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Security and the Incalculable1 

 

Alan Turing: “From the mathematical theory one can make predictions” 

Ludwig Wittgenstein: “Yes, one can. But what sort of predictions? What is the 

relation between the mathematics and the predictions?” (Lectures on the 

Foundations of Mathematics, 1939, lecture xv).  

 

 

Introduction: The fault tree 

 

At a public meeting held six days before a major earthquake struck the Italian city of 

L’Aquila on 6 April 2009, killing 309 people, a panel of scientists had been asked to 

assess the risk of a major earthquake in light of the multiple tremor events of 

preceding months. The panel – appointed to the ‘National Commission for the 

Forecast and Prevention of Major Risks’ – stated at the meeting that “minor shocks 

do not raise the risk of a major quake” (Nature, 22 October 2012). In the strict terms 

of scientific knowledge, this was entirely accurate – the data they held on a series of 

past seismic events could not be meaningfully used to calculate the likelihood of a 

future event. Yet, three years later, on 22 October 2012, the six scientists and one 

civil protection public official were convicted and sentenced to six years in prison. 

Throughout the trial, the defence case had been that “no causal link” could be 

established between the judgments of the scientists before the catastrophic event, 

and the subsequent loss of life in L’Aquila. The absence of causality was similarly 

emphasised in a letter sent to Italian president Giorgio Napolitano by more than 5000 

of the world’s leading geophysicists and seismologists, in which they emphasised the 

limits of what could be inferred from scientific data. “Predicting the time, location and 

strength of a future earthquake is technically impossible”, they wrote, “it is…  

incalculable”.  

                                                           
1
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However, what is most significant about this case is precisely its signalling of an 

emerging form of responsibility to calculate the incalculable. The L’Aquila group were 

not convicted of manslaughter for failing to predict an earthquake, and even the 

public prosecutor Fabio Picuti reported that “I’m not crazy, I know they can’t predict 

earthquakes” (Nature, 25 October 2012). Rather, they were found guilty for failing to 

arrive at an adequate risk calculus, for failing to infer, intuit, imagine and extrapolate 

from the available data. Thus, though the data in their possession were insufficient  

as scientific grounds to infer anything at all about the future, it was argued in the 

court that the scientists could have correlated their data with other elements – with 

the fragility of ancient buildings, for example, or with the possible risks of “falsely 

reassuring” a population.2 In effect, there was no juridical disagreement that no linear 

causal connection could be established between the science and the event, but 

instead non-linear branches of possibility and correlative causality were said not to 

have been acted upon.  

 

Why does the L’Aquila case matter for how we think about contemporary security 

and the capacity to secure against an otherwise incalculable future? The case raises 

the spectre of a calling to account for the failure to assemble data with other things, a 

failure to make links, to “connect the dots of available information”, to associate and 

correlate plural components even if they are incomplete or fragmentary (9/11 

Commission Report 2004: 408).3 In effect, the earthquake scientists’ claim that it 

would be irresponsible to act on the basis of incomplete or inadequate data confronts 

a sovereign demand that incompleteness be enhanced by inference across the gaps 

– nothing is incalculable as such.   

 

                                                           
2
 One of the convicted scientists, Dr Giulio Selvaggi, has argued that the scientific community had consistently 

warned the Italian public authorities of L’Aquila’s high seismicity since at least 1985. He suggests that the 
governmental emphasis on close to “real-time” risk assessment has distracted attention from the long-term 
lack of investment in buildings and infrastructure (Selvaggi 2013).  
3
 Beyond the 9/11 Commission report, there are further 21

st
 century instances when the calling to account for 

security decisions has had recourse to the association or correlation of elements. The UK Intelligence and 
Security Committee’s report on the London bombings, ‘Could 7/7 have been prevented?’, raises questions of 
possible “missed opportunities” to associate before the event Mohammed Siddique Khan and Shazad Tanweer 
when they “crossed the paths” of Operation Crevice, and to correlate their points of contact in crimes 
“unrelated to national security” (2009: 20; see also de Goede 2013). By contrast with the L’Aquila case, 
though, in the national security domain to date there have not been juridical convictions for the failure to 
imagine possibilities.        
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The spectre of a search for forms of calculus that open up new ways of dealing with 

limited or insufficient knowledge also haunts contemporary security. More 

specifically, it haunts the question of the use of data to infer possible future security 

threats. When the US Congressional Research Service prepared an analysis of the 

use of data mining for homeland security, they explained to Congress the allure of 

using “data analysis tools to discover previously unknown patterns and relationships 

in large data sets” (2008: 1). They then outline the “limitations of data mining as a 

terrorism detection tool”, emphasising that “it does not tell the user the value or 

significance of these patterns” (p. 3). There is then pressure on the user or the case 

analyst to infer what this value or significance might be, and to reach a judgement: 

 

Efforts to fight terrorism can take on an acute sense of urgency. This urgency 

can create pressure on both data holders and officials who access the data. 

To leave an available resource unused may appear to some as being 

negligent. Data holders may feel obligated to make any information available 

that could be used to prevent a future attack. Similarly, government officials 

responsible for ensuring the safety of others may be pressured to use or 

combine existing databases to identify potential threats (Congressional 

Research Service, 2008). 

 

Thus, to have available data – even if they are tangentially related, partial or 

fragmentary – and to fail to infer across the gaps “may appear to some as being 

negligent”. As is illuminated by the case of the conviction of the Italian scientists, the 

intrinsic value of the data is insufficient, it can tell us nothing about the probability of 

a future seismic event. What is sought instead is a different mode of calculation, one 

that loosens the language of modern probability and assembles in its place a set of 

combinatorial possibilities. Thus, where strict adherence to probabilistic science 

would place limits on the capacity for prediction – an earthquake cannot be 

predicted, or a terrorist attack cannot be predicted – the proliferation of “conditional 

probabilities” and “subjective probabilities” appears to allow for new combinations of 

possibility (Department of Homeland Security, 2010). The logic of fault and 

culpability that has surfaced in the L’Aquila case adheres less to a juridical 

convention of probable cause or balance of probability than it does to a form of 

security that changes the nature of the calculation itself. The US Department of 
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Homeland Security’s publication of a “risk lexicon” for their analysts, for example, 

establishes a shared vocabulary of possible branching pathways of fault for “natural 

disasters” and “terrorist attacks”. “A fault tree”, explains the security analyst’s lexicon, 

“can be used to estimate the probability of a program failure, working backwards in 

time to determine the possible causes” and “visually displaying and evaluating failure 

paths” (DHS 2010: 15). The fault tree, deploying as it does multi branch, non-linear 

forms of causality, embodies something of the demand for the calculation of the 

incalculable that is so visibly present in the L’Aquila case. Though no single linear 

causality may be established, plural failure paths may be visualized and acted upon. 

 

In this article I propose that contemporary modes of security calculation do not 

supplant or overturn the strict adherence to number, science and probability with 

imagination, speculation, inference and conjecture that is at the limit of knowledge or 

outwith science itself (Ewald 2002; Aradau and van Munster 2011). Rather, the turn 

to inference and intuition in contemporary security calculation is but one novel 

formulation of an historical enfolding of the intuitive faculties within mathematical 

calculation. It is a formulation within which calculability is never in question, where it 

appears that an arrangement of possible links and connections can always be 

arrived at. Thus, what we now think of as “algorithmic” or data-driven security is but 

one specific set of combinations of intuition and calculation, albeit one with novel and 

particular effects. For the purposes of my discussion here, I am interested in three 

aspects: first, how the relation between the intuitive and calculative faculties can be 

understood; second, how mathematics supplies a grammar that can be used for 

security calculation; finally, what are the limits of rules or decision procedures that 

we may think of as algorithmic calculations?     

 

The confrontations of mathematics and philosophy in the 1930s do much to 

illuminate the question of how mathematical calculation arranges possibilities. During 

Ludwig Wittgenstein’s 1939 Lectures On the Foundation of Mathematics, the young 

Alan Turing (later to be the Bletchley Park code breaker and theoretician of the first 

computer) interjects to assert the capacity of number: “from the mathematical theory 
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one can make predictions”.4 Wittgenstein replies that “pure mathematics makes no 

predictions”, or that number as such has no predictive capacity. When Wittgenstein 

refers to prediction here he is indicating the difficulty of abstracting pure mathematics 

from its application. Though he does not specify what he means by predictive 

capacity, his examples of chess playing and games suggest a claim on a future 

outcome. “The difficulty in looking at mathematics as we do”, he proposes, is that 

“we cut pure mathematics off from its application” (1976: 150). What matters to 

Wittgenstein is “the relation between the mathematics and the predictions”, what he 

calls the “grammar” of mathematics, or how number is assembled in a calculus so as 

to make things possible or to have effects in the world. For Wittgenstein, the 

mathematical concept of calculation “cannot be separated from its essential 

normativity” (Shanker 1987: 616), such that pure mathematics is always in this sense 

also applied. Without the ‘and’, ‘with’, ‘if then’, ‘can be concluded from’ of the 

grammar of mathematical calculus, number as such would have no capacity, it would 

do nothing.  

 

The Turing-Wittgenstein discussions on number are important because they show 

how all forms of mathematics deploy a grammar, a politics of combinatorial 

possibilities that make calculation possible. As historian of mathematics Keith Devlin 

expresses it, mathematics is “the science of patterns – numerical patterns, patterns 

of shape, patterns of motion, patterns of behaviour” (1994: 3). For Devlin, 

mathematics is a language that expresses patterns as “combinatorial possibilities” 

(2000; see also Kirby 2012). Understood thus, the contemporary rearranging of 

combinatorial possibilities – in algorithmic methods, subjective probabilities, or fault 

trees – does not displace apparently objective scientific rationalities with subjective 

imagination, but rewrites the grammar of calculation itself. Wittgenstein’s 20th century 

claim that number, as such, can predict nothing, is echoed by the 21st century claim 

that probabilistic calculation cannot predict events.5 There is little political or scientific 

                                                           
4
 Alan Turing’s engagements with Ludwig Wittgenstein should be read in the context of a vibrant and open 

dialogue between the pure mathematicians and the philosophers. During Turing’s fellowship at Princeton he 
would send his paper reprints to his mother with an accompanying list of the scholars who should receive a 
copy – Wittgenstein and Bertrand Russell were recipients (Copeland 2004: 130).   
5
 In juxtaposing the Turing-Wittgenstein debates on mathematics with the statistical probabilities of 

earthquake or terrorism, I do not suggest that these are equivalent. Instead, the juxtaposition draws attention 
to the co-presence of inference, intuition and calculation in each example. Following Lorraine Daston’s account 
of the histories of probabilistic reasoning, I am interested in precisely how inference and calculation become 
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disagreement that the earthquake data cannot predict a future seismic event, or that 

data held by the authorities on “hijacker profiles” could not predict a future terrorist 

attack (9/11 Commission Report 2004: 84). But, the contemporary security 

calculation is deploying mathematical devices such that it does not matter whether 

something can be predicted, only that it can be arranged as calculation – as a 

decision tree, an algorithmic code, or as an association rule that links plural 

elements.  

 

Intuition and ingenuity             

 

There is nothing at all novel in the incorporation of the mathematical sciences into 

the domains of security and war. Indeed, during Alan Turing’s 1936-1938 residency 

at the Princeton Institute of Advanced Study (IAS), the conventional divides between 

pure and applied mathematics were a matter of discussion, not least because pure 

mathematics began to inform applied work on ballistics and nuclear blast waves.6 

Amid the work of J. Robert Oppenheimer on the mathematics of the H-bomb, and 

John von Neumann on shock waves, the notes on the meetings of the IAS 

mathematicians record Albert Einstein emphasizing “the dangers of war work”, 

fearing the “emphasis of such projects will further ideas of preventive wars” (cited in 

Dyson 2012: 83). For both Turing and Einstein, working in the ferment of a close 

group of scholars at the cusp of new mathematical possibilities, the relation between 

what is possible mathematically and what is actioned as state security strategy is 

one fraught with political difficulty.  

 

                                                                                                                                                                                     
fused together in particular ways. Daston reminds us that nineteenth century statistical approaches to 
probability are pre-dated by classical probabilities that incorporated the mathematics of chance, experience 
and belief (1988: 125). Indeed, she has also argued that conditional calculations “much in vogue” in the late 
twentieth century “harken back to the reasonable calculus of the eighteenth century” (Gigerenzer et al. 1989: 
264). Thus, it would be a mistake to abstract debates on the capacity to calculate with statistical probabilities 
from theory of pure mathematics – they have conjoined histories. As Theodore Porter has written, “early 
probability mathematics first arose in the context of games of chance” (1986: 93).      
6
 In a letter sent home to his mother Sara, Alan Turing reflects upon the possible applications of his work, and 

the question of the ethical relationship between mathematics and security: “I have just discovered a possible 
application of the kind of thing I am working on at present. It […] enables one to construct a lot of particular 
and interesting codes. I expect I could sell them to HM Government for quite a substantial sum, but am rather 
doubtful about the morality of such things” (14 October, 1936, Turing Papers, King’s College, Cambridge). In a 
sense, the dilemma confronted by Turing in relation to war work involved precisely the ethics of establishing 
proofs or routines such that a set of mathematical principles could be used by public officials and decision 
makers.     
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At the heart of the IAS discussions on the proper relation of mathematics and war lay 

the question of whether the intuitive practices of pure mathematics could be 

systematized, rendered replicable or codified for broader applications. The Second 

World War question of the relationship between intuitive and imaginative capacities 

and codified systems continues to dominate contemporary debates on the use of 

more imaginative forms of calculation for national security. Indeed, Turing’s 

theorisation of the universal computing machine made possible the contemporary 

digital systems that convert complex mathematical thought into routinized security 

procedures. The 9/11 Commission report, for example, finds that “it is crucial to find 

a way of routinizing, even bureaucratizing, the exercise of imagination” (2004: 344). 

Though the deployment of imagination through “scenarios” and “difficult what ifs” has 

been an important element of post 9/11 security practice, the key aspect is to be 

found not so much in imagination as in the routinization of imaginative faculties 

(2004: 354). The manifest desire to “assemble enough of the puzzle pieces” and to 

“make some sense of them” has dominated the subsequent ten years of 

assessments of the implementation of the Commission’s recommendations 

(Department of Homeland Security 2011). The imagination of links and associations 

across items of data, operationalized via data mining and analytics, has become the 

mainstay of the bureacratization of imagination. It is mathematics that has supplied 

the means to incorporate intutition and inference into the protocols and routines of 

security, and it is mathematics that promises the calculability of security problems.  

 

And so, though imagination is part of the picture of emerging forms of security 

calculation, the vast bulk of such calculation is not imaginative at all. Or, more 

precisely, it is as concerned with the establishment of routines, sub-routines and 

procedures as it is with intuitively opening onto the uncertain future. One might say 

even that security calculations are not oriented to the imagination of possible futures, 

but more precisely to the arrangement of possible combinations. But is it possible to 

be more specific about the form of imagination that is folded into calculation? As the 

inferences of multiple layers of software designers, border guards, and petty 

bureaucrats become invited into the security calculation, what is the place of 

intuition? How is intuition made amenable to procedural routine and bureaucracy? 
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To reflect on these questions further I will return to Alan Turing, and to some of his 

earliest work on his 1937 PhD thesis. In his Systems of Logic Based on Ordinals 

Turing develops a distinction between what he calls “intuition and ingenuity”. 

“Mathematical reasoning may be regarded”, proposes Turing, “as the exercise of a 

combination of two faculties, which we may call intuition and ingenuity” (1936: 192). 

All forms of mathematical calculation, we might say following Turing, engage a 

twinning of two distinct practices of reason. The exercise of intuition, as Turing 

formulates it, “consists in making spontaneous judgements which are not the result 

of conscious trains of reasoning” (1936: 192). In letters sent to fellow mathematician 

Max Newman, Turing proposes intutition as something akin to “inspiration”, in which 

spontaneous and tacit judgements “invariably” lead to “correct” solutions to 

mathematical problems. The exercise of ingenuity, by contrast, “consists in aiding 

the intuition” through “suitable arrangements of propositions, and perhaps 

geometrical figures or drawings”. The practice of ingenuity in Turing’s analysis 

connects together the elements of intuition, rendering the intutive solution “less open 

to criticism” (1935: 192). The development of a “formal logic”, then, combines the two 

faculties of intuition and ingenuity such that “the necessity for using the intuition is 

then greatly reduced by setting down formal rules for carrying out inferences which 

are always intuitively valid” (p. 192). The distinguishing of intuition from ingenuity 

mattered immensely to Turing’s subsequent ‘Turing machine’ and his exposition on 

computable number: 

 

Once intuition has supplied the materials from which proofs are to be 

constructed – the basic inference rules – then a suitably programmed Turing 

machine is able to grind out all the valid proofs of the system one by one 

(Copeland: 136). 

 

The Turing machine demonstrated an early form of computer programming, 

establishing a set of inference rules from which a computing machine can calculate 

all valid proofs.7 From Turing’s groundbreaking thought we begin to see how 

                                                           
7
 Turing’s (1936) paper ‘On Computable Numbers, with an Application to the Entscheidungsproblem’ 

represents the grounding theoretical work for modern digital computer. As Jack Copeland has captured the 
contribution of this paper, “in this one article, Turing ushered in both the modern computer and the 
mathematical study of the uncomputable” (2010: 6). A Turing machine comprises a scanner and an infinite 
tape (memory) that moves left or right beneath the scanner head. Reading one square at a time, the scanner 
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mathematical calculation embodies both the affective and spontaneous realms of 

intuition and the apparently structured ingenuity of routine and logic. The relationship 

between these two faculties of reason is iterative – a back and forth rhythm of 

inspiration and formulation. With intuition one feels one’s way toward a solution. This 

is perhaps most familiar when one holds a puzzle such as a Rubik’s cube in one’s 

hands – the steps taken are predominantly intuitive as we feel our way towards a 

solution. Of course, if a solution is reached intuitively, then it is not provable, not 

replicable by others without a concomitant ingenuity – the building of a formula, an 

equation, a rule, an algorithm – that allows for the procedure to be followed. 

According to Turing, though, the exercise of intuition can never be entirely eradicated 

by rule or routine, for it is intuition that bridges the gaps of the incalculable elements 

of proof or theorem.8  

 

How, then, do the twinned faculties of intuition and ingenuity function in the 

contemporary deployment of mathematics and computing for security calculations? I 

propose that what we are witnessing in the proliferation of what have come to be 

known as “risk based” and “rules based” security decisions is just such an intuitive 

bridging of the gaps in available data and an ingenuity of algorithmic rules to make 

this routine replicable into the future. A risk-based security technique is based on a 

set of decision procedures through which a final calculation is produced – “is this 

factor present?”; “is this variable co-present?”, and so on. Though it is a set of 

association rules – a “rules based” programme – that allow for the risk calculation to 

be made with ingenuity, it is intutition that supplies the identfication of patterns.    

 

                                                                                                                                                                                     
may read a 0, 1, or a blank square. The scanner’s actions are determined by a programme of instructions – or 
algorithms – that instruct it what to do, dependent on the square that is read and the combinations of past 
readings. So, for example, the programme could instruct the scanner “if in state a and the square scanned is 
blank, then print 0 on the scanned square, move the scanner one square to the right, and change to state b” 
(Copeland 2010: 8).  The Turing machines were abstract mathematical concepts designed to demonstrate the 
problem of what is and is not computable. Of course, Turing’s early work on computing machines was based 
on a human ‘computer’. As Ludwig Wittgenstein commented (1980) “Turing’s ‘machines’: these machines are 
humans who calculate”. 
8
 In his work ‘On Computable Numbers’ (1936), Turing stipulates that, for the purposes of the logic of the 

paper, he is addressing only automatic machines capable of fully following the steps of the programme. He 
comments that there are other “axiomatic” processes where “choice machines” might be used – where “the 
machine cannot go on until some arbitrary choice has been made by an external operator”. It is useful to think 
of the contemporary use of security algorithms as involving multiple arbitrary choices by external operators, 
from the writers of the code, to the analysts who analyse and action the data.  
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Let us consider an example of what this combination of ingenuity and intuition might 

look like. When the world’s leading scientific computing society, the Association for 

Computing Machinery (ACM) gathered to respond to the 9/11 Commission’s 

recommendations, they made the case for the capacity of the mathematical rules of 

data mining to identify patterns in large volumes of unstructured data. Noting that 

“we cannot always rely on data from the past”, and that conventional statistical 

profiles are useless for counter-terrorism – because “the profile of a suicide bomber 

has completely changed from what it once was” – the data analytics techniques draw 

together possible relations and associations across data items from otherwise 

unrelated databases. Existing data on commercial transactions is assembled 

together with images from websites and text from social networking sites. The 

assembling is conducted through the already decided algorithmic rules such that 

apparently “unstructured” data becomes structured and ordered: 

 

Can we do it? Number of items is extremely large, number of transactions is 

extremely large. You are talking all of the possible names that could become 

items. You are trying to find out relations that might exist. So, here combining 

text data and images. This is a site in Pakistan and what is happening here is 

these sort of different characteristics we are interested in, they are written into 

the rules. It has things like financial support, Islamic leaders and so on […] so 

we can get a profile for the site, and a series of leads to other second level 

associated sites (ACM 2004, my emphasis). 

                               

The use of data analytics to make inferences about possible future terrorism threat 

has become the keystone of what has been widely heralded as a more imaginative 

approach to intelligence gathering, analysis and decision. What we see in the 

deployment of a mathematics of algorithmic security is exactly the co-presence of 

intuition and ingenuity that was proposed by Turing in his theorisation of 

computation. The exercise of intuition is present in the judgements on “trying to find 

out relations that might exist”, or the “different characteristics we are interested in”, 

and it is present in the software designer’s intuitive reach for a solution to the puzzle. 

In the process of being “written into the rules” and into “associated sites”, however, 

we find the exercise of ingenuity that finds routines and codes that make the intuition 

replicable in other places and at other moments.  
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In contemporary security practice such ingenuity is exercised largely through the use 

of analytics algorithms that read and make sense of large volumes of data. Yet, 

despite important debates on the capacities of machines to think, read and write, the 

precise form of the ingenuity of building a rule is rarely considered (Hayles 2005; 

2012). In a 1947 lecture on The Automatic Computing Engine, Turing describes the 

subroutines or rules that make up the components of a programme, suggesting that 

an “important idea is that of constructing an instruction” that can be used “amongst 

other things for discrimination”. The rules function where “certain processes are used 

repeatedly in all sorts of different connections, and we wish to use the same 

instructions […] every time […] We have only to think about how this is done once, 

and forget then how it is done” (Turing 1947: 16). And so, it may be that 

contemporary data analytics offer a more imaginative or speculative approach to 

security calculation, just as they also discriminate with finite racialized imaginaries of 

“characteristics we are interested in”. But it is not the case, as we often read in 

critique of the politics of security, that such calculations supply a gloss of objectivity 

and technoscience that obscures the real politics. On the contrary, this is 

mathematics, and it is a mathematics that is always already political precisely 

because of its combined faculties of intuition and ingenuity. This is a mathematics 

that is an arrangement of intuitive propositions that make things happen in the world, 

that is written into the rules of what is to be secured. 

 

‘There is all kind of use for it as part of a calculus’: mathematical grammars of 

security 

 

In the opening citation of this paper, Wittgenstein asked the question that animates 

my analysis of the specificity of the intersection of mathematics with security: What is 

the relation between the mathematics and the predictions? If one accepts that 

mathematics is an arrangement of propositions that does things, makes things 

happen, then what is the relation between the arrangement and the uncertain future?  

 

The inquest evidence and post-event reports after the terrorist attacks of 

Washington, New York, Bali, Madrid, London, Mumbai, have overwhelmingly 

concluded that attentiveness to the strict prior probabilities of terrorist attacks – 
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extremely low in these specific parts of the world – distracts the attention of the 

intelligence and analyst communities from the possibility of a “low probability, high 

impact event”. As a result, there has been an explicit loosening of the strict 

calculation of probability in the weighting and assembly of information and material to 

allow for modified “conditional” or “subjective” probabilities. In most instances this 

loosening of the conventions of probability follows some variant of a revitalized 

scientific interest in Bayes’s (1763) theorem on conditional probability (Daston 1986: 

258). Bayesian probability understands the strict statistical probability of an event to 

be an underlying ‘prior’ probability – a number that can be modified by the 

observation of subsequent events that supply “reliability figures” or “confidence 

scores” (Devlin 1997: 263). The significance here is that the Cartesian logics of 

classical mathematics are breached and the observer’s senses are invited into the 

capacity to calculate. If one heeds Wittgenstein’s caution that “what is interesting is 

how we use mathematical propositions” (1975: 38), then attention is drawn to the 

specific uses of revived Bayesian assumptions. What does Bayesian calculation do? 

It arrays together multiple correspondences, making links and associations between 

them using intuitive judgements. The political forecaster Nate Silver, for example, 

famously correctly predicted the outcome of all 50 states in the US presidential 

election. Using a variant of Bayesian calculation, Silver has proposed how the 

probability of terrorist attacks on the World Trade Centre could have been more 

precisely modified as the events unfolded: 

 

Consider a somber example: the September 11 attacks. Most of us would 

have assigned almost no probability to terrorists crashing planes into buildings 

in Manhattan when we woke up that morning […] However we would also 

have assigned a very low probability to a plane hitting the World Trade Centre 

by accident. This figure can actually be estimated empirically: in the previous 

25,000 days of aviation over Manhattan there had been two such accidents. 

That would make the possibility of such an accident about 1 chance in 12,500 

on any given day. If you use Bayes’s theorem to run these numbers, the 

probability we’d assign to a terror attack increased from 0.005% to 38% the 

moment the first plane hit. The idea behind Bayes’s theorem, however, is not 

that we update our probability estimates just once. Instead, we do so 

continuously as new evidence presents itself to us. Thus, our posterior 
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probability of a terror attack after the first plane hit, 38 percent, becomes our 

prior possibility before the second one did. And if you go through the 

calculation again, to reflect the second plane […] the probability that we were 

under attack becomes a near certainty – 99.99 percent (Silver 2012: 248).         

 

Though Silver’s comments on probabilistic reasoning for security should be seen in 

context of his application of the same formula to stock markets, Major League 

baseball games, and earthquakes, they do reflect a significant new sensibility toward 

probabilistic reasoning among security analysts. For example, the attribute based 

link analysis algorithm underwriting the software of data analytics for risk-based 

security functions by evaluating and weighting the relation between data points or 

nodes, identifying patterns of interest and assigning a confidence score to the 

calculation (Berlinski 2000).9 The calculations that are made are non-linear, they 

allow for multiple possible modifications, arcs and feedback loops, and for multiple 

possible chains of events to be kept running simultaneously. Using such calculations 

one does not need to definitively make a choice about the most probable outcome, 

filtering out the least likely, but only to differentially assign weight to each of the 

possible branches of events.  

 

Let us reflect on an example of an arrangement of combinatorial possibilities that 

allows for the branching points of human and machinic interventions. In the guidance 

manual for the Department of Homeland Security’s intelligence analysts we find the 

“event tree” – a “graphical tool used to illustrate the range and probabilities of 

possible outcomes that arise from an initiating event” (2010: 6). Though arguably a 

strikingly rudimentary technique, the branching visualization of the event tree seeks 

out a form of calculation that incorporates technological failures, human error, 

judgement and intuition (see figure A). The suggested uses for the event tree include 

“analysts us[ing] an event tree to diagram possible outcomes from a terrorist attack”: 

 

The initiating event is an Attack Attempted. From the initiating event, the tree 

branches into a sequence of random variables, called events. The branching 

point at which a new random event is introduced is called a node and is 

                                                           
9
 Perhaps the best-known everyday use of an attribute based link analysis algorithm is Google’s PageRank 

system. 
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depicted by a circle. The first of these random events is Personnel Action to 

Stop Attack. The Personnel Action to Stop Attack is successful with probability 

1-P¹ and fails to stop the attack with probability P¹. If Personnel Action to Stop 

Attack is successful, then the branch leads to the final outcome of 

Unsuccessful Attack, No Damage (Scenario A). If Personnel Action to Stop 

Attack is not successful, then the branch leads to the next node representing 

the random event of whether the Security Equipment to Stop Attack is 

successful or not with probabilities of 1-P² and P² respectively. If the Security 

Equipment to Stop Attack is successful then the branch leads to the final 

outcome of Unsuccessful Attack, No Damage (Scenario B). If Security 

Equipment to Stop Attack fails then the branch leads to the final outcome of 

Successful Attack, Damage to System (Scenario C) (Department of Homeland 

Security 2010: ). 

 

The event tree visualizes a series of branches of possible correlated events and 

interventions with possible associated outcomes. In a sense it does exercise the 

intuitive capacity to imagine or infer what an event might look like, what the effects of 

a particular intervention might be. Of course, the event tree is in many ways a 

profoundly unimaginative visualization of multiple branching links and pathways. Yet, 

it is precisely this simplicity that renders the decision tree method amenable to 

computational processes. In practice, the event tree is one form of a decision tree 

method that constructs a set of coded steps and procedures that can be automated 

within an algorithm (Elder, Miner and Nisbet 2012). A numeric conditional probability 

is assigned at each node, with the multiplication of the first layer of probability 

(Personnel Action to Stop Attack is not successful, P¹=0.1) by the second layer 

(Security Equipment to Stop Attack Fails, P²=0.3), resulting in a posteriori probability 

of a successful attack of 3%. Using predictive analytics the desk analyst can add or 

“prune out” variables to model “multiple what if scenarios” of the effects of a specific 

security intervention (Ohlhorst 2013: 5). 
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One response to the event tree security calculation may be to ask “what is the 3%”; 

“what does a 3% chance of attack mean?”; “what forms of action by security 

personnel or technology could be reasonably justified on the basis of that 3%?” 

Indeed, one might propose to critique the security calculus on the very basis that the 

number itself is arbitrary and meaningless. To open the critique at the site of number 

itself, though, is to miss an important locus of the politics of the contemporary 

security calculation. 

 

The data content of the Bayesian-influenced security calculation, the 3% itself, has 

little meaning when the grammar of the security calculation is a grammar of if, and, 

then (Berlinski 2000: 187; Amoore 2011). If A is present (for example, a previously 

denied visa application, a specific financial transaction, a particular past travel route), 

and B is co-present (for example, the name of an associate, a link to past crime data, 

a series of airline ‘no-shows’, a listed credit card number), then ˫ (it can be inferred 

that) a security risk Y is posed. The content of the data that enters the decision tree, 

the nodes in the calculation, the verifiability or otherwise of the sources of 

intelligence, the number in the calculation is not of any great significance at all to the 

capacity to calculate. What matters is the correspondences and correlations between 

the elements, how they are held together by inferences across the gaps. As Keith 

Devlin explains, one can “think of the mathematician’s abstract patterns as 

‘skeletons’ of things in the world. The mathematican takes some aspect of the world, 

say a flower or a game of poker, picks some particular feature of it, and then 

The “Event tree” for a terrorist 

attack (Department of Homeland 

Security 2010). 
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discards all the particulars, leaving just the abstract skeleton” (2000: 77). Returning 

to the event tree in these terms, what is visualized is a skeletal series of 

combinatorial possibilities with associated numeric conditional probabilities. The 

combinations could be almost infinitely reworked for as long as the relations among 

the elements can be sustained, with branches added or “pruned out”.   

 

Placed at the service of security calculation, the mathematical sciences offer a 

grammar of combinatorial possibilities that allow for things – people, objects, and 

data – to be arranged together, for links to be made. Returning to Turing and 

Wittgenstein for insight on what the implications of such a form of calculation may 

be: 

 

Wittgenstein: “2 + 2 = 4 – but this isn’t about 2: it is grammatical.” 

Turing: “Isn’t it merely a question of how one extends the use of the word 

‘about’?”   

Wittgenstein: “Of course, you can say mathematical propositions are about 

numbers […] But this brings me to an entirely different sense of how a reality 

corresponds to mathematics. Because now, if ‘30 x 30 = 900’ is not a 

proposition ‘about 30’, you will look for the reality corresponding to it in an 

entirely different place; not in mathematics but in its application” (Lectures on 

the Foundations of Mathematics, 1939: lecture xxvi). 

 

In Turing’s analysis there is something ‘about’ the intrinsic properties of number – in 

this instance there is something ‘about 2’, 2 has a capacity. Of course, in Turing’s 

world of pure mathematics, the properties of 2 are crucial – number has a vitality, a 

vitality that propels thought and intuition. For Wittgenstein, though, mathematics is 

part of the apparatus of language, it is a grammar that makes some propositions 

sayable and silences others.10 Reflecting on knowledge in mathematics, he 

                                                           
10

 It is important not to overplay the confrontation of Turing and Wittgenstein’s relationship. The Turing 
papers show that when Alan Turing had received the offprints of his ‘On Computable Numbers’ he compiled a 
list of scholars to whom his mother was instructed to forward copies – Wittgenstein and Bertrand Russell were 
among those on the list (Dyson 2012). The significance of the 1930s discussions is perhaps that the 
philosophical question of what number is, of how it acts in the world, was engaged across mathematics and 
philosophy. As N. Katherine Hayles has suggested, in the twenty first century the philosophical debate on what 
kind of thought is possible in computation has tended to become obscured (2005: 18).    
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describes how “one has to keep on reminding oneself of the unimportance of the 

‘inner process’ and ask ‘why should it be important? What does it matter to me?’ 

What is interesting is how we use mathematical propositions” (1965: 41). If we follow 

Wittgenstein here, then our attention is drawn to the application of the proposition, to 

how it functions in the world. “Taken by itself we shouldn’t know what to do with it; it’s 

useless”, says Wittgenstein of number, “but there is all kind of use for it as part of a 

calculus” (1965: 42).  

 

What does it mean to say that there is all kind of use for number as part of a 

calculus? Reflecting for a moment on how mathematical devices are being used by 

the UK and European policing and counter-terror authorities to mine and analyse so-

called ‘open source’ data such as Facebook text or Twitter feeds, there is currently 

some debate over the intrinsic quality of unstructured data that could be considered 

to be terrorism related data.11 The growth of consumer “sentiment analysis” to “take 

the pulse” of a “specific target group” through their web discussions is now 

increasingly mirrored by what is called “meaning extraction” for counterterrorism 

(Elder, Miner and Nisbet, 2012: 57). As I showed in the ACM example of web-based 

analytics, the linking of unstructured open source data to existing structured data in 

work file attributes is thought to enhance the capacity of the analyst to predict some 

possible emergent threat.  

 

The solution to the problem of how to calculate security risk with unstructured data is 

thought to be located precisely in the kind of combinatorial possibilities depicted in 

Keith Devlin’s reading of the history of mathematics. In the context of the terabytes of 

unstructured data thought to be analysed by algorithm in the PRISM and TEMPORA 

programmes, the possible combinations of elements are precisely what is sought in 

the partitioning of the data. The value of a particular data point may remain 

uncertain, but the combinations open up all kinds of new possibilities for calculation. 

Where the content of the unstructured data is thought to be of variable quality, for 

                                                           
11

 According to Europol, “terrorist groups often communicate through public websites. These groups will issue 
threats, claim credit for attacks or spread indoctrination material over the internet. So-called terror manuals 
offer detailed instructions on how to organise attacks or build weapons and bombs. Europol may monitor 
those websites and analyse their information […] the agency has added a Check the Web portal to its Analysis 
Work Files, where relvant information is gathered and processed in order to gain an overview of worldwide 
Islamist terrorist activity” (Europol 2011: 26).   
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example, a Bayesian-type “confidence score” or “reliability index” is assigned. Thus, 

for example, where the categories a, b, c, x describe specific types of data (e.g. a 

could be a named individual on a European alerts index; x could be a thread on a 

social networking site), and the scale 1-4 denotes the degree of verifiability of the 

source, a data item for a Twitter feed may constitute an ‘x4’ node. However, by 

correlating the x4 item with elements of a1 or b1 data, for example, the analyst’s 

confidence score is modulated by the distance or proximity to other elements. 

 

 In other words, what might otherwise be considered poor data in terms of forming 

the basis for a policing or security decision is thought to be ‘enhanced’ or ‘cleaned’ 

by its grammatical proximity to other associated elements. And so, to formulate a 

security calculation that reads: item a (a credit card transaction), present with item b 

(a communications data association with a watchlisted individual), and the element x 

(a ‘text reveal’ node on a social networking site), produces a conditional probability of 

this or that risk, is not to make a proposition about the intrinsic value or properties of 

the item. Rather like the invocation that the earthquake scientists could have inferred 

from their data in correlation with other factors, it does not matter to the 

mathematical grammar of security what the number is. It can be empty of meaningful 

content, for, as Wittgenstein puts it, there is “all kind of use for it as part of a 

calculus”. 

 

The politics of the decision problem  

         

The mathematical debates of the early twentieth century were dominated by a 

question posed by the German mathematician David Hilbert (1928) – the 

Entscheidungsproblem or decision problem: could provable mathematical 

propositions be distinguished from non-provable propositions by means of a series of 

mechanical procedures? Hilbert’s theorem, that all mathematical solutions could be 

reached through a series of pre-determined axioms, was fundamentally challenged 

by the Princeton IAS mathematicians of the 1930s. Austrian mathematician Kurt 

Gödel developed his incompleteness theorem with which he demonstrated that 

mathematics will always include undecidable propositions that can be neither 

definitively proved to be true nor proved to be false. Taking the idea one step further, 

Alan Turing’s (1936) On computable numbers: with an application to the 
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Entscheidungsproblem makes the groundbreaking argument that there is no definite 

method through which to distinguish computable from non-computable numbers in 

advance. The significance of Turing’s contribution to the decision problem, for the 

purposes of this discussion, is that at the very moment that he makes possible 

theoretically the first form of programmable computer, he also signals something of 

the limit point of programming and computability. Taking his points step by step, in 

his 1936 paper Turing proposes that the “Hilbert Entscheidungsproblem can have no 

solution” because “there can be no general process for determining whether a given 

formula of the functional calculus is provable” (reprinted in Copeland, 2010: 84). It is 

important to appreciate that undecidability, in Turing’s terms, is not the same thing as 

solvability. A given mathematical problem may indeed be solvable by “a direct 

appeal to intuition” (1936: 242) that reaches its way toward a solution, but it is not 

decidable in advance whether or not there are procedures, rules that can be followed 

mechanically in order to solve the puzzle. In short, a mathematical problem may be 

solvable but not computable.  

 

Twenty years later, and with the benefit of having worked on the actualization of 

programmable computers, Turing explains the distinction between finding a solution 

and establishing a decision procedure: 

 

If one is given a puzzle to solve one will usually, it if proves to be difficult, ask 

the owner whether it can be done. Such a question should have a quite 

definite answer, yes or no […] One might equally ask, ‘How can one tell 

whether a puzzle is solvable?’, but this cannot be assumed so 

straightforwardly. The fact of the matter is that there is no systematic method 

of testing puzzles to see whether they are solvable or not […] It has been 

proved that no such test ever can be found (Turing, 1954: 7). 

           

When Turing speaks of “unsolvable problems”, then, he does not imply that no 

solution to the mathematical puzzle can be found, but rather that no decision 

procedure can be established. For this reason Turing prefers to speak of “unsolvable 

decision problems” rather than unsolvable problems. What Turing proposes is that 

mathematical problems can never be resolved by what he calls “ingenuity” alone – 

there are problems for which no effective decision procedure or protocol can be 
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arrived at. In short, there are limits to the capacity to establish a decision procedure 

(what we would now call an algorithm). Turing considers there to be “certain bounds 

to what we can hope to achieve purely by reasoning” (1954: 23), signalling anew the 

importance of intuition to mathematics. Intuitively one may arrive at a solution to a 

puzzle, but still the puzzle may defy the formal writing of a decision procedure or 

algorithm that would make the solution replicable. “Within mathematics itself”, Turing 

reminds us, there is an “inadequacy of reason unsupported by common sense” 

(1954: 23). Of course, the common sense Turing describes is also a form of reason, 

but what is significant here is that: a) there are mathematical problems for which a 

decision procedure cannot be known in advance; and b) there are mathematical 

problems that, whilst intuitively solvable, are not computable by the formal 

procedures of algorithm or rule.   

 

What do Turing’s insights illuminate in terms of a mathematical turn in contemporary 

security calculation that precisely seeks to know in advance, to establish a decision 

procedure that can be automated, and to render imagination itself amenable to 

routinized procedures? Though the contemporary turn to the mathematics of data 

mining and analytics in one sense mobilizes Turing’s vision of the digital universal 

computing machine, in another significant aspect it breaks with Turing’s crucial 

distinction between decidable and undecidable problems . In contemporary security 

calculations everything is rendered amenable to the formulation of a decision 

procedure – border security algorithms that know a risky subject in advance; 

intelligence visualizations that attribute weight to some associations over others; 

automated gates in urban transport systems that know when to open and close. The 

procedures and rules are written as algorithmic code, such that two things are 

forgotten: first, that these are problems for which it is possible that no definitive 

decision procedure can be arrived at; and, second, that the ingenuity of the algorithm 

was written in large part intuitively. Indeed, where the impossibility of a decision 

procedure is confronted (there being insufficient or inadequate data on terrorism 

events, for example), the solution is found via the incorporation of the residue of a 

past event into the decision procedure. Thus, for example, the contingent fragment 

of a past singular event – two flight tickets bought on one credit card but not seated 

together (9/11); student visas that fail to correlate to higher education records 

(Manchester bomb plot); specific travel to, and duration of stay in, Pakistan (2006 
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transatlantic airliner liquid bomb plot) – becomes perennially lodged in the algorithms 

designed for future security risk. This is despite the fallibility of algorithm-based 

security systems in place before 9/11, whose manifest failings were detailed in the 

9/11 Commission’s findings.12              

    

Contemporary security systems have mobilized the techniques and routines of 

mathematical combinatorial possibilities – Turing’s ‘ingenuity’ – but they have done 

so indifferent to the implications of the combination of intuition and ingenuity that 

underlies these very techniques. Consider, for example, the 2012 report of the US 

Senate Permanent Subcommittee on Investigations, detailing the devastating failings 

of the more than 70 fusion centres established to mine, share, and analyse so-called 

‘terrorism-related’ information. The data analytics-driven fusion centres have been 

consistently represented as “the spearhead of counter-terrorism”, and “the highlights 

of progress” in implementing “more imaginative approaches to intelligence” (DHS 

2011). As the Secretary of the Department of Homeland Security, Janet Napolitano, 

testified before the US House of Representatives Sub-Committee on Appropriations 

in 2012, the 2013 budget “focuses on the enhancement of data fusion centres, 

intelligence analysis, and information sharing” and “continues to build analytic 

capabilities through the national network of fusion centres” (Napolitano 2012).  

 

Yet, despite the manifest faith placed in data analysis, the 2012 Senate 

Subcommittee’s detailed investigation of the fusion centres found that “Department 

of Homeland Security fusion centres forwarded ‘intelligence’ of uneven quality – 

oftentimes shoddy, rarely timely, irrelevant, useless, and more often than not 

unrelated to terrorism” (2012: 1). During two years of investigations the 

Subcommittee were unable to identify any data-led alerts that pertained to a terrorist 

                                                           
12

 The Computer-Assisted Passenger Pre-screening (CAPPS) system in place at US airports from the 1990s was 
identified as having missed opportunities to stop the 9/11 hi-jackers. Though nine of the individuals were 
identified by the CAPPs algorithm for additional screening, at the time this applied only to additional checks of 
hold luggage. In the case of Mohammad Atta, the CAPPs did flag him for additional screening, but because he 
had no checked luggage there was no further intervention. CAPPS illustrates how past events become 
sedimented into the algorithm – since at the time terrorist events on airliners were thought always to pertain 
to explosives in checked luggage, if the correlation between passenger and luggage was not present there 
would be no action taken. Arguably, in the original CAPPS system the past event of the 1988 Lockerbie 
bombing of Pan Am flight 103 became lodged in subsequent security risk calculations that sought to correlate 
passenger to checked luggage. In CAPPs II and Secure Flight, the successor systems to CAPPs, the residue of 
the past event remains, but now of course it is the absence of checked luggage that becomes one element of 
value.      
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threat. The conclusions of the report echo those of European studies of the use of 

data analytics for counter-terrorism – that the use of mirror databases, attribute-

based link analysis algorithms and so on produce reports “not about terrorists or 

possible terrorist plots, but about criminal activity, largely pertaining to drugs, cash or 

human smuggling” (2012: 3; see also de Goede 2012; Amoore 2013; Wesseling, 

Amoore and de Goede 2012). Among the interviews conducted by the US 

Subcommittee team with DHS analysts, the fusion centre security calculations were 

said to be “predominantly useless information” and “a bunch of crap coming 

through”. However, because what has come to count as calculation in the fusion 

centres is overwhelmingly the capacity to establish an arrangement of propositions, 

a calculus of routines and sub-routines that can be followed and replicated, the 

critical findings of the Subcommittee fall some way short of gaining purchase on the 

political problem. The content of the data items themselves ceases to matter – there 

is, recalling Wittgenstein, “all kinds of use for it as part of a calculus”. In terms of the 

effects in the world, such is the dominance of the drive to calculate the incalculable, 

that calculability itself is never in question.13 Where I understand the incalculable to 

be that for which there can be no decision procedure in advance, the drive to 

calculate renders all potential futures knowable and resolvable (Amoore 2013).  

 

The critique of contemporary security calculation that targets the inadequacy or 

paucity of data, then, is unable to find political purchase because what counts is not 

the accuracy of the number, but rather the precision of the decision procedure itself. 

As the historian of science Lorraine Daston has argued so compellingly, the 

mathematics of probability reveals not strictly a desire for ever greater degrees of 

accuracy and objectivity, but in fact a quite distinct emphasis on precision, on the 

“intelligibility of concepts” which “by itself stipulates nothing about whether and how 

these concepts match the world” (1995: 9). For Daston the history of the 

mathematical sciences is characterized by a desire to share an intelligible language, 

to always know ‘what is meant by 2’ even if one considers the number itself to be 

inaccurate or not to match the world. Citing Leibniz’s claim that “lack of clarity is at 

the root of most controversy”, Daston suggests that “attempts to silence dissent” rely 
                                                           
13

 It has become possible for the US and UK data analytics systems to fail beyond all redemption, and yet for 
the establishment of new counter-terrorism analytics units to be accelerated. For example, the initial draft 
2011 European Union Directive on Passenger Name Record data mandates the use of fusion-style passenger 
information units in every member state (Commission of the European Community 2011).    
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less upon an idea of scientific objectivity than on a consensus achieved through 

precise grammar. “Even when the truth of the matter was not to be had”, writes 

Daston, “numbers could be invented, dispersed to correspondents at home and 

abroad, and, above all, mentally shared. You and I may disagree about the accuracy 

of a set of numbers, but we understand the same thing by them” (1995: 9-10). 

Bringing Daston into our speculative conversation with Turing, then, mathematics 

has prized the ingenuity of the rule or algorithm because it affords a precision, an 

intelligibility of concepts that is shared as a procedure across borders.    

 

In light of Daston’s insights, it is of little consequence whether or how the 

mathematical models that grind out security alerts and reports have any sense of a 

match to the world. What is of consequence is the capacity to arrange propositions, 

to establish an algorithmic decision procedure through which any form of data can be 

processed. Turing tells us that there are some mathematical problems for which no 

effective decision procedure can be reached, and we cannot know in advance which 

problems these will be. In today’s security practice, and in spite of its reliance on a 

mathematics for homeland security that combines the faculties of ingenuity and 

intuition, there is present a ubiquitous decision procedure that claims always to know 

in advance. Calculation and intuition are enfolded together in ways that are 

disavowed by a system of analytics that can never be in any sense analysis, can 

never ask a question that is not already present in the decision procedure itself, can 

never open itself onto an incalculable future.  

 

 

Conclusions: for calculability is never in question 

 

The defence case of the L’Aquila earthquake scientists dramatizes a particular claim 

about the incalculability of the future, a claim made on the basis of accuracy – “on 

the basis of this data we cannot know and we cannot predict”. It is a claim that runs 

against the grain of what I propose is the logic of contemporary security: calculability 

is never in question, a precise arrangement of combinatorial possibilities can always 

be arrived at in advance. The assumption here is that, in effect, there can be no 

incalculable that cannot be acted upon. Thus, there can be no insecurity, everything 

is securable.  
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Yet, as contemporary security practices deploy mathematics to calculate the 

incalculable this is not, as has commonly been argued, because the conventions of 

science and objective data analysis have given way to the inculcation of imagination 

and inference in intelligence gathering. On the contrary, contemporary security does 

not displace calculative rationalities with inferential speculation, but deploys a 

mathematical science that already enfolded the intuitive and inferential in its very 

objectivity (Daston and Galison 2007: 357). A turn to the debates of twentieth-

century mathematics reminds us of the grammatical arrangement of combinatorial 

possibilities that is the very basis of inference rules. In short, the form of 

mathematical rationality was always already intuitive and always already political. 

Because the arrangement of combinatorial possibilities that is the contemporary 

algorithm establishes the associative conditions also of what is politically possible – 

what is sayable, what claims can be made – the appeal to objective or neutral 

machinic decision is superficial. Beneath the visible surface of the techno-scientific 

fix of analytics software surges a vast array of connectives and associations. The 

grammar of contemporary security calculations effaces the aporia, the difficulty and 

fallibility of arriving at a judgement. And so, the problem is not science as such, for 

the mathematical science so publicly debated by Turing and Wittgenstein in the 

1930s shows itself to be political, one possibility among a number of possibilities, 

open to its own fallibility. The problem instead is the erasure of that fallibility such 

that the public space for critique and dissent is closed out. We find ourselves in a 

world where, as in L’Aquila, we will call to account those who confront the 

incalculability and say it is undecidable in advance, we will say that they failed to 

secure us. But we will also silence the critique of the calculus, the claims of those 

who wish to make a political claim from a place not registered within the grammar.   
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