OIKOS

Little evidence for release from herbivores as a driver of plant invasiveness from a multi-species herbivore-removal experiment.

Journal:	Oikos
Manuscript ID:	OIK-01485.R1
Wiley - Manuscript type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Dawson, Wayne; University of Konstanz, Biology Bottini, Annamaria; University of Bern, Ecology and Evolution Fischer, Markus; University of Bern, Institute of Plant Sciences van Kleunen, Mark; University of Konstanz, Biology
Keywords:	exotic, herbaceous plants, natural enemies
Abstract:	Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

SCHOLARONE[™] Manuscripts

- Little evidence for release from herbivores as a driver of plant invasiveness from a 1 multi-species herbivore-removal experiment. 2 3 Wayne Dawson^{1,2*}, Annamaria Bottini³, Markus Fischer¹, Mark van Kleunen² and Eva Knop³ 4 5 ¹Plant Ecology, Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, 6 7 Switzerland ²Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 8 9 Konstanz, Germany ³Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, 10 Switzerland 11 12 *Corresponding author: 13 Wayne Dawson 14 Department of Biology, 15 University of Konstanz, 16 Universitätsstrasse 10, 17 D-78457 18 19 Konstanz, Germany 20 21 E-mail: wayne.dawson@uni-konstanz.de
- **22 Tel:** +497531882116
- 23
- 24 Running title: Experimental enemy release of plants

25 Abstract

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an 26 27 experimental multi-species test examining performance and herbivory of invasive alien, non-28 invasive alien and native plant species in the presence and absence of natural enemies is lacking. 29 In a common garden experiment in Switzerland, we manipulated exposure of seven alien 30 invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different 31 32 nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa 33 on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass 34 response to pesticide treatment at either nutrient level. The proportion of leaves damaged on 35 invasive species was significantly lower compared to native species, but not when compared to 36 non-invasive species. However, the difference was lost when plant size was accounted for. There 37 were no differences between invasive, non-invasive and native species in herbivore abundance. 38 Our study offers little support for herbivore release as a driver of plant invasiveness, but suggests 39 that future enemy release studies should account for differences in plant size among species. 40 41 42

Key-words: exotic, herbaceous plants, natural enemies, naturalisation, phytophagous insects,
resource availability.

45

Page 3 of 47

Oikos

47 Introduction

The enemy release hypothesis (ERH) is one of the most widely invoked mechanisms used to 48 49 explain why some alien plant species become invasive in their introduced ranges (see reviews of (Colautti et al. 2004, Liu and Stiling 2006, Chun et al. 2010). Plant species introduced to a new 50 range may escape natural enemies, such as pathogens and herbivores (Keane and Crawley 2002) 51 52 The absence of natural enemies may increase plant performance compared to the native range, and also relative to native plant species in the new range as the latter should still suffer from their 53 full suite of natural enemies (Colautti et al. 2004). Under the ERH, alien plant species that are 54 sufficiently released from enemy damage to increase performance and fitness, may greatly 55 increase their populations and become invasive. In contrast, aliens that undergo less release from 56 enemy damage do not have the same performance advantage, and are less likely to outcompete 57 native species and become invasive (Keane and Crawley 2002). Thus, for the ERH to be a 58 general rule, only invasive alien, but not non-invasive alien species should benefit through a 59 reduction in enemy damage, which results in greater performance, relative to native species. 60

61 A number of studies have compared damage from herbivory on alien and native plant species in the introduced range (Agrawal and Kotanen 2003, Colautti et al. 2004, Agrawal et al. 62 2005, Chun et al. 2010, Funk and Throop 2010). Others have compared the level of damage by 63 natural enemies on native, non-invasive alien and invasive alien species (Liu et al. 2007, Parker 64 and Gilbert 2007), or investigated the relationship between viral/fungal pathogen release and 65 invasiveness of alien plant species (Mitchell and Power 2003, van Kleunen and Fischer 2009). 66 These approaches test the ERH partially, in that reduced attack and damage of invasive alien 67 species does not necessarily result in increased plant performance relative to native species, or 68 69 non-invasive aliens. To fully test the ERH, plant performance in the absence and presence of

enemies has to be assessed, which only few studies did so far (Parker and Gilbert 2007, Chun etal. 2010).

72	Further, the identity of the herbivores may determine the outcome of the ERH (Cripps et
73	al. 2006, Ando et al. 2010, Alba et al. 2012), as it assumes release from specialist herbivores
74	(Keane and Crawley 2002, Mitchell et al. 2006). However, many alien species occur in urban
75	environments (Pyšek 1998), where it is likely that most herbivores are generalists (Niemelä et al.
76	2011). Whether release from generalist herbivores also contributes to plant invasion remains
77	open: while some studies show that also generalist herbivores avoid alien and alien invasive
78	plant species (Jogesh et al. 2008, Tallamy et al. 2010, Schaffner et al. 2011), others did not find
79	this pattern (Parker and Hay 2005).
80	Plants growing under higher nutrient levels are likely to be more susceptible to herbivory
81	due to greater tissue nutrient content (Mattson 1980, Butler et al. 2012). Therefore, plant species
82	that grow in high-nutrient environments and benefit most from increased nutrient availability
83	may suffer greater levels of herbivory than species in low nutrient environments (Coley et al.
84	1985, Dostal et al. 2013, Lind et al. 2013). The resource-enemy release hypothesis (Blumenthal,
85	2005, 2006) states that alien plants from nutrient-rich environments will benefit more from
86	enemy release. A prediction made by this hypothesis is that if invasive alien species already
87	benefit from enemy release in terms of performance, they may do so to a greater extent under
88	higher nutrient levels compared to more susceptible natives.
89	We tested the ERH by manipulating exposure of native, alien invasive and alien non-

90 invasive herbaceous plant species in Switzerland to invertebrate herbivores. If invasive species

- 91 already benefit from natural enemy release, they should benefit less strongly from
- 92 experimentally reduced herbivore exposure compared to native and non-invasive alien species.

93	we recorded 1) the abundance and identity of major invertebrate herbivores, which we
94	subsequently classified according to their feeding preferences as generalists or specialists; 2) leaf
95	damage, and 3) biomass in response to enemy exclusion. For biomass, we tested the effect of
96	nutrient availability on the level of enemy release experienced by the plants by exposing plants
97	to low and high nutrient levels. Specifically our hypotheses were:
98	1) herbivore damage and herbivore abundance should be lower in invasive alien than
99	non-invasive alien and native species;
100	2) Invasive species should show no or little decrease in herbivore damage and abundance
101	when treated with pesticide, while non-invasive and native species should exhibit
102	significantly lower herbivore damage/abundance when treated with pesticide;
103	3) Plant performance (biomass) of invasive species should show no or little increase
104	when treated with pesticide, while non-invasive and native species should show a larger
105	increase in biomass.
106	4) We also expect the differences between native and non-invasive species, and invasive
107	species in pesticide effects to be more pronounced with the addition of nutrients.
108	

- 109 Materials and Methods
- 110 *Study species*
- 111 Seeds of 29 species were collected in 2008 and 2009 from plants in wild populations throughout
- 112 Switzerland (Table 1). These 29 species included fourteen native, eight non-invasive alien and
- seven invasive alien species within Switzerland, and represent six taxonomic confamilial groups

Page 6 of 47

Oikos

114	(Table 1). Species belonging to the Plantaginaceae, Phrymaceae and Scrophulariaceae, which
115	until recently all belonged to the Scrophulariaceae, were considered one group, and the
116	Asteraceae species were split into two groups (Bidens genus and non-Bidens species). Except for
117	five native species, all other species occur in nitrophilous plant communities (Landolt et al. 2010;
118	see Table S1). For the non-Bidens Asteraceae group, the native Solidago virgaurea was used to
119	assess herbivory damage, while the natives Gnaphalium luteoalbum and Artemisia vulgaris were
120	used to assess biomass responses to pesticide and nutrient addition treatments (see below), due to
121	limited numbers of plants available. Thus, for native non-Bidens Asteraceae species, herbivory
122	damage and biomass responses to pesticide and nutrient treatments are not directly comparable.
123	Expert opinion from the National Data and Information Centre of the Swiss Flora, and the
124	associated Info Flora website (http://www.infoflora.ch/de/flora/art-abfragen.html) were used in
125	order to assign species status as native, alien invasive or alien non-invasive, with invasive
126	species generally being more widespread in Switzerland according to Atlas records (Table S1).

127

128 Experiment set-up

Seeds were planted as individual seed families collected from mother plants, in a 1:1
mixture of seedling compost and sharp sand in the third week of April 2010 in a greenhouse.
After germination, individual seedlings were transplanted to separated compartments within
trays, filled with a 1:1 mixture of alluvial soil and sharp sand. These seedlings were then grown
for a further 4-5 weeks until the end of June 2010.

We set up a common-garden experiment in a 1000 m² field in Bern, Switzerland,
surrounded by short grassland and gardens (i.e. the type of habitat where many plant invasions

	have started). Eight experimental blocks were set up (in a four by two configuration), and each
137	block was split into two halves (Fig. 1). Plants in each block were represented by one seed
138	family per species, to minimise the contribution of genetic differences to variation among plants
139	in different treatments within blocks. One half of each block was later randomly assigned to the
140	herbivore exclusion treatment (see below), and the block-halves were separated by 2 m. Each
141	block-half contained seven sub-blocks (Fig. 1), and sub-blocks were paired according to their
142	position across the block-halves. One pair of sub-blocks was randomly assigned a taxonomic
143	group per block (Fig. 1; the non-Bidens Asteraceae group was split into two plots, giving seven
144	instead of six sub-blocks in total, see Table 1). Two plants per species per sub-block were
145	planted individually in 3-L pots, with the same soil as the seedling trays. Pots within each sub-
146	block had either no nutrient addition or nutrient addition applied once prior to planting (12 g of
147	slow-release NPK fertiliser pellets; Osmocote [™] Exact Standard, N:P:K 16:9:12 + 2MgO + trace
148	elements). The soil had a nitrogen content of 1.79 g kg^{-1} of dry weight substrate (5.83 g N pot ⁻¹),
149	and nutrient addition resulted in a 33% increase in nitrogen concentration. These plants were
150	used for assessment of plant performance in response to herbivore exclusion and nutrient
151	addition (hereafter referred to as the performance set). An additional plant per species in each
152	taxonomic group per sub-block was planted in a 3-L pot containing the same soil as other plants,
153	and without nutrient addition. These plants were subsequently used to record rates of herbivore
154	damage and invertebrate herbivores (hereafter referred to as the herbivory set). The total
155	numbers of performance plants without nutrient addition and with nutrient addition, and plants
156	used for measuring herbivory per sub-block, are indicated in Fig. 1. Pot positions within each
157	sub-block were randomised.

158

In summary, 11 native, 8 non-invasive alien and 7 invasive alien species were used to

assess herbivory damage (Table 1), with initially 8 plants per pesticide treatment per species

Page 8 of 47

Oikos

(giving 416 plants in total). For measuring plant biomass in response to pesticide and nutrient

160

183

1	addition tractments, there were also 2 plants per gracies for each particide/nutrient tractment
)1 ;7	combination (giving a total of 896 plants). During the experiment some plants died, and others
	combination (giving a total of 670 plans). During the experiment, some plants ded, and others
53	were lost due to complete consumption by molluscs before the enemy exclusion experimental
64	treatment started. Thus, 200 complete pairs of pesticide/non-pesticide treated plants remained of
5	those for measuring herbivory (paired according to block, 400 in total), and 382 pairs remained
6	for measuring nutrient/pesticide effects on biomass (764 in total). Table S1 shows final sample
57	sizes (numbers of plants) per species per treatment.
3	Two weeks after planting (to allow plants to overcome transplant stress), one block-half
)	per block was randomly assigned to the herbivore-exclusion treatment. A belowground pesticide
)	was applied in pellet form (Cortilan®, Maag/Syngenta Agro AG, 1.5 % Chlorpyrifos) once to
	each pot individually, at a rate of 5 g per m ² (0.16 g per pot). An above-ground pesticide
	(Perfekthion®, Maag/Syngenta Agro AG, 500 g per L dimethoate) was applied as a fine mist
	spray with a concentration of 1 ml per L of water, and was repeated two weeks later at the
	beginning of August, and in the last week of August. Spray treatments were applied on calm,
	non-windy days. As a control, a fine mist spray of water was applied to the plants in the non-
	pesticide treatment. To contain the application of pesticide and procedural controls to the target
	plants, the treatments were carefully applied at a constant rate to each plant individually at close
8	range, and not above the plants using a pump-action canister. Anti-mollusc pellets (Mioplant®
•	Schneckenkörner, Migros AG, active ingredient: Metaldehyde) were applied liberally on the
)	ground surrounding the pots in the enemy exclusion block-halves at the end of July and in the
	third week of August. Whilst it is unlikely that all herbivores were excluded by the pesticide
	treatment, the abundance of invertebrate herbivores on plants was reduced compared with plants

with no pesticide applied (see results). To encourage colonisation by invertebrate herbivores,

184

Oikos

grassland was allowed to grow in strips separating and bordering the blocks, with care taken to

185	avoid shading of the experimental plants. The plants were grown for 12 weeks until 22 nd
186	September 2010, giving a period of 10 weeks for the herbivore exclusion treatment.
187	
188	Herbivory and performance measurements
189	On the herbivory set of plants, we collected herbivores once every two weeks, for a total of six
190	times throughout the experimental period between 9 am and 4 pm (6 - 9 am for molluscs), under
191	sunny and calm weather conditions. Most insects were sampled through removal. For aphids,
192	however, we counted the number of individuals on the plants, and we removed only a few
193	individuals for identification. This was done to avoid artificially decreasing aphid abundance
194	through harvesting over time. Molluscs and aphids were identified to species level, while other
195	invertebrates were identified to family or order level. Aphids, molluscs, orthopterans and
196	thysanopterans were the most abundant herbivore groups, and thus further analysed. On a species
197	level, aphids and molluscs were classified as generalists or specialists according to host plants
198	cited in Lampel and Meier (2007) for aphids, and in Frömming (1954) and Boschi (2011) for
199	molluses. Species were judged to be generalist if they were known to feed on host plants from \geq
200	two families/recorded as strongly polyphagous. The abundance of aphids on each plant was
201	summed across all survey times. Damage sustained by the herbivory set of plants was recorded
202	as the proportion of leaves on plants that were damaged, at the end of the experiment. Leaf
203	chewing, gall formation and leaf mining were all considered forms of damage, but only leaf
204	chewing was present. For plants with few leaves, all leaves were surveyed for signs of damage.
205	For branched plants with many leaves, one branch per plant was randomly chosen and surveyed.

206 Mean damage and aphid abundance values are given in Table S2.

For the performance set of plants, we harvested aboveground and belowground biomass of surviving plants after 12 weeks, and dried it at 80-85 °C for at least 72 hours prior to weighing. After 12 weeks, we also harvested, dried and weighed the aboveground biomass of the herbivory set of plants, for use as a covariate in subsequent analyses.

211

212 Analysis

Mixed effects models were used for all analyses, with species nested in taxonomic group, and 213 block added as random effects throughout. An identity variance structure modelling different 214 variances per species was included in all linear mixed effects models using the 'varIdent' 215 216 function in the R package 'nlme' (plus an additional identity variance structure according to nutrient treatment for biomass models) to meet error normality and homoscedasticity 217 218 assumptions. For non-pesticide treated plants from the herbivory set, we analysed aphid 219 abundance $(\ln(x+1))$ transformed) with a linear mixed model, and the proportion of leaves damaged and the presence of other herbivores using binomial generalized linear mixed models. 220 221 In each case, species status was a fixed effect. We also re-analysed the proportion of leaves 222 damaged with aboveground biomass (square-root transformed) and the number of leaves per 223 plant (natural-log transformed) as covariates, to account for differences in plant size (both centred to the mean and scaled to one standard deviation, to allow estimates of differences 224 among invasive, non-invasive and native species to be calculated for the average-sized plant). 225 226 The three Poaceae species had no plants with damaged leaves and were excluded from analyses of leaves damaged to avoid zero-inflation. 227

228	As measures of experimental enemy release, we calculated the difference in the
229	proportion of leaves damaged and the difference in aphid abundance between pairs of plants of a
230	species treated and not treated with pesticide for each block (giving up to eight values per
231	species, one per block). Linear mixed models were used to analyse these two variables, with
232	ln(x+22) transformation for the difference in aphid abundance, because the most negative
233	difference between paired plants was -21 (21 aphids fewer on the non-pesticide plant than the
234	pesticide-treated plant). Species status was a fixed effect. The difference in proportion of leaves
235	damaged was reanalysed with average biomass (natural-log transformed) and the difference in
236	the number of leaves between plants in each pesticide/non-pesticide pair added as covariates
237	(centred and scaled). In addition, in order to assess whether or not biomass actually correlated
238	with proportion of leaves damaged, we analysed the aboveground biomass (square-root
239	transformed) as a function of the proportion of leaves damaged for non-pesticide and pesticide-
240	treated plants separately. In these analyses, the intercept and slope were allowed to vary
241	according to taxonomic group and species nested within taxonomic group. A fixed variance
242	structure (variance increasing with increasing biomass) was used to account for variance
243	heterogeneity.
244	To quantify the effect of experimental enemy release on plant performance, we analysed
245	total biomass (square-root transformed) of the performance set of plants using a linear mixed
246	effects model. Only data points representing complete pairs were used, where both the 'enemy-
247	excluded' and 'enemy-exposed' plants were present and surviving in a block per nutrient
248	treatment. Species status, nutrient treatment and pesticide treatment were fixed effects. We used
249	likelihood ratio tests (χ^2 values) to assess the significance of interactions and main effects of these
250	three factors throughout, and in order to obtain a minimum adequate model explaining plant

function 'lme' in the package 'nlme' (Pinhiero et al. 2013) for linear mixed effects models, and
the function 'glmer' in the package 'lme4' (Bates et al. 2013), for generalised linear mixed
effects models.

255

256 **Results**

257 *Herbivore damage*

In the treatment without pesticides, 20% of leaves on native species (n=10) were damaged on 258 average, compared to 13% and 7% on invasive alien species (n=6) and non-invasive alien 259 species (n=7), respectively; the proportion of leaves damaged on invasive species was 260 significantly lower compared to native species, but not to non-invasive species (Figure 2a; Table 261 262 2). However, the significant difference was lost when plant biomass and total number of leaves per plant were accounted for (Likelihood ratio test: χ^2 =2.37, df=2, p=0.306; Table 2). There was 263 a significant reduction in proportion of leaves damaged as both biomass (χ^2 =16.10, df=1, 264 p<0.001) and the number of leaves increased (χ^2 =19.34, df=1, p<0.001; Table 2). 265

The proportion of leaves damaged on non-pesticide-treated plants was significantly 266 greater than on pesticide-treated plants across all species, on average (mean increase in 267 proportion of leaves damaged on non-pesticide treated plants = +0.041, SE = 0.008, t = 5.238, 268 p<0.001). The difference in proportion of leaves damaged between treatments was significantly 269 smaller for invasive species ($+0.0095 \pm 0.026\%$) compared to non-invasive alien species (+0.077270 $\pm 0.021\%$;), but only marginally compared to native species (+ 0.056 $\pm 0.026\%$; Figure 2b, Table 271 2). When plant-size covariates were included, differences according to status were no longer 272 significant (χ^2 =2.119, df=2, p=0.347; Figure 1b, Table 2). The difference in proportion of leaves 273

274	damaged between non-pesticide plants and pesticide-treated plants decreased significantly with
275	increasing average biomass (χ^2 =7.01, df=1, p=0.008) and difference in the number of leaves for
276	each plant pair (χ^2 =9.16, df=1, p=0.003; Table 2).

277	Among non-pesticide-treated plants, aboveground biomass of plants used to survey
278	herbivory decreased significantly with increasing proportion of leaves damaged (Table S3; Fig
279	S1). In contrast, aboveground biomass was not significantly related to proportion of leaves
280	damaged on pesticide-treated plants (Table S3; Fig. S1). In both cases, models with slopes and
281	intercepts varying according to taxonomic group and species explained significantly more
282	variation than random intercept models (non-pesticide plants χ^2 =40.06, df=1, p<0.001; pesticide
283	plants χ^2 =34.71, df=1, p<0.001). This indicated that the effect of proportion of leaves damaged
284	on biomass was variable among species (see Table S4 for intercepts and slopes per species).

Herbivore abundance 286

285	
286	Herbivore abundance
287	All eight species of aphid found on the plants were considered generalists (Table S5);
288	Aphis frangulae (Kaltenbach), Aphis fabae (Scopoli), Aulocorthum solani (Kaltenbach),
289	Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer), Rhophalosiphum nymphaeae (L.),
290	R. padi (L.) and Sitobion avenae (F.). According to Wittenberg et al. (2006), Myzus persicae and
291	Macrosiphum euphorbiae are alien to Switzerland. On average, 21 aphids were found per plant
292	on native plant species (n=11) without pesticide treatment, compared with 24 and 21 for invasive
293	(n=7) and non-invasive (n=8) species, respectively; these differences were not significant (Table
294	3). There were significantly more aphids on non-pesticide treated plants than on pesticide-treated
295	plants, across all species (mean difference in aphid abundance= +22.34, 95% CI= 7.63 – 44.37).

However, the difference in aphid abundance between treatments was similar for invasive, non-invasive and native plants (Table 3).

298	Four species of mollusc were found; Arion vulgaris (Moquin-Tandon), Deroceras
299	reticulatum (Mueller), Succinea putris (L.) and Xerolenta obvia (Menke). Wittenberg et al.
300	(2006) list Arion vulgaris as alien to Switzerland. Molluscs and orthopterans were no more likely
301	to be present on native species, than on invasive or non-invasive alien species, while
302	thysanopterans were marginally (but not significantly) less likely to occur on native than on
303	invasive species (Table S6).

304

305 *Effect of pesticide and nutrient treatments on biomass*

306	There was an overall significant effect of pesticide treatment (χ^2 =14.55, df=1, p<0.001),
307	with significantly more biomass on average for plants treated with pesticide than compared to
308	plants not treated with pesticide (mean difference in biomass= 1.092 g, 95% CI= $0.210 - 1.974$).
309	Responses of individual species were variable (Fig. S2). Invasive, non-invasive and native
310	species did not significantly differ from one another in their responses to pesticide treatment (2-
311	way interaction: (χ^2 =2.97, df=2, p=0.227; Fig. 3a). The effects of pesticide treatment on biomass
312	also did not significantly differ according to nutrient treatment (2-way interaction: ($\chi^2=0.88$,
313	df=1, p=0.348). Species of different status responded differently to nutrient addition (2-way
314	interaction: χ^2 =29.257, df=2, p<0.001), with a greater relative increase in biomass for native
315	(n=13) and invasive (n=7) species compared to non-invasive species (n=8), and native compared
316	to invasive species (Figure 3b; Table 4). The invasive species increased their biomass from 25.44
317	g to 48.54 g with nutrient addition, compared to 14.57 and 36.34 g for native species, and 17.82

318	and 28.92 g for non-invasive species without and with nutrient addition, respectively. There was
319	no significant three-way interaction between pesticide treatment, nutrient treatment and species
320	status affecting plant biomass (χ^2 =0.69, df=2, p=0.708).
321	
322	Discussion
323	Evidence for the enemy release hypothesis (ERH) involving herbivores would require a
324	smaller response to experimental herbivore exclusion for invasive alien species than for native
325	and non-invasive alien species (Keane and Crawley 2002). In our study, invasive species
326	suffered less foliar herbivory than native, but not than non-invasive species, and there was a
327	positive effect of pesticide treatment in terms of reduced herbivory for native and non-invasive
328	species, but not for invasive species, which would partially support the ERH. However, the
329	differences between invasive and other species were lost after accounting for plant size,
330	indicating that differences in enemy attack may be confounded by plant size (i.e. larger plants
331	have a tendency to suffer herbivory on a smaller proportion of their leaves). The change in
332	response for invasive but not native/non-invasive species to pesticide treatment when accounting
333	for size might reflect the influence of larger invasive species, such as Bidens frondosa, suffering
334	less herbivory due to their size. Unfortunately, tests of the ERH involving herbivores rarely
335	consider the effects of variation in plant size among compared species on enemy attack, and the
336	apparent partial support for the ERH from our results indicate that it should be taken into account
337	in such studies. In addition, there were no differences among invasive, non-invasive and native
338	species in herbivore presence and abundance, or in their biomass responses to pesticide
339	treatment. This is similar to a recent review of the few studies comparing herbivore abundance
340	and damage in introduced and native ranges of invasive species, showing that plants in the

341	introduced range suffer less herbivory overall, but the magnitude of difference was small (Liu
342	and Stiling 2006). When using a phylogenetically controlled multi-species approach the enemy
343	release hypothesis involving invertebrate herbivores does not appear to be a general mechanism
344	explaining the invasiveness of plant species. We acknowledge, however, that release from other
345	guilds of natural enemies, such as fungal pathogens and seed predators could potentially still
346	play a role in the success of the invasive species considered here, although evidence for release
347	from these types of enemies in general is not conclusive (Parker and Gilbert 2007, van Kleunen
348	and Fischer 2009, Hill and Kotanen 2011).
240	
349	Measures of nerotivory and enemy damage commonly used to test the EKH may not
350	always translate into plant performance effects. Even though Parker & Gilbert (2007) found that
351	herbivore damage and pathogen infection were lower on alien compared to native plant species
352	in North America, this did not translate into greater survival of alien compared to native species,
353	or of invasive alien compared to non-invasive alien species. Also, a recent study on Artemisia
354	ambrosiifolia, in its native range, found that enemy exclusion reduced damage on adult leaves,
355	but did not result in increased growth or reproduction (MacDonald and Kotanen 2010).
356	Moreover, a meta-analysis of enemy-release studies that manipulated the presence of natural
357	enemies found no consistent differences in plant-performance responses to enemy exclusion
358	between invasive species and native comparators (Chun et al. 2010). The lack of clear evidence
359	for reduced plant damage resulting in greater plant performance may be a consequence of
360	differing abilities among plant species to tolerate herbivory. We found that for non-pesticide
361	treated plants, those suffering herbivory on more leaves had a lower biomass overall, but there
362	was a significant amount of variation in the relationship according to species. Understanding
363	how herbivory (and natural enemy impacts in general) actually relate to plant performance is
364	essential if we want to adequately assess the relevance of enemy release to plant invasions. Other

365	effects of defoliation on plant performance can include reduced over-winter survival and
366	reproduction (Rose et al. 2009). Nonetheless, our results and others mentioned suggest it is
367	unlikely that release from herbivory alone can increase growth performance of invasive
368	compared to native plants.
369	Nutrient addition did not affect the differences in total biomass between pesticide and
370	non-pesticide treated plants, and also did not affect the differences among native, non-invasive
371	and invasive species. This result appears to suggest that while plants obviously increased
372	biomass with nutrient addition, overall, the absolute difference in biomass with enemy exclusion
373	did not vary greatly, which runs counter to the prediction of the resource-enemy release
374	hypothesis (Blumenthal, 2006). As we only assessed herbivore damage and herbivores on a
375	subset of plants that did not include a nutrient-addition treatment, we were not able to verify that
376	the number of leaves damaged by herbivores or the abundance of herbivores found on nutrient-
377	treated plants remained the same as on non-nutrient treated plants. Notwithstanding this, while
378	invasive species are able to increase biomass more than non-invasive alien species under nutrient
379	addition (in line with theory on fluctuating resources; Davis et al. 2000), our results suggest that
380	nutrient levels may not mediate enemy release differences between invasive and non-invasive
381	alien species in terms of performance. Moreover, native species increased biomass significantly
382	more than invasive species in response to nutrient addition. This could be due to, in part, the
383	inclusion of common, fast-growing native species, which may perform at least as well as
384	invasive aliens under higer nutrient levels (Dawson et al. 2012). However, invasive alien species
385	were also already ~ 1.7 times larger on average than native species without nutrient addition,
386	which may have limited their potential to increase biomass with nutrient addition.

387	A potential limitation of our study (and garden experiments in general), could be that
388	plants were not exposed to the whole suite of potential herbivores of the species used, especially
389	those that would occur belowground. Thus, whether the ERH in relation to invertebrate
390	herbivores explains the invasion success of a plant species might not only depend on the species
391	involved but also the herbivore community present. We only found species of the two most
392	abundant herbivore groups known to feed on multiple genera and plant families (Table S5). If
393	present, specialist species of the herbivore groups not identified to species level (because they
394	were mostly still larvae) may have played a minor role. However, the meaning of generalism
395	versus specialism is not clearly dichotomous; even among species considered 'generalist', there
396	may be some preference shown for certain food plants, and this could be mediated by the choice
397	of plant species available in the community. Notwithstanding this, if invertebrate herbivores
398	show preferences, then such preferences did not result in enemy release differences of invasive
398 399	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are
398 399 400	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater
398 399 400 401	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that
 398 399 400 401 402 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the
 398 399 400 401 402 403 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the possibility that additional phosphorus from the pesticide treatment could have increased plant
 398 399 400 401 402 403 404 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the possibility that additional phosphorus from the pesticide treatment could have increased plant biomass; however we estimate that only ~4 mg of P in total was added to plants receiving
 398 399 400 401 402 403 404 405 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the possibility that additional phosphorus from the pesticide treatment could have increased plant biomass; however we estimate that only ~ 4 mg of P in total was added to plants receiving pesticide treatment. The soil used was a relatively nutrient-rich agricultural soil, and we therefore
 398 399 400 401 402 403 404 405 406 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the possibility that additional phosphorus from the pesticide treatment could have increased plant biomass; however we estimate that only ~ 4 mg of P in total was added to plants receiving pesticide treatment. The soil used was a relatively nutrient-rich agricultural soil, and we therefore think a confounding fertilisation effect of pesticide use is unlikely. However, we cannot rule out
 398 399 400 401 402 403 404 405 406 407 	show preferences, then such preferences did not result in enemy release differences of invasive compared to native and non-invasive species. This may not be surprising if preferences are expressed at higher (e.g. familial) taxonomic levels; differences in herbivory may be greater among families than according to species status within families. A further potential caveat is that the pesticides used in the experiment were organophosphates. We cannot rule out entirely the possibility that additional phosphorus from the pesticide treatment could have increased plant biomass; however we estimate that only ~ 4 mg of P in total was added to plants receiving pesticide treatment. The soil used was a relatively nutrient-rich agricultural soil, and we therefore think a confounding fertilisation effect of pesticide use is unlikely. However, we cannot rule out other potential non-target effects of pesticides, such as impacts on soil microbiota.

408

410 Conclusions

411	To the best of our knowledge, this is the first multi-species experiment that assessed
412	herbivore loads and herbivore damage as well as performance with and without herbivore
413	suppression of invasive alien, non-invasive alien and native species. We found equivocal support
414	for enemy release involving invertebrate herbivores as a mechanism explaining invasion success
415	of alien plant species in our study. The species of herbivores identified were considered
416	generalists, and plant size was an important variable explaining variation in herbivory in our
417	multi-species approach. In addition, our study suggests that increased resource availability may
418	not necessarily increase the extent to which species benefit from enemy release. The degree of
419	herbivore release experienced by alien plant species under varying resource availability would be
420	better considered relative to plant size, and under a plant community context with manipulation
421	of different herbivore guilds.

422

423 Acknowledgements

424 This work was funded by NCCR Plant Survival. WD is also funded by the Deutsche

Forschungsgemeinschaft (AZ DA 1502/1-1). The authors are very grateful to Andreas Gygax
and Adrian Moehl who collected seeds of the species used. Thanks also to Carole Adolf, Pius
Winiger, Lidewij Keser, Silvia Zingg, Martina Bisculm, Christine Heiniger, Yuanye Zhang,
Madalin Parepa and Yvonne Zuercher for help in preparing seedlings, setting up and harvesting
the experiment.

430

432	
-----	--

433 Appendices

Table S1 Sample sizes of pesticide effects per species per nutrient treatment, and per response
variable in the study.

Table S2 Mean (and standard error) abundance of aphids and proportion of leaves damaged per
plant per species, treated either without or with pesticide in the experiment.

Table S3 Parameter estimates (and standard errors in parentheses) for linear mixed models of

aboveground biomass (square root transformed) in relation to proportion of leaves damaged, for

440 the herbivory set of plants

441 **Table S4** Modelled intercept and slope estimates per species (as random effects), from linear

442 mixed models assessing the relationship between aboveground biomass and proportion of leaves

damaged for plants without and with pesticide treatment.

Table S5 Information on host plant families, genera and species, distribution and native status of
aphid and mollusc species identified in the study.

446 **Table S6** Parameter estimates (and standard errors in parentheses) for binomial generalised

linear mixed models of mollusc, orthopteran and thysanopteran presence on non-pesticide treatedplants.

Figure S1 Relationship between aboveground biomass and proportion of leaves damaged on

450 plants without and with pesticide treatment, showing overall fitted relationship (thick line) and

451 individual fitted lines for the 23 species.

452	Figure S2 Mean total biomass (square-root scale) of plants with pesticide treatment (circles) and
453	without pesticide treatment (squares), without nutrient (unfilled symbols) and with nutrient
454	addition (filled symbols). Error bars represent ± 1 SE.
455	References
456	Agrawal, A.A. and Kotanen, P.M. 2003. Herbivores and the success of exotic plants: a
457	phylogenetically controlled experiment Ecol. Lett. 6: 712-715.
458	
459	Agrawal, A.A. et al. 2005. Enemy release? An experiment with congeneric plant pairs and
460	diverse above- and belowground enemies. – Ecology 86: 2979-2989.
461	
462	Ando, Y. et al. 2010. Community structure of insect herbivores on introduced and native
463	Solidago plants in Japan. – Ent. Exp. Appl. 136: 174-183.
464	
465	Alba, C. et al. 2012. Combining optimal defense theory and the evolutionary dilemma model to
466	refine predictions regarding plant invasion. – Ecology 93: 1912-1921.
467	
468	Bates, D. et al. 2013. lme4: Linear mixed-effects models using Eigen and S4. R package version
469	1.0-5.

- 470
- 471 Blumenthal, D. 2005. Interrelated causes of plant invasion. Science. 310: 243-244.
- 472
- 473 Blumenthal, D. 2006. Interactions between resource availability and enemy release in plant
- 474 invasion. Ecol. Lett. 9: 887-895.
- 475

Page 22 of 47

476	Boschi, C. 2011. Die Schneckenfauna der Schweiz. Haupt-Verlag, Bern.
477	
478	Butler, J. et al. 2012. Fertilisers and insect herbivores: a meta-analysis Ann. Appl. Biol. 161:
479	223-233.
480	
481	Chun, Y-J. et al. 2010. The role of enemy release, tolerance and resistance in plant invasions:
482	linking damage to performance. – Ecol. Lett. 13: 937-946.
483	
484	Colautti, R.I. et al. 2004. Is invasion success explained by the enemy release hypothesis? – Ecol.
485	Lett. 7: 721-733.
486	
487	Coley, P.D. et al. 1985. Resource availability and plant antiherbivore defense. – Science 230:
488	895-899.
489	
490	Cripps, M.G. et al. 2006. Biogeographical comparison of the arthropod herbivore communities
491	associated with <i>Lepidium draba</i> in its native, expanded and introduced ranges. – J. Biogeogr. 33:
492	2107-2119.
493	
494	Das nationale Daten- und Informationszentrum der Schweizer Flora. 2011. Infoflora online atlas.
495	http://www.infoflora.ch/de/flora/art-abfragen.html. Accessed 10/01/2011.
496	
497	Davis, M. et al. 2000. Fluctuating resource in plant communities: a general theory of invasibility.
498	<mark>– J. Ecol. 88: 528-534.</mark>
499	

500	Dawson, W. et al. 2012. Common and rare plant species respond different to fertilisation and
501	competition, whether they are alien or native. – Ecol. Lett. 15: 873-880.
502	
503	Dostal, P. et al. 2013. Enemy damage of exotic plant species is similar to that of natives and
504	increases with productivity J. Ecol. 101: 388-399.
505	
506	Frömming, E. (1954) Biologie der Mitteleuropäischen Landgastropoden. Duncker & Humblot,
507	Berlin.
508	
509	Funk, J.L. and Throop, H.L. 2010. Enemy release and plant invasion: patterns of defensive traits
510	and leaf damage in Hawaii. – Oecologia 162: 815-823.
511	
512	Hill, S.B. and Kotanen, P.M. 2011. Phylogenetic structure predicts capitular damage to
513	Asteraceae better than origin or phylogenetic distance to natives. – Oecologia. 166:843-851.
514	
515	Jogesh, T. et al. 2008. Herbivory on invasive exotic plants and their non-invasive relatives. –
516	Biol. Inv. 10: 797-804.
517	
518	Keane, R.M. and Crawley, M.J. 2002. Exotic plant invasions and the enemy release hypothesis
519	Trends. Ecol. Evol. 17: 164-170.
520	
521	Lampel, G. & Meier, W. (2007) Hemiptera Sternorrhyncha - Aphidina. Centre Suisse de
522	Cartographie de la Faune, Neuchâtel.
523	

524	Landolt, E. et al. 2010. Flora Indicativa. Ecologial Indicator Values and Biological Attributes of
525	the Flora of Switzerland and the Alps Haupt-Verlag, Bern, Switzerland.
526	
527	Lind, E. et al. 2013. Life-history constraints in grassland plant species: a growth-defence trade-
528	off is the norm. – Ecol. Lett. 16: 513-521
529	
530	Liu, H. and Stiling, P. 2006. Testing the enemy release hypothesis: a review and meta-analysis
531	Biol. Inv. 8: 1535-1545.
532	
533	Liu, H. et al. 2007. Does enemy release matter for invasive plants? evidence from a comparison
534	of insect herbivore damage among invasive, non-invasive and native congeners. – Biol. Inv. 9:
535	773-781.
536	
537	MacDonald, A.A.M. and Kotanen, P.M. 2010. Leaf damage has weak effects on growth and
538	fecundity of common ragweed (Ambrosia artemisiifolia). – Botany 88: 158-164.
539	
540	Mattson, W.J. 1980. Herbivory in relation to plant nitrogen-content. – Ann. Rev. Ecol. Syst. 11:
541	119-161.
542	
543	Mitchell, C.E. and Power, A.G. 2003. Release of invasive plants from fungal and viral
544	pathogens. – Nature 421: 625-627.
545	
546	Mitchell, C.E. et al. 2006. Biotic interactions and plant invasions. – Ecol. Lett. 9: 726-740.
547	

548	Niemelä, J. et al. 2011. Urban Ecology: Patterns, Processes, and Applications. Oxford University
549	Press, Oxford.
550	
551	Parker, J.D. and Hay, M.E. 2005. Biotic resistance to plant invasions? Native herbivores prefer
552	non-native plants. – Ecol. Lett. 8: 959-967.
553	
554	Parker, I.M. and Gilbert, G.S. 2007. When there is no escape: The effects of natural enemies on
555	native, invasive, and noninvasive plants. – Ecology 88: 1210-1224.
556	
557	Pinheiro, J. et al. 2013. nlme: Linear and nonlinear mixed effects models. R package version 3.1-
558	111.
559	
560	Pyšek, P. 1998. Alien and native species in Central European urban floras: a quantitative
561	comparison. – J. Biogeogr. 25: 155-163.
562	
563	R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria,
564	R Foundation for Statistical Computing.
565	
566	Rose, K.E. et al. 2009. The costs and benefits of fast living. – Ecol. Lett. 12: 1379-1384.
567	
568	Schaffner, U. et al. 2011. Plant invasions, generalist herbivores, and novel defense weapons
569	Ecology 92: 829-835.
570	

571	Tallamy, D.W. et al. 2010. Can alien plants support generalist insect herbivores? - Biol. Inv. 12:
572	2285-2292.
573	
574	Turner, H. (1998) Atlas der Mollusken der Schweiz und Liechtensteins. Centre Suisse de
575	Cartographie de la Faune, Neuchâtel.
576	
577	van Kleunen, M. and Fischer, M. 2009. Release from foliar and floral fungal pathogen species
578	does not explain the geographic spread of naturalized North American plants in Europe. – J.
579	Ecol. 97: 385-392.
580	
581	Wittenberg, R. & Schweiz Bundesamt Für Umwelt. 2006. Invasive Alien species in Switzerland:
582	An Inventory of Alien Species and their Threat to Biodiversity and Economy in Switzerland.
583	Federal Office for the Environment FOEN, Bern.
584	
585	

586	Figure 1. Schematic plan of the experimental set-up. Each of the eight blocks was split in half,
587	and one half was randomly assigned the pesticide application treatment. Each half-block
588	contained seven sub-blocks, with one of the seven taxonomic groups randomly assigned to each
589	of them. Each sub-block contained plants belonging to the designated taxonomic group. The
590	numbers shown in each sub-block represent the total number of plants (across species) per sub-
591	block without nutrients added/with nutrients added/used for assessing herbivory levels. As one
592	plant per treatment per species is in each sub-block, the numbers also represent the number of
593	species, which varies among the taxonomic groups.
594	
595	Figure 2. a) Mean proportion of leaves damaged on pesticide-treated plants and b) mean
596	differences in proportion of leaves damaged on pesticide versus non-pesticide treated plants, for
597	native, invasive alien and non-invasive alien plant species. Error bars represent ± 1 standard
598	error. In both a) and b), means are shown from models excluding and including plant-size
599	covariates. The dashed line in b) signifies zero difference in proportion of leaves damaged
600	between non-pesticide and pesticide-treated plants.
601	
001	
602	Figure 3. a) Mean difference in square-root transformed total biomass between pesticide and
603	non-pesticide treated plants, for native, invasive alien and non-invasive alien species without (-)
604	and with (+) nutrient addition. The dashed line signifies zero difference in biomass. b) Mean
605	difference in square-root transformed total biomass between nutrient-treated and non-nutrient

- treated plants, for native, invasive alien and non-invasive alien species (averaged across
- 607 pesticide-treatments). Error bars in a) and b) represent ± 1 standard error. For reference, numbers

608	above the x axis represent mean biomass without pesticide treatment in a), and without nutrient
609	addition in b).

Table 1. The 29 species used in this study, their status, and the corresponding code per species
shown in the figures. Numbers in parentheses for Asteraceae species are sub-block groupings for
this family. *Species used in leaf damage analyses. † Species used in analysis of herbivore
presence/abundance. The Phrymaceae, Plantaginaceae and Scrophulariaceae species were
considered as one taxonomic group

Species	Family	Status		
Bidens radiata*†	Asteraceae (Bidens)	Native		
Bidens tripartita*†	Asteraceae (Bidens)	Native		
Bidens bipinnata*†	Asteraceae (Bidens)	Alien non-invasive		
Bidens frondosa*†	Asteraceae (Bidens)	Alien invasive		
Artemisia borealis*†	Asteraceae (1)	Native		
Artemisia vulgaris	Asteraceae (1)	Native		
Cirsium montanum*†	Asteraceae (2)	Native		
Gnaphalium luteo-album	Asteraceae (1)	Native		
Inula helvetica	Asteraceae (2)	Native		
Solidago virgaurea*†	Asteraceae (2)	Native		
Aster lanceolatus*†	Asteraceae (2)	Alien non-invasive		
Rudbeckia hirta*†	Asteraceae (1)	Alien non-invasive		
Conyza canadensis*†	Asteraceae (2)	Alien invasive		
Senecio inaequidens*†	Asteraceae (1)	Alien invasive		
Solidago canadensis*†	Asteraceae (2)	Alien invasive		
Oenanthe lachenalii*†	Apiaceae	Native		
Eryngium giganteum*†	Apiaceae	Alien non-invasive		
Heracleum mantegazzianum *†	Apiaceae	Alien invasive		
Veronica anagallis-aquatica*†	Plantaginaceae	Native		
Veronica peregrina*†	Plantaginaceae	Alien non-invasive		
Veronica persica*†	Plantaginaceae	Alien invasive		
Brachypodium sylvaticum†	Poaceae	Native		
Eleusine indica†	Poaceae	Alien non-invasive		
Panicum capillare†	Poaceae	Alien invasive		
Rumex maritimus *†	Polygonaceae	Native		
Rumex obtusifolius*†	Polygonaceae	Native		
Persicaria orientalis*†	Polygonaceae	Alien non-invasive		
Scrophularia nodosa*†	Scrophulariaceae	Native		
Mimulus guttatus*†	Phrymaceae	Alien non-invasive		

617	Table 2. Parameter estimates (and standard errors in parentheses) from models of
618	differences in proportion of leaves damaged between pesticide and non-pesticide treated
619	plants, and the proportion of leaves damaged on non-pesticide treated plants only.
620	Models were analysed with and without covariates of plant size, and with species status
621	as fixed effects. Values given for random effects are standard deviations. Significant
622	estimates (P<0.05) are shown in bold.

Variable	Proportion of leaves damaged on non-pesticide plants						
	Excluding covariates	Including covariates					
sqrt (biomass)		-0.628 (0.141)					
ln (number of leaves)		-0.492 (0.104)					
Intercept	-2.623 (0.432)	-2.198 (0.399)					
Non-invasive	0.738 (0.476)	0.419 (0.472)					
Native	1.240 (0.443)	0.707 (0.440)					
Random effects							
Block	0.445	0.382					
Family	0.168	0.267					
Species	0.592	0.760					
Difference in proportion of leaves damaged							
	Excluding covariates	Including covariates					
ln (biomass)		-0.030 (0.012)					
Difference in number of leaves		-0.021 (0.001)					
Intercept	0.001 (0.026)	0.036 (0.016)					
Non-invasive	0.077 (0.021)	0.023 (0.026)					
Native	0.056 (0.026)	0.038 (0.021)					
Random effects							
Block	2.97 x 10 ⁻⁹	4.97 x 10 ⁻⁵					
Family	0.033	0.014					
Species	2.24 x 10 ⁻⁶	3.096 x 10 ⁻⁸					
<i>Residual</i>	0.201	0.176					

- Table 3. Parameter estimates (and standard errors in parentheses) from models of differences in
- aphid abundance between pesticide and non-pesticide treated plants, and the number of aphids
- on non-pesticide treated plants only. Fixed effects included species status. Values given for
- random effects are standard deviations. Significant estimates (P<0.05) are shown in bold.

	Variable	Aphid abundance on non-pesticide plant [ln(x+1) transformed]	Difference in Aphid abundance [ln(x +22)-transformed]		
	Intercept	3.820 (0.227)	3.129 (0.618)		
	Native	-0.054 (0.138)	0.341 (0.696)		
	Non-invasive	0.002 (0.155)	0.463 (0.754)		
	Random effects				
	Block	6.596×10^{-6}	8.099 x 10 ⁻⁶		
	Family	0.511	0.586		
	Species	0.209	1.252		
	Residual	1.562	1.170		
634 635					
636					
637					
638					
639					
640					
641					
642					

- Table 4. Parameter estimates (and standard errors in parentheses) from full and minimum models
- 644 explaining total biomass of native, non-invasive and invasive plant species, under pesticide and
- non-pesticide treatments, and with or without nutrient addition. Values given for random effects
- are standard deviations. Significant estimates (P < 0.05) are shown in bold.
- 647

	Model		
Variable	Full	Minimum adequate	
Intercept	5.479 (0.965)	5.412 (0.963)	
Native	-1.757 (0.918)	-1.722 (0.912)	
Non-invasive	-1.183(1.010)	-1.106 (1.004)	
Nutrient addition	1.871 (0.158)	1.911 (0.111)	
Pesticide absent	-0.364 (0.157)	-0.231 (0.059)	
Native : Nutrient addition	0.385 (0.209)	0.352 (0.147)	
Non-invasive : Nutrient addition	-0.839 (0.211)	-0.758 (0.150)	
Native : Pesticide absent	0.068 (0.207)		
Non-invasive : Pesticide absent	0.152 (0.209)		
Nutrient addition : Pesticide absent	0.075 (0.223)		
Native : Nutrient addition : Pesticide absent	-0.058 (0.295)		
Non-invasive : Nutrient addition : Pesticide absent	0.165 (0.298)		
Random effects			
Block	1.727 x 10 ⁻¹⁷	0.0008	
Family	1.372	1.372	
Species	1.884	1.884	
Residual	0.911	0.914	

0,7

Table S1. The 29 species used in this study, their status, the number of 5km x 5km grid cells in Switzerland occupied, and first date alien species were recorded as naturalised in Central Europe (Klotz et al. 2002). Numbers in parentheses for Asteraceae species are sub-subplot groupings for this family. ‡From Hegi (1954). Habitat codes follow Landolt et al (2010): 1-Water bodies, banks and ditches; 2- Eutrophic terrestrial vegetation; 3- Outcrops, screes, sandy/gravel habitats; 4- Water sources and streams; 5- Mires; 6- Grasslands and meadows; 7-Dwarf shrub and tall herb communities; 8- Shrubland.

		Characteristics			Bior	iomass		Herbivory	
Species	Status	Number of grid cells	Habitats	Y ear of establishment	No Nutrient	Nutrient	Leaves damaged	Difference in leaves damaged	Invertebrates
Artemisia borealis	Native	6	3,7		3	4	8	8	8
Artemisia vulgaris	Native	253	2,7		8	8	_	_	_
Aster lanceolatus	Non-invasive	17	2,7	1850	8	7	7	7	8
Bidens bipinnata	Non-invasive	4	2,3,7	1754 ‡	8	8	7	7	8
Bidens frondosa	Invasive	45	1,2,9	1736	8	8	7	7	8
Bidens radiata	Native	3	1,2		3	3	3	3	5
Bidens tripartita	Native	57	1,2		7	6	6	6	8
Brachypodium sylvaticum	Native	494	7,9		7	8	_	_	8
Cirsium montanum	Native	1	5,7,8,9		6	4	4	4	7
Conyza canadensis	Invasive	140	2	1646- 1880	7	7	8	8	8
Eleusine indica	Non-invasive	21	2	1900	8	8	_	_	8
Eryngium giganteum	Non-invasive	4	2	Unknown	6	6	8	8	8
Gnaphalium luteo-album	Native	29	1,2		7	7			
Heracleum mantegazzianum	Invasive	420	2,7	1890 🧹	8	8	8	8	8
Inula helvetica	Native	40	2,5,7,9		6	6			
Mimulus guttatus	Non-invasive	23	1,2,4	1824	8	8	8	8	8
Oenanthe lachenalii	Native	8	1,6		6	5	8	8	8
Panicum capillare	Invasive	136	2	1867	8	8			8
Persicaria orientalis	Non-invasive	4	2,7	Unknown	4	4	4	4	4
Rudbeckia hirta	Non-invasive	27	2,7	1860	5	5	5	5	8
Rumex maritimus	Native	1	2		8	8	8	8	8
Rumex obtusifolius	Native	602	2,6		8	8	8	8	8
Scrophularia nodosa	Native	358	2,9		8	7	8	8	8
Senecio inaequidens	Invasive	121	2,3	1889	8	7	8	8	8
Solidago canadensis	Invasive	491	1,2	1736	8	8	7	7	8
Solidago virgaurea	Native	207	7,9				8	8	8
Veronica anagallis-aquatica	Native	131	1,2,4		8	8	8	8	8
Veronica peregrina	Non-invasive	57	2	1760	8	7	8	8	8
Veronica persica	Invasive	458	2	1805	7	7	8	8	8

Table S2. Mean (and standard error) abundance of aphids and proportion of leaves damaged per plant per species, treated either without or with pesticide in the experiment. *- Species treated as 'Scrophulariaceae' taxonomic group; however *Mimulus guttatus* is in the Phrymaceae, and *Veronica* spp. are in the Plantaginaceae.

Species	Family	Status	Aphid abundance	Aphid abundance	Proportion of	Proportion of
-			without pesticide	with pesticide	leaves damaged	leaves damaged
				-	without pesticide	with pesticide
Artemisia borealis	Asteraceae	Native	14.00 (5.73)	1.88 (0.95)	0.180 (0.040)	0.065 (0.059)
Aster lanceolatus	Asteraceae	Non-invasive	31.43 (8.75)	9.29 (3.00)	0.280 (0.051)	0.125 (0.061)
Bidens bipannata	Asteraceae (Bidens)	Non-invasive	61.71 (14.71)	18.43 (3.82)	0.053 (0.012)	0.012 (0.029)
Bidens frondosa	Asteraceae (Bidens)	Invasive	1.29 (0.29)	1.71 (0.29)	0.024 (0.048)	0.070 (0.024)
Bidens radiata	Asteraceae (Bidens)	Native	178.00 (57.46)	60.33 (16.05)	0.178 (0.058)	0.106 (0.178)
Bidens tripartita	Asteraceae (Bidens)	Native	2.33 (0.21)	2.00 (0.37)	0.015 (0.032)	0.046 (0.015)
Brachypodium sylvaticum	Poaceae	Native	1.63 (0.84)	0.38 (0.26)	0.000 (0.000)	0.000 (0.000)
Cirsum montanum	Asteraceae	Native	73.25 (28.30)	7.75 (3.52)	0.544 (0.096)	0.302 (0.096)
Conyza canadensis	Asteraceae	Invasive	43.13 (15.17)	4.50 (1.27)	0.062 (0.013)	0.027 (0.023)
Eleusine indica	Poaceae	Non-invasive	6.50 (0.82)	0.75 (0.41)	0.000 (0.000)	0.000 (0.000)
Eryngium giganteum	Apiaceae	Non-invasive	17.50 (7.64)	1.88 (0.95)	0.155 (0.055)	0.102 (0.080)
Heracleum mantegazzianum	Apiaceae	Invasive	116.38 (15.10)	41.63 (13.13)	0.213 (0.055)	0.106 (0.088)
Mimulus guttatus	Scrophulariaceae*	Non-invasive	75.00 (12.89)	20.75 (8.42)	0.189 (0.036)	0.124 (0.059)
Oenanthe lachenalii	Apiaceae	Native	42.75 (15.85)	6.50 (2.11)	0.344 (0.066)	0.147 (0.119)
Panicum capillare	Poaceae	Invasive	4.00 (0.80)	1.25 (0.41)	0.000 (0.000)	0.000 (0.000)
Polygonum orientale	Polygonaceae	Non-invasive	80.75 (31.47)	33.50 (12.98)	0.346 (0.08)	0.159 (0.028)
Rudbeckia hirta	Asteraceae	Non-invasive	36.40 (16.77)	6.40 (5.42)	0.212 (0.031)	0.118 (0.059)
Rumex maritimus	Polygonaceae	Native	228.50 (82.89)	66.75 (19.49)	0.202 (0.059)	0.235 (0.050)
Rumex obtusifolius	Polygonaceae	Native	216.88 (30.90)	67.75 (10.12)	0.257 (0.063)	0.153 (0.087)
Scrophularia nodosa	Scrophulariaceae*	Native	51.13 (12.53)	14.75 (3.26)	0.108 (0.050)	0.063 (0.037)
Senecio inaequidens	Asteraceae	Invasive	11.88 (5.34)	3.13 (1.32)	0.063 (0.028)	0.034 (0.035)
Solidago canadensis	Asteraceae	Invasive	26.57 (8.78)	1.57 (0.87)	0.057 (0.011)	0.017 (0.015)
Solidago virgaurea	Asteraceae	Native	1.88 (1.60)	0.38 (0.18)	0.418 (0.033)	0.081 (0.112)
Veronica anagallis-aquatica	Scrophulariaceae*	Native	91.50 (19.77)	7.63 (1.08)	0.249 (0.089)	0.184 (0.045)
Veronica peregrina	Scrophulariaceae*	Non-invasive	85.38 (10.40)	14.25 (3.80)	0.063 (0.008)	0.011 (0.022)
Veronica persica	Scrophulariaceae*	Invasive	182.50 (64.06)	38.50 (19.18)	0.193 (0.060)	0.141 (0.068)

Table S3. Parameter estimates (and standard errors in parentheses) for linear mixed models of aboveground biomass (square root transformed) in relation to proportion of leaves damaged, for the herbivory set of plants that were either a) not treated with pesticide, or b) had pesticide treatment. Significant estimates (P<0.05) are shown. Values for random effects represent standard deviations.

	Variable	a) without pesticide	b) with pesticide
Fixed Effects	Intercept	2.760 (0.449)	2.930 (0.499)
	Proportion of leaves damaged	-0.892 (0.294)	0.450 (0.998)
Random Intercepts	Family	0.868	0.966
•	Species	1.000	1.126
Random Slopes	Family	0.209	1.906
•	Species	0.825	1.319
	Residual	0.291	0.365

Table S4. Modelled intercept and slope estimates per species (as random effects), from linear mixed models assessing the relationship between aboveground biomass and proportion of leaves damaged for plants without and with pesticide treatment. Note that the intercepts and slopes were calculated from taxonomic group and species-level random effects.

		Without pesticide		With pesticide	
Family	Species	Intercept	Slope	Intercept	Slope
Apiaceae	Eryngium giganteum	0.609	-0.143	0.898	-0.801
Apiaceae	Heracleum mantegazzianum	1.660	-0.451	3.071	-3.572
Apiaceae	Oenanthe lachenalii	2.690	-2.588	4.377	2.588
Asteraceae	Artemisia borealis	1.660	-1.439	6.339	4.143
Asteraceae	Aster lanceolatus	3.266	-1.504	3.218	1.931
Asteraceae	Bidens bipannata	2.732	-1.341	3.485	2.509
Asteraceae	Bidens frondosa	4.033	-1.713	1.811	-0.992
Asteraceae	Bidens radiata	1.440	-0.858	2.156	-2.140
Asteraceae	Bidens tripartita	1.881	-1.010	0.692	-0.657
Asteraceae	Cirsum montanum	3.643	-0.540	1.932	-0.021
Asteraceae	Conyza canadensis	3.758	-0.825	3.371	-0.046
Asteraceae	Rudbeckia hirta	3.076	0.087	2.522	-1.517
Asteraceae	Senecio inaequidens	4.585	-1.236	5.815	2.459
Asteraceae	Solidago canadensis	3.658	-0.550	1.820	-1.753
Asteraceae	Solidago virgaurea	2.691	-0.083	3.551	1.584
Polygonaceae	Polygonum orientale	4.990	-0.992	1.727	1.699
Polygonaceae	Rumex maritimus	3.360	-0.528	2.967	0.264
Polygonaceae	Rumex obtusifolius	1.710	-0.019	3.069	-1.425
Scrophulariaceae	Mimulus guttatus	3.207	-0.989	2.025	-1.299
Scrophulariaceae	Scrophularia nodosa	2.772	-1.022	0.999	-1.044
Scrophulariaceae	Veronica anagallis-aquatica	3.173	-1.086	3.206	0.323
Scrophulariaceae	Veronica peregrina	1.268	-1.021	1.620	0.050
Scrophulariaceae	Veronica persica	2.443	-0.468	2.642	0.020
			31		

Table S5. The identified aphid and mollusc species in the study, with details of main host plant species, other families, genera and species used as host plants, other food types, presence in Switzerland, distribution and alien status in Switzerland. Sources are as follows- 1: Lampel, G. & Meier, W. (2007) Hemiptera Sternorrhyncha - Aphidina. Centre Suisse de Cartographie de la Faune, Neuchâtel. 2: Boschi, C. (2011) Die Schneckenfauna der Schweiz, Haupt Verlag. 3: Frömming, E. (1954) Biologie der mitteleuropäischen Landgastropoden. Duncker & Humblot, Berlin. 4: Turner, H. (1998) Atlas der Mollusken der Schweiz und Liechtensteins. Centre Suisse de Cartographie de la Faune, Neuchâtel. 5: Wittenberg, R. & Schweiz Bundesamt Für Umwelt. (2006) Invasive alien species in Switzerland an inventory of alien species and their threat to biodiversity and economy in Switzerland. Federal Office for the Environment FOEN, Berm.

Species	Main host ¹	Other host familes ¹	Host genera ¹	Host species ^{1,2,3}	Records in Switzerland ^{1,4}	Distribution ^{1,4}	Alien? ⁵
Aphis frangulae (Kaltenbach)	Frangula alnus	Brassicaceae, Lamiaceae, Onagraceae, Convolvulaceae, Lythraceae, Plantaginaceae, Rhamnaceae, Solanaceae	several, for example Capsella, Epilobium, Galeopsis, Ipomaea, Lamium, Lysimachia, Veronica	Solanum tuberosum	13	palearctic, N- American	
Aulocorthum solani (Kaltenbach)		Extremely polyphagous, but no grasses; certain strains mainly on <i>Solanum</i> <i>tuberosum</i> ; Asteraceae, Euphorbiaceae, Rosaceae		Cichorium endivia, Cirsium acaule, Euphorbia exigua, E.stricta, Potentilla grandiflora, Sanguisorba officinalis	16	cosmopolitan, probably originally European	
Aphis fabae (Scopoli)	Euonymus europaea	Celastraceae, Fabaceae, Chenopodiaceae		Vicia faba, Phaseolus spp., Chenopodium spp., Beta vulgaris	7	Eurasian, N- American	
Macrosiphum euphorbiae		Extremely polyphagous, important families are Asteraceae and Solanaceae		Solanum tuberosum, Beta vulgaris,	28	cosmopolitan, nearctic origin	yes, origin N-

(Thomas)				Lactuca sativa			America
Rhophalosiphum nymphaeae (L.)	Prunus sp.	Acoraceae, Alismataceae, Butomaceae, Araceae, Callitrichaceae, Hydrocharitaceae, Juncaceae, Menyanthaceae, Haloragaceae, Nymphaceae, Poaceae, Polygonaceae, Potamogetonaceae, Ranunculaceae, Cyperaceae, Sparganiaceae, Typhaceae, Lythraceae	several, Acorus, Alisma, Butomus, Calla, Callitriche, Echinodorus, Elodea, Glyceria, Hippuris, Hydrocharis, Juncus, Lemna, Menyanthes, Myriophyllum, Nelumbo, Nuphar, Nymphaea, Nymphoides, Pistia, Polygonum, Potamogeton, Ranunculus, Sagittaria, Schoenoplectus, Scirpus, Sparganium, Stratiotes, Trapa, Typha, Wedelis, etc.		12	cosmopolitan	
<i>Myzus persicae</i> (Sulzer)	Prunus sp.	In CH: Amaranthaceae, Apiaceae, Asteraceae, Boraginaceae, Brassicaceae, Caryophyllaceae, Chenopodiaceae, Convolvulaceae, Cucurbitaceae, Malvaceae, Orobanchaceae, Poaceae, Polygonaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tamaricaceae, Violaceae			29	cosmopolitan	yes, probably from Asia
R. padi (L.)	Prunus sp.	Rosaceae. Also possible on: Cyperaceae, Juncaceae, Typhaceae, Iridaceae, Poaceae, Brassicaceae	several Poaceae, including <i>Agropyron</i> ,	Capsella bursa- pastoris	28	cosmopolitan	

		Agrostis, Arrhenatherum, Avena, Bromus, Calamagrostis, Cynosurus, Dactylis, Deschampsia, Festuca, Glyceria, Helictotrichon, Holcus, Hordelymus, Hordelymus, Hordeum, Melica, Phalaris, Phleum, Poa, Triticum, Zea, etc.				
Sitobion avenae (F.)	several, but often on Poaceae, Amaranthaceae, Asparagaceae	Amaranthus, Aspargus, Avena, Calamagrostis, Glyceria, Hordeum, Lagurus, Lolium, Molinia, Phalaris, Poa, Secale, Setaria, Triticum, Zea	0,0,0	36	cosmopolitan, probably origin westpalaearctic	
Arion vulgaris (Moquin-Tandon)	higher plants but also faeces and carcasses			abundant, pest		yes, origin unknown
Deroceras reticulatum (Mueller)	higher plants, prefers fresh plants; eats also fungi and carcasses			abundant, pest		
Succinea putris (L.)	higher plants, in particular herbs; algae			abundant		
Xerolenta obvia	higher plants, several herbs			abundant		

(Menke)				

Table S6. Parameter estimates (and standard errors in parentheses) for binomial generalised linear mixed models of mollusc, orthopteran and thysanopteran presence on non-pesticide treated plants. Results are shown for models including all species (n=26), and only the nitrophilous species (n=21). Values for random effects represent standard deviations. Significant estimates (P<0.05) are shown in bold.

	Variable	Mollusc	Orthopteran	Thysanopteran
Fixed Effects	Intercept	-1.782 (0.556)	-1.744 (0.590)	-0.255 (0.794)
	Native	0.217 (0.647)	-0.797 (0.620)	-1.226 (0.697)
	Non-invasive	0.291 (0.688)	-0.505 (0.627)	-0.474 (0.741)
Random effects	Block	0.615	0.311	< 0.0001
	Family	0.018	0.943	1.495
	Species	0.915	0.401	0.976

References:

Hegi, G. 1954. Ilustrierte Flora von Mitell-Europa. Vienna, Austria, Lichler's Witwe & Sohn.

Landolt, E. et al. 2010. Flora Indicativa. Ecologial Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps. Haupt-Verlag, Bern, Switzerland.

Klotz, S. et al. 2002. *BIOLFLOR — Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäβpflanzen in Deutschland*, Bundesamt für Naturschutz, Bonn. http://www2.ufz.de/biolflor/. Accessed 03/03.2013

, bu. essed 03/03.2013

Proportion of leaves damaged

Proportion of leaves damaged

Solidago_c