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Abstract Extracting gas from shale rocks is one of the

current engineering challenges but offers the prospect of

cheap gas. Part of the development of an effective engi-

neering solution for shale gas extraction in the future will be

the availability of reliable and efficient methods of modelling

the development of a fracture system, and the use of these

models to guide operators in locating, drilling and pres-

surising wells. Numerous research papers have been dedi-

cated to this problem, but the information is still incomplete,

since a number of simplifications have been adopted such as

the assumption of shale as an isotropic material. Recent

works on shale characterisation have proved this assumption

to be wrong. The anisotropy of shale depends significantly on

the scale at which the problem is tackled (nano, micro or

macroscale), suggesting that a multiscale model would be

appropriate. Moreover, propagation of hydraulic fractures in

such a complex medium can be difficult to model with

current numerical discretisation methods. The crack propa-

gation may not be unique, and crack branching can occur

during the fracture extension. A number of natural fractures

could exist in a shale deposit, so we are dealing with several

cracks propagating at once over a considerable range of

length scales. For all these reasons, the modelling of the

fracking problem deserves considerable attention. The

objective of this work is to present an overview of the

hydraulic fracture of shale, introducing the most recent

investigations concerning the anisotropy of shale rocks, then

presenting some of the possible numerical methods that

could be used to model the real fracking problem.

1 Introduction

Conventional shale reservoirs are formed when gas and/or

oil have migrated from the shale source rock to more

permeable sandstone and limestone formations. However,

not all the gas/oil migrates from the source rock, some

remaining trapped in the petroleum source rock. Such a

reservoir has been named ‘‘unconventional’’ since it has to

be fractured in order to extract the gas from inside.

Hydraulic fracture, or ‘‘fracking’’, has emerged as a alter-

native method of extracting gas and oil. Experience in the

United States shows it has the potential to be economically

attractive. Many concerns exist about this type of extract-

ing operation, especially how far the fracture network will

extend in shale reservoirs.

King [136] published a review paper about the last 30

years of fracking, and points out four ‘‘lessons’’:

• No two shale formations are alike. Shale formations

vary spatially and vertically within a trend, even along

the wellbore;

• Shale ‘‘fabric’’ differences, combined with in-situ

stresses and geologic changes are often sufficient to
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require stimulation changes within a single well to

obtain best recovery;

• Understanding and predicting shale well performance

requires identification of a critical data set that must be

collected to enable optimization of the completion and

stimulation design;

• There are no optimum, one-size-fits-all completion or

stimulation designs for shale wells.

These points encapsulate well the uncertainties

involved. Many models have been proposed over the years

but they are either too simplified or they tend to focus on

one key aspect of fracking (e.g. crack propagation schemes,

influence of natural fractures, material heterogeneities,

permeabilities). The scarcity of in-situ data makes the

study of fracking even more complicated.

The most usual concerns in fracking are addressed by

Soeder et al. [252], where integrated assessment models are

used to quantify the engineering risk to the environment

from shale gas well development. Davies et al. [55] have

investigated the integrity of the gas and oil wells, analysing

the number of known failures of well integrity. The mod-

elling of reservoirs is also a difficult task due to the lack of

experimental data and oversimplification of the complex

fracking problem [177].

Glorioso and Rattia [97] provide an approach more

focused on the petrophysical evaluation of shale gas

reservoirs. Some techniques are analysed, such as log

responses in the presence of kerogen, log interpretation

techniques and estimation methods for different volumes of

gas in-situ, among others. It is shown that volumetric

analysis is imprecise for in-place estimation of shale gas;

however, it is one of the few techniques available in the

early stages of evaluation and development. The mea-

surement of an accurate density of specimens is an

important parameter in reducing the uncertainty inherent in

petrophysical interpretations.

This paper provides an overview of the current state of

fracking research. A state-of-the-art review of fracking is

performed, and several points are analysed such as the

models employed so far, as well as the underlying

numerical methods. Special attention is given to problems

involving brittle materials and the dynamic crack propa-

gation that must be taken into account in the fracking

model. The hydraulic fracture modelling problem has been

tackled in several different ways, and the shale rock has

mostly been assumed to be isotropic. This simplification

can have serious consequences during the modelling of the

fracking process, since shale rocks can present high

degrees of anisotropy.

This paper is organised as follows: a description of the

shale rock including the most common simplifications is

presented in Sect. 2, followed by the description of the

fracking operation in Sect. 3. Section 4 presents a review

of the analytical formulations for crack propagation and

crack branching. Different types of models such as cohe-

sive methods and multiscale approaches are tackled in

Sects. 5 and 6. Numerical aspects are discussed in Sect. 7,

including the boundary element method, the extended finite

element method, the meshless method, the phase-field

method, the configurational force method and the discrete

element method. A recently proposed discretisation method

is discussed in Sect. 8. The paper ends with conclusions

and a discussion of possible future research directions in

Sect. 9.

2 Description of the Shale Rock

Shale, or mudstone, is the most common sedimentary rock.

It can be viewed as a heterogeneous, multi-mineralic nat-

ural composite consisting of sedimented clay mineral

aggregates, organic matter and variable quantities of min-

erals such as quartz, calcite and feldspar. By definition, the

majority of particles are less than 63 microns in diameter,

i.e. they comprise silt- and clay-grade material. In the

context of shale gas and oil, organic matter (kerogen) is of

particular importance as it is responsible for the generation

and, in part, the subsequent storage of oil and gas.

Mud is derived from continental weathering and is

deposited as a chemically unstable mineral mixture with

70–80 % porosity at the sediment-water interface. During

burial to say 200 �C and 100 MPa vertical stress, it is

transformed through a series of physical and chemical

processes into shale. Porosity is lost as a result of both

mechanical and chemical compaction to values of round

5 % [31, 32, 287]. At temperatures above 70 �C, clay

mineral transformations, dominated by the conversion of

smectite to illite (e.g. [121, 254]), lead to a fundamental

reorganisation of the clay fabric, converting it from a rel-

atively isotropic fabric to one in which the clay minerals

are preferentially aligned normal to the principal (generally

vertical) stress [56, 57, 120]. Although quantitative

mechanical data are scarce for mineralogically well-char-

acterised samples, it is likely that the clay mineral trans-

formations strengthen shales [206, 264]. In muds which

contain appreciable quantities of biogenic silica (opal-A)

and calcite, the conversion of opal-A to quartz [134, 281],

and dissolution-reprecipitation reactions involving calcite

[259], will also strengthen the shale. Indeed, it is generally

considered that fine-grained sediments which are rich in

quartz and calcite are more attractive unconventional oil

and gas targets compared to clay-rich media, as a result of

their differing mechanical properties (e.g. [204]).

Shales with more than ca. 2 % organic matter act as

sources and reservoirs for hydrocarbons. Between 100 and
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200 �C kerogen is converted to hydrogen-rich liquid and

gaseous petroleum, leaving behind a carbon-rich residue

(e.g. [126, 144, 207]). The kerogen structure changes from

more aliphatic to more aromatic, and its density increases

[194]. Changes in the mechanical properties of kerogen

with increasing maturity are not well documented. How-

ever, they may be quite variable, depending on the nature

of the organic matter. For example, Eliyahu et al. [68]

performed PeakForce QNM� tests with an atomic force

microscope to make nanoscale measurements of the

Young’s modulus of organic matter in a single shale thin

section. Results ranged from 0-25 GPa with a modal value

of 15 GPa.

Shales are heterogeneous on multiple scales ranging

from sub-millimetre to tens of metres (e.g. [10, 204]).

Hydrodynamic processes associated with deposition often

result in a characteristic, ca. millimetre-scale lamination

[35, 157, 241], which can be disturbed close to the sedi-

ment-water interface by bioturbation [63]. On a larger,

metre-scale, parasequences form within mud-rich sedi-

ments, driven by orbitally-forced changes in climate, sea-

level and sediment supply [35, 156, 157, 204]. Parase-

quence boundaries are typically defined by rapid changes

in the mineralogy and grain size of mudstones, with more

subtle variations within the parasequence. Stacked

parasequences add further complexity to the shale succes-

sion and result in a potentially complex mechanical

stratigraphy which depends on the initial mineralogy of the

chosen unit and the way that burial diagenesis has altered

physical properties on a local scale.

During the shale formation process bedding planes are

formed, which may present sharp or gradational bound-

aries. This is the most regular type of deposition that occurs

in shales. Deposition may not be uniform during the whole

process, presenting discontinuities at some points or other

type of deposition patterns. This makes the mechanical

characterisation of shale a complex issue. Moreover, not all

shale rocks are the same, so a prediction made for an

specific shale rock probably is not valid elsewhere.

The works of Ulm and co-workers about nanoindenta-

tion in shale rocks [34, 198–200, 268–270] have been

important developments in our ability to characterise the

mechanical properties of shale rocks. From [268], it is seen

that shales behave mechanically as a nanogranular mate-

rial, whose behaviour is governed by contact forces from

particle-to-particle contact points, rather than by the

material elasticity in the crystalline structure of the clay

minerals. This assumption is valid for scales around

100 nm.

The indentation technique consists of bringing an

indenter of known geometry and mechanical properties

(typically diamond) into contact with the material for

which the mechanical properties are to be known. Through

measurement of the penetration distance h as a function of

an increasing indentation load P, the indentation hardness

H and indentation modulus M are given by

H ¼ P

Ac

ð1Þ

M ¼
ffiffiffi

p
p

2

S
ffiffiffiffiffi

Ac

p ð2Þ

where Ac is the projected area of contact and S ¼
ðdP=dhÞhmax is the unloading indentation stiffness. For the

case of a transversely isotropic material, where x3 is the

axis of symmetry, the indentation modulus is given by

[268, 269]

M3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
C2

31 � C2
13

C11

� �

1

C44

þ 2

C31 þ C13

� ��1
s

ð3Þ

and for the x1; x2 axis by

M1 ¼ M2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
11 � C2

12

C11

ffiffiffiffiffiffiffi

C11

C33

r

M3

s

ð4Þ

where Cij come from the constitutive matrix and are given

in the Voigt notation [276].

From [269], it was seen that the level of shale anisotropy

increases from the nanoscale to the macroscale. Macro-

scopic anisotropy in shale materials results from texture

rather than from the mineral anisotropy. The multiscale

shale structure can be divided into 3 levels:

1. Shale building block (level I - nanoscale): composed of

a solid phase and a saturated pore space, which form

the porous clay composite. A homogeneous building

block, which consists in the smallest representative

unit of the shale material, is assumed at this scale. The

material properties are composed of two constants for

the isotropic clay solid phase, the porosity and the pore

aspect ratio of the building block.

2. Porous laminate (level II - microscale): the anisotropy

increases due to the particular spatial distribution of

shale building blocks (considering different types of

shale rocks). The morphology is uniform allowing the

definition a Representative Volume Element (RVE).

3. Porous matrix-inclusion composite (level III - macro-

scale): shale is composed of a textured porous matrix

and (mainly) quartz inclusions of approximately

spherical shape that are randomly distributed through-

out the anisotropic porous matrix. The material

properties are separated into six indentation moduli

plus the porosity.

One can observe that the heterogeneities are manifested

from the nanoscale to the macroscopic scale, and combine
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to cause a pronounced anisotropy and large variety in shale

macroscopic behaviour.

Nanoindentation results provide strong evidence that the

nano-mechanical elementary building block of shales is

transversely isotropic in stiffness, and isotropic and fric-

tionless in strength [34]. The contact forces between the

sphere-like particles activate the intrinsically anisotropic

elastic properties within the clay particles and the cohesive

bonds between the clay particles.

The determination of the mechanical microstructure and

invariant material properties are of great importance for the

development of predictive microporomechanical models of

the stiffness and strength properties of shale.

3 The Hydraulic Fracturing Process
and Its Modelling

The hydraulic fracture or fracking operation involves at

least three processes [3]:

1. The mechanical deformation induced by the fluid

pressure on the fracture surfaces;

2. The flow of fluid within the fracture;

3. The fracture propagation

The shale measures in question are usually found at a

distance of 1 to 3 km from the surface. A major concern

relating to fracking is that the fracture network may extend

vertically, allowing hydrocarbons and/or proppant fluid to

penetrate into other rock formations, eventually reaching

water reservoirs and aquifers that are found typically

approximately 300 m below the surface.

Fracking can occur naturally, such as in magma-driven

dykes for example. In the 1940s, when fracking started

commercially in US, the hydraulic fracture was applied

through a vertical drilling. In that case, the pressurised

liquid was applied perpendicular to the bedding planes. It

was known that the shale was a layered material due to its

formation process, but technology of that time was very

limited.

In the last 15 years, recent engineering advances have

allowed engineers to change the direction of the drilling,

making it possible to drill a horizontal well and conse-

quently, to pressurise the shale rocks in the same horizontal

plane of the bedding plane, making the fracking process

much more effective. Figure 1 illustrates the structure of

the well’s drilling, and the natural fracture network that can

be found. In detail it is a sketch of the pressurised liquid

entering a crack, resulting in the application of a pressure

P over the crack surfaces and the crack opening w.

The horizontal drilling was not new to the industry, but

it was fundamental for the success of shale gas

developments. From 1981 to 1996, only 300 vertical wells

were drilled in the Barnett shale of the Fort Worth basin,

north central Texas. In 2002, horizontal drilling has been

implemented, and by 2005 over 2000 horizontal wells had

been drilled [40]. The Barnett shale formation found in

Texas produces over 6 % of all gas in continental United

States [273]. The application of this new drilling technique

has turned the United States from a nation of waning gas

production to a growing one [221].

To optimise the fracking process of shale, it is important

to detect accurately the location of natural fractures. The

anisotropic behaviour of the shale generates preferential

paths through the shale fabric [136, 279]. Moreover, the

alignment of the natural fractures can also induce aniso-

tropic patterns of the fluid flow [86, 87].

3.1 Modelling of the Shale Fracture

Much of the work done so far in attempting to model shale

fracture is very simple, taking into account only the

influence of the crack and not the fluid. Only recently have

a few researchers [3, 4, 62, 160, 161, 188, 205, 296] suc-

cessfully developed more sophisticated methods including

the fluid-crack interaction.

The usual assumption in hydraulic fracture is that the

fracture is embedded within an infinite homogeneous por-

ous medium, where flow occurs only perpendicular to the

fracture plane, which was first defined by Carter [46].

Moreover, the injection pressure does not propagate

beyond the current extent of the fracture. Carter’s model

can lead to an overestimate of the fracture propagation rate

by a factor of 2 as compared to a 3D model [161]. The

reason is that the pressure increases beyond the length of

the hydraulic fracture, causing an increasing of the leak-off

and a corresponding reduction in fracture growth. The leak-

off rate Q1 is given as [161]

Q1 ¼ �4p
kz

l

Z aðtÞ

0

r
oP

oz

�

�

�

�

�

z¼0

dr ð5Þ

where l is the fluid viscosity, ka is the permeability in the

a-direction (a ¼ r or a ¼ z), P is the hydraulic pressure,

a(t) is the hydraulic fracture radius, dependent of time t, r

and z are the distances parallel and normal to the fracture

plane, respectively. The hydraulic pressure is defined by

the boundary value problem

S
oP

ot
¼ kr

l
1

r

o

or
r
oP

or

� �

þ kz

l
o2P

oz2
ð6Þ

where S is a storage coefficient of the porous medium. The

solution of Eq. (6) can be obtained using a standard finite

volume method, as used in [161].
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Assuming that the faces of the fracture are loaded by a

uniform pressure Pd, the displacement of the fracture face

normal to the fracture plane d is given by

d ¼ 4ð1 � t2ÞPda

pE
1 � r

a

� �2
� 	1=2

ð7Þ

where t is the Poisson’s ratio and E is the Young’s modulus.

The fracture volume V is found from

V ¼ 4p
Z a

0

rdðrÞ dr ¼ 16ð1 � t2ÞPda
3

3E
ð8Þ

The energy release rate G of the rock is obtained from

the following expression

G ¼ Pd

2a

Z a

0

r
dd
da

dr ¼ 2ð1 � t2ÞP2
da

pE
ð9Þ

and is related to the mode I stress intensity factor KI

through the expression

G ¼ K2
I

E
ð10Þ

From Eqs. (8) and (9), it is possible to write Pd and a in

terms of V as

Pd ¼
3

16

256pG
18

3� �3
E

1 � t2

� �2
" #1=5

V�1=5 ð11Þ

a ¼ 18

256pG
E

1 � t2

� �� 	1=5

V2=5 ð12Þ

In the early stages following initial pressurisation, the

volume of injected fluid is sufficiently small such that the

the porous formation do not absorb the incoming fluid. As

injection process continues, the fluid is accommodated

locally in the pore space and consequently predicts leak-

off. Once the system reaches steady-state, it again becomes

independent of porosity system. This analytical formula-

tion have issues when predicting the behaviour during the

transient state [161].

Even though these models can represent complex pro-

cesses occurring during fracking, they are still far from

being accurate, mainly because shale is considered to be

natural fracture network

w
P

liquid

shale deposit

well

aprox depth: 3km

water aquifer

Fig. 1 Fracking example
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isotropic, which has been seen not to be true [268], and

since the material presents nanoporosity, it is difficult to

accurately model the mechanical properties of shale.

Some other open questions are [3]:

• how to appropriately adjust current (linear elastic)

simulators to enable modelling of the propagation of

hydraulic fractures in weakly consolidated and uncon-

solidated ‘‘soft’’ sandstones;

• laboratory and field observations demonstrate that

mode III fracture growth does occur, and this needs

to be further researched.

Some works have analysed the crack propagation path in

shales, including refracturing sealed wells. For example,

Gale and co-workers [87] found that propagation of the

hydraulic fracture over a natural fracture will cause

delamination of the cement wall and the shale. The fluid

enters the fracture and causes further opening of the frac-

ture in a direction normal to the propagating hydraulic

fracture while the pressure inside the fracture increases.

After the fracture propagation at the natural fracture

reaches a sealed fracture tip, the hydraulic fracture resumes

growth parallel to the direction of maximum shear stress.

In an analytical work, Vallejo [271] has investigated the

hydraulic fracture on earth dam soils, where shear stresses

were seen to promote crack propagation on traction free

cracks. Other analytical study about re-fracturing was

carried out by [295], where the dynamic fracture propa-

gation is characterised in low-permeability reservoirs. The

results are comparable to an experimental test with the

same material parameters.

In summary, research works in hydraulic fracture for-

mulation have considered a large number of variables and

processes which occur during the actual operation: leak-

off, shale permeabilities, crack opening and fluid interac-

tion over a crack surface. However, the current analytical

theories for hydraulic fracture do not include crack prop-

agation conditions, especially dynamic crack propagation,

neither crack branching, since material instabilities at the

crack tip during crack propagation may cause the propa-

gation path not to be unique. These concerns are sum-

marised in the next section.

4 Crack Propagation and Crack Branching

Consider a homogeneous isotropic body under a known

applied loading. The resulting elastic stress distribution

over the body due to the applied force is generally smooth.

However, introducing a discontinuity such as a crack

imposes a singular behaviour to the stress distribution. It

can be shown that the stress increases as it is measured

closer to the crack tip, varying with 1=
ffiffi

r
p

, where r is the

distance from the crack tip. Irwin [125] proposed that the

asymptotic stress field at the crack tip is governed by

parameters depending on the geometry of the crack and the

applied load. These parameters are known as Stress

Intensity Factors (SIFs) and have been widely used as

criteria for crack stability and propagation. The three SIFs,

KI ;KII ;KIII , each correspond to one of three modes of

crack behaviour: mode I (opening), mode II (sliding) and

mode III (tearing). In this paper we will confine ourselves

mostly to mode I.

It can be postulated that crack growth will begin if the

value of the SIFs increase to a certain value. If the SIF is

higher than a critical fracture toughness parameter Kc,

which depends on the material properties, then the crack

will propagate through the body. The situation becomes

more complicated when the load is applied rapidly so that

dynamic effects become important. This does not imply

that the value of the dynamic fracture toughness will be

independent of the rate of loading or that dynamic effects

do not influence the fracture resistance in other ways [82].

In some cases, the toughness appears to increase with

the rate of loading whereas in other cases the opposite

dependence is found. The explanation for the shift must be

sought in the mechanisms of inelastic deformation and

material separation in the highly stressed region of the edge

of the crack in the loaded body [82]. The dynamic crack

propagation formula can be defined as

Kd
I ¼ jðvÞ Ks

I ðaÞ ð13Þ

where Kd
I is the mode I dynamic SIF, KI is the static SIF, v

is the crack velocity and jðvÞ is a scaling factor. When

jðvÞ ¼ 1, the crack velocity is zero, whereas jðvÞ ¼ 0

indicates that the crack velocity is equal to the Rayleigh

wave speed.

The theoretical limiting speed of a tensile crack must be

the Rayleigh wave speed. This was anticipated by Stroh

[257] on the basis of a very intuitive argument [82].

Gao et al. [89] studied crack propagation in an aniso-

tropic material, and presented expressions for the dynamic

stresses and displacements around the crack tip. These

predict that larger crack propagation velocities induce

higher stress and displacement fields at the crack tip. The

limiting speed in crack propagation is analysed in [88],

where a local wave speed resulting from the elastic

response near the crack tip also changes with the crack

propagation velocity. A molecular dynamic model is used

in this work, so crack propagation is modelled as bond

breakage between the particles. The crack velocity is

expressed using the Stroh formalism.

There are three types of criteria for brittle crack

propagation:
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1. Maximum tangential stress: This criteria was defined

by Erdogan and Sih [69] and is based in two

hypothesis:

a. The crack extension starts at its tip in radial

direction;

b. The crack extension starts in the plane perpendic-

ular to the direction of greatest tension.

The crack propagates when the SIF is higher than a

critical SIF Kc, which depends on the materials prop-

erties. From [69], the crack propagation angle hp can

be obtained from the following relation

KI sin hp þ KIIð3 cos hp � 1Þ ¼ 0 ð14Þ

where KI and KII are the mode I and mode II SIF,

respectively, and hp is taken with respect to the hori-

zontal axis. This crack propagation criteria was

extended to anisotropic materials in [239].

2. Strain energy release rate: In this criteria, the crack

propagates when energy release rate G reaches some

critical value Gc, taking the direction where G is

maximum [123]. The energy release rate is defined as

G ¼ oW

oa
ð15Þ

where W represents the strain energy and a is the half-

crack length. Equation (15) can be expressed in terms

of mixed mode SIFs for an isotropic material as

G ¼ 1 � t2

E
K2
I þ K2

II


 �

þ 1

2l
K2
III ð16Þ

where l is the shear modulus.

3. Minimum strain energy: crack propagation occurs at

the minimum value of the strain density S defined as

[169, 247]

S ¼ a11K
2
I þ 2a12KIKII þ a22K

2
II þ a33K

2
III ð17Þ

where aij come from the material properties. The

direction of propagation goes toward the region where

S assumes a minimum value Smin. The crack extension

r0 is proportional to the minimum strain energy, such

that the ratio Smin
r0

is constant along the crack front [169].

One can observe that all these criteria are related to the

SIFs. These criteria are well consolidated in the fracture

mechanics literature over the years. However they fail in

one aspect, since they do not consider the possibility of

crack branching, i.e., at some point of the crack propaga-

tion process, the crack may bifurcate in two or more new

cracks. This issue is especially important when modelling

highly heterogeneous materials such as the shale rock.

Yoffe [289] attempted to explain the branching of cracks

from an analysis of the problem of a crack of constant

length that translates with a constant velocity in an

unbounded medium. From this solution she found that the

maximum stress acted normal to lines that make an angle

of 60� with the direction of crack propagation when the

crack velocity exceeded 60 % of the shear wave speed.

This fact might cause the crack to branch whenever the

crack velocity exceeds that value. However, Yoffe did not

consider that the maximum stress would be perpendicular

to the crack path, so this assumption is not valid for brittle

materials. Moreover, the 60� angles are quite large in

comparison with the branching angles observed from

experiments [223].

Ravi-Chandlar and Knauss [222, 223] have addressed

the crack propagation and crack branching problems

through several experiments. From [222], the crack

branching has the following properties

1. crack branching is the result of many interacting

microcracks or microbranches;

2. only a few of the microbranches grow larger while the

rest are arrested;

3. the branches evolve from the microcracks which are

initially parallel to the main crack, but deviate

smoothly from the original crack orientation;

4. the microbranches do not span the thickness of the

plate, some occurring on the faces of the plate while

others are entirely embedded in the interior of the

plate.

Sih [247] made the hypothesis that the instability that

occurs in crack bifurcation is associated with the fact that a

high speed crack tends to change its direction of propa-

gation when it encounters an obstacle in the material. The

excess energy in the vicinity of such a change in direction

is sufficient to initiate a new crack. This event occurs so

quickly that the crack appears to have been split in two, or

bifurcated.

From [223], one can see that the velocity with which the

crack propagates is determined by the SIF at initiation.

Cracks propagating at low speeds may undergo a change in

the crack velocity if stress waves are present. Cracks

propagating at high speeds do not change crack velocity,

but may exhibit crack branching.

Crack branching formulations can be found in [78, 131,

247, 289], to cite just a few works. In all cases, only the

isotropic material case is considered. For anisotropic crack

branching, numerical methods have to be employed.

5 Cohesive Methods

The fracture process is usually considered only at the crack

tip. In such cases, the fracture process zone is considered to

be small compared to the size of the crack [17, 66, 67].
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In Linear Elastic Fracture Mechanics (LEFM), the stress

becomes infinite at the crack tip. Since no material can

withstand such high stress, there will be a plastification/

fracture zone around the crack tip.

The fracture process zone can be described by two

simplified approaches [178]:

1. The fracture process zone is lumped into the crack line

and is characterised as a stress-displacement law with

softening;

2. Inelastic deformations in the process zone are smeared

over a band of a given width, imagined to exist in front

of the main crack.

Most of the work done in cohesive cracks makes use of

the former approach, otherwise known as the Dugdale–

Barrenblatt model, fictitious crack model or stress bridging

model [178].

The non-linear behaviour around the crack tip can be

considered to be confined to the fracture process zone on

the crack surface. Figure 2 illustrates a crack with its

corresponding fracture process zone. One can see two tips

in this model, the physical tip, where the tractions vanish,

and the fictitious tip, where the displacement is zero.

Since there is no singularity at the crack tip, the SIF

should vanish. This condition is also called the zero stress

intensity factor, and is represented by the superposition of

two states

K
phys
I þ K

fict
I ¼ 0 ð18Þ

where K
phys
I corresponds to the SIF at the physical crack

tip, and K
fict
I is the SIF at the fracture process zone. Here

we consider only the mode I fracture without loss of

generality.

The crack propagates when the maximum principal

stress reaches the material tensile strength rt, so fracture is

initiated at the fracture process zone. The stress on the

crack faces depends directly on the relative displacement

Du of the crack faces [213]. There are different types of

stress-displacement functions which model the behaviour

in the fracture process zone. Figure 3 presents two of the

most common assumptions

Dugdale [66] and Barenblatt [17] models are the basis of

many cohesive models. The Dugdale cohesive crack model

is very simplistic and is best used for ductile materials. A

uniform traction equal to the yield stress is used to describe

the softening in the fracture process zone.

Most of the cohesive models are developed for isotropic

materials (see [67] for example). However, there are some

models for heterogeneous materials [11, 216, 244] and

composite [148, 181, 261, 272] materials. Nevertheless, the

material models are quite simple, usually considering dif-

ferent types of isotropic materials instead of a full aniso-

tropic model. To the authors’ best knowledge, there is no

anisotropic cohesive crack model to this date.

Cohesive models have been also applied in multiscale

problems, where cracks are significantly smaller than the

RVE. In [210], a microelastic cohesive model is developed

for quasi-brittle materials. The stability of crack growth is

analysed, and it is concluded that macroscopic strength is

not necessarily correlated to crack propagation, and may be

caused by unstable growth of cohesive zones ahead of non-

propagating cracks. The initial cohesive zone has a sig-

nificant influence on the macrostrength of quasi-brittle

materials.

A number of different approaches for cohesive models

have been proposed over the years. Enriched formulations

for delamination problems were analysed by Samimi [236–

238]. A stochastic approach for delamination in composite

materials was proposed in [181], where the imperfections

of the material were considered in the cohesive model. The

cohesive crack has been extensively studied as can be seen

in [59, 75, 102, 152, 209, 297] to cite just a few works.

Fig. 2 Cohesive crack

Fig. 3 Relation between stress and relative displacement at the crack

faces
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Crack propagation in cohesive models was recently dis-

cussed in [152, 298] for example.

A rudimentary model for hydraulic fracture for isotropic

materials using the finite element software ABAQUS was

considered in [288]. Papanastasiou [203] has evaluated the

fracture toughness in hydraulic fracturing, modelling the

rock-fluid coupling through a finite element model with

cohesive behaviour. The Mohr-Coulomb criterion is used

to take plasticity into account in the rock deformation. The

plastic behaviour that develops around the crack tip pro-

vides an effective shielding, resulting in an increase in the

effective fracture toughness.

6 Multiscale

The main advantage of multiscale models is to make dif-

ferent hypotheses at different levels within the same

problem. For example, material can present distinct

degrees of anisotropy depending on the scale of observa-

tion (nano, micro or macro). The coupling of different

scales can be cumbersome. Some sort of regularisation is

commonly used to enforce the coupling between scales. A

typical assumption is the use of a Representative Volume

Element (RVE), a representative part of the model at the

reduced scale so it contains all the distinct properties of the

considered scale, and is also defined as the local model.

The global model takes the RVE as a homogenised rep-

resentation of the material’s properties at the large scale.

An example of an RVE is illustrated in Fig. 4.

Another important part of multiscale modelling is the

coupling of stresses and strains from the local and global

models. Numerical homogenisation is a popular technique

and is an alternative to the traditional analytical homogeni-

sation. It is especially used for monophasic heterogeneous

materials, where the balance and constitutive equations are

considered at the RVE level. The first work in numerical

homogenisation is due to Ghosh et al. [96].

Zeng et al. [292] proposed a multsicale cohesive model for

geomaterials. At the macroscopic scale, a sample of poly-

crystalline material is considered as a continuum made of

many material points. The estimation of the material proper-

ties at the microscale is performed by statistical homogeni-

sation, since the RVE represents a number of different

constituents or phases, as mineral grains and voids, and is

therefore composed of randomly distributed constituents.

The Eshelby elastic solution for the spherical inclusion

problem [71, 72] is used to obtain the local stress and strain

fields. Therefore, the strains or stresses in a single crystal

are approximated by considering a spherical single crystal

embedded in an infinite elastically deformed matrix. The

KBW model, named after Kröner [140], Budiansky and

Wu [43], extends Eshelby’s formulation by taking into

account the grain interaction and plastification. By the

KBW definition, each crystal is embedded in a Homoge-

neous Equivalent Medium (HEM) as shown in Fig. 5.

The local stress r and strain e are related to the global

stress R and strain E as follows

r� R ¼ �Lðe� EÞ ð19Þ

where L is the interaction tensor and is given by

L ¼ MðS�1 � IÞ ð20Þ

where M is the homogenised elastoplastic tangent operator

of HEM, S is the Eshelby’s tensor and I is a third order

identity matrix.

Zeng and Li [293] developed a multiscale cohesive zone

method, where the local fields are determined through

measures of the bond at the atom particle level. The stress

relation coupling the local and global fields is given by

r ¼ 1

Xb

X

nb

i¼1

o/
ori

ri � ri
ri

ð21Þ

where Xb is the volume of the unit cell, nb is the total

number of bonds in a unit cell, /ðriÞ is the atomistic

potential, ri; i ¼ 1; � � � ; nb is the current bond length for the

ith bond in a unit cell and is given by ri ¼ FeRi, with the

deformation gradient Fe in element e and the underformed

bond vector R. The symbol � denotes the outer, or dyadic,

product.

The strain energy in a given element Xe can be written

as

Ee ¼
1

Xb
0

X

nb

i¼1

/ðriðFeÞÞXe ¼ WðFeÞXe ð22Þ

and therefore the total energy is defined as

Etot ¼
X

Nrep

a¼1

naEaðuaÞ ð23Þ

Fig. 4 Scheme of the choice of a representative volume element

(RVE) (From [130])
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where na is a chosen weight and
P

na ¼ 1. The energy

from each representative atom Ea is obtained by the

interaction with the neighbouring atoms whose positions

are generated using the local deformation.

This formulation is referred to as the local QC method, a

simplification of the continuum system when interface and

surface energies may be neglected. The general non-local

QC potential energy may lead to some non-physical effects

in the transition region. The derivatives of the energy

functional to obtain forces on atoms and finite element

nodes may lead to so-called ghost forces in the transition

region between the macro and microscale, and it has sev-

eral issues that remain to be resolved, such as the com-

putation of approximations in the macroscale far from

microscale defects [245] and the correct balance of energy

which needs to be ensured between macro and microscales

[174].

Since the connections between atoms are modelled

through bonds, this multiscale cohesive formulation is able

to capture the crack branching behaviour during crack

propagation.

In [299], the RVE properties of a hydrogeologic reser-

voir are averaged through statistical parameters. The main

reason is that the heterogeneity of the reservoir can be more

easily modelled through the mean and standard deviation

of the rock properties. The site scale represents the entire

solution domain used for modelling global flow and

transport. The layer scale represents geologic layering in

the vertical direction. Within a layer, relatively uniform

properties are present in both vertical and lateral direction,

in comparison with the larger variations between different

layers that may vary significantly in thickness. The local

scale represents the variation of properties within a

hydrogeologic layer.

In [164], a multiscale model for the shale porous net-

work is proposed. Permeability is assumed as an intrinsic

porous medium property independent of fluid properties

(such as viscosity) or thermodynamic conditions. The

porous medium was modelled as networks of pores con-

nected by throats. This simplification neglects the physics

of the real porous network. Permeability further depends on

the relative size of the void spaces as well as the fraction of

pores belonging to each length scale. Unlike absolute

permeability in conventional reservoirs, gas permeability

depends on absolute pressure values in individual pores

(and not only the gradient). Specifically, smaller pressures

result in (somewhat counter-intuitively) an increase in

permeability.

A number of multiscale models for brittle materials can

be mentioned: [2, 83, 130, 209, 274] just to cite some of the

most recent works.

7 Discrete Numerical Methods

In this section we will present a brief description of dif-

ferent element-based numerical methods that can be used

in the modelling of fracking problems. The boundary ele-

ment method (BEM) has been used in brittle anisotropic

problems including crack propagation. The extended finite

element method (X-FEM) has been developed recently and

is also a good choice for fracture mechanics problems, and

can be easily applied in cohesive models. Meshless meth-

ods are becoming popular in fracture mechanics problems.

The discrete element method (DEM) is particularly used in

problems with rock materials. The phase-field method and

the configurational force method are also reviewed in this

section.

7.1 Boundary Element Method (BEM)

The boundary element method has first appeared in the

work of Cruse and Rizzo [52] for elasticity problems, but it

was effectively named as BEM in the work of Brebbia and

Fig. 5 A homogeneous equivalent medium (HEM) scheme (from [292])
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Domı́nguez [41] and represented a series of advances in

comparison to the existent domain discretisation methods

as the finite element method (FEM) and the finite differ-

ences method (FDM) [109]:

• Accurate mathematical representations of the underly-

ing physics are employed, resulting in the ability of the

BEM to provide highly accurate solutions;

• The problem is defined only at the boundaries, which

gives a reduction of dimensionality in the mesh (linear

for 2D problems and surface for 3D problems),

therefore resulting in a reduced set of linear equations

to be solved;

• In spite of the boundary-only meshing, results at any

internal point in the domain can be calculated once the

boundary problem has been solved;

• There is a great advantage in certain classes of problem

that can be characterised by either (1) infinite (or semi-

infinite) domains, or (2) discontinuous solution spaces.

These advantages have resulted in the BEM gaining

popularity for acoustic scattering, fracture mechanics,

re-entry corners and other stress intensity problems,

where domain discretisation methods have poorer

convergence.

However, there are some drawbacks which may deterred

FEM users from migrating to the BEM:

• The system of equations is both non-symmetric and

fully populated, which may lead to longer computing

times (compared to FEM for example), especially in 3D

problems. In this case, techniques such as the fast

multipole method [228] have been introduced to

accelerate the solution in large-scale problems;

• A Fundamental Solution (FS) or Green’s function,

describing the behaviour of a point load in an infinite

medium of the material properties is required as part of

the kernel of the method. This can make the use of

BEM infeasible in problems where a FS is not

available;

• calculation of the FS must be computationally efficient,

which makes explicit FS formulations very desirable in

this sense. Dynamic problems usually have implicit

formulations, see [60, 227, 277] for instance, where the

FS is expressed in a integral form by means of the

Radon transform;

• The BEM formulation requires the evaluation of

weakly singular, strongly singular and sometimes

hypersingular integrals which must be carefully treated.

This can be done through a variety of methods,

including singularity substraction, e.g. [100], or ana-

lytical regularisation, e.g. [91];

• Non-linear problems (e.g. material non-linearities) are

difficult to model;

The constitutive equations are given as

rij ¼ Cijkl�kl ð24Þ

with Cijkl and rij denoting the elastic stiffness and the

mechanical stresses, respectively, and

�ij ¼
1

2
ui;j þ uj;i

 �

ð25Þ

where ui are the elastic displacements. The Einstein sum-

mation notation applies in Eqs. (24) and (25).

The elastic tractions pij are given by

pi ¼ rijnj ð26Þ

with n ¼ ðn1; n2; n3Þ being the outward unit normal to the

boundary.

The time-harmonic equilibrium equations in the absence

of body forces can be written as

rij;jðx; tÞ þ q€uiðx; tÞ ¼ 0 ð27Þ

where t is the time and q is the mass density of the material.

From Fig. 6, let X be a cracked domain with boundary

C, which can be decomposed into two boundaries, an

external boundary Cc and an internal crack Ccrack ¼ Cþ [
C� represented by two geometrically coincident crack

surfaces.

The Dual BEM formulation for time-harmonic loading

relies on two boundary integral equations (BIEs), one with

respect to the displacements at a point n of the domain X

cijðnÞujðn; tÞ þ
Z

C
p�ijðx; n; tÞujðx; tÞ dCðxÞ

¼
Z

C
u�ijðx; n; tÞpjðx; tÞ dCðxÞ ð28Þ

and a BIE with respect to the generalised tractions

cijðnÞpjðn; tÞ þ Nr

Z

C
s�rijðx; n; tÞujðx; tÞ dCðxÞ

¼ Nr

Z

C
d�rijðx; n; tÞpjðx; tÞ dCðxÞ ð29Þ

Fig. 6 Elastic body with a crack
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which follows from the differentiation of the displacement

BIE and further substitution into the constitutive laws

equation (for details see [90]). Nr stands for the outward

unit normal to the boundary at the collocation point n; cij is

the free term that comes from the Cauchy Principal Value

integration of the strongly singular kernels p�ij; u
�
ij and p�ij

are the displacement and traction FS and d�rij and s�rij follow

from derivation and substitution into Hooke’s law of u�ij
and p�ij, respectively.

In most cases, the cracks are considered to be free of

mechanical tractions. These boundaries conditions can be

summarised as

Dpj ¼ pþj þ p�j ¼ 0 ð30Þ

where the ‘?’ and ‘-’ superscripts represents the upper

and lower crack surfaces, respectively. Eqs. (28) and (29)

can be redefined in terms of the crack tip opening dis-

placement (DuJ ¼ uþJ � u�J ) in function of the crack-free

boundary Cc and one of the crack surfaces, say Cþ

cijðnÞujðn; tÞ þ
Z

Cc

p�ijðx; n; tÞujðx; tÞ dCðxÞ

þ
Z

Cþ

p�ijðx; n; tÞDujðx; tÞ dCðxÞ

¼
Z

Cc

u�ijðx; n; tÞpjðx; tÞ dC

ð31Þ

pjðn; tÞ þ Nr

Z

Cc

s�rijðx; n; tÞujðx; tÞ dCðxÞ

þ Nr

Z

Cþ

s�rijðx; n; tÞDujðx; tÞ dCðxÞ

¼ Nr

Z

Cc

d�rijðx; n; tÞpjðx; tÞ dCðxÞ

ð32Þ

In this latter equation, the free term has been set to unity

due to the additional singularity arising from the coinci-

dence of the two crack surfaces. The inconvenience of this

approach is that the BEM formulation will now involve

integrals including both strong singularities which require

special treatment. Numerous hypersingular approaches

have been developed, in particular to anisotropic materials

under static [90, 91, 150, 282] and time-harmonic [6, 93,

94, 226, 232, 283, 294] loadings. The use of a hypersin-

gular formulation does not limit at all the crack shape,

being valid for curved and branched cracks, for example.

However, it is commonplace to make use of discontinuous

boundary elements to ensure that all collocation points lie

on the smooth surface within the body of an element; this is

required to satisfy the Hölder continuity requirement of the

hypersingular BIE.

As stated previously, the Stress Intensity Factors (SIF)

are the measure of the stress amplification at the crack tip.

They are used extensively when estimating the structural

life in a number of applications, from civil engineering

structures to aerospace devices. Therefore, a precise cal-

culation of this parameter is essential. The principal diffi-

culty, faced throughout the development of BEM and FEM

approaches for modelling LEFM problems, is the use of

these discrete techniques to capture the singular stress

solution. Traditional finite element piecewise polynomial

shape functions are ineffective. We now describe some

common approaches to obtain the SIFs:

1. Quarter-point: Developed by Henshell and Shaw [119]

and Barsoum [19] for finite elements, it consists in

moving the mid-side node of a quadratic boundary

element from the centre to 1/4 of the element length

from the crack tip. It was shown that the mapping

between the element in real space and in the space of

the intrinsic coordinates automatically captures the

asymptotic displacement behaviour of 1=
ffiffi

r
p

present in

the vicinity of the crack tip (refer to [231] for further

explanations).

2. J-integral: Proposed by Rice [224], a path independent

integral (assuming a non-curved crack) is used to

evaluate the energy release rate due to the presence of

the crack,

J ¼
Z

Cj

Wn1 � ti
oui

ox1

� �

dC ð33Þ

where n1 is the component of the outward unit normal

vector in the x1 direction, ui are the displacement and ti

are the tractions. The term W ¼ 1
2
rijeij is the strain

energy density.

3. Interaction integral: the J-integral can be decomposed

into 3 parts [110, 176]

J ¼ Jð1Þ þ Jð2Þ þMð1;2Þ ð34Þ

where Jð1Þ is the J-integral of the so-called principal

state, which represents the energy release rate of the

material; Jð2Þ is the J-integral of the auxiliary state,

which depends on the displacements around the crack

tip; Mð1;2Þ is the interaction integral containing terms of

the principal and auxiliary state, and is defined as

Mð1;2Þ ¼
Z

A

ðrð1Þij u
ð2Þ
i;1 þ rð2Þij u

ð1Þ
i;1 �W ð1;2Þd1jÞq;j dA

ð35Þ

where A is the area inside the contour Cj surrounding

the crack tip, and W ð1;2Þ is given as

W ð1;2Þ ¼ 1

2
ðrð1Þij eð2Þij þ rð2Þij eð1Þij Þ ð36Þ

Let us remark that the indices (1) and (2) correspond to

the principal and auxiliary states, respectively.
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The quarter-point approach allows a direct extrapo-

lation of the SIF by using the crack opening displace-

ment. The J-integral is more cumbersome numerically

since the displacements and tractions at the closed path

integral are part of the BEM domain and have to be

evaluated first; however it is more accurate than the

direct extrapolation.

Chen [47] has analysed mixed mode SIFs of aniso-

tropic cracks in rocks with a definition of the J-integral for

anisotropic materials and the relative displacements at the

crack tip. In Ke et al. [133], the authors have suggested a

methodology to obtain the fracture toughness of aniso-

tropic rocks through experimental measurements of the

elastic parameters and further comparison with a BEM

code. In another work, Ke et al. [132] have proposed a

crack propagation model for transversely isotropic rocks.

Let us remark that all the previously mentioned works

have used the Lekhnitskii formalism [145] in order to

model the anisotropy of the material. The Lekhnitskii

formalism is a polynomial analogy form of the matricial

Stroh formalism.

Crack propagation problems have also been studied

under the BEM framework. Portela et al. [214] used the

maximum stress criterion as crack growth criteria in a

dual BEM. Quasi-static 3D crack growth is analysed in

[169].

Cohesive models have also been developed with the

BEM: Oliveira and Leonel [195, 196] have proposed a

cohesive crack growth model, where the zone ahead of the

crack tip is modelled as a fictitious crack model. This

formulation gives rise to a volume integral, which must be

regularised. The cohesive stresses are dependent on the

crack tip opening displacement.

Yang and Ravi-Chandar [286] have proposed a cohesive

model where the single-domain dual integral equations are

used as an artifice to avoid the mathematical degeneration

of the formulation imposed by the crack. In this case, the

domain is divided in two sub-domains, where the crack is

in the fictional domain division. Moreover, the cohesive

zone is modelled as an elastic spring connecting both crack

faces. Normal and tangential crack tip opening displace-

ments are considered, and the crack growth is obtained

from successive iterations of the non-linear system of

equations, where the stiffness of the cohesive zone is taken

into account.

Saleh and Aliabadi [233–235] and Aliabadi et al. [7]

have studied the crack propagation problem in concrete

using a fictitious crack tip zone. The cohesive zone is

modelled with additional boundary elements at the ficti-

tious crack tip that satisfy a softening cohesive law. A

major drawback of this methodology is that the crack

growth path has to be known a priori.

7.1.1 Fast Multipole Method (FMM)

The linear system formed in the BEM framework is much

smaller than its equivalent with FEM formulation. How-

ever, the resulting matrix is full, not sparse like the FEM

stiffness matrix, and this considerably increases the com-

putational time required to solve a large problems. In 1985,

Rokhlin [228] developed a method to reduce the com-

plexity of solving the system of equations to OðnÞ instead

of Oðn3Þ, where n is the number of unknowns. This tech-

nique was named the Fast Multipole Method (FMM), and

generally involves using an iterative solver (such as

GMRES [230]) to solve the linear system

Ax ¼ b ð37Þ

which comes from the discretisation of Eqs. (31) and (32).

The Green’s functions in the BIEs can be expanded as

follows

u�ijðx; n; tÞ ¼
X

i

u�nij ðxe; n; tÞu�xij ðxe; n; tÞ ð38Þ

where xe is an expansion point near x obtained through

Taylor series expansion, for instance. The original integral

containing u�ij can be rewritten as
Z

Ca

u�ijðx; n; tÞpjðx; tÞ dC ¼ u�nij ðxe; n; tÞ
Z

Ca

u�xij ðxe; n; tÞpjðx; tÞ dC
ð39Þ

where Ca is a boundary away from n. This change allows

the collocation point n to be independent of the observation

point x due to the introduction of a new point xe. Equa-

tion (39) has to be evaluated only once for different col-

location points.

The FMM applied in BEM can be described by the

following steps [150]:

1. Discretise the boundary C;

2. Determine a tree structure of the elements. For

example, in a 2D domain, define a square containing

the entire boundary and call this square the cell of level

0. Then, divide the square into 4 equal cells and call

them level 1. Repeat until each cell contains a

predetermined number of elements (in Fig. 7, each

cell has one element). Cells with no children cell are

called leafs. For 3D cases, the same principle applies

using cubic cells instead of square cells;

3. Compute the moments on all cells for all levels l� 2

and trace the tree structure (shown in Fig. 8). The

moment is the term from Eq. (39) that is independent

from the collocation point. The moment of parent cells

is calculated from the summation of the moments of its

4 children cells;
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4. Compute the local expansion coefficients on all cells

starting from level 2 and tracing the tree structure

downward to all leaves. The local expansion of the cell

C is the sum of the contributions from the cell in the

interaction list of the cell and the far cells. The

interaction list is composed by all the cells from the

level l that do not share any common vertices with

other cells at the same level, but their parent cells do

share at least one common vertex at level l� 1. Cells

are said to be far cells of C if their parent cells are not

adjacent to the parent cell of C;

5. Compute the integrals from element in leaf cell C and

its adjacent cells as in standard BEM. The cells in the

interaction list and the far cells are calculated using the

local expansion;

6. Obtain the solution of Ax ¼ b. The iterative solver

updates the unknown solution of x and goes to step 3 to

evaluate the next matrix vector product Ax until the

solution converges within a given tolerance.

The FMM has been used in 3D fracture mechanics

problems as can be seen in [192, 290], and some recent

works on GPU can be found in [101, 108, 278]. The FMM

is largely detailed in [149].

7.1.2 Adaptive Cross Approximation (ACA)

The Adaptive Cross Approximation (ACA) approach uses

a different technique in order to reduce the complexity of

the BEM with respect to the storage and operations. ACA

uses the concept of hierarchical matrices introduced by

Hackbusch [107], where a geometrically motivated parti-

tioning into sub-blocks takes place, and each sub-block is

classified as either admissible or inadmissible according to

the separation of the node clusters within them.

The main idea is that admissible blocks are approxi-

mated by low-rank approximants formed as a series of

outer products of row and column vectors, greatly accel-

erating the evaluation of the matrix vector product that lies

within each iteration of an iterative solver. While the FMM

deals with the analytical decomposition of the integral

kernels, ACA can evaluate only some original matrix

entries, or use a full pivoted form where all terms of matrix

are calculated, to get an almost optimal approximation. The

approximation of matrix A 2 Ct�S is given by

A	 Sk ¼UVt; where U 2 Ct�k and V 2 Cs�k ð40Þ

where k is a low-rank compared to t and s. It is important to

remark that the low-rank representation can only be found

Fig. 7 Hierarchical tree structure

Fig. 8 Hierarchical quad-tree structure
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when the generating kernel function in the computational

domain of A is asymptotically smooth. It has been shown

in [20] that elliptic operators with constant coefficients

have this property.

In hierarchical matrices, the near and far fields have to

be separated. The index sets I for row and J for columns so

that elements far away will have indices with a large offset.

By means of a distance based hierarchical subdivision of

I and J cluster trees TI and TJ are created. In each step of

this procedure, a new level of son clusters is inserted into

the cluster trees. A son cluster is not further subdivided and

is said to be a leaf if its size reaches a prescribed minimal

size bmin. Usually one of two different approaches is con-

sidered. First, a subdivision based on bounding boxes splits

the domain into axis-parallel boxes which contain the son

clusters. Alternatively, a subdivision based on principal

component analysis splits the domain into well-balanced

son clusters leading to a minimal cluster tree depth.

Now, the hierarchical (H)-matrix structure is defined by

the block cluster tree TIJ ¼ TI � TJ using the following

admissibility criterion: minðdiamðtÞ; diamðsÞÞ
 gdistðt; sÞ,
with the clusters t � TI ; s � TJ , and the admissibility

parameter 0\ g\ 1. The diameter of the clusters t and s,

and their distance, are obtained as

diamðtÞ ¼ max
i1;i22 t

jni1 � ni2 j ð41Þ

diamðsÞ ¼ max
j1;j22 s

jxj1 � xj2 j ð42Þ

distðt; sÞ ¼ jni � xjj
i2 t; j2 s

ð43Þ

A block b is said to be admissible if it satisfies this

admissibility criterion. Otherwise, the admissibility is

recursively verified for each son cluster, until the block

becomes admissible or reaches the minimum size.

Finally, the ACA method idea is to split the matrix A 2
Ct�s into A ¼ Sk þ Rk, where Sk is the rank k approxi-

mation and Rk is the residuum which has to be minimised.

We now present the ACA method itself:

1. Define k ¼ 0 where S0 ¼ 0 and R0 ¼ A and the first

scalar pivot to be found is c1 ¼ ðR0Þ�1
ij , and i, j are the

row and column indices of the actual approximation

step;

2. For each step t, obtain

vtþ1 ¼ ctþ1ðRtÞi ð44Þ

utþ1 ¼ ðRtÞj ð45Þ

Rtþ1 ¼ Rt � utþ1v
t
tþ1 ð46Þ

Stþ1 ¼ St þ utþ1v
t
tþ1 ð47Þ

where the operators ðÞi and ðÞj indicate the i-th row

and the j-th column vectors, respectively;

3. The next pivot ctþ1 is chosen to be the largest entry in

modulus of the row ðRtÞi or the column ðRtÞj
4. The approximation stops when the following criterion

holds

jjutþ1jjF jjvtþ1jjF\e jjStþ1jjF ð48Þ

The main advantage comparing to the FMM method is

that ACA can be implemented directly into an existing

BEM code. Moreover, due to its inherently parallel data

structure, parallel programming can be readily imple-

mented, increasing the computational efficiency. However,

the original matrix A will not be entirely recovered.

Note that it is not necessary to build the whole matrix

beforehand. The respective matrix entries can be computed

on demand [20]. Working on the matrix entries has the

advantage that the rank of the approximation can be chosen

adaptively while kernel approximation requires an a priori

choice.

A few recent works on ACA implementation can be

found in [81, 99]. Use of the method for problems in 3D

elasticity can be found in [28, 158] and the application of

ACA in crack problems was shown for the first time in

[137].

7.2 Enriched Formulations

7.2.1 eXtended Finite Element Method (X-FEM)

The motivation that lay behind the development of X-FEM

was to eliminate some of the deficiencies of standard FEM

for crack modelling, most importantly the requirement for

highly refined meshing around the crack tips and the

mandatory remeshing for crack growth problems. The

partition of unity [15] is a general approach that allows the

enrichment of finite element approximation spaces so that

the FEM has better convergence properties. In X-FEM, the

partition of unity method allows element enrichment such

that degrees of freedom (dofs) are added to represent dis-

continuous behaviour. In this framework, the mesh is

independent from the discontinuities, so that cracks may

now pass through elements rather than being constrained to

propagate along elment edges. This gives the FEM much

more flexibiility to model crack growth without remeshing.

Two types of enrichment function are applied in the

X-FEM: the Heaviside enrichment function, responsible

for characterising the displacement discontinuity across the

crack surfaces, and a set of crack tip enrichment functions

(CTEFs), responsible for capturing the displacements

asymptotically around the crack tip. This latter presents

complex behaviour, varying for different constitutive laws

(see [12, 79, 193], for some different CTEF). In this sense,

it is similar to the FS, necessary in BEM formulations.
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The displacement approximation uhðxÞ with the parti-

tion of unity can be stated as [176]

uhðxÞ ¼
X

i2N
NiðxÞui þ

X

j2N H

NjðxÞHðxÞaj

þ
X

k2N CT

NkðxÞ
X

a

FaðxÞbak ð49Þ

where Ni is the standard finite element shape function

associated with node i; ui is the vector of nodal dofs for

classical finite elements, and aj and bak are the added set of

degrees of freedom that are associated with enriched basis

functions, associated with the Heaviside function HðxÞ and

the CTEF FaðxÞ, respectively. N is the set of all nodes,

N H
is the set of all nodes lying on crack surfaces, and N CT

is the set of all nodes belonging to elements touching a

crack tip.

Since the CTEFs describe the displacements at the crack

tip zone through the addition of several dofs, the stress

concentration around the crack tip can be found more

accurately with a significantly coarser mesh compared to

the mesh used with standard FEM in a similar problem.

The presence of blending elements, which do not con-

tain the crack but contain enriched nodes, is also important

and has to be considered. These elements were analysed by

Chessa et al. [48], and some studies have improved the

convergence of blending elements (see [84], for instance).

The X-FEM convergence rate can also be increased

through the use of geometrical enrichment [142], where a

number of elements around the crack tip receive the CTEF

instead of a single element (this latter named topological

enrichment).

Figure 9 illustrates an arbitrary elastic body with a

cohesive crack. The governing equations for a cohesive

crack model are given by [178]
Z

X
r:d� dX ¼

Z

X
fb:du dXþ

Z

Ct

af t:du dC

þ
Z

Cþ[ C�

fc:ðduþ � du�Þ dC ð50Þ

where X is the domain, fb is the body force vector, f t is the

external traction vector, r is the stress tensor, a is the load

factor which controls the load increments, fc is the traction

along the cohesive zone, and is a function of the crack

opening Du.

The discretisation of Eq. (50) yields

Ku ¼ fext þ fcohe ð51Þ

with

K ¼
Z

X
BtCB dX ð52Þ

fext ¼ a
Z

Cc

Nit dCþ
Z

X
Nib dX ð53Þ

fcohe ¼ �2

Z

Cþ[ C�

NiT
cðDuÞ dC ð54Þ

where B is the finite element strain-displacement matrix, b

is the vector containing the body forces and TcðDuÞ is the

cohesive softening law relating the crack surface normal

traction fc to the crack opening Du.

X-FEM has been widely used with cohesive models in

the last few years. Some authors [45, 51, 175] have used a

typical X-FEM formulation to model the cohesive crack,

i.e., a Heaviside enrichment function is used to model the

jump between the crack surfaces and a crack tip enrichment

function is used to model the asymptotic behaviour at the

crack tip.

Xiao and Karihaloo [284] have obtained the asymptotic

displacement at the cohesive zone for isotropic materials

based on the Williams expansion. The authors considered

only the case where the crack is traction free and the crack

is subject only to mode I. The obtained enrichment func-

tions are

u
tip
1 ¼ r3=2

2l
a11 jþ 1

2

� �

cos
3

2
h� 3

2
cos

1

2
h

� 	

ð55Þ

u
tip
2 ¼ r3=2

2l
a11 j� 1

2

� �

sin
3

2
h� 3

2
sin

1

2
h

� 	

ð56Þ

where j is the Kolosov constant (for details refer to [284]), h
is the crack orientation with respect to the x1 axis, a11 is a

real constant and comes from the Williams expansion. In

this case, Eq. (57) receives a new crack tip enrichment term,

as in the X-FEM formulation for linear elastic fracture

mechanics (see [110, 175]). Zamani et al. [291] uses higher-

order terms of the crack tip asymptotic field to obtain an

enrichment function based on the Williams expansion.

This approach has provided good results for isotropic

materials, but it may not be the same for anisotropic mate-

rials. An alternative approach is to model the crack with

Heaviside elements only [139, 180, 262, 302]. Since there is

no discontinuity at the crack tip, there are no SIFs at theFig. 9 Elastic body with a cohesive crack
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crack tip, and therefore no crack tip enrichment function is

required. The displacement field uðxÞ is given by

uðxÞ ¼
X

i2N
NiðxÞui þ

X

k2N H

NkðxÞHðxÞaj ð57Þ

where Ni is the standard finite element shape function

associated to node i and aj is the additional set of degrees

of freedom associated with the Heaviside enrichment

function H, defined as þ1 if it is evaluated above the crack

or �1 if below the crack. The sets N and N H
denote the

standard and enriched nodes, respectively.

The crack growth is modelled considering some rules,

for example, if the level of stress at the crack tip is above

the material tensile strength [178, 262].

In [139], a 2D cohesive model for an isotropic material

was presented, where both fluid and porous material

interact. The pressure inside a crack is also modelled. The

Heaviside enrichment function is employed, as well as a

pressure enrichment function, which allows the continuity

of steep gradients without enforcing this condition. The

crack propagation criteria depends on the stress state at the

crack tip. The fluid behaviour can retard crack initiation

and propagation. A local change of the flow can be seen

immediately after crack propagation. The deformation

around the crack causes fluid to flow mostly from the crack

itself since the crack permeability is much higher than the

medium permeability. This flow from the crack to the crack

tip causes closing of the crack. However, a delamination

test has shown that if the stiffness and permeability are

high, the fluid does not influence crack growth.

More methods for crack propagation in X-FEM can be

found in [151, 167, 182, 183, 225] for brittle fracture and

[168, 179, 291] for cohesive cracks.

7.2.2 Enriched BEM

The extended boundary element method (X-BEM) was first

proposed by Simpson and Trevelyan [251] for fracture

mechanics problems in isotropic materials. The main idea

is to model the asymptotic behaviour of the displacements

around the crack tips by introducing new degrees of free-

dom. The displacements uhðxÞ are thus redefined as

uhðxÞ ¼
X

i2N
NiðxÞui þ

X

k2N CT

NkðxÞ
X

a

FaðxÞaak ð58Þ

where N and N CT
are the sets with non-enriched and

enriched nodes, respectively, Ni is the standard Lagrangian

shape function associated with node i; ui is the vector of

nodal degrees of freedom, and aak represents the enriched

basis functions which capture the asymptotic behaviour

around the crack tips. In elastic materials, aak is an 8-

component vector for two-dimensional problems, since

only two nodal variables (u1, u2) and four enrichment

functions are needed to describe all the possible deforma-

tion states in the vicinity of the crack tip [110].

Hattori et al. [110] used the following anisotropic

enrichment functions initially developed for the X-FEM

Flðr; hÞ ¼
ffiffi

r
p

RfA11B
�1
11 b1 þ A12B

�1
21 b2g

RfA11B
�1
12 b1 þ A12B

�1
22 b2g

RfA21B
�1
11 b1 þ A22B

�1
21 b2g

RfA21B
�1
12 b1 þ A22B

�1
22 b2g

0

B

B

@

1

C

C

A

ð59Þ

where bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ li sin h
p

; r is the distance between the

crack tip and an arbitrary position, h is the orientation

measured from a coordinate system centred at the crack tip,

and A;B and l are obtained from the following eigenvalue

problem

ð60Þ

(no sum on m) with

Z :¼ C1ij1; M :¼ C2ij1; L :¼ C2ij2 ð61Þ

Let us emphasise that the anisotropic enrichment func-

tions can also be used for isotropic materials, since this is a

degenerated case from anisotropic materials. For more

details please refer to reference [110].

An enriched anisotropic dual BEM formulation using

the above enrichment functions [111] for anisotropic

materials is similar to the one used by Simpson and Tre-

velyan [251] for isotropic materials. The extended DBIE

and the TBIE can be restated as

cijðnÞujðnÞ þ
Z

C
p�ijðx; nÞujðxÞ dCðxÞ

þ
Z

Cc

p�ijðx; nÞFaðxÞaak dC

¼
Z

C
u�ijðx; nÞpjðxÞ dCðxÞ

ð62Þ

cijðnÞpjðnÞ þ Nr

Z

C
s�rijðx; nÞujðxÞ dCðxÞ

þ Nr

Z

Cc

s�rijðx; nÞFaðxÞaak dC

¼ Nr

Z

C
d�rijðx; nÞpjðxÞ dCðxÞ

ð63Þ

where Cc ¼ Cþ [ C� stands for the crack surfaces Cþ and

C�. Only the element containing the crack tip receives the

enrichment function. Strongly singular and hypersingular

terms arise from the integration of the p�ij, d�rij and s�rij
kernels and they may be regularised in the same way as

shown in [92].
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7.3 Meshless Method

Meshless (or meshfree) methods have been the subject of

considerable interest in recent years as alternatives to Finite

Element (FE) methods for solid mechanics problems. As

the name suggests the main advantage of these methods is

their (varying) lack of reliance on a division of the problem

domain into a mesh of elements, thus removing issues

associated with mesh generation and remeshing (perhaps

required following large deformations which would lead to

distorted and hence inaccurate elements). However,

meshless methods tend to be more computationally

expensive largely as a result of the lack of easily con-

sultable connectivity information provided by a mesh, but

also because there is greater complexity in the formation of

shape functions. The most popular meshless methods for

solid mechanics are the Element-free Galerkin method [24]

and the Meshless Local Petrov–Galerkin method [14]. The

key difference in both of these methods compared to FE

methods is the use of shape functions based on a moving

least squares (MLS) approximation [77]. Taking the Ele-

ment-free Galerkin method as an example, the displace-

ment approximation uh at location x is constructed as

uhðxÞ ¼
X

i2N
NiðxÞui ¼ Nu ð64Þ

where Ni are shape functions based on the MLS approxi-

mation (explained below), ui are nodal values and N is the

set of nodes in support at location x, supports being defined

using weighting functions centred at nodes. To build the

shape functions we choose a polynomial basis, which can

be of any order but low orders are usually used, e.g. a

quadratic basis in 1D pðxÞT ¼ 1; x; x2
� 

or in 2D

pðxÞT ¼ 1; x; y; x2; xy; y2
� 

. At any location x we define

the matrix P whose rows are the valued basis vectors pT for

the nodes in support at x. A least squares minimisation

procedure applied to the approximation at node locations

and the nodal values then leads to the shape functions as

N ¼ pðxÞTAðxÞ�1Bx ð65Þ

where

A ¼ PTWP; B ¼ PTW: ð66Þ

W is a diagonal matrix of values of node-centred weight

functions at location x, which may be splines or expo-

nential functions. Carrying this out in 2D or 2D is simply

done via tensor products of the 1D case. Key points of

difference as compared to FE methods should be clear, i.e.

the shape function formation requires the inversion of a

matrix, albeit a small matrix (dimension same size as the

number of terms in the basis), the choice of nodal support

size is crucial but not easy to define and the use of an MLS

approximation contrasts with the interpolation used in FE

methods and has the knock-on effect of making the

imposition of essential boundary conditions more compli-

cated. Overviews of the various meshless methods for solid

mechanics can be found in a number of references [23, 85,

147, 191].

7.3.1 Meshless Methods for Fracture

Ever since their initial development in the 1990s meshless

methods have been applied to crack modelling [22, 24,

197], to dynamic fracture [26] and crack propagation [25].

The key advantage of meshless methods over standard FE

methods for fracture is removal of the need to remesh

during crack propagation. Another positive feature of

meshless methods is that smooth stress results can be

obtained for high stress gradients around crack tips [37]

thus requiring less effort in postprocessing compared with

the X-FEM. As with all numerical methods applied to

fracture we have to find ways of dealing with the stress

singularities at the crack tips and the discontinuities

introduced by the crack surfaces. The former can be dealt

in meshless methods by enriching the approximation space

just as is done in X-FEM and other enriched methods, e.g.

[27], based on the the partition of unity (PU) concept [16,

166] where the jump discontinuity is included in the dis-

placement approximation exactly as already laid out for

X-FEM above in Eq. (49). ‘‘Extrinsic’’ techniques like this

have more recently been developed into meshless ‘‘cracked

particle’’ methods in a number of references [37, 219, 220,

303]. Extrinsic enrichment like this can however lead to an

ill-conditioned global stiffness matrix [21] as is the case

with many other PU methods, due to the additional

unknowns at nodes which do not correspond to the physical

degrees of freedom [44]. The cracked particle methods are

examples of smeared approaches to modelling cracks, i.e.

the exact crack face/surface geometry is approximated, but

this clashes with the requirement for an accurate descrip-

tion of the crack geometry since it governs the accuracy of

field solution, and hence the crack growth magnitude and

direction. Extrinsic approaches which attempt to improve

on this have used piecewise triangular facets [37, 64] which

however suffer from discontinuous crack paths and

requires user input to ‘‘repair’’ the mesh of facets.

Greater promise lies in the use of a level set description

of crack geometry combined with a meshless method [65,

98, 300, 301] and an intrinsic rather than extrinsic model of

the discontinuity of a crack. Using an intrinsic method in

the EFGM there is also no problem of ill-conditioning in

the stiffness matrix. Here the displacement jump can be

introduced simply by modifying the nodal support via the

weight function. A simple way to do this is directly to

truncate the nodal support at a crack face. This is the
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visibility criterion, as shown in Fig. 10. The support of a

node is restricted to areas of the domain visible from the

node with the crack faces acting as an opaque barrier. If a

line between a node and the point of interest intersects a

crack, and if the crack tip is inside the support of that node,

the node will have no influence on that point, i.e. rI
between that point and the node is modified to infinity.

(The visibility criterion corresponds to the use of the

Heaviside function in the enriched trial functions used in

X-FEM). An alternative to the visibility criterion is the

diffraction method which works slightly differently as

shown in Fig. 11.

The visibility criterion is simpler to implement, espe-

cially for 3D problems, but leads to spurious crack exten-

sion (thus impairing accuracy) while the diffraction method

has no spurious crack extension problem but its imple-

mentation leads to high computational complexity espe-

cially in 3D or with multiple cracks.

Level sets offer a means accurately to represent crack

surfaces and also to track surfaces as crack fronts propa-

gate. The level set method (LSM) is a computational

geometry technique for tracking interfaces applicable to

many areas in science and engineering [243]. The LSM

was first applied to crack modelling using the X-FEM in

[98]. Instead of using an explicit representation of a crack,

such as line segments in 2D and triangular facets in 3D, the

LSM describes the surface implicitly by collecting points at

the same distance to the crack into level sets. When the

LSM is applied to fracture modelling, two orthogonal level

sets, / and w are used: / measures the distance normal to

the crack and w measures the distance tangential to the

crack (see Fig. 12).

Hence we can fully define the geometry of the crack

surface as

/ðxÞ ¼ 0; wðxÞ
 0 crack surface

/ðxÞ ¼ 0; wðxÞ ¼ 0 crack front:
ð67Þ

As the crack propagates, the level sets are updated to the

new crack surface using the procedures in [98] and the

corrected update function for / in [65]. Recent work has

led to the development of a fracture modelling method for

2D and 3D which uses intrinsic LS representations of

cracks using a modified visibility criterion where the crack

tips are tied to avoid the spurious propagation problem, and

also incorporates enrichment to deal with the stress sin-

gularities [300, 301].

7.4 Phase-Field

The development of the phase-field method provided an

alternative formulation when dealing with different inter-

face problems. A phase-field variable is introduced to

consider the interface directly into the formulation. The

phase-field formulation has been applied to different types

of interface problems, including liquid-solid [13], liquid-

solid-gas [165], electromagnetic wave propagation [260],

analysis in crystal structures [1, 58] and more recently in

medicine [266], to enumerate some of the applications. The

method has been successfully applied to fracture mechan-

ics problems, where the crack is therefore modelled as a

different interface in the domain. Figure 13 shows an

example of a domain where the damage state is given by

the interface parameter.

The work of Francfort and Marigo [80] is the first in

fracture mechanics to consider a variational formulation

where a parameter assumes different values in order to

capture the proper interface in the domain. An energy

functional Eðu;CÞ, depending on the displacement field u

and the crack surface C, is defined as [8, 80]

Eðu;CÞ ¼ EdðuÞ þ EsðCÞ ¼
Z

X
w0ðeðuÞÞ dXþ Gc

Z

C
ds

ð68Þ

where EdðuÞ represents the elastic energy of the body,

EsðCÞ is the energy required to create the crack, consid-

ering Griffith’s theory, w0 is the elastic energy density and

Gc is the material fracture toughness. The work is further

extended by [39] which applied a regularised form in order

to allow the numerical treatment of the energy functional.

The regularised energy functional E�ðu;CÞ is given by

E�ðu;CÞ ¼
Z

X
ðs2 þ k�Þw0ðeðuÞÞ dx

þ Gc

Z

X

1

4�
ð1 � s2Þ þ �jrsj2

� �

dx ð69Þ
Fig. 10 The visibility criterion (from [300])

Fig. 11 The diffraction method (from [300])
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where s is the phase-field variable, s ¼ 0 representing the

undamaged state and s ¼ 1 standing for the fully bro-

ken/damaged state, with 0
 s
 1; �[ 0 is a parameter

designed to control the width of the transition zone set by the

phase-field variable, and k� is a small term depending on �.

The solution of Eq. (69) is found through the minimi-

sation of E�ðu;CÞ. To avoid the minimisation problem to

be ill-posed, the small term k� has been added to the for-

mulation. For more details see [39].

The phase-field formulation has been modified through

the years to be more general, consider more cases of

interface interaction and different types of loading condi-

tions to the problem. The work of Amor et al. [9] has

considered the compression into the formulation, avoiding

the interpenetration between crack surfaces. The proposed

idea consisted in separating the elastic energy density

according to the deviatoric and volumetric contributions.

A different phase-field formulation was proposed by

[172, 173], defined as a ‘‘thermically consistent’’ formu-

lation. The regularised phase-field variable d is defined as 0

for the unbroken state and 1 for the fully broken state.

The stored energy w0ðeÞ of an undamaged solid is

defined as [173]

w0ðeÞ ¼ wþ
0 ðeÞ þ w�

0 ðeÞ ð70Þ

where wþ
0 ðeÞ is the energy due to tension and w�

0 ðeÞ is the

energy due to compression. The positive and negative parts

of the energy are given by the following decomposition of

the strain tensor

e ¼
X

3

a¼1

eana � na ð71Þ

where �a and na are the principal strain and principal strain

direction in the xa-axis, respectively. The standard quad-

ratic energy storage function of an isotropic undamaged

material is given by

w0ð�Þ ¼
1

2
kðe1 þ e2 þ e3Þ2 þ lðe2

1 þ e2
2 þ e2

3Þ ð72Þ

with k[ 0 and l[ 0 are elastic constants.

The phase-field model for fracture in elastic solids is

given by

Div ð1 � dÞ2 þ k
� � owþ

0 ðeðuÞÞ
oe

þ ow�
0 ðeðuÞÞ
oe

¼ 0 ð73Þ

Gc

l
ðd � l2DdÞ � 2ð1 � dÞwþ

0 ðeðuÞÞ þ eh _di�

 �

¼ 0 ð74Þ

where Div represents the divergent, Dd is the Laplacian of

the phase-field, l is the width of the transition zone (where

0\d\1), k is a small artificial residual stiffness to prevent

the full-degradation of the energy at the fully damaged

state d ¼ 1, hxi� ¼ ðjxj � xÞ=2 is a ramp function, _d is the

evolution of the phase-field parameter.

A downside of the phase-field formulation is that it can

result in unrealistic solutions. An example analysed by [8]

consists of the case when the principal strains are negative,

which is not considered in the model of [9] for instance.

Nevertheless, a strongly non-linear strain relation is used,

which requires higher computational charges as compared

to [9].

A history-field variable was introduced in [172] in order

to overcome some implementations issues which arose in

[173]. Since the wþ
0 term determines the phase-field vari-

able, we have

Fig. 12 The level sets

description of a crack surface in

3D (from [301])

Fig. 13 Phase-field domain
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Tðx; tÞ ¼ max
s2½0;t�

wþ
0 ðeðx; sÞÞ ð75Þ

Substituting Eq. (75) into (74) and applying a viscous

regularisation, the evolution equation can be recast as

Gc

l
ðd � l2DdÞ ¼ 2ð1 � dÞTþ g _d ð76Þ

where g[ 0 is a viscous parameter.

The advantage of this new form is that the irre-

versibility of the crack phase-field evolution is put into a

more general form, allowing loading/unloading condi-

tions, besides allowing a better numerical treatment of the

phase-field.

Crack branching effects are studied with phase-field in

[117] for a 2D fracture problem. The instabilities are seen

to appear at the critical crack speed of 0:48cs, where cs is

the shear wave speed. It is worth to note that this relation is

valid for perfect brittle materials only. Moreover, it was

observed that, as the crack speed increases, the curvature of

the area around the crack tip increases, splitting into two

cracks when a critical value for crack speed is attained. In

[118], a 3D study of crack branching stability is performed

by means of fractographic patterns. The authors conclude

that the instability is either restricted to a portion of the

crack front or a quasi-2D branches.

A phase-field model is applied for damage evolution in

composite materials in [29]. The evolution equation of the

phase-field model was able to include difficult topological

changes during damage evolution, such as void nucleation

and crack branching and merging. Moreover, no meshing

was required by the used phase-field model.

In [141], the formulation used in [39] is complemented

by a Ginzburg-Landau type evolution equation, where an

additional variable M is responsible for the crack propa-

gation behaviour. If M is too small, the crack propagation

may be delayed, while for sufficiently high values, the

crack propagation is not affected by M. The FEM was

coupled with the phase-field theory. This work was

extended by [242] for dynamic brittle fracture.

Numerical aspects of the phase-field models used with

finite differences, FEM and multipole expansion methods

are discussed in [211].

More information about phase-field methods can be

found in [38, 50, 217, 242, 253, 275].

7.5 Configurational Force Method

Numerical implementations of brittle fracture propagation

are relatively rare in the computational mechanics litera-

ture. One of the most promising numerical techniques

developed within a conventional finite-element framework

over the last decade is based on configurational forces.

Within this setting, the most recent application of the

configurational force methodology to the modelling of

fracture is the work of Kaczmarczyk et al. [129], which

focuses on large, hyperelastic, isotropic three-dimensional

problems.

Kaczmarczyk et al.’s paper [129] is largely based on the

work of Miehe and co-workers [103, 170, 171]. Miehe and

Gürses [170] presented a two-dimensional large strain local

variational formulation for brittle fracture with adaptive

R-refinement, the simplification of this framework to small

strain problems was presented by Miehe et al. [171]. The

approach was extended to three-dimensions for the first

time by Gürses and Miehe [103].

All of the works in this area are based on Eshelby [70,

73] and Rice’s [224] concept of material configurational

forces acting on a crack tip singularity. A more general

overview can be obtained from several sources [104, 105,

135, 162, 256]. Within this setting several local variational

formulations have been proposed, for example see the

works of [163, 258], and fracture initiation defects of the

classical Griffith-type brittle fracture overcome by global

variational formulations [54, 80]. Several researchers have

numerically determined the material configurational forces

at static fracture fronts [61, 116, 185, 255]. Before the

works of Miehe and co-workers [103, 170, 171], there were

several other attempts towards the implementation of

fracture propagation in the configurational mechanics

context, including: Mueller and Maugin [186] within the

conventional finite-element context, Larsson and Fager-

ström [74, 143] in X-FEM and Heintz [115] within a dis-

continuous Galerkin (DG) setting. The framework has also

recently been applied to materials with non-linear beha-

viour, see for example the works of Runesson et al. [229]

and Tillberg and Larsson [265] on elasto-plasticity and

Näser et al. [189, 190] on time-dependent materials and the

review by Özenç et al. [202]. In the following a configu-

rational force approach to modelling fracture propagation

is outlined based on the notation of Kaczmarczyk et al.

[129].

The method can be cast within an Arbitrary Lagrangian-

Eulerian (ALE) description of motion, where the defor-

mation of the body is decoupled from the development of

an advancing crack front (see Fig. 14). This approach

requires the specification of three configurations: a refer-

ence state, B0; and two current states: a material configu-

ration, Bt, containing the evolution of the crack surface;

and a spatial configuration, Xt, containing the physical

deformation of the body. A conventional finite-deformation

mapping, uðX; tÞ, connects the spatial, x, and material, X,

configurations. Similarly the material and reference, N,

frames are linked by a deformation mapping, Nðv; tÞ, that

contains the structural change of the material. The crack

surface is denoted as C 2 Bt and the crack front, oC, as

shown in Fig. 15.
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From the first law of thermodynamics, equilibrium of

the crack front is governed by

_W � ðcAoC � GoCÞ ¼ 0; ð77Þ

where _W is the crack front velocity, AoC is a kinematic

state variable that defines the current crack front direction

and c is the surface energy. The configurational force at the

crack front, oC, is given by

GoC ¼ lim
jLnj!0

Z

Ln

RNdL; ð78Þ

where N is the normal to the surface encircling oC;R is the

Eshelby stress tensor, L is the length oC;Ln is the curve

orthogonal to oC that defines the crack front encircling

surface (as shown in Fig. 15). The Eshelby stress tensor, R,

is defined as

R ¼ WðFÞ1� FTP; ð79Þ

where WðFÞ is the free-energy function, F the deformation

gradient, 1 is the second order identity tensor and P ¼
oWðFÞ=oF is the first Piola-Kirchhoff stress.

As noted by Kaczmarczyk et al. [129], three possible

solutions to Eq. (77): zero crack growth with _W ¼ 0; force

balance ðcAoC � GoCÞ ¼ 0; or that the crack front velocity

is orthogonal to ðcAoC � GoCÞ. However, there is insuffi-

cient information in Eq. (77) to dictate the evolution of the

crack front. Such an evolution law can be obtained by

considering the second law of thermodynamics, supple-

mented by a material constitutive law and the principal of

maximum energy dissipation.

Starting from a Griffith-type criterion for crack growth

GoC � AoC � gc=2
 0; ð80Þ

where gc is a material parameter controlling the critical

threshold of energy release per unit area. Combining this

with the principal of maximum dissipation, and through the

application of Lagrange multipliers, it is possible to arrive

at the condition that

cAoC ¼ GoC and 2c ¼ gc: ð81Þ

Therefore, the direction of crack propagation is constrained

to be coincident with the configurational force direction. In

addition, the configurational force approaches based on the

work of Miehe and co-workers [103, 129, 170, 171] utilise

R-adaptive mesh alignment. This method aligns the prop-

agating crack front with the direction of the configurational

force by modifying the position of the node(s) attached to

the element faces to be split.

In the work of Kaczmarczyk et al. [129], this fracture

methodology was combined with a mesh quality control

algorithm based on the work of Scherer et al. [240]. Within

this, the nodal positions of the elements are modified based

on a shape-based (volume to length) measure of element

quality through the determination of a pseudo force vector.

This pseudo force features in the discretised material nodal

force equilibrium equation and is solved using a Newton-

Raphson process. Note, that this modification to the dis-

crete equilibrium equation only influences the stability of

the solution and not the crack propagation criterion [129].

This mesh quality control procedure reduces the progres-

sive degradation of the solution with fracture propagation.

Kaczmarczyk et al. [129] note that their approach could

easily be extended to anisotropic materials. However, one

limitation of the approach is that it is currently unable to

capture non-smooth crack kinking [171]. Also, crack

branching and multiple crack coalescence has yet to have

been demonstrated, or even formulated.

Fig. 14 Reference, spatial and material configurations for a body

with a propagating crack (from [129])

Fig. 15 Configurational force

crack (from [129])
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7.6 Discrete Element Method (DEM)

The discrete element method (DEM) has been initially

developed for materials which have particle-like behaviour,

such as soil and rocks [146]. The method was formally

proposed by Cundall and Hart [53] and consisted of

modelling of the interaction between elements using con-

tact. This was later called the bonded-particle approach and

is illustrated in Fig. 16 for two arbitrary bodies X1 and X2

having a normal contact stiffness Kn. However, one of the

main restrictions of this bonded-particle approach is that it

did not allow rotations, and therefore does not consider

momentum. To overcome this restriction, shear contact

stiffness Ks has been introduced to the formulation and can

be seen in Fig. 17.

The DEM is characterised by the following properties

[30, 146, 215]:

• Finite displacements and rotations of the bodies is

permitted, which includes complete detachment;

• New contacts (or the absence thereof) are recognised

automatically as the calculation progresses.

In practice, DEM is used in problems with a large

number of elements, each element representing a body in

contact. The formulation itself can be quite simplified

compared to other discretisation methods, but it allows the

simulation of complex behaviour, including material

heterogeneities.

The DEM can be decomposed into several subclasses,

which differ in some aspects such as the contact treatment,

material models, number of interacting bodies, fracturing,

and integration schemes [30].

In this framework, each element is a particular body

which can be in contact with a number of surrounding

elements. This implies that contact detection is one of the

main problems that can arise, since missing a contact

between elements can result in non representative beha-

viour of the model. Moreover, inspecting the elements for

possible contact can require large amounts of computa-

tional processing time. The most common contact search

algorithms are based on so-called body based search, where

the vicinity of a given discrete element is searched for

possible contact, and repeated after a number of iterations

to check if the elements are still in contact. The Region

Search algorithm [263] is an example of this kind of con-

tact detection. Other contact detection algorithms use space

search rather than a body search, and some examples are

based on binary trees [30, 36, 208].

The next step is to obtain the contact forces. The cal-

culation is usually performed with penalty based methods

or Lagrange multiplier based methods. A review of contact

algorithms evaluation can be found in [112].

The modelling of fracture using DEM has been mostly

confined to element interfaces, where the breakage of the

link between elements determines the appearance or

propagation of the damage [30]. Particles can be bonded

into clusters, where the bond stiffnesses are the equivalent

to the continuum strain energy. Bond failure is assumed

when the strength has exceed the maximum tension the

bond can handle. Consistent breakage of the particle bonds

define the fracture shape in the material. In [18, 187], a

combination of the FEM with DEM has been used to model

fracture starting from a continuum representation of the

finite elements, and as the damage appears it is restated in

the discrete element framework. A multifracture FEM/

DEM scheme has been proposed by [212], where sliver

elements arising from poor intra-element fracturing were

avoided using local adaptive mesh refinement.

Discontinuous deformation analysis (DDA) is a varia-

tion of the DEM proposed originally by Shi and Goodman

[246] to simulate the dynamics, kinematics, and elastic

deformability of a system contacting rock blocks. While

each block is treated separately in DEM, in DDA the total

energy of the system is minimised in order to obtain a

solution; a linear system of equations is obtained, resem-

bling the finite element formulation. In fact, displacements

and strains are taken as variables and the stiffness matrix of

the model is assembled by differentiating several energy

contributions including block strain energies, contacts

between blocks, displacement constraints and external

loads [146]. In the basic DDA implementation, each block

is simply deformable as the strain and stress fields are

constant over the entire block area, while the contacts are

solved using regular contact algorithms that allow inter-

penetration between bodies [112]. To conclude, DDA is an

Fig. 16 Bonded-particle approach

Fig. 17 Parallel-contact approach
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implicit formulation while DEM uses an explicit procedure

to solve the equilibrium equations. DDA has been used

extensively in rock mechanics applications, as can be seen

in [113, 114, 155, 267] for example.

The influence of the bond parameters defined at the

microscale and how they affect the response on the mac-

roscale are analysed in detail in [49] for rock model anal-

ysis. It is shown that using a clumped-particle model, i.e.

the particles rotate in a cluster instead of each particle

being allowed to rotate, can reduce the limitations of the

model, such as the overestimated ratio between tensile and

compressive strengths, and the friction angles of the failure

envelope.

A combined Lattice Boltzmann method (LBM) and

DEM have been used to simulate fluid-particle interactions

by [76]. The fluid field is solved by an extended 3D LBM

with a turbulence model, while particle interactions are

modelled using the DEM. Simulation results have matched

experimental measurements.

There are available codes for the DEM, as the universal

distinct element code (UDEC) [124], the ELFEN [218], the

Yade [138] and Y-Geo [159]. More information on the

discrete element framework can be found on [30, 146] and

some applications in [33, 127, 128].

8 Peridynamics

We will now introduce a new numerical method called

peridynamics, which appears to be very promising for

fracking problems. The main difference between the peri-

dynamic theory and classical continuum mechanics is that

the former is formulated using integral equations as

opposed to derivatives of the displacement components.

This feature allows damage initiation and propagation at

multiple sites, with arbitrary paths inside the material,

without resorting to special crack growth criteria. In the

peridynamic theory, internal forces are expressed through

non-local interactions between pairs of material points

within a continuous body, and damage is a part of the

constitutive model. Interfaces between dissimilar materials

have their own properties, and damage can propagate when

and where it is energetically favourable for it to do so.

8.1 Definitions

The peridynamics formulation was first developed by Silling

[248], where he tried to overcome the limitation of current

theories dealing with discontinuity, such as in fracture

mechanics problems. The main argument was that the diffi-

culty of existing theories was due to the presence of partial

derivatives in the formulation to represent the displacement

and forces, making necessary specific approaches to

eliminate the singularities which would arise. Silling pro-

posed a new formulation based on particular interactions as

in molecular dynamics, but applied to continuum mechanics.

The term peridynamics was adopted to describe this formu-

lation, and it comes from the Greek roots for near and force.

The pairwise interaction between two particles can be

defined as [249]

q€uðx; tÞ ¼
Z

H

fðuðx0; tÞ � uðx; tÞ; x0 � xÞ dVx0 þ bðx; tÞ

ð82Þ

where q is the mass density, f is the pairwise force function

that the particle x0 exerts on the particle x;H is the

neighbourhood of x, u is the displacement vector field, b is

a prescribed force vector field (per unit volume). It is usual

to adopt the relative position n of the two particles in the

reference configuration as

n ¼ x0 � x ð83Þ

Analogously, the relative displacement g is stated as

g ¼ uðx0; tÞ � uðx; tÞ ð84Þ

The current relative position can be easily given as

gþ n. The function f must satisfy two conditions

fð�g;�nÞ ¼ �f ðg; nÞ ð85Þ

which represents Newton’s third law and enforces con-

servation of linear momentum, and

ðnþ gÞ � fðg; nÞ ¼ 0; 8g; n ð86Þ

which assures conservation of angular momentum.

The interaction between particles is defined as a bond,

which in continuum mechanics could also be considered as

a spring connecting two particles. This definition is fun-

damentally the difference between the classical theory and

peridynamics, where the main idea is the direct contact

between two particles. The area of influence of a particle is

defined as the horizon d and is stated as

8jnj[ d ) fðg; nÞ ¼ 0: ð87Þ

Figure 18 illustrates the horizon d in an arbitrary body.

Outside the horizon d, a particle has no influence on the

other particles. For this reason, the peridynamics formu-

lation is considered as a non-local model.

A material is microelastic if the pairwise function can be

obtained through derivation of a scalar micropotential w

such as

fðg; nÞ ¼ ow

og
ðg; nÞ 8g; n ð88Þ

The micropotential w is the energy present in a single

bond (in terms of energy per unit volume squared). Thus,

the local strain energy density is defined as
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W ¼ 1

2

Z

H

wðg; nÞdVn ð89Þ

where the factor 1/2 is present since each particle possesses

half of the energy of the bond between them. If a material

is microelastic, then every pair of particles x and x0 is

connected by a spring. The force in the spring depends only

on the distance between the particles in the deformed

configuration. Hence, there is a scalar function ŵ such that

ŵðy; nÞ ¼ wðg; nÞ 8g; n; y ¼ jgþ nj ð90Þ

From Eqs. (88) and (90), the pairwise function f is

restated as

fðg; nÞ ¼ nþ g

jnþ gj f ðjnþ gj; nÞ 8g; n ð91Þ

with

f ðy; nÞ ¼ oŵ

oy
ðy; nÞ 8y; g ð92Þ

From Eqs. (82) and (91), the peridynamics model is

fully defined for a non-linear microelastic material. How-

ever, a linearised theory of the peridynamics microelas-

ticity can be defined as

fðg; nÞ ¼ CðnÞg 8g; n ð93Þ

where C is the material’s micromodulus function. It will be

seen that the micromodulus has similar function to the

material constitutive law. For more details, see reference

[248].

Boundary conditions in peridynamics are not completely

alike to the classical theory. Although the essential

boundary condition is still present (displacements), there

are no natural boundary conditions (tractions) in the peri-

dynamics framework. Forces at the surface of a body must

be applied as body forces b acting through the thickness of

some layer under the surface. Usually, the thickness is

taken to be the horizon d. The displacement boundary

conditions also have to be imposed as a volume rather than

a surface. For more details see [248].

8.2 Constitutive Modelling

We assume that the bond force f depends only on the bond

stretch s, defined as

s ¼ jnþ gj � jnj
jnj ¼ y� jnj

jnj ð94Þ

As expected, s is positive only when the bond is under

tension. Failure is introduced into the peridynamics model

through breakage of the bonds connecting two particles

over some stretching limit. Once a bond fails, it never

becomes reconnected (i.e. no healing is considered). An

example of a history dependent model is given by the

prototype microelastic brittle (PMB) material, and is given

by

f ðyðtÞ; nÞ ¼ gðsðt; nÞÞlðt; nÞ ð95Þ

where gðsÞ ¼ cs; c is a constant and l is a history-depen-

dent scalar-valued function, assuming either the values 0 or

1 according to

lðt; nÞ ¼ 1 if sðt0; nÞ\s0 for all 0
 t0 
 t;
0 otherwise

�

ð96Þ

In this case, s0 is the critical stretch for bond failure. The

local damage at a point can be defined as

uðx; tÞ ¼ 1 �
R

H lðx; t; nÞ dVn
R

H
dVn

ð97Þ

where x has been included as a reminder that the history

model also depends on the position in the body. One can

see that 0
u
 1, 0 representing the undamaged state and

1 representing full break of all the bonds of a given particle

to all other particles inside the horizon d. The broken bonds

will eventually lead to some softening material response,

since failed bonds cannot sustain any load.

There are only two parameters that define the PMB

material, the spring constant c and the critical stretch s0.

Assuming g ¼ sn and substituting in Eq. (89), the local

strain energy can be expressed as

W ¼ pcs2d4

4
ð98Þ

This relation must be identical to its equivalent in the

classical theory, W ¼ 9ks2=2, where k represents the

material bulk modulus [249]. The spring constant of the

PMB material model is obtained as

c ¼ 18k

pd4
ð99Þ

Fig. 18 Particle interaction in a peridynamics solid
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Now we describe the bond breakage formulation. Let

the work G0 necessary to break all the bonds per unit

fracture area be given as

G0 ¼
Z d

0

Z 2p

0

Z d

z

Z cos�1z=n

0

ðcs2
0n=2Þn2 sinu dudndhdz

ð100Þ

The elements of Eq. (100) are depicted in Fig. 19.

Equation (100) is the energy to break all points A, where

0
 z
 d from the points B. After evaluation of the inte-

grals we obtain

G0 ¼ pcs2
0d

5

10
ð101Þ

8.3 Anisotropic Materials in Peridynamics

The peridynamics formulation was initially presented for

isotropic materials, in order to make some simplifying

assumptions. It is expected then that the spring stiffness of

the bonds does not vary over the direction of n. It was

demonstrated in detail in [248] that for isotropic materials,

the Poisson’s ratio in the peridynamics formulations is

constrained to take the constant value of 1/4. The constant

Poisson’s ratio is a consequence of the Cauchy relation for

a solid composed of a lattice of points that interact only

through a central force potential [153].

Refinements of the peridynamics theory can allow the

dependence of strain energy density on local volume

change in addition to two-particle interactions [154].

A composite material is formed by different materials,

commonly a brittle and stiff material (fibre) embedded into

a ductile one (matrix). In [201], the micromodulus C is

redefined in order to accommodate the new variables

arising from the material’s anisotropy, including the fibre

and matrix bonds for a laminate, and the shear and inter-

layer bonds present between two different laminates.

However, in real composite materials, the fibre and matrix

present properties vary significantly with the direction,

which was not the case in this work. Instead, different

isotropic materials were employed to form the composite

fibre and matrix. In [122], the fracture in fibre-reinforced

composites is tackled with more attention to the material

modelling, where the differences between the fibre and

matrix bonds are specifically defined. Moreover, the effect

of arbitrary fibre orientation in the peridynamic model is

taken into account, and it is shown that for a given particle

x, the number of fibre bond particles within the horizon d
can vary considerably, which leads to large variation of the

strain energy density, the parameter which describes the

bond stiffness. To consider this modelling issue, a semi-

analytical model was deduced for fibre orientation of 45�,
and also for random fibre orientation.

A recent work [95] has deduced a peridynamic formu-

lation for orthotropic media. The micromodulus C is

defined in terms of the orientation of the angles u, as

illustrated in Fig. 20. The dependency on the h orientation

can be suppressed since the material properties do not

change over h for a transversely isotropic material. After

some mathematical manipulation, the new definition of the

micromodulus is given as

cðuÞ ¼
X

1

n¼0

An0P
0
nðcosuÞ ð102Þ

where An0 represents constant coefficients and Pm
n are the

associated Legendre functions of degree n and order m

Pm
n ðcosuÞ ¼ ð�1Þm

2nn!
ð1 � cos 2uÞm=2

dnþm

dðcosuÞnþm ðcos 2u� 1Þn
ð103Þ

Fig. 19 Fracture energy evaluation

Fig. 20 Direction of a peridynamic bond in the principal axes
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Equation (103) can be further simplified into

cðuÞ ¼ A00 þ A20P
0
2ðcosuÞ ¼ A00 þ A20

1

2
ð3 cos 2u� 1Þ

ð104Þ

Assuming cð0Þ ¼ c1 and cðp=2Þ ¼ c2, it can be shown

that Eq. (104) is also equivalent to

cðuÞ ¼ c2 þ ðc1 � c2Þ cos 2u ð105Þ

where c1 and c2 are constants of the material model and are

given by

c1 ¼ 15:41C11 � 7:41C22

pd3t
ð106Þ

c2 ¼ 8:08C22 � 0:08C11

pd3t
ð107Þ

C12 ¼ C66 ¼ 0:059C11 þ 0:274C22 ð108Þ

where C11;C22;C16 and C66 are elements of the constitutive

matrix given in the Voigt notation. Note that an orthotropic

material has only 2 independent material constants in the

peridynamic model instead of the normal 4 independent

constants. This restriction is used linked to the fact that a

point is only able to interact to another one individually,

while in the classical theory this condition does not apply

(a disturbance in a continuous point will automatically

induce some disturbance on the points around the body).

This restriction on peridynamics theory has been addressed

by Silling et al. [250] and will be detailed in the next

section.

The critical bond stretch also depends on the direction of

n and is given by

s2
0ðuÞ ¼ B00 þ B20P

0
2ðcosuÞ þ B40P

0
4ðcosuÞ

þ B60P
0
6ðcosuÞ þ B80P

0
8ðcosuÞ ð109Þ

where Bn0 are constants and are detailed in [95]. The

critical strain energy release rates for mode I crack prop-

agation in the planes normal to the principal axes 1 (GIc1)

and 2 (GIc2) can be obtained from the following relations

GIc1 ¼
Z d

0

Z d

z

Z cos �1ðz=nÞ

� cos �1ðz=nÞ

cðuÞs2
0ðuÞn
2

tn dudndz

� 	

ð110Þ

GIc2 ¼
Z d

0

Z d

z

Z p�sin �1ðz=nÞ

� sin �1ðz=nÞ

cðuÞs2
0ðuÞn
2

tn dudndz

� 	

ð111Þ

After integration of Eqs. (110) and (111), the critical

stretches s01 and s02 are given by

s2
01 ¼ 500½ð4GIc1 � 11GIc2Þc1 þ ð112GIc1 � 72GIc2Þc2�

td4ð71c2
1 þ 3168c1c2 þ 994c2

2Þ
ð112Þ

s2
02 ¼ 500½ð31:5GIc1 � 5GIc2Þc1 þ ð11GIc1 � 4GIc2Þc2�

td4ð71c2
1 þ 3168c1c2 þ 994c2

2Þ
ð113Þ

The fracture behaviour of the material is fully defined by

using the mode I energy release rates. Hence, mode II

energies are not independent from mode I, which is another

consequence of the bond-based peridynamic theory.

An important issue has been highlighted in [95, 201],

concerning the use of ‘‘unbreakable’’ bonds near to the

regions where a traction boundary condition is applied. The

possible reason for this would be crack initiation and

propagation close to these regions, due to the high stresses

that could be present. It is important to understand the

physics of the analysed problem properly in order to use

this type of assumption during a peridynamic simulation.

8.4 State-based Formulation

The peridynamics formulation assumes that any pair of

particles interacts only through a central potential which is

independent of all the other particles surrounding it. This

oversimplification has led to some restrictions of the

material’s properties, such as the aforementioned fixed

Poisson’s ratio of 1/4 for isotropic materials. Also, the

pairwise force is responsible for modelling the constitutive

behaviour of the material, which is originally dependent on

the stress tensor. To overcome this limitation, Silling et al.

[250] have extended the peridynamics formulation to

include vector states. The vector states allow us to consider

not only a particle, but a group of particles in the peridy-

namics framework. Moreover, the direction of the vector

states would not be conditioned to be in the same direction

of the bond, as in the bond-based theory. This property is

fundamental to consider truly anisotropic materials.

Let A be a vector state. Then, for any n 2 H, the value

of Ahni is a vector in R3, where brackets indicate the

vector on which a state operates. The set of all vector states

is denoted V. The dot product of two vector states A and B

is defined by

A � B ¼
Z

H

AihniBihni dVn ð114Þ

The concept of a vector state is similar to a second order

tensor in the classical theory, since both map vectors into

vectors. Vector states may be neither linear nor continuous

functions of n. The characteristics of the vector states are
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listed in [250], and they imply the vector states mapping of

H may not be smooth as in the usual peridynamic model,

including the possibility of having a discontinuous surface.

In the state theory, the equation of motion (82) is

redefined as

qðxÞ€uðx; tÞ ¼
Z

H

fT½x; t�hx0 � xiT½x0; t�hx� x0ig dVx0

þ bðx; tÞ ð115Þ

with T as the force vector state field, and square brackets

denote that the variables are taken in the state vector

framework.

To ensure balance of linear momentum, T must satisfy

the following relation for any bounded body B
Z

B

q€uðx; tÞ dVx ¼
Z

B

bðx; tÞ dVx ð116Þ

The balance of angular momentum for a bounded body

B is also required
Z

B

yðx; tÞ � ðq€uðx; tÞ � bðx; tÞÞ dVx ¼ 0; 8t� 0; x 2 B

ð117Þ

where

yðx; tÞ ¼ xþ uðx; tÞ ð118Þ

The deformation vector state field is stated as

Y½x; t�hni ¼ yðxþ n; tÞ � yðx; tÞ; 8x 2 B; n 2 H; t� 0

ð119Þ

The non-local deformation gradient for each individual

node is given by

BðxÞ ¼
Z

H

xðjnjÞðn� nÞ dVn

� 	�1

ð120Þ

FðxÞ ¼
Z

H

xðjnjÞðYðnÞ � nÞ dVn

� 	

:BðxÞ ð121Þ

where � denotes the dyadic product of two vectors, and

xðjnjÞ is a dimensionless weight function, used to increase

the influence of the nodes closes to x. The use of this factor

is still under study [280], but the assumption of xðjnjÞ ¼ 1

has been seen to provide good results.

The discretisation of Eqs. (120) and (121) can be

expressed as a Riemann sum as [280]

BðxjÞ ¼
X

m

n¼1

xðjxn � xjjÞððxn � xjÞ � ðxn � xjÞÞVn

" #�1

ð122Þ

FðxjÞ ¼
X

m

n¼1

xðjxn � xjjÞðYhxn � xji � ðxn � xjÞÞVn

" #

ð123Þ

where m is the number of nodes with the horizon of node j.

xj must be connected to at least three other nodes in the

system to ensure that BðxjÞ will not be singular.

In state vector peridynamics, there are two ways to deter-

mine how the force state depends on the deformation near a

given point. The first consists of formulating a constitutive

model in terms of the force vectorT and the deformation state

Y½x; t�. In this case, the force state is defined as

T ¼ rW ð124Þ

where W is the strain energy density and r indicates the

Fréchet derivative, which is defined as any infinitesimal

change in the deformation state dY resulting in a change of

the strain energy density dW such as

dW ¼ WðYþ dYÞ �WðYÞ ¼
Z

Hx

Thni:dYhni dVn ð125Þ

with Hx being a sphere centred at the point x with radius

equal to the horizon d. Note that the Fréchet derivative can

be seen as an equivalent of the tensor gradient in classical

theory.

The second approach to relating the force and defor-

mation in a state vector framework is to adopt a stress-

strain model as an intermediate step [42, 280]. For a strain

energy density WðFÞ, the stress tensor can be expressed as

½r�t ¼ oW

oF
ð126Þ

The force vector is redefined as [250]

T ¼ rW ¼ oW

oF
rF ð127Þ

After evaluation of the Fréchet derivative, the force

vector can be defined explicitly as

Thx0 � xi ¼ xðjx0 � xjÞ½rðFÞ�t:B:ðx0 � xÞ ð128Þ

The processing of mapping a stress tensor as a peridy-

namic force state is the inverse of the process of approxi-

mating the deformation state by a deformation gradient

tensor. A peridynamic constitutive model that uses stress as

an intermediate quantity results in general in bond forces

which are not parallel to the deformed bonds. This type of

modelling was called ‘‘non-ordinary’’ by Silling [250].

8.5 Numerical Discretisation

The discretisation of the peridynamics model is quite

straightforward. Equation (82) can be rewritten as a finite sum

q€uni ¼
X

p

fðunp � uni ; xp � xiÞVp þ bni ð129Þ

where n is the time step and subscripts denote the node

number, i.e., uni ¼ uðxi; tnÞ;Vp is the volume of node

G. Hattori et al.

123



p. Equation (129) is taken over all p nodes which satisfy

jxp � uij 
 d. The grid spacing Dx is also an important

parameter in the peridynamics discretisation.

The discretised form of the linearised peridynamics

model is given by

q€uni ¼
X

p

Cðunp � uni ; xp � xiÞVp þ bni ð130Þ

The displacements uni are obtained using an explicit

central difference formulation,

€uni ¼
unþ1
i � 2uniþ1 þ un�1

i

Dt2
ð131Þ

with Dt as the time step. Some studies of the stability of the

numerical discretisation were described in [154, 249]. It

has been established that the time step must not exceed a

certain value in order for the numerical discretisation to be

stable. Moreover, the error associated with the discretisa-

tion depends on the time step with (OðDtÞ) and the grid

spacing with (OðDx2Þ),

Dt\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q
P

p VpjCðxp � xiÞj

s

ð132Þ

Convergence in peridynamics is affected by two

parameters: the grid spacing Dx and the horizon d.

Reducing the horizon size for a fixed grid spacing will lead

to the peridynamics solution approximating the solution

using classical theory. However, fixing the horizon size

while increasing the grid spacing will lead to the exact non-

local solution for that particular horizon size [122]. As for

domain discretisation methods, it is important to balance

the size of the horizon so the damage features in the

analysed body are properly considered, and the grid spac-

ing should be sufficiently small for the results to converge

to the non-local solution. Usually, it ranges from 1/3 to 1/5

of the size of the horizon.

In recent works, the peridynamics formulation is used

conjointly with other discretisation methods, such as mesh-

less formulation [249] and finite element formulation [154].

In [201], peridynamics is used only to obtain the pre-

diction of failure of the composite material, where an FEM

code is employed to solve the global problem. This type of

combined approach is often necessary since the peridy-

namic formulation can demand significant computational

power, a common problem in molecular dynamics simu-

lations as well.

9 Conclusions and Prospective Work

We have seen that the hydraulic fracture problem presents

several characteristics which makes its study complicated:

the shale is not a homogeneous material, it is not isotropic,

the nanoporosity may retard crack propagation as the fluid

penetrates the rock, and a large fracture network has to be

considered in which cracks develop at multiple length

scales, all of which can greatly increase the computational

solving time. Moreover, most current analytical and

numerical methods do not take into account crack

branching, a key factor in order to obtain a correct esti-

mation of the extended fracture network.

The current fracture models for brittle rocks and frack-

ing have been useful as a first step in offering a more

realistic fracking model. There are of course other limita-

tions attached to each of the numerical models discussed

earlier: for instance, in cohesive models, the cohesive zone

model is not a parameter to be found, so the crack propa-

gation path is already known a priori. Most works on

X-FEM and BEM models consider that the crack propa-

gation path is unique; only recently have some works

appeared considering crack branching [184, 244, 285].

Fracking models developed so far have not considered

the full complexity of shale rocks. Ulm and co-workers

[268–270] have established that shales are likely to be

transversely isotropic materials, with the direction per-

pendicular to the bedding planes taken as the symmetry

axis. This is mainly due to the deposition process. It was

also stated that the shale anisotropy is due more to the

interaction between the particles than the elastic behaviour

of the shale components.

It was seen in [139] that the fluid penetrating the crack

may retard crack propagation, so the material’s porosity

has to be taken into account in the numerical model.

9.1 Future Works

The main challenges researchers are facing with respect to

the development of a new numerical formulation for

modelling hydraulic fracture are: (1) the multiscale char-

acteristic of the fracking in shale rocks, and (2) the

requirement for the numerical method to deal with a large

number of cracks simultaneously propagating and possibly

branching.

For crack propagation and crack branching, the peridy-

namics formulation has been shown to have excellent

results. A few issues have been raised about the method,

such as how to choose the grid spacing (interval between

particles) and the horizon (area of influence of a given

particle). Even though an orthotropic formulation for 2D

materials was developed by [95], there are some limitations

over these formulations, since a direct bond force formu-

lation is used. To overcome this limitation, a state-based

formulation for anisotropic materials should be developed.

A multiscale model must be able to consider how a

crack entering the RVE interacts with the voids that are

present. Moreover, there must be a coupling between the
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microscale (anisotropic) and the macroscale (transversely

isotropic). The peridynamics formulation could be used to

model the microscale, so the crack branching inside the

RVE can be properly considered. Once the crack propa-

gation path is obtained, another numerical method (X-

FEM/X-BEM) can be employed to model the crack in the

macroscale. Crack branching has already been considered

in peridynamics in [106]. A comparison against experi-

mental results of X-FEM, cohesive models and peridy-

namics in dynamic fracture is done in [5], where it is

observed that the peridynamics model is able to capture the

physical behaviour seen in experiments.

A stochastic approach is likely to be the most useful way

to model the extended fracture network, since the natural

variability in geological conditions makes us unlikely to be

able to obtain a deterministic model of the fracture system

induced around any particular well. Moreover, the crack

propagation obtained with the peridynamics formulation

may change significantly if changes to the grid spacing or

horizon size are made.
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2. Abou-Chakra Guéry A, Cormery F, Shao JF, Kondo D (2009) A

multiscale modeling of damage and time-dependent behavior of

cohesive rocks. Int J Numer Anal Methods Geomech

33(5):567–589

3. Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer

simulation of hydraulic fractures. Int J Rock Mech Mining Sci

44(5):739–757

4. Adachi JI, Detournay E (2008) Plane strain propagation of a

hydraulic fracture in a permeable rock. Eng Fract Mech

75(16):4666–4694

5. Agwai AG, Madenci E (2010) Predicting crack initiation and

propagation using XFEM, CZM and peridynamics: a compara-

tive study. In: Electronic components and technology confer-

ence (ECTC)

6. Albuquerque EL, Sollero P, Fedelinski P (2003) Dual

reciprocity boundary element method in Laplace domain applied

to anisotropic dynamic crack problems. Comput Struct

81(17):1703–1713

7. Aliabadi MH, Saleh AL (2002) Fracture mechanics analysis of

cracking in plain and reinforced concrete using the boundary

element method. Eng Fract Mech 69(2):267–280

8. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on

phase-field models of brittle fracture and a new fast hybrid

formulation. Comput Mech 55(2):383–405

9. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation

of the variational brittle fracture with unilateral contact:

numerical experiments. J Mech Phys Solids 57(8):1209–1229

10. Aplin AC, Macquaker JHS (2011) Mudstone diversity: origin

and implications for source, seal, and reservoir properties in

petroleum systems. AAPG Bull 95(12):2031–2059

11. Aragón AM, Soghrati S, Geubelle PH (2013) Effect of in-plane

deformation on the cohesive failure of heterogeneous adhesives.

J Mech Phys Solids 61(7):1600–1611

12. Asadpoure A, Mohammadi S (2007) Developing new enrich-

ment functions for crack simulation in orthotropic media by the

extended finite element method. Int J Numer Methods Eng

69(10):2150–2172

13. Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp

M, Purdy G, Rappaz M, Trivedi R (2009) Solidification

microstructures and solid-state parallels: recent developments,

future directions. Acta Mater 57(4):941–971

14. Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin

(MLPG) approach in computational mechanics. Comput Mech

22:117–127
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advances and emerging applications of the boundary element

method. Appl Mech Rev 64(3):030802

151. Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/spectral

element method for dynamic crack propagation. Int J Fract

169(2):183–198

152. Lorentz E, Cuvilliez S, Kazymyrenko K (2012) Modelling large

crack propagation: from gradient damage to cohesive zone

models. Int J Fract 178(1–2):85–95

153. Love AEH (1944) A treatise on the mathematical theory of

elasticity. C. J. Clay and Sons

154. Macek RW, Silling SA (2007) Peridynamics via finite element

analysis. Finit Elem Anal Des 43(15):1169–1178

155. MacLaughlin MM, Doolin DM (2006) Review of validation of

the discontinuous deformation analysis (DDA) method. Int J

Numer Anal Methods Geomech 30(4):271–305

156. Macquaker JHS, Howell JK (1999) Small-scale (\ 5.0 m)

vertical heterogeneity in mudstones: implications for high-res-

olution stratigraphy in siliciclastic mudstone successions. J Geol

Soc 156(1):105–112

157. Macquaker JHS, Taylor KG, Gawthorpe RL (2007) High-reso-

lution facies analyses of mudstones: implications for paleoen-

vironmental and sequence stratigraphic interpretations of

offshore ancient mud-dominated successions. J Sediment Res

77(4):324–339

158. Maerten F (2010) Adaptive cross-approximation applied to the

solution of system of equations and post-processing for 3D

elastostatic problems using the boundary element method. Eng

Anal Bound Elem 34(5):483–491

159. Mahabadi OK, Lisjak A, Munjiza A, Grasselli G (2012) Y-Geo:

new combined finite-discrete element numerical code for

geomechanical applications. Int J Geomech 12(6):676–688

160. Mathias SA, Fallah AS, Louca LA (2011) An approximate

solution for toughness-dominated near-surface hydraulic frac-

tures. Int J Fract 168(1):93–100

161. Mathias SA, van Reeuwijk M (2009) Hydraulic fracture prop-

agation with 3-D leak-off. Transp Porous Media 80(3):499–518

162. Maugin GA (1995) Material force: concepts and applications.

Appl Mech Rev 23:213–245

163. Maugin GA, Trimarco C (1992) Pseudomomentum and material

forces in nonlinear elasticity: variational formulations and

applications to brittle fracture. Acta Mech 94:1–28

Numerical Simulation of Fracking in Shale Rocks: Current State and Future Approaches

123
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190. Näser B, Kaliske M, Müller R (2007) Material forces for

inelastic models at large strains: application to fracture

mechanics. Comput Mech 40(6):1005–1013

191. Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless

methods: a review and computer implementation aspects. Math

Comput Simul 79:763–813

192. Nishimura N, Yoshida K-I, Kobayashi S (1999) A fast multipole

boundary integral equation method for crack problems in 3D.

Eng Anal Bound Elem 23(1):97–105

193. Nobile L, Carloni C (2005) Fracture analysis for orthotropic

cracked plates. Compos Struct 68(3):285–293

194. Okiongbo KS, Aplin AC, Larter SR (2005) Changes in type II

kerogen density as a function of maturity: evidence from the

Kimmeridge Clay formation. Energy Fuels 19(6):2495–2499

195. Oliveira HL, Leonel ED (2013) Cohesive crack growth mod-

elling based on an alternative nonlinear BEM formulation. Eng

Fract Mech 111:86–97

196. Oliveira HL, Leonel ED (2014) An alternative BEM formula-

tion, based on dipoles of stresses and tangent operator technique,

applied to cohesive crack growth modelling. Eng Anal Bound

Elem 41:74–82

197. Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous

meshless approximations for nonconvex bodies by diffraction

and transparency. Comput Mech 18:225–235

198. Ortega JA, Ulm FJ, Abousleiman Y (2007) The effect of the

nanogranular nature of shale on their poroelastic behavior. Acta

Geotech 2(3):155–182

199. Ortega JA, Ulm FJ, Abousleiman Y (2009) The nanogranular

acoustic signature of shale. Geophysics 74(3):D65–D84

200. Ortega JA, Ulm FJ, Abousleiman Y (2010) The effect of particle

shape and grain-scale properties of shale: a micromechanics

approach. Int J Numer Anal Methods Geomech

34(11):1124–1156

201. Oterkus E, Madenci E, Weckner O, Silling S, Bogert P, Tessler

A (2012) Combined finite element and peridynamic analyses for

predicting failure in a stiffened composite curved panel with a

central slot. Compos Struct 94(3):839–850
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