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ABSTRACT
Interactions between dark matter (DM) and radiation (photons or neutrinos) in the early
Universe suppress density fluctuations on small mass scales. Here, we perform a thorough
analysis of structure formation in the fully non-linear regime using N-body simulations for
models with DM–radiation interactions and compare the results to a traditional calculation
in which DM only interacts gravitationally. Significant differences arise due to the presence
of interactions, in terms of the number of low-mass DM haloes and their properties, such as
their spin and density profile. These differences are clearly seen even for haloes more massive
than the scale on which density fluctuations are suppressed. We also show that semi-analytical
descriptions of the matter distribution in the non-linear regime fail to reproduce our numerical
results, emphasizing the challenge of predicting structure formation in models with physics
beyond collisionless DM.

Key words: astroparticle physics – galaxies: haloes – dark matter – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Dark matter (DM) is the most dominant and yet most elusive com-
ponent of matter in the Universe. Exploring its nature is there-
fore one of the greatest challenges in both cosmology and particle
physics today. The usual treatment of DM in structure formation
(SF) calculations neglects possible interactions between DM and
other species. Yet if DM is a (thermal) weakly interacting massive
particle (WIMP), interactions (and more precisely, annihilations)
are essential to obtain the correct relic density. It is therefore impor-
tant to study the impact of DM interactions on other cosmological
observables.

It has been already established that a DM coupling with primor-
dial radiation, i.e. photons (Boehm, Fayet & Schaeffer 2001; Boehm
et al. 2002; Sigurdson et al. 2004; Boehm & Schaeffer 2005; Dolgov
et al. 2013; Wilkinson, Boehm & Lesgourgues 2014a) or neutrinos
(Boehm et al. 2001, 2002; Boehm & Schaeffer 2005; Mangano et al.
2006; Serra et al. 2010; Wilkinson, Boehm & Lesgourgues 2014b)
leaves a characteristic imprint on the cosmic microwave background
(CMB) temperature and polarization power spectra. In addition, in a
previous publication (Boehm et al. 2014), we showed using N-body
simulations that such interactions have a significant impact on the
Milky Way environment, dramatically reducing the number of DM
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subhaloes that could potentially host satellite galaxies.1 Since they
have the potential to alleviate the small-scale problems that have
persisted in the standard cold DM (CDM) model for more than a
decade (Klypin et al. 1999; Moore et al. 1999; Boylan-Kolchin,
Bullock & Kaplinghat 2011), these interactions should not be ig-
nored.

We now go a step further and study the abundance and properties,
such as shape, spin and density profile of collapsed DM structures
in the presence of DM–radiation interactions. We highlight the dif-
ferences with respect to CDM and in addition, warm DM (WDM),
which shows a qualitatively similar suppression of power on small
scales (Schaeffer & Silk 1988). We note that recent work has also
considered non-linear SF in a number of alternative models such as
self-interacting DM (Rocha et al. 2013; Vogelsberger et al. 2014),
decaying DM (Wang et al. 2014), late-forming DM (Agarwal et al.
2014), atomic DM (Cyr-Racine & Sigurdson 2013) and DM inter-
acting with dark radiation (Buckley et al. 2014; Chu & Dasgupta
2014); see also Schneider (2014).

The paper is organized as follows. In Section 2, we summarize
the theoretical background and results obtained thus far using linear
perturbation theory. In Section 3, we describe the setup of our nu-
merical simulations. In Sections 4 and 5, we analyse the abundance
and properties of the collapsed structures, comparing our results
with semi-analytical approximations from the literature. Our con-
clusions are presented in Section 6.

1 See also Bertoni et al. (2014).
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Figure 1. The linear matter power spectra for collisionless CDM (solid,
black), γ CDM (dashed, red), νCDM (dotted, blue) and WDM (dash–dotted,
orange) at redshift z = 49. The interaction cross-sections for γ CDM and
νCDM and the particle mass for WDM have been selected such that the
initial suppression with respect to CDM is identical (see Table 1). This
wavenumber defines the half-mode mass, Mhm, which is marked with an
arrow and separates regions I and II, which are discussed with reference to
Fig. 2.

2 TH E O R E T I C A L BAC K G RO U N D

Among all the possible contributions to the collisional damping
of DM fluctuations, the largest occurs when DM interacts with
photons (γ CDM) or neutrinos (νCDM). There are two reasons for
this: (i) photons and neutrinos have the largest energy density of
any standard model particle until matter-radiation equality, (ii) they
are relativistic and therefore tend to drag DM particles out of small
mass overdensities if they are coupled to DM.

For large values of the DM–radiation scattering cross-section,
the suppression is prominent in both the CMB temperature and
polarization power spectra. A comparison between the predicted
spectra and the first-year data from Planck (Planck Collabora-
tion XVI 2014) gives upper bounds of 8 × 10−31(mDM/GeV)cm2

and 2 × 10−28(mDM/GeV)cm2 on the γ CDM and νCDM cross-
sections, respectively, where mDM is the DM particle mass (at
68 per cent CL, assuming a constant cross-section; Wilkinson et al.
2014a,b).

The reason why these constraints differ for γ CDM and νCDM
is that photons and neutrinos do not have exactly the same effect
on DM fluctuations due to their different thermal histories, with
photons staying coupled to the thermal bath for much longer due
to Thomson scattering.2 Their effect on the matter power spectrum
is also different, as illustrated in Fig. 1, where we show the linear
theory matter power spectra for collisionless CDM, γ CDM, νCDM
and (collisionless) WDM.

Unless explicitly stated otherwise, the values we use throughout
this paper for the γ CDM and νCDM cross-sections and the WDM

2 In addition, γ CDM has a direct impact on the CMB, while νCDM only
affects the CMB indirectly, and the parameter space for νCDM suffers from
significant degeneracies (see Wilkinson et al. 2014b).

Table 1. The (constant) elastic scattering cross-sections for γ CDM and
νCDM and the particle mass for WDM, expressed in various units. σTh

is the Thomson cross-section, mDM is the DM mass and α is defined in
equation (2). Note that the mass of the WDM particle is motivated by the
reproduction of the half-mode mass in the γ CDM and νCDM models, as
explained in the text.

(mDM/GeV) (mDM/GeV) (mDM/g)
× σTh × cm2 × cm2

γ CDM 2.0 × 10−9 1.3 × 10−33 7.5 × 10−10

νCDM 2.9 × 10−9 1.9 × 10−33 1.1 × 10−9

mDM (keV) α (h−1 Mpc)
WDM 1.2 0.037

mass are given in Table 1. These parameters are motivated by the
constraints obtained in our previous work (Boehm et al. 2014) and
have been selected such that the scale at which the transfer function
is suppressed by a factor of 2 with respect to CDM (hence giving
a factor of 4 reduction in power) is identical. This scale defines
the half-mode mass, Mhm, and demarks the range of wavenumbers
labelled as regions I and II in Fig. 1. In region II, there are impor-
tant differences between the power spectra for γ CDM, νCDM and
WDM.

In the case of a thermalized, non-interacting, fermionic WDM
particle, the suppression in the matter power spectrum is typically
approximated by the transfer function (Bode, Ostriker & Turok
2001)

T (k) = [
1 + (αk)2µ

]−5/μ
, (1)

where

α = 0.048
[mDM

keV

]−1.15
[

�DM

0.4

]0.15 [
h

0.65

]1.3 Mpc

h
. (2)

Here, �DM is the DM energy density, h is the reduced Hubble param-
eter and μ � 1.2 is a fitting parameter.3 The scale α in equation (2)
encapsulates the effect of free-streaming, which erases primordial
fluctuations below a wavelength given by

λfs =
∫ t0

tdec

v(t)

a(t)
dt ≈ rH(tNR)

[
1 + 1

2
log

(
tEQ

tNR

)]
, (3)

where v(t) is the thermal velocity of the WDM particle. In this
expression, tdec is the DM decoupling time, t0 is the time today, a(t)
is the cosmological scalefactor, rH(tNR) is the comoving size of the
horizon when DM becomes non-relativistic (at time tNR) and tEQ is
the epoch of matter-radiation equality.

A similar transfer function can be used to model the cut-off in
the matter power spectra in γ CDM and νCDM (Boehm et al. 2002)
with

α̃ = βX

[
σDM−X

σTh

mDM

GeV

]0.48 [
�DM

0.4

]0.15 [
h

0.65

]1.3 Mpc

h
, (4)

where X is γ or ν, βγ ≈ 1.25 × 104, βν ≈ 1.04 × 104, σ DM-X

is the DM–radiation cross-section and σ Th is the Thomson cross-
section. This transfer function fixes the half-mode scale for γ CDM
and νCDM, thus providing a means to compare the impact of the
interactions with respect to WDM, but does not encapsulate the full
suppression of the power spectrum.

3 There is an alternative fit for α and μ that is often used in the literature
(e.g. Viel et al. 2005), but the difference is marginal for our analysis.
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DM–radiation interactions: DM haloes 3589

Equation (4) corresponds to an analytical calculation of the col-
lisional damping scale given by4

λ2
cd = 2π2

3

∫ tdec

0

ρX

/ρ

v2
X (1 + �X)

a2 �X

dt . (5)

In this equation, /ρ = ρX + pX , where ρX is the energy density, pX the
pressure, vX is the velocity dispersion and �X is the total interaction
rate of the DM interaction partner and �X contains the contribution
from heat conduction.

As the integral in equation (5) is dominated by the contribution at
late times, the collisional damping scale can be approximated by

λ2
cd ≈ 2π2

3

[
ρX

/ρ

v2
X (1 + �X)

a2

t2

αX

] ∣∣∣∣∣
tdec

, (6)

using �X = H = αX/t at t = tdec, where H is the Hubble rate,
αX = 1/2 if tdec < tEQ and αX = 2/3 otherwise. On scales smaller
than λcd, primordial fluctuations are erased.

We summarize the impact of the damping scales λfs and λcd in
linear theory in Fig. 2. To distinguish these quantities from the half-
mode mass scale, Mhm, we present the mass corresponding to the
relevant damping scale as a function of the DM mass (for WDM)
and interaction cross-section (for γ CDM and νCDM).

We identify three regions in Fig. 2. Regions I and II are already
labelled in Fig. 1 and there is now an additional region (III) oc-
curring at much higher wavenumbers than that are plotted in this
figure. In region I, haloes form hierarchically, while in region III, all
primordial perturbations have been erased. In between lies a transi-
tion region (region II), where some primordial density fluctuations
may survive to form structure, but these are already sufficiently
suppressed to disfavour a typical hierarchical SF. Region II extends
down to much smaller scales for γ CDM and νCDM compared
to WDM due to the prominent oscillations in the matter power
spectrum.5 The separation between regions I and II is determined
by the half-mode mass scale (as in Fig. 1), while the transition be-
tween regions II and III is governed by the free-streaming scale (for
WDM) or collisional damping scale (for γ CDM and νCDM).

3 SI M U L AT I O N S

To calculate the non-linear evolution of the matter distribution, we
run a suite of high-resolution N-body simulations using the parallel
Tree-Particle Mesh code, GADGET-3 (Springel 2005). To model a
wide dynamical range, we perform simulations in large boxes (of
side lengths 100 and 300 h−1 Mpc) and a small box (of side length
30 h−1 Mpc), all containing 10243 particles.

The simulations begin at a redshift of z = 49 (the DM–radiation
interaction rate is negligible for z < 49) and use a gravitational
softening of 5 per cent of the mean particle separation. The initial
conditions are created with an adapted version of a second-order
LPT code (Crocce, Pueblas & Scoccimarro 2012), using input mat-
ter power spectra from a modified version of the Boltzmann code,
CLASS (Lesgourgues 2011).

4 We neglect the possible contributions from self-interactions and mixed
damping and simplify the calculation to a single DM interaction partner.
5 We note that acoustic oscillations are also expected in the transfer functions
for certain WDM models at small scales (see e.g. Boyanovsky & Wu 2011).
However, at these scales, the transfer function is already strongly suppressed
by free-streaming so the regeneration of power from these oscillations is
expected to be much weaker than in γ CDM and νCDM.

Figure 2. Characteristic mass scales for the suppression of primordial
fluctuations by free-streaming (WDM, top), photon collisional damping
(γ CDM, middle) and neutrino collisional damping (νCDM, bottom). The
half-mode mass scale, Mhm, is defined by the initial cut-off in the transfer
function and marks the upper boundary of region II, where hierarchical SF
may no longer occur due to a reduced number of low-mass progenitors. Mfs

and Mcd are the masses corresponding to the free-streaming and collisional
damping scales, respectively, and define the boundary of region III, where
structures no longer form. The colour scale shows the absolute value of
the transfer function, T(k), and the vertical red lines correspond to the DM
parameters listed in Table 1.
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We use the best-fitting values of the cosmological parameters
obtained by the Planck collaboration in the ‘Planck + WP’ data set
(Planck Collaboration XVI 2014), assuming a flat CDM cosmol-
ogy. In principle, a consistent treatment of an interacting DM model
would require one to study each cross-section within its own best-
fitting cosmology. However, we find that the parameters for CDM
lie within one standard deviation of such best fits. Therefore, we
keep the cosmological parameters fixed for all the models studied
here.

Lovell et al. (2014) showed that in the case of WDM, one can
safely ignore thermal velocities, without introducing a significant
error on the scales of interest, if the DM particle is heavier than
∼1 keV. We confirmed this by performing simulations with and
without a thermal velocity dispersion and obtaining convergence
on the scales of interest. Hence, we only consider models in which
late-time free-streaming can be neglected.

Fig. 3 shows the projected DM distribution in the 30 h−1 Mpc
box for (i) collisionless CDM and (ii) an extreme γ CDM model that
is allowed by Planck CMB data (Wilkinson et al. 2014a). Fewer
small structures are present in γ CDM as an immediate result of
the suppression of small-scale power shown in Fig. 1. The only
exception is found along the filaments, where spurious structures
contaminate the otherwise smooth environment (Wang & White
2007). Similar results are obtained for νCDM and WDM.

For abundance measurements (Section 4), DM haloes are identi-
fied using a friends-of-friends group finder (Davis et al. 1985) with
a linking length of 20 per cent of the mean particle separation. For
the halo properties (Section 5), we instead use the AMIGA halo finder
(Knollmann & Knebe 2009), where collapsed structures are defined
as spherically overdense regions of radius rvir with a mean density
given by

3Mvir

4πr3
vir

= �thρcrit. (7)

In this expression, Mvir is the virial mass, ρcrit is the critical density
and �th is the mean overdensity of a virialized halo with respect
to the critical density, according to the spherical top-hat collapse
model.

4 R E S U LT S : H A L O A BU N DA N C E

The suppression of small-scale density fluctuations in the early
Universe (as discussed in Section 2) has a significant effect on the
subsequent SF. This has been studied in detail for WDM (e.g. Lovell
et al. 2014), where the halo mass function (HMF) was compared
to semi-analytical predictions. In this section, we perform a similar
analysis for γ CDM and νCDM by comparing the simulated HMFs
with the Press-Schechter formalism (Press & Schechter 1974) and
modifications thereof. In addition, we study the spatial distribution
of DM haloes on large scales.

4.1 Semi-analytical HMFs

The Press–Schechter formalism uses the known primordial pertur-
bations and their linear growth to calculate the fractional volume of
space occupied by virialized objects of a given mass, assuming a
spherical collapse model (Press & Schechter 1974). The HMF can
be written as

dn(M)

dM
= −1

2
f (HMF)(σ 2)

ρ̄

M2

d ln σ 2(M)

d ln M
, (8)

where n(M) is the number density of DM haloes of mass M →
M + dM, ρ̄ is the average matter density of the Universe and σ 2(M)
is the variance of the linear density field given by

σ 2(M) = 1

2π2

∫ ∞

0
k2P (k)Ŵ 2(k, R) dk. (9)

The variance is smoothed on a mass-dependent scale R(M), using
a suitable window function W(r, R), which has a Fourier transform
Ŵ (k, R) (Jenkins et al. 2001).

The Sheth–Tormen (ST) formalism (Sheth, Mo & Tormen 2001)
combines the Press–Schechter formalism with an ellipsoidal col-
lapse model. In this model, the function f(HMF)(σ 2) in equation (8)
represents the fraction of collapsed haloes and is defined by

f
(HMF)
ST (σ 2) = A

√
2

π

[
1 + x−2p

]
x exp

[−x2/2
]
. (10)

In this expression, x ≡ √
aδc/σ , where δc is the cosmology-

dependent linear overdensity at the time of collapse. The param-
eters A ≈ 0.3222, p ≈ 0.3 and a ≈ 0.707 were obtained by fitting
to simulation results (Sheth et al. 2001).

The window function, W(r, R), is in general, arbitrary. However,
certain choices of window function are advantageous as they allow
for both a sensible definition of the smoothed density field and an
semi-analytical solution for the Fourier transform. A real-space top-
hat, W(r, R) = �(1 − |r/R|), has the advantage of a well-defined
smoothing scale, R, defined in terms of the halo mass, M(R), as

R =
(

3M

4πρ̄

)1/3

. (11)

However, recent papers (Benson et al. 2013; Schneider, Smith &
Reed 2013) have shown that this choice does not reproduce the
HMF for cosmologies with a cut-off in the matter power spectrum
at small scales. Instead, the predicted HMF continues to increase
with decreasing M, while the suppression of primordial matter per-
turbations demands the opposite. The reason for this behaviour is
illustrated in Fig. 4, where the Fourier-transformed real-space top-
hat and (intermediate) steps of the HMF calculations are shown
by red/dashed lines. For this type of window function, one obtains
significant contributions from a wide range of unsuppressed larger
scales, which dominate the resulting variance and thus, the predicted
HMF.

A k-space top-hat window function is only sensitive to local
changes in the matter distribution in k-space and thus reproduces
the expected suppression in the halo abundance for damped power
spectra (see Fig. 4, blue/solid lines). However, the mass-smoothing
scale relation (M–R) must now be defined without the simple geo-
metrical justification of equation (11), which was used in the real-
space case.

Here, we use the definition of Lacey & Cole (1993), which defines
the cut-off wavenumber, ks, in relation to the mass, M, based on the
normalization choice

ks =
(

M

6π2ρ̄

)−1/3

. (12)

This corresponds to a correction factor of c ≡ Rks ≈ 2.42 with
respect to equation (11), so that the semi-analytical HMF matches
numerical simulations at large scales.6

6 Note that Schneider et al. (2013) and Benson et al. (2013) follow a very
similar approach, but with slightly different values for c.
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Figure 3. The simulated distribution of DM at redshift z = 0 in a box of side length 30 h−1 Mpc for two models: collisionless CDM (left) and γ CDM
with σDM−γ = 10−7 σTh (mDM/GeV, right), which is allowed by Planck CMB data (Wilkinson et al. 2014a). The colours indicate the DM density on a scale
increasing from blue to red. Due to collisional damping, we obtain fewer small-scale structures in γ CDM than are seen in CDM.

Figure 4. Real-space and k-space top-hat window functions in Press–
Schechter HMF predictions for γ CDM. The upper panel shows the matter
power spectrum, while the second panel shows the Fourier transform of the
two window functions (r top-hat and k top-hat). Each window function is
evaluated for two filter masses, M and M + �M. The difference between
the two filter masses is highlighted by the shaded region in each case. The
third panel shows the result of applying this differential filter to the matter
distribution. Finally, the lower panel shows the integrated result for both
window functions. The red and blue points are the results for the specific
filter mass M used in the middle two panels.

Alternatively, Schneider et al. (2012) found that while the r-
space top-hat did not match the results of their N-body simulations,
an additional mass-dependent correction factor,

n(M)

nST(M)
=

(
1 + Mhm

βM

)−α

, (13)

could correct for this, where α and β are free parameters. Schneider
et al. (2012) set β = 1 and found a best-fitting value of α = 0.6.
As discussed in the next section, we find better agreement with our
simulation results by setting β = 2; we will refer to this version of
equation (13) as the modified Schneider et al. correction.

4.2 Simulated HMF

We plot the differential HMFs measured in the collisionless CDM,
γ CDM, νCDM and WDM simulations in Fig. 5. We also show
the predictions obtained using the semi-analytical approximations
described in Section 4.1.

The mass function proposed by Schneider et al. (2012) pre-
dicts fewer haloes than are seen in collisionless CDM but nev-
ertheless overestimates the abundance of haloes less massive than
∼1010.5 h−1 M
. Using a modified version of the Schneider et al.
correction, with β = 2 instead of β = 1 extends the reproduction
of the simulation results down to a halo mass of ∼108.6 h−1 M

for WDM. However, it does not reproduce the abundance of haloes
seen in the simulations of γ CDM and νCDM, underestimating the
measured abundance of haloes at 108.6 h−1 M
 by a factor of 2.

The clear upturn observed in the HMF at low masses in Fig. 5
(i.e. below Mvir � 109 h−1 M
) is due to non-physical, spurious
structures (Wang & White 2007). We try to avoid contamination
from such artificial structures by only considering the mass function
and halo properties for objects with masses far above this value.

A comparison between the simulated abundance of haloes in the
four models and the semi-analytical predictions reveals significant
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Figure 5. The HMFs for collisionless CDM, WDM, νCDM and γ CDM at
redshift z = 0. The HMF measured in models with damped power spectra
contains contributions from spurious haloes, which dominate at the smallest
masses and result in the upturn seen at Mvir ∼ 109 h−1 M
. Above this scale
and below the half-mode mass, Mhm (marked by the arrow), the abundance
of haloes in γ CDM and νCDM exceeds that seen in WDM. Predictions
using the ST formalism with a real-space (dashed) or k-space (solid) top-hat
window function, as well as the modified Schneider et al. correction (dotted),
are also shown. All the semi-analytical predictions fail to predict the HMFs
for γ CDM and νCDM.

differences. The main feature, the reduced number of haloes in
γ CDM, νCDM and WDM, with respect to CDM, is a consequence
of the damping of primordial fluctuations on small scales. There is
also a larger number of low-mass structures in γ CDM and νCDM,
relative to WDM, due to the prominent oscillations in the power
spectra of the former models, at wavenumbers larger than the scales
on which fluctuations are suppressed.

A direct comparison between the γ CDM and WDM models (see
Fig. 6) reveals that in both cases, the suppression of the HMF
follows a universal profile, if the halo mass is plotted normalized
by the half-mode mass, Mhm. An excess of haloes in γ CDM with
respect to WDM occurs at Mhm for all the cross-sections studied in
this work. A similar result is found for νCDM.

The higher halo abundance seen in the γ CDM and νCDM simu-
lations compared to that found in WDM is difficult to explain since
the primordial matter power spectra shown in Fig. 1 are very simi-
lar down to the wavenumber corresponding to the half-mode mass,
Mhm. There is a much stronger suppression in the γ CDM and νCDM
spectra than in WDM immediately below Mhm. The scales where
the power in γ CDM and νCDM exceeds that in WDM correspond
to halo masses that are an order of magnitude smaller than Mhm,
marked by the location of the first oscillation in the halo abundance
for γ CDM and νCDM, according to the ST formalism. Instead of
showing a strong reduction in halo abundance below Mhm, the simu-
lated HMFs for γ CDM and νCDM seem to bridge the gap between
the primary power cut-off scale and the subsequent increase in the
halo abundance resulting from the oscillating matter power spectra.

Given that the simulations for WDM, γ CDM and νCDM use
similar initial conditions (e.g. identical box size, phases, number

Figure 6. The halo abundance expressed in units of the half-mode mass,
Mhm, for γ CDM (filled symbols) and WDM (unfilled symbols), with respect
to CDM, at redshift z = 0. The suppression in the HMF is universal with
respect to the values of the γ CDM cross-section and WDM particle mass.
The result for WDM matches the semi-analytical prediction of a r-space top-
hat with the Schneider et al. correction. However, we obtain more haloes in
γ CDM than in WDM as a result of the significant oscillations in the matter
power spectrum. Hence, the modified ST HMF does not provide a good fit
to our simulation results.

of particles), numerical errors can most likely be excluded as a
possible explanation for this deviation. Therefore, this is a strong
hint that the understanding of SF in the ST formalism, which works
so well in the strictly hierarchical case, appears to fail when there
is oscillating power in the initial matter distribution.

4.3 Halo bias

We determine the linear clustering bias of DM haloes, blin(M), using
the ratio between the halo-density cross-correlation and the density–
density autocorrelation on large scales (i.e. at small wavenumbers),

blin(M) = lim
k→0

Phm(M)

Pmm
. (14)

Using the cross-correlation of haloes and mass rather than the auto-
correlation of haloes reduces the impact of shot noise (see Angulo,
Baugh & Lacey 2008).

To ensure that we recover the asymptotic value of blin(M), we use
the largest simulation box of side length 300 h−1 Mpc. For large
scales (k � 0.1 h−1 Mpc), convergence is reached as the halo bias be-
comes constant. Therefore, we can replace the limit in equation (14)
with the average over all scales larger than k = 0.1 h−1 Mpc to reduce
the impact of statistical fluctuations arising from the small number
of high-mass haloes and low-wavenumber modes in the simulation
box. This wavenumber scale corresponds to the largest mode in the
100 h−1 Mpc box and, as the shot noise fluctuations are less impor-
tant for the more abundant low-mass DM haloes, we use the smaller
box to measure the halo bias for masses below 1011 h−1 M
.

We do not find a significant deviation from the bias expected in
collisionless CDM for WDM, γ CDM or νCDM, which agrees with
the expectations from the semi-analytical models of halo bias. We
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therefore conclude that the suppression of small-scale structure in
the matter power spectra in γ CDM and νCDM takes place indepen-
dently of the linear background in both overdense and underdense
regions. Thus, the clustering properties do not change on the mass
scales probed here (M � 109 h−1 M
).

5 R ESULTS: H ALO PRO PERTIES

As seen in Section 4, DM–radiation interactions lead to a reduced
abundance of low-mass DM haloes. In this section, we focus on
three key properties of these haloes: their shape, density profile and
spin.

For this analysis, it is important to only consider DM haloes that
are dynamically relaxed. We apply the selection criteria presented
in Maccio’ et al. (2007) and Neto et al. (2007). The DM haloes must
satisfy the following conditions.7

(i) Centre-of-mass displacement: the offset, s, between the halo
centre of mass, rcm, and the potential centre, rcp, normalized by the
virial radius, rvir, satisfies

s = ‖rcp − rcp‖ < 0.07. (15)

(ii) Virial ratio: the total kinetic energy of the halo particles
within rvir in the halo rest frame, T, and their gravitational potential
energy, U, satisfies

2T /‖U‖ < 1.35. (16)

These criteria reduce the number of haloes in our sample by
a factor of 2, but also significantly decrease the scatter as major
mergers and their unrelaxed descendants are removed.

In addition to applying these conditions, our mass-averaged re-
sults are restricted to: (i) the subset of haloes with a virial mass
smaller than 1011 h−1 M
, i.e. the mass range that shows a sup-
pression in the halo abundance, and (ii) in order to avoid resolu-
tion problems, larger than 1000 particles, i.e. mass bins larger than
∼109.3 h−1 M
. The latter criterion ensures that the estimates for
our observables have converged (Power et al. 2003). This lower
limit also minimizes the possibility of contamination by spurious
structures as they form and mainly affect haloes on small mass
scales (M � 109 h−1 M
); this can be checked by studying their
contribution to the HMF plotted in Fig. 5.

5.1 Halo shape

To characterize the shape of DM haloes, we study the following
quantities derived from the three eigenvalues (a ≥ b ≥ c) of the
inertia tensor, as calculated by the AMIGA halo finder:

(i) sphericity: c/a
(ii) elongation: b/a
(iii) triaxiality: (a2 − b2)/(a2 − c2).

In Fig. 7 , we plot the sphericity measured from the sample set of
relaxed haloes. We observe no significant deviation from CDM for
WDM, γ CDM or νCDM. The same is true for the elongation and
triaxiality, and for different redshifts and interaction cross-sections.
Thus, we cannot distinguish these models by the shape of their DM
haloes.

7 We omit the substructure mass fraction criterion as this is strongly cor-
related with the centre-of-mass displacement criterion listed (Neto et al.
2007).

Figure 7. Sphericity of relaxed DM haloes for CDM, γ CDM, νCDM and
WDM at redshift z = 0. The symbols show the sphericity in mass bins
ranging from 4 × 109 to 1011 h−1 M
 for the different models as labelled.
The shaded areas indicate the 95 per cent CL on the median, given the un-
derlying scatter in the halo sample set (small dots), while the error bars mark
the 20–80 per cent interval for this distribution. The sphericity of DM haloes
measured in WDM, γ CDM and νCDM shows no significant deviation from
CDM.

5.2 Density profile and concentration

To analyse the density profiles of DM haloes, we first average
the density in shells around the centre of mass for all haloes in
a given mass bin. A comparison of the results with a fitted NFW
profile (Navarro, Frenk & White 1997) reveals a sufficiently good
agreement to justify parameterizing the halo profiles in this way.8

The NFW profile is completely characterized by the concentration
parameter, cNFW, which is determined by the halo finder using the
approximation presented in Prada et al. (2012).

In Fig. 8, we plot the concentration versus mass, cross-section and
redshift relations. We observe a significantly lower median value of
cNFW in the mass bins below the half-mode mass for γ CDM and
νCDM compared to CDM. This reduction in concentration with
increasing interaction cross-section is similar to the effect seen in
WDM simulations with reducing particle mass, which has been
explained as being due to the delayed formation time of low-mass
haloes (Lovell et al. 2012). At these late times, the interacting DM
models become (effectively) non-collisional for the cross-sections
studied here, in the same way that free-streaming in WDM models
becomes negligible at low redshifts. Therefore, it is valid to assume
that this lower concentration also originates from the later collapse
of the DM haloes in these models.

As we increase the interaction cross-section, the deviation from
CDM becomes larger due to an increase in the mass scale of the
suppression. Since we have fixed the mass interval, the median
concentration decreases as a larger number of high-mass haloes
become affected.

8 The fit starts at a minimum radius from the halo centre as defined by Power
et al. (2003) to ensure convergence of the density profile.
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Figure 8. The concentration–mass relation (top) shows a strong mass-
dependence for γ CDM, νCDM and WDM, which develops at scales below
∼1011 h−1 M
. These models are indistinguishable from CDM for more
massive haloes. This deviation in the concentration depends strongly on the
interaction cross-section (middle) and becomes slightly smaller at higher
redshifts (bottom). The data points are the median values for the mass bins
ranging from 4 × 109 to 1011 h−1 M
, while the shaded regions mark
the 95 per cent CL on the median, given the underlying scatter in the halo
sample set (small dots in the top plot). The error bars mark the 20–80 per cent
interval for this distribution.

5.3 Halo spin

We quantify the spin of DM haloes using the ‘classical’ definition
of Peebles (1969),

λ = J |E|1/2

GM
5/2
vir

, (17)

where J and E are, respectively, the total angular momentum and
binding energy of the material within the virial mass, Mvir, of a halo.

In the linear and quasi-linear regime, halo spin is described rea-
sonably well using tidal torque theory (hereafter TTT; White 1984)
and originates from tidal interactions between collapsing haloes. In
this framework, the angular momentum of a (proto)galaxy depends
on the mass, but also weakly on the formation time. However, it
should be noted that comparisons with numerical simulations have
revealed that TTT becomes less applicable as haloes approach turn-
around and virialization (Porciani, Dekel & Hoffman 2002). It is
still an open question whether haloes acquire significant angular
momentum due to mergers with other haloes, as well as from tidal
torques (Maller, Dekel & Somerville 2002; D’Onghia & Navarro
2007).

In Fig. 9, we plot the median halo spin against virial mass for the
different models. We find a similar reduction and evolution of halo
spin for γ CDM, νCDM and WDM, compared to CDM.

There are various explanations for the difference in halo spin with
respect to CDM. As this effect is seen for haloes consisting of more
than a few thousand particles, we can rule out a numerical conver-
gence problem. If it originates solely from tidal torques, then the
weak dependence of angular momentum on formation time would
yield a smaller spin for the earlier formation time found. If mergers
are responsible for spinning up haloes, then the lack of smaller pro-
genitors of low-mass haloes and consequently, smoother accretion
on to these haloes in γ CDM, νCDM and WDM, would also result
in a lower net spin. The fact that the difference remains constant
over time while the absolute value grows, seems to support the idea
that not only the initial tidal torque on the collapsing structure, but
also the environment at late times, influences the spin.

6 C O N C L U S I O N

We have shown that even relatively weak DM–radiation interactions
can alter SF on small cosmic scales. In Boehm et al. (2014), we
showed that the number of Milky Way satellites is reduced when
DM has primordial interactions with photons (γ CDM) or neutrinos
(νCDM) and that the resulting number of satellites can be used
to place constraints on the interaction cross-section. In this paper,
we have extended our previous analysis to study the abundance
of DM haloes and their internal properties, namely their shape,
density profile and spin. We have also compared different models
(γ CDM, νCDM and WDM) in which the power spectrum of density
fluctuations is suppressed on small scales.

The HMFs measured in our simulations show that the γ CDM
and νCDM models contain more haloes than WDM around a mass
of 109 h−1 M
 for the parameters considered here. This behaviour
is not reproduced by various semi-analytical descriptions of the
HMF. We note that these mass scales are an order of magnitude
larger than the scale on which spurious haloes are expected to make
a significant contribution (Wang & White 2007). The source of
this overabundance of haloes with respect to WDM needs to be
addressed but could be due to the choice of models for the initial
conditions in WDM.
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Figure 9. The spin–mass relation (top) shows a mass-dependence for
γ CDM, νCDM and WDM, which develops at scales below ∼1011 h−1 M
.
These models are indistinguishable from CDM for more massive haloes.
This spin reduction on small scales depends on the interaction cross-section
(middle) while the relative deviation from collisionless CDM remains con-
stant over time (bottom). The data points are the median values for the mass
bins ranging from 4 × 109 to 1011 h−1 M
, while the shaded regions mark
the 95 per cent CL on the median, given the underlying scatter in the halo
sample set (small dots in the top plot). The error bars mark the 20–80 per cent
interval for this distribution.

Both the NFW concentration parameter in the density profile
and the spin show departures from CDM for low-mass haloes. The
halo shape, on the other hand, is independent of the DM model.
The lower halo concentration and angular momentum may be due
to the delayed formation time of low-mass haloes in γ CDM and
νCDM and are similar to the trends seen in WDM. However, it
should be noted that these halo properties do not provide a means
to distinguish between γ CDM, νCDM and WDM.

Ideally, the next step in this study would be to include baryonic
physics in our simulations, which may have an impact on some
of the results reported in our DM-only simulations. Bryan et al.
(2013) have shown that efficient gas cooling results in an increased
halo spin, while AGN feedback counters this trend. The mass–
concentration relation of the haloes is very similar when baryons
are included (Schaller et al. 2014) and the baryons only affect
the radial density profile of the inner core within 5 per cent of the
virial radius, producing a contraction. Recent studies also include a
possible coupling of DM with dark radiation (Buckley et al. 2014),
which leads to a similar suppression of initial fluctuations as seen
in our models and, depending on the cross-section, should give rise
to similar results as those discussed in this paper.
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