumetric connectivity, ξ (%), for each
catchment [cf. Dadson et al., 2004; Meunier et al., 2008; Hovius et al., 2011; Huang and Montgomery, 2014].

Whereas the landslides were mapped at 10m resolution, the DEM had a coarser resolution of ~87m. The incon-
sistent resolutions between the landslide inventory and the DEM data set could introduce potential sampling
bias: the actual upstream contributing area value of an individual landslide cell may not be the same as the A
value of the larger DEM cell. To constrain the uncertainties that arise by extracting the landslide upstream area
values from a coarser A raster, we estimated the potential difference between sampling a 10m resolution raster
data set and an 87m resolution raster data set (details in supporting information). Our results show that themax-
imum sampling error on A is around 0.01 km2, on the order of 1% of the threshold upstream area for channels
(~1 km2), and that themaximumerror decays quickly as A grows (see supporting information Figure S2). For com-
parison to this theoretically predicted uncertainty, we also considered the difference between calculations using
87m versus 30m SRTM data. We observed some spatial mismatch of channels extracted from these two DEMs in
the same catchment, and these differences introduced ~0.1 km2 difference in calculated upstream areas (see
supporting information). This difference is ~10 times higher than the predicted uncertainty arising from the
difference in resolution alone, pointing to the importance of other factors such as voids and DEM accuracy.
Our evaluation of connectivity is not strongly biased by this level of uncertainty, when considering the sensitivity
of connectivity estimates to threshold values.

To evaluate the sensitivity of connectivity to channel threshold Amin, we calculated connectivity for each catch-
ment across awide range of Amin values as reported in the Longmen Shan and othermountain belts (~0.3–3 km2)
[Kirby et al., 2003;Montgomery, 2001; Dadson et al., 2004;Meunier et al., 2008] (supporting information Figure S3).
We found that the connectivity determined using variable Amin differed by ~20% (relative percentage) when
compared to using the catchment-specific Amin determined in this study (supporting information Figure S4),
leading us to conclude that calculated connectivity is relatively insensitive to uncertainty in Amin.

3.4. Catchment-Scale Landslide Location Index

To complement the gradient-upstream area approach, we propose a new metric that considers landslide loca-
tions at the catchment scale. The “landslide location index” (ψ, dimensionless) for individual catchments charac-
terizes how landslides are distributed relative to the background landscapes in upstream contributing area (A)
space, with no assumptions of channel threshold Amin. To calculate ψ for each catchment, we integrated below
the cumulative A distribution (cf. Figure 4a) to derive (i) an integrated area (IAls) for the cumulative landslide
volume-A distribution curve and (ii) an integrated area (IAc) for the cumulative catchment DEM cell-A distribution
curve. We then calculated each catchment’s landslide location index (ψ) as (Figures 4a and 4b):

ψ ¼ IAc

IAls
(6)

For a higher ψ in a given catchment, the landslide inventory is preferentially located at larger upstream areas
and should have a higher potential to connect to channels (Figures 4c and 4d). A medium ψ represents less
potential for landslide-channel connection compared to a higher ψ regime (Figures 4e and 4f). A low ψ sug-
gests low potential to connect to channels (Figures 4g and 4h). Since ψ considers where landslides are
located with respect to the distribution of upstream contributing area in a catchment, higher values should
reflect landslide positions characterized by greater flow accumulation for fixed hydrologic conditions.

4. Results and Discussion
4.1. Landscape Position and Connectivity of Wenchuan-Triggered Landslides
4.1.1. Cumulative Landslide Volume Curves
To gain a general perspective on the locations of landslides in relation to the morphology of the Longmen
Shan catchments, we report the cumulative volumetric fraction of landslides as a function of upstream area
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(Figures 5 and S5). For all landslides in the study area, a high proportion of total landslide volume is located in
the hillslope domain (A<~1 km2, the threshold Amin for the Longmen Shan catchments), as indicated by the
steep rise in cumulative volumetric fraction as a function of A for low values, i.e.,< 1 km2 (Figure 5a). A lower
proportion of total landslide volume (reflected by more gentle rise in the cumulative curves in Figure 5a) is
located in the channel domain (A> 1 km2). For the three main catchments, different proportions of landslides
in different domains lead to varied patterns in the cumulative volume curves. Large landslides introduce sig-
nificant discontinuities to the distribution curves, because the nonlinear volume-area relationship (γ> 1) means
that they contribute disproportionately to total sediment volume [Larsen et al., 2010; Guzzetti et al., 2009; Li et al.,
2014; Marc and Hovius, 2015]. The marked increase in landslide volume at A~30 km2 (Figures 5a and 5d) is
caused by the Daguangbao landslide, the largest landslide in the Wenchuan inventory, with an area of
~7.2 km2, around 2 orders of magnitudes larger than themedian area [Chen et al., 2014]. The Daguangbao land-
slide was located in the Kai Jiang tributary of the Fu Jiang catchment and causes discontinuities in the

Figure 5. Cumulative distribution curves and histograms of landslide volumes over upstream contributing area. (a) Distribution curve and histogram for all landslides
in the study area. (b) Distribution curve and histogram for landslides within the Min Jiang catchment. (c) Distribution curve and histogram for landslides within the
Tuo Jiang catchment. (d) Distribution curve and histogram for landslides within the Fu Jiang catchment. The dashed black lines represent channel thresholds
(determined from Figure 3); red curves represent the median results from 1000 Monte Carlo simulations propagating uncertainties in landslide area-volume scaling
parameters; and grey bands are the 90% Monte Carlo envelope (5th–95th percentiles).

Figure 4. Illustration of catchment-scale landslide location index. (a) Schematic diagram illustrating landslide location index ψ, which is defined as the ratio of the
integrated area below the catchment cumulative distribution curve as a function of upstream contributing area (blue) and the landslide volumetric distribution curve
(red). (b) Compiled data from the study area; blue lines and red lines represent catchment and landslide distribution curves as a function of upstream area,
respectively. (c) A case where most landslides occur at relatively high values of upstream contributing area A (e.g., ψ ~ 1.8 as seen in this study) compared to the
landscape. (d) Cartoon illustration of Figure 4c. (e) A case where landslides are distributed fairly evenly across the catchment, similar to the catchment-scale distri-
bution of A (e.g., ψ ~ 1.2 as seen in this study) compared to the landscape. (f) Cartoon illustration of Figure 4e. (g) A case where most landslides occur at relatively low
values of upstream contributing area A compared to the landscape. (h) Cartoon illustration of Figure 4g. The Longmen Shan catchments affected by Wenchuan
earthquake-triggered landslides are similar to Figures 4c and 4e.
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distribution curves of these two catchments (Figure 5d and L10). For subcatchments and tributaries (L1–L17),
two types of landslide distribution curves are observed (Figure S5): some catchments (e.g., L2 and L5) show
similar patterns to the overall landslide inventory, while others (e.g., L7 and L16) are influenced by very large
landslides with sharp rises in the Vls distribution curve in domains with higher upstream areas.
4.1.2. Region-Wide Connectivity Values
Based on the landslide upstream contributing area values and the threshold Amin values, we estimate that
~16% of the landslide population (in terms of number of landslides) is connected to river channels.
Estimates of the number of channel-connected landslides associated with the Chi-Chi earthquake in
Taiwan are lower (~8% of the total), while those triggered by Typhoon Herb are higher (~24%), a difference
that may be attributed at least in part to clustering of coseismic landslides at hillslope crests [Dadson et al.,
2004]. As far as we are aware, directly comparable estimates of areal or volumetric connectivity are not
available for the Chi-Chi earthquake or for other events.

For the Wenchuan-triggered landslides, 30% of total landslide area is connected to rivers, higher than the
16% population connectivity. The difference between these values indicates that larger landslides (by area)
are more likely to be connected to channels. The Wenchuan landslide inventory follows a heavy-tailed distri-
bution and can be fit by an inverse-gamma function (Figure 6) [e.g., Malamud et al., 2004] defined by

p Als; q;m; sð Þ ¼ 1
mΓ qð Þ

m
Als � s

� �qþ1

exp � m
Als � s

� �
(7)

where Als represents individual landslide areas, p is the probability density, and q, m, and s are inverse-gamma
function parameters. Landslides in the hillslope and fluvial domains both follow inverse-gamma distributions
(equation (7)), but with different parameters, indicating that landslides in the channel domain on average have
larger areas than those in the hillslope domain (Figure 6a). Corroborating this interpretation, we group landslide
populations based on areas and observe a well-defined positive correlation between average landslide area and
average landslide-channel connectivity (Figure 6b). The influence of landslide area on connectivity is consistent
with the expectation that, due to self-similar properties, larger landslides generally have longer lengths (L~Als

1/2)
[Hovius et al., 1997; Bellugi et al., 2015] and are more likely to reach hillslope bases and connect to channels.

The volumetric connectivity of the Wenchuan-triggered landslides is 43 + 9/�7% (median ± 5th/95th percen-
tiles from 1000 Monte Carlo simulations, propagating uncertainties from landslide area-volume scaling;
Figure 5a). Volumetric connectivity is higher than areal connectivity because of the nonlinear area-volume
scaling relationships and the above mentioned pattern of higher connectivity for larger area landslides.
The remaining 57+ 7/�9% of the total landslide volume is located, at least temporarily, on hillslopes.

Figure 6. Statistical distribution of the Wenchuan coseismic landslides and landslide area control on landslide-channel
connectivity. (a) Landslide probability density versus landslide area and the best fit three-parameter inverse-gamma
functions for the landslide area probability density distributions. Grey symbols show the overall landslide inventory
within the three main catchments, red symbols show the channel domain inventory, and blue symbols show the
hillslope domain inventory. Black, red, and blue curves indicate best fit inverse-gamma functions to all landslides
(best fit parameters: q = 1.81, m = 7.62 × 103m2, and s =�1.31 × 103 m2, with r2 = 0.87), channel-connected landslides
(best fit parameters: q = 1.51, m = 9.71 × 103m2, and s =�1.83 × 103 m2, with r2 = 0.84), and hillslope-domain
landslides (best fit parameters: q = 2.32, m = 10.91 × 103m2, and s =�1.81 × 103 m2, with r2 = 0.83), respectively. (b)
Landslide size control on landslide-channel connectivity, showing a positive correlation between ξ and landslide area.
Mean ξ values are calculated from landslide populations in each landslide area bin, with a bin size of δlog10 Als = 0.1.
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4.2. Comparing Landslide
Connectivity and Catchment-Scale
Location Index

We calculated the catchment-scale land-
slide location index (ψ) for the 17 sub-
catchments and tributaries impacted by
landslides (Table 2). All ψ values, which
range from 1.2 to 1.8, are greater than 1.
The maximum ψ in the Wenchuan case
is 1.8, for the Kai Jiang tributary, and is
caused by the large Daguangbao land-
slide, which is located in the fluvial domain
and contributes to the much lower IAls
(thus higher ψ) for this catchment.

Because landslide-channel connectivity (ξ) and landslide location index (ψ) both quantify landslide distribu-
tion as functions of upstream area, ξ should theoretically correlate well with ψ. Connectivity (ξ) depends on
the determination of channels, which might be complicated by multiple factors [Montgomery, 2001]. In con-
trast, location index (ψ) does not rely on how channels are defined and thus provides an independent repre-
sentation of landslide location. For our data, the mean ξ in a given catchment is positively correlated with ψ
(r2= 0.82, p< 0.001) (Figure 7), as we expect given that they represent similar characteristics of the landslide
distribution. A principal difference between the two metrics is that, unlike ξ , the value of ψ will be influenced
by the relative position of landslides with respect to distance from headwaters and thus to some extent with
flow accumulation at the landslide locations. We may thus expect ψ to more generally reflect the influence of
landslide position on sediment transport, a question we consider further in section 4.4.

4.3. What Determines the Connectivity of Wenchuan-Triggered Landslides?
4.3.1. Spatial Patterns of Landslide-Channel Connectivity
A central observation from our analysis is that landslide-channel connectivity is not uniform across the
Wenchuan earthquake-affected region. In this section, we consider how and why connectivity varies spatially
across the Longmen Shan. To illustrate the spatial patterns of the landslide inventory, we mapped areal den-
sities for total landslides and channel-connected landslides, as well as landslide-channel connectivity over the
three main study catchments (Figure 8). All landslides and channel-connected landslides have similar spatial
distributions, with higher areal densities in the hanging wall of the Yingxiu-Beichuan fault and lower densities
toward the Sichuan Basin and the plateau (Figures 8a and 8b) [e.g., Dai et al., 2011; Gorum et al., 2011]. The
spatial pattern of landslide-channel connectivity is less distinct, although a clustering around the middle of
the Yingxiu-Beichuan fault rupture is evident (Figure 8c).

When plotted in 5 km corridors along the steepest topographic gradient (A-A′), all landslides and channel-
connected landslides show clear clustering around the Yingxiu-Beichuan fault (Figures 8d and 8e) [e.g., Dai
et al., 2011]. Except for some statistically less significant landslide groups (with landslide populations of
< 20), landslide-channel connectivity shows a similar general trend, peaking around the Yingxiu-Beichuan
fault and decaying toward the Sichuan Basin and the Tibetan Plateau (Figure 8f).
4.3.2. Controls on the Landslide-Channel Connectivity
The spatial variability in landslide-channel connectivity for theWenchuan earthquakemay provide general insight
intowhat factors set the amount of landslide sediment delivered directly to river systems. To achieve high connec-
tivity, landslides need to reach the hillslope base, and channel densities need to be high enough to sample a large
number of landslides. Several factors may determine connectivity by influencing landslide sizes (and thus likeli-
hood of reaching rivers) or regional channel densities. Here we focus on how topography, seismic intensity,
and lithology influence landslide sizes, and on how topography and lithology influence channel densities. We
explore each factor independently, acknowledging that there will be coupling and intercorrelation among them.
4.3.2.1. Topographic Control on Connectivity
To constrain the role of topography, we group landslides in the Wenchuan inventory by bins of mean gradient,
mean elevation, and mean relief for all DEM cells within each landslide polygon extent, with bin sizes of 1° for
gradient and 100m for elevation and relief. We calculate the landslide-channel connectivity ξ within each group

Figure 7. Relationship between landslide location index ψ and landslide-
channel volumetric connectivity ξ . The solid line represents the best fit from
linear regression, and the grey shading represent 95% confidence bands.
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(Figures 9a–9c). Landslide-channel connectivity and landslide gradient (defined as the mean gradient for all DEM
cells within each landslide polygon) show a well-defined negative trend (Figure 9a), except for a few landslides at
the highest observed gradients. The general pattern of lower ξ as gradients increase can be attributed to the
negative relationship between mean catchment gradient and drainage density (Figure S6a), implying a geo-
morphic control on channel distribution. High gradient areas have smaller upstream areas to support fluvial
channels, thus leading to lower channel densities and lower landslide-channel connectivity. Gradients also have
an effect on landslide size (Figure S6b) with steeper gradients facilitating larger landslides (meaning higher
landslide-channel connectivity), competing with the gradient effect on drainage density. The overall negative
trend between ξ and gradient indicates that the effect on drainage density is dominant. The effect of gradient
on landslide size is most relevant for the steepest areas (>60°) where a small fraction (<1%) of landslides is
located (grey dots in Figure S6b).

Elevation and relief couple tightly with gradient in the Longmen Shan. Low-elevation areas are limited to
proximal valley floors and the Sichuan Basin, dominated by fluvial processes with dense fluvial networks
(Figure 2g), leading to high probability for landslide-channel connection. Medium- to high-elevation areas
represent mountain and plateau regions which have lower drainage density and are thus less prone to
landslide-channel connection (Figures 2b and 9b). Similarly, lower relief occurs in either basin or plateau
areas, with higher relief in between. Landslides in low-relief areas occur mostly in plateau regions where

Figure 8. Spatial patterns of coseismic landslides, channel-connected landslides, and volumetric landslide-channel connectivity. (a) Distribution of coseismic land-
slide areal density PAls in 5 × 5 kmwindows. The black lines show the extent of the Wenchuan surface rupture [Liu-Zeng et al., 2009]. (b) Distribution of landslide areal
density for channel-connected landslides in 5 × 5 km windows. A-A′ indicates the swath trend defined in Figure 2. (c) Distribution of landslide-channel connectivity ξ
(calculated from mean values of landslide area-volume scaling parameters) in 5 × 5 km windows. (d) Landslide areal density in 5 km corridors along swath A-A′,
superimposed on the swath profile of the Longmen Shan topography (mean, maximum, and minimum elevations). (e) Distribution of channel-connected landslide
areal density in 5 km corridors along swath A-A′. (f) Landslide-channel connectivity ξ (calculated from mean values of landslide area-volume scaling parameters) in
5 km corridors along swath A-A′. Red dots represent landslide populations of numbers> 50 in each 5 km corridor, and grey dots show populations of< 20. The black
dashed line in Figures 8d–8f indicates the Yingxiu-Beichuan fault.

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003718

LI ET AL. WENCHUAN LANDSLIDE DISTRIBUTION 13



drainage density and associated landslide-channel connectivity are low (Figure 9c). Medium-high relief areas
are mainly found in the eastern Longmen Shan, where most earthquake-triggered landslides occurred, with
medium-high drainage density, representing favorable conditions for landslide-channel connection
(Figures 2g and 9c). Very high relief areas may represent some local areas with lower drainage density and
consequently lower landslide-channel connectivity. Overall, the observed correlations suggest that topogra-
phy influences landslide-channel connectivity mainly via controls on channel densities.
4.3.2.2. Lithological Control on Connectivity
We calculated ξ for different lithological units [China Geological Survey, 2004] grouped both (i) as meta-
morphic, igneous and sedimentary rocks, and (ii) as the main subtypes outcropping in the Longmen Shan
range. The metamorphic rocks in the study area are mainly composed of low- to medium-grade units (e.g.,
slate, phyllite, schist, metasandstone, and marble). The major igneous rock is granitic. For sedimentary rocks,
we identify three subtypes: carbonate, mudstone (fine clastic material), and sandstone (coarser clastic mate-
rial). Across most lithologies, ξ is similar, but values are significantly higher for sandstone and mudstone and
lower for slate (Figure 9d). In conjunction with other factors like precipitation, surface/subsurface hydrology,
and topography, lithology influences drainage densities [Day, 1980; Tucker and Bras, 1998;Moglen et al., 1998;
Duvall et al., 2004; Luo and Stepinski, 2008] and thus landslide-channel connectivity. We observe varied
drainage density among different lithological units and a good correlation (r2 = 0.80) between connectivity
and drainage density of each lithological unit, excluding the < 2% landslide population from the slate unit
(Figure 9e). Landslides in slate lithologies are mostly located at the northern end of the main fault rupture,
in an area that is characterized by dominantly strike-slip fault motion, low topographic relief, and low peak
ground acceleration (PGA), potentially explaining their anomalously low connectivity. Lithology-dependent
rock strength might also influence landslide areas, and thus connectivity, but we did not find a statistically
significant correlation between landslide area and connectivity among different lithologies. Our lithological
classification is inevitably simplified and does not account for the complex interactions between lithology,
rock strength, erodibility, and landsliding [Montgomery, 2001; Chen et al., 2011; Gallen et al., 2015].
Nonetheless, our observations point to a potential role for substrate properties in modulating landslide-
landscape relations, particularly through setting drainage density.
4.3.2.3. Seismic Control on Connectivity
Previous studies have shown that the spatial distribution of earthquake-triggered landslides is determined by the
patterns of peak ground acceleration (PGA) [e.g., Keefer, 1984; Jibson and Keefer, 1993;Meunier et al., 2007;Meunier
et al., 2008; Kritikos et al., 2015]. Correlations between landslide densities and local PGAwere also observed for the
Wenchuan earthquake [Dai et al., 2011; Yuan et al., 2013; Gallen et al., 2015]. Here we find a positive correlation
not only between landslide occurrence and PGA, as observed previously, but also between landslide-channel
connectivity ξ and PGA (Figure 9f). This correlation can be explained by the observed dependence of individual
landslide area on PGA (Figure S6c): higher seismic intensity and stronger ground motions tend to trigger larger
landslides, which are more likely to reach channels. As expected, there is no correlation between PGA and drai-
nage density (Figure S6d).

Spatial patterns of earthquake-triggered landslides are also sensitive to the sense of motion on the fault
[Meunier et al., 2008; Barlow et al., 2015; Gorum and Carranza, 2015]. The Wenchuan landslides occurred in
areas of complex faulting, varying along strike from dextral thrust to nearly pure strike-slip motion [Xu
et al., 2009; Liu-Zeng et al., 2011; Gorum and Carranza, 2015]. We classified the Wenchuan landslides following
the approach of Gorum and Carranza [2015], projecting landslides to the nearest segment of the fault rupture
that was categorized based on the predominant type of motion (thrust, oblique slip, and strike slip) [Liu-Zeng
et al., 2009]. We calculated the corresponding landslide-channel connectivity for the different types of fault-
ing along each segment (Figure 9g). We acknowledge that landslides at any given site may be triggered by
energy from different segments along the rupture, and not just by the nearest segment, but PGA values show
limited variation along the main fault rupture, so we do not expect large biases.

The average landslide-channel connectivity for landslides in areas dominated by thrust and oblique-slip
segments (ξ ~ 37 + 4/�3%, reported as median ± 5th/95th percentiles from 1000 Monte Carlo simulations,
propagating uncertainties from landslide area-volume scaling, and excluding the anomalously large
Daguangbao landslide) is very slightly higher than for landslides adjacent to strike-slip segments (ξ ~32±1%)
(Figure 9k). This finding is consistent with the fact that the mean landslide area near thrust and oblique-slip seg-
ments (~8300m2, excluding the Daguangbao landslide) is larger than that near strike-slip segments (~6300m2),
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which may be explained by the spatial clustering of the seismic moment release around Yingxiu (dominated by
thrust faulting) and Beichuan [Shen et al., 2009; Parker et al., 2011]. Several modeling studies have shown that, for
the same magnitude of initial stress, thrust or reverse dip-slip faults can generate stronger ground motion com-
pared to strike-slip faults [e.g., Oglesby and Day, 2002; Gabuchian et al., 2014]. Such relationships would mean
both a higher susceptibility to landsliding and larger landslides, and consequently higher channel connectivity
(Figure 6b), in thrust earthquakes compared to strike-slip events, consistent with the variations of landslide-
channel connection that we observe.
4.3.2.4. Coupling of Effects
In some cases, the factors discussed above will be interrelated, for example, multiple factors could contribute
to the observed lower connectivity for landslides in slate (Figure 9f), but their interrelations cannot be
untangled with available data. Nonetheless, we do not observe highly systematic spatial correlations among

Figure 9. Controls on landslide-channel connectivity ξ . (a–c) Topographic control on landslide-channel connectivity. Mean ξ values are calculated from landslide
populations in bins (δ) of each parameter, defined as follows: ξ versus gradient (δ = 1°) (Figure 9a), ξ versus elevation (δ = 100m) (Figure 9b), and ξ versus relief
within a 2.5 km radius circular window (δ = 100m) (Figure 9c). Black dots indicate results from the very large Daguangbao landslide, while grey dots represent
statistically less-represented groups (<1% of total landslide number). Note that the relief in Figure 9c may show local maximum relief not revealed in Figure 2d
(averaged relief ± 1 standard deviation across the swath profile). (d) Lithological control on landslide-channel connectivity. Lithological data are taken from the 1:
2,500,000 China Geological Base Map [China Geological Survey, 2004]. Results are presented as median values (bars) and 90% envelopes (error bars, 5th–95th
percentiles) from 1000 Monte Carlo simulations. (e) Dependence of landslide-channel connectivity on drainage density for landslides within each lithological unit.
The grey dot represents <2% of the total landslide population. The black solid line represents the best linear fit, excluding the grey dot. Numbers aside each dot
denote corresponding lithology as shown in Figure 9d. (f) Positive correlation between peak ground acceleration (PGA) and landslide-channel connectivity. The PGA
and landslide-channel connectivity represent mean values calculated from 5 km wide increments along the swath profile A-A′. The solid line represents the best
linear fit. (g) Fault-type control on landslide-channel connectivity. For landslides nearest to thrust and oblique-slip fault segments, the landslide-channel connectivity
is reported for populations excluding the anomalously large Daguangbao landslide due to its significant, disproportional influence on the connectivity. Results are
presented as median values (bars) and 90% envelopes (error bars, 5th–95th percentiles) from 1000 Monte Carlo simulations.
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topography, lithology, and seismic parameters across the Longmen Shan, suggesting that our analysis still
provides first-order insights into the roles of these parameters in controlling landslide-channel connectivity.

4.4. Implications for Post-Wenchuan Sediment Transport

For the Wenchuan case, 43 + 9/�7% of the coseismic landslide volume is directly connected to channels,
representing ~1.4 km3 of the ~3 km3 total landslide volume in the Longmen Shan catchments. The remaining
57+ 7/�9% of landslide sediment volume (~1.6 km3) resides higher on hillslopes. This landslide-channel con-
nectivity sets an initial condition for post-Wenchuan sediment transport. Channel-connected landslides are
expected to have high potential for fluvial evacuation in the monsoonal climate [Liu-Zeng et al., 2011;
Wang et al., 2015], whereas landslide material in the hillslope domain should be less immediately available
for river transport [Meunier et al., 2008; Dadson et al., 2004; Hovius et al., 2011; Huang and Fan, 2013; Tsai
et al., 2013]. These predictions can be tested by evaluating relationships between postearthquake sediment
fluxes and the landslide inventory.

We currently lack constraints on bedload sediment transport following the Wenchuan earthquake, butWang
et al. [2015] reported suspended sediment (predominantly material <0.25mm diameter) fluxes, allowing us
to examine transport of the fine landslide material. We calculated the differences in suspended sediment
fluxes for nested catchments reported in Wang et al. [2015], converting the total fluxes above each gauging
station to a suspended sediment yield for individual subcatchments and tributary catchments (see details in
supporting information). This approach returns negative values for 2 out of the 16 catchments where data are
available, likely due to large sediment sinks such as reservoirs that are not accounted for in this analysis
(catchments labeled as “N.A.” in Figure 10a and Table 3). These two catchments were excluded from the fol-
lowing analysis. For the other catchments, we normalized the estimated landslide density and sediment yield
to the fraction of mountainous area (defined here as elevation > 800m, Table 3) in the catchment. Several
gauging stations located at further downstream sites also include large floodplain areas that contribute little
to landsliding and sediment export, so we excluded these areas by using a threshold elevation.

Across the Longmen Shan catchments, we observe a positive correlation (Figure 10b, r2 = 0.40, p< 0.05)
between total landslide volumetric density PVls and postseismic (June 2008 to December 2008) suspended
sediment yield. This relationship is consistent with landslides being a significant source of sediment following
the earthquake. A similar positive correlation (r2 = 0.66, p< 0.05) is observed between PVls and suspended
sediment yield over the following 3 years (2009–2012) (Figure 10c). Although we do not account for postseis-
mic landslides in our correlation analysis, we expect that the<~20% additional postseismic landslide volume
(see section 3.1 and Tang et al. [2011]) would not significantly affect our conclusions.

To examine the role of connectivity, we regressed PVls of channel-connected landslides with suspended sedi-
ment yield (Figures 10d and 10e). We find that there is no statistically significant difference in the correlation
coefficients between total landslide density and suspended sediment yield on the one hand, and between
channel-connected landslide density and suspended sediment yield on the other (examined by Meng’s Z test
(p> 0.6) [Meng et al., 1992]). The correlation coefficients are statistically indistinguishable for total and
channel-connected landslides whether considering the 2008 sediment flux data or the 2009–2012 data.

The normalized residuals from the regression between total landslide density and suspended sediment yield
provide further insight into the possible role of connectivity in sediment transport. If landslide locations rela-
tive to channels play an important role in explaining postearthquake sediment fluxes, we should find that
these residuals are positively related to connectivity or location index. Indeed, we find a weak but statistically
significant relationship (r2 =0.26, p< 0.1) between residuals and location index (ψ) for the sediment yield mea-
sured in 2008 (Figure 10f). Connectivity (ξ) shows no similar correlation. By using a constant threshold area,
the connectivity index does not account for the greater efficacy of sediment transport in higher-order channels,
which is encapsulated in the location index, possibly explaining why ψ might better describe the potential for
sediment transport. Nonetheless, the relationship between the residuals and ψ disappears for the sediment yield
measured between 2009 and 2012 (Figure 10g). We speculate that this observation can be explained by an initi-
ally weak influence of landslide location on fine sediment fluxes (as observed in the 2008 data), with the influence
of landslide locations fading over time. This could be because fine-grained landslide material is relatively readily
entrained from landslide deposits even in the hillslope domain, for example, via overland flow duringmonsoonal
storms over the 2009–2012 time period, such that landslide locations become less relevant. It is also possible that
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any signal in the 2009–2012 data is convoluted by other effects, including postseismic landslides, although we
expect these to make a relatively minor contribution as discussed above.

Fine sediment only represents a small proportion (<10wt %) of the total volume of material from Wenchuan
earthquake-triggered landslides, leaving coarse material (>0.25mm) as the dominant component [Wang
et al., 2015]. We expect that the supply of coarse material to river channels may be more affected by
landslide-channel connectivity than the supply of fine-grained material, since coarse material is likely to be
less easily mobilized from hillslopes. We currently do not have data constraining coarse sediment fluxes from
multiple catchments in the Longmen Shan, but such information would be valuable for more completely
testing conceptual models for landslide sediment transport.

5. Conclusions

We have systematically explored the locations of landslides triggered by the 2008 Wenchuan earthquake
within the fluvial network across the Longmen Shan range at the eastern edge of the Tibetan Plateau. We
quantified landslide-channel connectivity in terms of landslide volume, area, and number, and we examined
how volumetric connectivity ξ varies spatially in order to understand what controls the supply of sediment
for fluvial evacuation. Finally, we have considered our connectivity results in the context of sediment
transport following the Wenchuan earthquake. Several key findings contribute to better understanding of
coseismic landslides as sediment sources:

1. For the coseismic landslide inventory within the three main catchments draining the Longmen Shan
(covering over 90% of the total landslide-impacted area), 16% of the total landslide number, 30% of the

Figure 10. Spatial pattern of post-Wenchuan suspended sediment yield and relations to coseismic landslide volumetric density (equation (4)). (a) Distribution of
postearthquake suspended sediment yield (t km�2) in catchments across the Longmen Shan range (integrated over June 2008 to December 2008, based on data
fromWang et al. [2015], normalized for areas with elevation> 800m), with color coding of the derived suspended sediment yield. Catchments labeled N.A. indicate
negative-valued calculated sediment yield due to unaccounted large sediment sinks like reservoirs (see supporting information). (b and d) Sediment yield over June
2008 to December 2008 (normalized to 1 year) plotted versus total landslide volumetric density (Figure 10b) and channel-connected landslide volumetric density
(Figure 10d) for each catchment; solid lines show power law best fit as determined from least squares fit in the logarithm space. (c and e) Annual sediment yield over
2009–2012 plotted against total landslide volumetric density (Figure 10c) and channel-connected landslide volumetric density (Figure 10e) for each catchment; solid
lines show power law best fit as determined from least squares fit in logarithmic space. (f and g) Relations of normalized residual (P) from the fit between total
landslide density and sediment yield versus the corresponding landslide location index (ψ) using the 2008 data (Figure 10f) and 2009–2012 data (Figure 10g),
respectively. The solid line in Figure 10f shows the best fit between the normalized residual and location index using the 2008 data.
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total landslide area, and 43 + 9/�7% of the total landslide volume (~1.4 km3) are directly connected to
fluvial channels and thus prone to entrainment and transport by rivers. The remaining 57+ 7/�9% by
volume (~1.6 km3) was deposited higher on hillslopes, beyond the immediate extent of the fluvial channel
network. If connectivity plays an important role in sediment dynamics, we would expect this material to
be unavailable for immediate transport.

2. The catchment landslide location index ψ, which describes the relative distribution of landslides versus
catchment topography as a function of upstream contributing area, provides an additional constraint
on landslide locations in landscapes independent of channel definition. We find a positive correlation
across different catchments between ψ and our determination of landslide-channel connectivity (ξ) based
on gradient-upstream area relations, suggesting these metrics are consistent. We suggest that ψmay pro-
vide a complementary index that also reflects upstream area and thus may capture the more general
influence of landslide position on sediment transport, as hinted by sediment flux data following the
Wenchuan earthquake.

3. Landslide-channel connectivity is linked to topographic parameters, specifically to gradient and drainage
density, which are themselves correlated. Lithology is also an important control on connectivity, with
higher volumetric landslide-channel connectivity (ξ ~60–80%) for clastic sedimentary bedrock and lower
(10–20%) for high-grade metamorphic bedrock. Our analysis also suggests higher landslide-channel con-
nectivity in areas with higher PGA and near fault segments dominated by thrust and oblique slip during
the Wenchuan earthquake. The coupling of these factors may also contribute to the observed landslide-
channel connectivity pattern.

4. The correlation between suspended sediment yield and the volumetric density of channel-connected
landslides is statistically indistinguishable from the correlation with the volumetric density of all land-
slides. Residuals from the correlation between sediment yield and the density all landslides are weakly
related to location index ψ for data from 2008, immediately following the earthquake, but not to location
index for data from the ensuing years. This suggests a weak initial influence of connectivity on fine-

Table 3. Compiled Data for Postearthquake Suspended Sediment Yields and Landslide Volumetric Densities

Large
Catchment ID Catchment Notation Catchment Type

Fraction of Mountainous Area
(Elevation> 800m) in Total Catchment

Area
Controlling Hydrological

Stationa

Min Jiang G1 Min Jiang Pengshan to Dujiangyan Subcatchment 0.19 Pengshan
G2 Guojiaba Tributary 1 Guojiaba
G3 Min Jiang Dujiangyan to Zhenjiangguan Subcatchment 1 Dujiang
G4 Lower Zagunao Tributary 1 Sangping
G5 Upper Zagunao Tributary 1 Zagunao
G6 Lower Heishui Tributary 1 Shaba
G7 Upper Heishui Tributary 1 Heishui
G8 Min Jiang above Zhenjiangguan Subcatchment 1 Zhenjiangguan

Tuo Jiang G9 Tuo Jiang main Main catchment 0.14 Dengyingyan
Fu Jiang G10 Kai Jiang above Santai Tributary 0.10 Santai

G11 Fu Jiang Shehong to Fujiangqiao Subcatchment 0.16 Shehong
G12 Fu Jiang Fujiangqiao to Jiangyou Subcatchment 0.85 Fujiangqiao
G13 Pingtong He above Ganxi Tributary 0.98 Ganxi
G14 Upper Zitong Jiang above Zitong Tributary 0.26 Zitong
G15 Fu Jiang Jiangyou to Pingwu Subcatchment 0.93 Jiangyou
G16 Fu Jiang above Pingwu Subcatchment 1 Pingwu

aDetailed information on hydrological stations is reported in Wang et al. [2015].
bPost-Wenchuan (June 2008 to December 2008) suspended sediment yield is the total suspended sediment yield from June 2008 to December 2008 based on

the data set from the hydrological stations [Wang et al., 2015]; 1σ uncertainty is propagated from uncertainties in the original hydrological data set.
cPost-Wenchuan (2009–2012) annual suspended sediment yield is the annual mean sediment yield during 2009–2012 based on the data set from the

hydrological stations [Wang et al., 2015]; 1σ uncertainty is propagated from uncertainties in original hydrological data set.
dTotal landslide density is calculated as landslide volume/catchment area (equation (4)); Monte Carlo simulations are run for propagating uncertainties from

parameters in landslide area-volume scaling and reported as the medians and the 16th and the 84th percentiles [Li et al., 2014].
eChannel-connected landslide volumetric density is calculated as channel-connected landslide volume/catchment area (equation (4)); Monte Carlo simulations

are run for propagating uncertainties from parameters in landslide area-volume scaling and reported as the medians and the 16th and the 84th percentiles
[Li et al., 2014].

fSediment yield is not available because the calculations return negative values; see main text.
gLandslide data are not available due to no coverage of satellite imagery.
hLandslide location index is not available due to no landslide data.
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sediment fluxes that decreases over time. This observation may be related to mobilization of fine-grained
material from hillslopes, and future work needs to establish whether the fluvial transport of coarser
fractions of landslide debris is affected more significantly by landslide locations.

Overall, our results shed light on landslide locations in landscapes and how landslide-channel connection
regulates sediment transport after large earthquakes. This work provides an important database for future
research on sediment dynamics following the Wenchuan earthquake. The framework and methodology
developed in this study are also applicable to other earthquakes in similar settings, promising greater under-
standing of the role of rare, high-magnitude seismic events in regulating sediment transport processes, in
influencing associated sediment-related hazards, and in the long-term tectonic and topographic evolution
of mountain belts.
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