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Abstract Extracting gas from shale rocks is one of the current engineering
challenges but offers the prospect of cheap gas. Part of the development of an
effective engineering solution for shale gas extraction in the future will be the
availability of reliable and efficient methods of modelling the development of
a fracture system, and the use of these models to guide operators in locating,
drilling and pressurising wells. Numerous research papers have been dedi-
cated to this problem, but the information is still incomplete, since a number
of simplifications have been adopted such as the assumption of shale as an
isotropic material. Recent works on shale characterisation have proved this
assumption to be wrong. The anisotropy of shale depends significantly on the
scale at which the problem is tackled (nano, micro or macroscale), suggesting
that a multiscale model would be appropriate. Moreover, propagation of hy-
draulic fractures in such a complex medium can be difficult to model with
current numerical discretisation methods. The crack propagation may not be
unique, and crack branching can occur during the fracture extension. A num-
ber of natural fractures could exist in a shale deposit, so we are dealing with
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several cracks propagating at once over a considerable range of length scales.
For all these reasons, the modelling of the fracking problem deserves consid-
erable attention. The objective of this work is to present an overview of the
hydraulic fracture of shale, introducing the most recent investigations con-
cerning the anisotropy of shale rocks, then presenting some of the possible
numerical methods that could be used to model the real fracking problem.

Keywords Fracking · shale · brittle materials · anisotropic behaviour ·
dynamic crack propagation · numerical simulation

1 Introduction

Conventional shale reservoirs are formed when gas and/or oil have migrated
from the shale source rock to more permeable sandstone and limestone for-
mations. However, not all the gas/oil migrates from the source rock, some
remaining trapped in the petroleum source rock. Such a reservoir has been
named ’unconventional’ since it has to be fractured in order to extract the
gas from inside. Hydraulic fracture, or “fracking”, has emerged as a alterna-
tive method of extracting gas and oil. Experience in the United States shows
it has the potential to be economically attractive. Many concerns exist about
this type of extracting operation, especially how far the fracture network will
extend in shale reservoirs.

King [136] published a review paper about the last 30 years of fracking,
and points out four “lessons”:

– No two shale formations are alike. Shale formations vary spatially and
vertically within a trend, even along the wellbore;

– Shale “fabric” differences, combined with in-situ stresses and geologic
changes are often sufficient to require stimulation changes within a sin-
gle well to obtain best recovery;

– Understanding and predicting shale well performance requires identifi-
cation of a critical data set that must be collected to enable optimization
of the completion and stimulation design;

– There are no optimum, one-size-fits-all completion or stimulation designs
for shale wells.

These points encapsulate well the uncertainties involved. Many models
have been proposed over the years but they are either too simplified or they
tend to focus on one key aspect of fracking (e.g. crack propagation schemes,
influence of natural fractures, material heterogeneities, permeabilities). The
scarcity of in-situ data makes the study of fracking even more complicated.

The most usual concerns in fracking are addressed by Soeder et al. [252],
where integrated assessment models are used to quantify the engineering
risk to the environment from shale gas well development. Davies et al. [55]
have investigated the integrity of the gas and oil wells, analysing the number
of known failures of well integrity. The modelling of reservoirs is also a dif-
ficult task due to the lack of experimental data and oversimplification of the
complex fracking problem [178].
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Glorioso and Rattia [97] provide an approach more focused on the petro-
physical evaluation of shale gas reservoirs. Some techniques are analysed,
such as log responses in the presence of kerogen, log interpretation tech-
niques and estimation methods for different volumes of gas in-situ, among
others. It is shown that volumetric analysis is imprecise for in-place estima-
tion of shale gas; however, it is one of the few techniques available in the
early stages of evaluation and development. The measurement of an accurate
density of specimens is an important parameter in reducing the uncertainty
inherent in petrophysical interpretations.

This paper provides an overview of the current state of fracking research.
A state-of-the-art review of fracking is performed, and several points are
analysed such as the models employed so far, as well as the underlying nu-
merical methods. Special attention is given to problems involving brittle ma-
terials and the dynamic crack propagation that must be taken into account in
the fracking model. The hydraulic fracture modelling problem has been tack-
led in several different ways, and the shale rock has mostly been assumed
to be isotropic. This simplification can have serious consequences during the
modelling of the fracking process, since shale rocks can present high degrees
of anisotropy.

This paper is organised as follows: a description of the shale rock includ-
ing the most common simplifications is presented in Section 2, followed by
the description of the fracking operation in Section 3. Section 4 presents a re-
view of the analytical formulations for crack propagation and crack branch-
ing. Different types of models such as cohesive methods and multiscale ap-
proaches are tackled in Section 5 and 6. Numerical aspects are discussed in
Section 7, including the boundary element method, the extended finite ele-
ment method, the meshless method, the phase-field method, the configura-
tional force method and the discrete element method. A recently proposed
discretisation method is discussed in Section 8. The paper ends with conclu-
sions and a discussion of possible future research directions in Section 9.

2 Description of the shale rock

Shale, or mudstone, is the most common sedimentary rock. It can be viewed
as a heterogeneous, multi-mineralic natural composite consisting of sedimented
clay mineral aggregates, organic matter and variable quantities of minerals
such as quartz, calcite and feldspar. By definition, the majority of particles
are less than 63 microns in diameter, i.e. they comprise silt- and clay-grade
material. In the context of shale gas and oil, organic matter (kerogen) is of
particular importance as it is responsible for the generation and, in part, the
subsequent storage of oil and gas.

Mud is derived from continental weathering and is deposited as a chem-
ically unstable mineral mixture with 70-80% porosity at the sediment-water
interface. During burial to say 200◦C and 100 MPa vertical stress, it is trans-
formed through a series of physical and chemical processes into shale. Poros-
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ity is lost as a result of both mechanical and chemical compaction to values
of round 5% [31, 32, 287]. At temperatures above 70◦C, clay mineral trans-
formations, dominated by the conversion of smectite to illite (e.g. [121, 254]),
lead to a fundamental reorganisation of the clay fabric, converting it from
a relatively isotropic fabric to one in which the clay minerals are preferen-
tially aligned normal to the principal (generally vertical) stress [56, 57, 120].
Although quantitative mechanical data are scarce for mineralogically well-
characterised samples, it is likely that the clay mineral transformations strengthen
shales [207, 264]. In muds which contain appreciable quantities of biogenic
silica (opal-A) and calcite, the conversion of opal-A to quartz [134, 281], and
dissolution-reprecipitation reactions involving calcite [259], will also strengthen
the shale. Indeed, it is generally considered that fine-grained sediments which
are rich in quartz and calcite are more attractive unconventional oil and gas
targets compared to clay-rich media, as a result of their differing mechanical
properties (e.g. [205]).

Shales with more than ca. 2% organic matter act as sources and reservoirs
for hydrocarbons. Between 100 and 200◦C kerogen is converted to hydrogen-
rich liquid and gaseous petroleum, leaving behind a carbon-rich residue (e.g.
[126, 144, 208]). The kerogen structure changes from more aliphatic to more
aromatic, and its density increases [195]. Changes in the mechanical proper-
ties of kerogen with increasing maturity are not well documented. However,
they may be quite variable, depending on the nature of the organic matter. For
example, Eliyahu et al. [68] performed PeakForce QNM® tests with an atomic
force microscope to make nanoscale measurements of the Young’s modulus
of organic matter in a single shale thin section. Results ranged from 0-25 GPa
with a modal value of 15 GPa.

Shales are heterogeneous on multiple scales ranging from sub-millimetre
to tens of metres (e.g. [10,205]). Hydrodynamic processes associated with de-
position often result in a characteristic, ca. millimetre-scale lamination [35,
158, 241], which can be disturbed close to the sediment-water interface by
bioturbation [63]. On a larger, metre-scale, parasequences form within mud-
rich sediments, driven by orbitally-forced changes in climate, sea-level and
sediment supply [35,157,158,205]. Parasequence boundaries are typically de-
fined by rapid changes in the mineralogy and grain size of mudstones, with
more subtle variations within the parasequence. Stacked parasequences add
further complexity to the shale succession and result in a potentially complex
mechanical stratigraphy which depends on the initial mineralogy of the cho-
sen unit and the way that burial diagenesis has altered physical properties on
a local scale.

During the shale formation process bedding planes are formed, which
may present sharp or gradational boundaries. This is the most regular type
of deposition that occurs in shales. Deposition may not be uniform during
the whole process, presenting discontinuities at some points or other type
of deposition patterns. This makes the mechanical characterisation of shale
a complex issue. Moreover, not all shale rocks are the same, so a prediction
made for an specific shale rock probably is not valid elsewhere.
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The works of Ulm and co-workers about nanoindentation in shale rocks
[34, 199–201, 268–270] have been important developments in our ability to
characterise the mechanical properties of shale rocks. From [268], it is seen
that shales behave mechanically as a nanogranular material, whose behaviour
is governed by contact forces from particle-to-particle contact points, rather
than by the material elasticity in the crystalline structure of the clay minerals.
This assumption is valid for scales around 100 nm.

The indentation technique consists of bringing an indenter of known ge-
ometry and mechanical properties (typically diamond) into contact with the
material for which the mechanical properties are to be known. Through mea-
surement of the penetration distance h as a function of an increasing inden-
tation load P, the indentation hardness H and indentation modulus M are
given by

H =
P

Ac
(1)

M =

√
π

2

S√
Ac

(2)

where Ac is the projected area of contact and S = (dP/dh)hmax
is the un-

loading indentation stiffness. For the case of a transversely isotropic ma-
terial, where x3 is the axis of symmetry, the indentation modulus is given
by [268, 269]
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and for the x1, x2 axis by
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where Cij come from the constitutive matrix and are given in the Voigt nota-
tion [276].

From [269], it was seen that the level of shale anisotropy increases from
the nanoscale to the macroscale. Macroscopic anisotropy in shale materials
results from texture rather than from the mineral anisotropy. The multiscale
shale structure can be divided into 3 levels:

1. Shale building block (level I - nanoscale): composed of a solid phase and
a saturated pore space, which form the porous clay composite. A homo-
geneous building block, which consists in the smallest representative unit
of the shale material, is assumed at this scale. The material properties are
composed of two constants for the isotropic clay solid phase, the porosity
and the pore aspect ratio of the building block.
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2. Porous laminate (level II - microscale): the anisotropy increases due to
the particular spatial distribution of shale building blocks (considering
different types of shale rocks). The morphology is uniform allowing the
definition a Representative Volume Element (RVE).

3. Porous matrix-inclusion composite (level III - macroscale): shale is com-
posed of a textured porous matrix and (mainly) quartz inclusions of ap-
proximately spherical shape that are randomly distributed throughout the
anisotropic porous matrix. The material properties are separated into six
indentation moduli plus the porosity.

One can observe that the heterogeneities are manifested from the nanoscale
to the macroscopic scale, and combine to cause a pronounced anisotropy and
large variety in shale macroscopic behaviour.

Nanoindentation results provide strong evidence that the nano-mechanical
elementary building block of shales is transversely isotropic in stiffness, and
isotropic and frictionless in strength [34]. The contact forces between the sphere-
like particles activate the intrinsically anisotropic elastic properties within the
clay particles and the cohesive bonds between the clay particles.

The determination of the mechanical microstructure and invariant mate-
rial properties are of great importance for the development of predictive mi-
croporomechanical models of the stiffness and strength properties of shale.

3 The hydraulic fracturing process and its modelling

The hydraulic fracture or fracking operation involves at least three processes
[3]:

1. The mechanical deformation induced by the fluid pressure on the fracture
surfaces;

2. The flow of fluid within the fracture;
3. The fracture propagation

The shale measures in question are usually found at a distance of 1 to 3 km
from the surface. A major concern relating to fracking is that the fracture net-
work may extend vertically, allowing hydrocarbons and/or proppant fluid
to penetrate into other rock formations, eventually reaching water reservoirs
and aquifers that are found typically approximately 300 m below the surface.

Fracking can occur naturally, such as in magma-driven dykes for example.
In the 1940s, when fracking started commercially in US, the hydraulic fracture
was applied through a vertical drilling. In that case, the pressurised liquid
was applied perpendicular to the bedding planes. It was known that the shale
was a layered material due to its formation process, but technology of that
time was very limited.

In the last 15 years, recent engineering advances have allowed engineers
to change the direction of the drilling, making it possible to drill a horizontal
well and consequently, to pressurise the shale rocks in the same horizontal
plane of the bedding plane, making the fracking process much more effective.
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Figure 1 illustrates the structure of the well’s drilling, and the natural fracture
network that can be found. In detail it is a sketch of the pressurised liquid
entering a crack, resulting in the application of a pressure P over the crack
surfaces and the crack opening w.

natural fracture network

w

P

liquid

shale deposit

well

aprox depth: 3km

water aquifer

Fig. 1: Fracking example.

The horizontal drilling was not new to the industry, but it was fundamen-
tal for the success of shale gas developments. From 1981 to 1996, only 300
vertical wells were drilled in the Barnett shale of the Fort Worth basin, north
central Texas. In 2002, horizontal drilling has been implemented, and by 2005
over 2000 horizontal wells had been drilled [40]. The Barnett shale formation
found in Texas produces over 6% of all gas in continental United States [273].
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The application of this new drilling technique has turned the United States
from a nation of waning gas production to a growing one [221].

To optimise the fracking process of shale, it is important to detect accu-
rately the location of natural fractures. The anisotropic behaviour of the shale
generates preferential paths through the shale fabric [136,279]. Moreover, the
alignment of the natural fractures can also induce anisotropic patterns of the
fluid flow [86, 87].

3.1 Modelling of the shale fracture

Much of the work done so far in attempting to model shale fracture is very
simple, taking into account only the influence of the crack and not the fluid.
Only recently have a few researchers [3,4,62,161,162,189,206,296]successfully
developed more sophisticated methods including the fluid-crack interaction.

The usual assumption in hydraulic fracture is that the fracture is embed-
ded within an infinite homogeneous porous medium, where flow occurs only
perpendicular to the fracture plane, which was first defined by Carter [46].
Moreover, the injection pressure does not propagate beyond the current ex-
tent of the fracture. Carter’s model can lead to an overestimate of the fracture
propagation rate by a factor of 2 as compared to a 3D model [162]. The rea-
son is that the pressure increases beyond the length of the hydraulic fracture,
causing an increasing of the leak-off and a corresponding reduction in frac-
ture growth. The leak-off rate Q1 is given as [162]

Q1 = −4π
kz

µ

∫ a(t)

0
r
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∣

∣

∣

∣

z=0

dr (5)

where µ is the fluid viscosity, kα is the permeability in the α-direction (α = r
or α = z), P is the hydraulic pressure, a(t) is the hydraulic fracture radius,
dependent of time t, r and z are the distances parallel and normal to the frac-
ture plane, respectively. The hydraulic pressure is defined by the boundary
value problem
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where S is a storage coefficient of the porous medium. The solution of Eq. (6)
can be obtained using a standard finite volume method, as used in [162].

Assuming that the faces of the fracture are loaded by a uniform pressure
Pd, the displacement of the fracture face normal to the fracture plane δ is given
by

δ =
4(1 − υ2)Pda

πE

[

1 −
( r

a

)2
]1/2

(7)

where υ is the Poisson ratio and E is the Young’s modulus.
The fracture volume V is found from

V = 4π
∫ a

0
rδ(r) dr =

16(1− υ2)Pda3

3E
(8)
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The energy release rate G of the rock is obtained from the following ex-
pression

G =
Pd

2a

∫ a

0
r

dδ

da
dr =

2(1 − υ2)P2
d a

πE
(9)

and is related to the mode I stress intensity factor KI through the expression

G =
K2

I

E
(10)

From Eqs. (8) and (9), it is possible to write Pd and a in terms of V as
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In the early stages following initial pressurisation, the volume of injected
fluid is sufficiently small such that the the porous formation do not absorb
the incoming fluid. As injection process continues, the fluid is accommodated
locally in the pore space and consequently predicts leak-off. Once the system
reaches steady-state, it again becomes independent of porosity system. This
analytical formulation have issues when predicting the behaviour during the
transient state [162].

Even though these models can represent complex processes occurring
during fracking, they are still far from being accurate, mainly because shale
is considered to be isotropic, which has been seen not to be true [268], and
since the material presents nanoporosity, it is difficult to accurately model
the mechanical properties of shale.

Some other open questions are [3]:

– how to appropriately adjust current (linear elastic) simulators to enable
modelling of the propagation of hydraulic fractures in weakly consoli-
dated and unconsolidated “soft” sandstones;

– laboratory and field observations demonstrate that mode III fracture growth
does occur, and this needs to be further researched.

Some works have analysed the crack propagation path in shales, includ-
ing refracturing sealed wells. For example, Gale and co-workers [87] found
that propagation of the hydraulic fracture over a natural fracture will cause
delamination of the cement wall and the shale. The fluid enters the fracture
and causes further opening of the fracture in a direction normal to the prop-
agating hydraulic fracture while the pressure inside the fracture increases.
After the fracture propagation at the natural fracture reaches a sealed frac-
ture tip, the hydraulic fracture resumes growth parallel to the direction of
maximum shear stress.
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In an analytical work, Vallejo [271] has investigated the hydraulic fracture
on earth dam soils, where shear stresses were seen to promote crack propa-
gation on traction free cracks. Other analytical study about re-fracturing was
carried out by [295], where the dynamic fracture propagation is characterised
in low-permeability reservoirs. The results are comparable to an experimen-
tal test with the same material parameters.

In summary, research works in hydraulic fracture formulation have con-
sidered a large number of variables and processes which occur during the
actual operation: leak-off, shale permeabilities, crack opening and fluid in-
teraction over a crack surface. However, the current analytical theories for
hydraulic fracture do not include crack propagation conditions, especially
dynamic crack propagation, neither crack branching, since material instabili-
ties at the crack tip during crack propagation may cause the propagation path
not to be unique. These concerns are summarised in the next section.

4 Crack propagation and crack branching

Consider a homogeneous isotropic body under a known applied loading. The
resulting elastic stress distribution over the body due to the applied force is
generally smooth. However, introducing a discontinuity such as a crack im-
poses a singular behaviour to the stress distribution. It can be shown that
the stress increases as it is measured closer to the crack tip, varying with
1/

√
r, where r is the distance from the crack tip. Irwin [125] proposed that

the asymptotic stress field at the crack tip is governed by parameters depend-
ing on the geometry of the crack and the applied load. These parameters are
known as Stress Intensity Factors (SIFs) and have been widely used as crite-
ria for crack stability and propagation. The three SIFs, KI , KI I , KI I I , each cor-
respond to one of three modes of crack behaviour: mode I (opening), mode
II (sliding) and mode III (tearing). In this paper we will confine ourselves
mostly to mode I.

It can be postulated that crack growth will begin if the value of the SIFs
increase to a certain value. If the SIF is higher than a critical fracture tough-
ness parameter Kc, which depends on the material properties, then the crack
will propagate through the body. The situation becomes more complicated
when the load is applied rapidly so that dynamic effects become important.
This does not imply that the value of the dynamic fracture toughness will be
independent of the rate of loading or that dynamic effects do not influence
the fracture resistance in other ways [82].

In some cases, the toughness appears to increase with the rate of loading
whereas in other cases the opposite dependence is found. The explanation
for the shift must be sought in the mechanisms of inelastic deformation and
material separation in the highly stressed region of the edge of the crack in
the loaded body [82]. The dynamic crack propagation formula can be defined
as

Kd
I = κ(v) Ks

I(a) (13)
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where Kd
I is the mode I dynamic SIF, KI is the static SIF, v is the crack velocity

and κ(v) is a scaling factor. When κ(v) = 1, the crack velocity is zero, whereas
κ(v) = 0 indicates that the crack velocity is equal to the Rayleigh wave speed.

The theoretical limiting speed of a tensile crack must be the Rayleigh wave
speed. This was anticipated by Stroh [257] on the basis of a very intuitive
argument [82].

Gao et al. [89] studied crack propagation in an anisotropic material, and
presented expressions for the dynamic stresses and displacements around the
crack tip. These predict that larger crack propagation velocities induce higher
stress and displacement fields at the crack tip. The limiting speed in crack
propagation is analysed in [88], where a local wave speed resulting from the
elastic response near the crack tip also changes with the crack propagation
velocity. A molecular dynamic model is used in this work, so crack propaga-
tion is modelled as bond breakage between the particles. The crack velocity
is expressed using the Stroh formalism.

There are three types of criteria for brittle crack propagation:

1. Maximum tangential stress: This criteria was defined by Erdogan and Sih
[69] and is based in two hypothesis:
a The crack extension starts at its tip in radial direction;
b The crack extension starts in the plane perpendicular to the direction

of greatest tension.
The crack propagates when the SIF is higher than a critical SIF Kc, which
depends on the materials properties. From [69], the crack propagation an-
gle θp can be obtained from the following relation

KI sin θp + KI I(3 cos θp − 1) = 0 (14)

where KI and KI I are the mode I and mode II SIF, respectively, and θp is
taken with respect to the horizontal axis. This crack propagation criteria
was extended to anisotropic materials in [239].

2. Strain energy release rate: In this criteria, the crack propagates when en-
ergy release rate G reaches some critical value Gc, taking the direction
where G is maximum [123]. The energy release rate is defined as

G =
∂W

∂a
(15)

where W represents the strain energy and a is the half-crack length. Eq.
(15) can be expressed in terms of mixed mode SIFs for an isotropic mate-
rial as

G =
1 − υ2

E

(

K2
I + K2

I I

)

+
1

2µ
K2

I I I (16)

where µ is the shear modulus.
3. Minimum strain energy: crack propagation occurs at the minimum value

of the strain density S defined as [170, 247]

S = a11K2
I + 2a12KIKI I + a22K2

I I + a33K2
I I I (17)
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where aij come from the material properties. The direction of propagation
goes toward the region where S assumes a minimum value Smin. The crack
extension r0 is proportional to the minimum strain energy, such that the

ratio Smin
r0

is constant along the crack front [170].

One can observe that all these criteria are related to the SIFs. These crite-
ria are well consolidated in the fracture mechanics literature over the years.
However they fail in one aspect, since they do not consider the possibility of
crack branching, i.e., at some point of the crack propagation process, the crack
may bifurcate in two or more new cracks. This issue is especially important
when modelling highly heterogeneous materials such as the shale rock.

Yoffe [289] attempted to explain the branching of cracks from an analysis
of the problem of a crack of constant length that translates with a constant ve-
locity in an unbounded medium. From this solution she found that the maxi-
mum stress acted normal to lines that make an angle of 60◦ with the direction
of crack propagation when the crack velocity exceeded 60% of the shear wave
speed. This fact might cause the crack to branch whenever the crack velocity
exceeds that value. However, Yoffe did not consider that the maximum stress
would be perpendicular to the crack path, so this assumption is not valid for
brittle materials. Moreover, the 60◦ angles are quite large in comparison with
the branching angles observed from experiments [223].

Ravi-Chandlar and Knauss [222, 223] have addressed the crack propaga-
tion and crack branching problems through several experiments. From [222],
the crack branching has the following properties

1. crack branching is the result of many interacting microcracks or micro-
branches;

2. only a few of the microbranches grow larger while the rest are arrested;
3. the branches evolve from the microcracks which are initially parallel to

the main crack, but deviate smoothly from the original crack orientation;
4. the microbranches do not span the thickness of the plate, some occurring

on the faces of the plate while others are entirely embedded in the interior
of the plate.

Sih [247] made the hypothesis that the instability that occurs in crack bi-
furcation is associated with the fact that a high speed crack tends to change
its direction of propagation when it encounters an obstacle in the material.
The excess energy in the vicinity of such a change in direction is sufficient to
initiate a new crack. This event occurs so quickly that the crack appears to
have been split in two, or bifurcated.

From [223], one can see that the velocity with which the crack propagates
is determined by the SIF at initiation. Cracks propagating at low speeds may
undergo a change in the crack velocity if stress waves are present. Cracks
propagating at high speeds do not change crack velocity, but may exhibit
crack branching.

Crack branching formulations can be found in [78, 131, 247, 289], to cite
just a few works. In all cases, only the isotropic material case is considered.
For anisotropic crack branching, numerical methods have to be employed.
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5 Cohesive methods

The fracture process is usually considered only at the crack tip. In such cases,
the fracture process zone is considered to be small compared to the size of the
crack [17, 66, 67].

In Linear Elastic Fracture Mechanics (LEFM), the stress becomes infinite
at the crack tip. Since no material can withstand such high stress, there will
be a plastification/fracture zone around the crack tip.

The fracture process zone can be described by two simplified approaches
[179]:

1. The fracture process zone is lumped into the crack line and is charac-
terised as a stress-displacement law with softening;

2. Inelastic deformations in the process zone are smeared over a band of a
given width, imagined to exist in front of the main crack.

Most of the work done in cohesive cracks makes use of the former ap-
proach, otherwise known as the Dugdale-Barrenblatt model, fictitious crack
model or stress bridging model [179].

The non-linear behaviour around the crack tip can be considered to be
confined to the fracture process zone on the crack surface. Figure 2 illustrates
a crack with its corresponding fracture process zone. One can see two tips in
this model, the physical tip, where the tractions vanish, and the fictitious tip,
where the displacement is zero.

σt

cohesive traction

physical
tip tip

fictitious

∆u

σ0

Fig. 2: Cohesive crack.

Since there is no singularity at the crack tip, the SIF should vanish. This
condition is also called the zero stress intensity factor, and is represented by
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the superposition of two states:

K
phys
I + K

f ict
I = 0 (18)

where K
phys
I corresponds to the SIF at the physical crack tip, and K

f ict
I is the

SIF at the fracture process zone. Here we consider only the mode I fracture
without loss of generality.

The crack propagates when the maximum principal stress reaches the ma-
terial tensile strength σt, so fracture is initiated at the fracture process zone.
The stress on the crack faces depends directly on the relative displacement
∆u of the crack faces [214]. There are different types of stress-displacement
functions which model the behaviour in the fracture process zone. Figure 3
presents two of the most common assumptions

σ

u
∆u

σt

Linear

σ

u
∆u

σt

σ1

∆u1

Bi-linear

Fig. 3: Relation between stress and relative displacement at the crack faces.

Dugdale [66] and Barenblatt [17] models are the basis of many cohesive
models. The Dugdale cohesive crack model is very simplistic and is best used
for ductile materials. A uniform traction equal to the yield stress is used to
describe the softening in the fracture process zone.

Most of the cohesive models are developed for isotropic materials (see [67]
for example). However, there are some models for heterogeneous materi-
als [11, 217, 244] and composite [148, 182, 261, 272] materials. Nevertheless,
the material models are quite simple, usually considering different types of
isotropic materials instead of a full anisotropic model. To the authors’ best
knowledge, there is no anisotropic cohesive crack model to this date.

Cohesive models have been also applied in multiscale problems, where
cracks are significantly smaller than the RVE. In [211], a microelastic cohesive
model is developed for quasi-brittle materials. The stability of crack growth
is analysed, and it is concluded that macroscopic strength is not necessarily
correlated to crack propagation, and may be caused by unstable growth of
cohesive zones ahead of non-propagating cracks. The initial cohesive zone
has a significant influence on the macrostrength of quasi-brittle materials.

A number of different approaches for cohesive models have been pro-
posed over the years. Enriched formulations for delamination problems were
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analysed by Samimi [236–238]. A stochastic approach for delamination in
composite materials was proposed in [182], where the imperfections of the
material were considered in the cohesive model. The cohesive crack has been
extensively studied as can be seen in [59, 75, 102, 152, 210, 297] to cite just a
few works. Crack propagation in cohesive models was recently discussed
in [152, 298] for example.

A rudimentary model for hydraulic fracture for isotropic materials us-
ing the finite element software ABAQUS was considered in [288]. Papanasta-
siou [204] has evaluated the fracture toughness in hydraulic fracturing, mod-
elling the rock-fluid coupling through a finite element model with cohesive
behaviour. The Mohr-Coulomb criterion is used to take plasticity into account
in the rock deformation. The plastic behaviour that develops around the crack
tip provides an effective shielding, resulting in an increase in the effective
fracture toughness.

6 Multiscale

The main advantage of multiscale models is to make different hypotheses at
different levels within the same problem. For example, material can present
distinct degrees of anisotropy depending on the scale of observation (nano,
micro or macro). The coupling of different scales can be cumbersome. Some
sort of regularisation is commonly used to enforce the coupling between
scales. A typical assumption is the use of a Representative Volume Element
(RVE), a representative part of the model at the reduced scale so it contains
all the distinct properties of the considered scale, and is also defined as the
local model. The global model takes the RVE as a homogenised representa-
tion of the material’s properties at the large scale. An example of an RVE is
illustrated in Figure 4.

Fig. 4: Scheme of the choice of a Representative Volume Element (RVE) (From
[130]).
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Another important part of multiscale modelling is the coupling of stresses
and strains from the local and global models. Numerical homogenisation is
a popular technique and is an alternative to the traditional analytical ho-
mogenisation. It is especially used for monophasic heterogeneous materials,
where the balance and constitutive equations are considered at the RVE level.
The first work in numerical homogenisation is due to Ghosh et al. [96].

Zeng et al [292] proposed a multsicale cohesive model for geomaterials.
At the macroscopic scale, a sample of polycrystalline material is considered
as a continuum made of many material points. The estimation of the material
properties at the microscale is performed by statistical homogenisation, since
the RVE represents a number of different constituents or phases, as mineral
grains and voids, and is therefore composed of randomly distributed con-
stituents.

The Eshelby elastic solution for the spherical inclusion problem [71, 72]
is used to obtain the local stress and strain fields. Therefore, the strains or
stresses in a single crystal are approximated by considering a spherical sin-
gle crystal embedded in an infinite elastically deformed matrix. The KBW
model, named after Kröner [140], Budiansky and Wu [43], extends Eshelby’s
formulation by taking into account the grain interaction and plastification. By
the KBW definition, each crystal is embedded in a Homogeneous Equivalent
Medium (HEM) as shown in Figure 5.

Fig. 5: A Homogeneous Equivalent Medium (HEM) scheme (From [292]).

The local stress σ and strain ε are related to the global stress Σ and strain
E as follows

σ − Σ = −L (ε − E) (19)

where L is the interaction tensor and is given by

L = M(S−1 − I) (20)

where M is the homogenised elastoplastic tangent operator of HEM, S is the
Eshelby’s tensor and I is a third order identity matrix.
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Zeng and Li [293] developed a multiscale cohesive zone method, where
the local fields are determined through measures of the bond at the atom
particle level. The stress relation coupling the local and global fields is given
by

σ =
1

Ωb

nb

∑
i=1

∂φ

∂ri

ri ⊗ ri

ri
(21)

where Ωb is the volume of the unit cell, nb is the total number of bonds in a
unit cell, φ(ri) is the atomistic potential, ri, i = 1, · · · , nb is the current bond
length for the ith bond in a unit cell and is given by ri = FeRi, with the
deformation gradient Fe in element e and the underformed bond vector R.
The symbol ⊗ denotes the outer, or dyadic, product.

The strain energy in a given element Ωe can be written as

Ee =
1

Ωb
0

nb

∑
i=1

φ(ri(Fe))Ωe = W(Fe)Ωe (22)

and therefore the total energy is defined as

Etot =
Nrep

∑
α=1

nαEα(uα) (23)

where nα is a chosen weight and ∑ nα = 1. The energy from each represen-
tative atom Eα is obtained by the interaction with the neighbouring atoms
whose positions are generated using the local deformation.

This formulation is referred to as the local QC method, a simplification
of the continuum system when interface and surface energies may be ne-
glected. The general non-local QC potential energy may lead to some non-
physical effects in the transition region. The derivatives of the energy func-
tional to obtain forces on atoms and finite element nodes may lead to so-
called ghost forces in the transition region between the macro and microscale,
and it has several issues that remain to be resolved, such as the computation
of approximations in the macroscale far from microscale defects [245] and
the correct balance of energy which needs to be ensured between macro and
microscales [175].

Since the connections between atoms are modelled through bonds, this
multiscale cohesive formulation is able to capture the crack branching be-
haviour during crack propagation.

In [299], the RVE properties of a hydrogeologic reservoir are averaged
through statistical parameters. The main reason is that the heterogeneity of
the reservoir can be more easily modelled through the mean and standard
deviation of the rock properties. The site scale represents the entire solution
domain used for modelling global flow and transport. The layer scale rep-
resents geologic layering in the vertical direction. Within a layer, relatively
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uniform properties are present in both vertical and lateral direction, in com-
parison with the larger variations between different layers that may vary sig-
nificantly in thickness. The local scale represents the variation of properties
within a hydrogeologic layer.

In [165], a multiscale model for the shale porous network is proposed. Per-
meability is assumed as an intrinsic porous medium property independent of
fluid properties (such as viscosity) or thermodynamic conditions. The porous
medium was modelled as networks of pores connected by throats. This sim-
plification neglects the physics of the real porous network. Permeability fur-
ther depends on the relative size of the void spaces as well as the fraction
of pores belonging to each length scale. Unlike absolute permeability in con-
ventional reservoirs, gas permeability depends on absolute pressure values
in individual pores (and not only the gradient). Specifically, smaller pressures
result in (somewhat counter-intuitively) an increase in permeability.

A number of multiscale models for brittle materials can be mentioned:
[2, 83, 130, 210,274] just to cite some of the most recent works.

7 Discrete numerical methods

In this section we will present a brief description of different element-based
numerical methods that can be used in the modelling of fracking problems.
The boundary element method (BEM) has been used in brittle anisotropic
problems including crack propagation. The extended finite element method
(X-FEM) has been developed recently and is also a good choice for fracture
mechanics problems, and can be easily applied in cohesive models. Meshless
methods are becoming popular in fracture mechanics problems. The discrete
element method (DEM) is particularly used in problems with rock materi-
als. The phase-field method and the configurational force method are also
reviewed in this Section.

7.1 Boundary Element Method (BEM)

The boundary element method has first appeared in the work of Cruse and
Rizzo [52] for elasticity problems, but it was effectively named as BEM in the
work of Brebbia and Domı́nguez [41] and represented a series of advances
in comparison to the existent domain discretisation methods as the finite ele-
ment method (FEM) and the finite differences method (FDM) [109]:

– Accurate mathematical representations of the underlying physics are em-
ployed, resulting in the ability of the BEM to provide highly accurate so-
lutions;

– The problem is defined only at the boundaries, which gives a reduction
of dimensionality in the mesh (linear for 2D problems and surface for 3D
problems), therefore resulting in a reduced set of linear equations to be
solved;
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– In spite of the boundary-only meshing, results at any internal point in the
domain can be calculated once the boundary problem has been solved;

– There is a great advantage in certain classes of problem that can be char-
acterised by either (i) infinite (or semi-infinite) domains, or (ii) discontin-
uous solution spaces. These advantages have resulted in the BEM gain-
ing popularity for acoustic scattering, fracture mechanics, re-entry corners
and other stress intensity problems, where domain discretisation methods
have poorer convergence.

However, there are some drawbacks which may deterred FEM users from
migrating to the BEM:

– The system of equations is both non-symmetric and fully populated, which
may lead to longer computing times (compared to FEM for example), es-
pecially in 3D problems. In this case, techniques such as the fast multipole
method [228] have been introduced to accelerate the solution in large-
scale problems;

– A Fundamental Solution (FS) or Green’s function, describing the behaviour
of a point load in an infinite medium of the material properties is required
as part of the kernel of the method. This can make the use of BEM infeasi-
ble in problems where a FS is not available;

– calculation of the FS must be computationally efficient, which makes ex-
plicit FS formulations very desirable in this sense. Dynamic problems usu-
ally have implicit formulations, see [60,227,277] for instance, where the FS
is expressed in a integral form by means of the Radon transform;

– The BEM formulation requires the evaluation of weakly singular, strongly
singular and sometimes hypersingular integrals which must be carefully
treated. This can be done through a variety of methods, including singu-
larity substraction, e.g. [100], or analytical regularisation, e.g. [91];

– Non-linear problems (e.g. material non-linearities) are difficult to model;

The constitutive equations are given as

σij = Cijklǫkl (24)

with Cijkl and σij denoting the elastic stiffness and the mechanical stresses,
respectively, and

ǫij =
1

2

(

ui,j + uj,i

)

(25)

where ui are the elastic displacements. The Einstein summation notation ap-
plies in Eqs. (24) and (25).

The elastic tractions pij are given by

pi = σijnj (26)

with n = (n1, n2, n3) being the outward unit normal to the boundary.
The time-harmonic equilibrium equations in the absence of body forces

can be written as

σij,j(x, t) + ρüi(x, t) = 0 (27)
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where t is the time and ρ is the mass density of the material.
From Figure 6, let Ω be a cracked domain with boundary Γ, which can be

decomposed into two boundaries, an external boundary Γc and an internal
crack Γcrack = Γ+ ∪ Γ− represented by two geometrically coincident crack
surfaces.

Ω

Γ+ ≡ Γ−

Γc

Γu

Γt

x

y

Fig. 6: Elastic body with a crack.

The Dual BEM formulation for time-harmonic loading relies on two bound-
ary integral equations (BIEs), one with respect to the displacements at a point
ξ of the domain Ω:

cij(ξ)uj(ξ, t) +
∫

Γ
p∗ij(x, ξ, t)uj(x, t)dΓ(x) =

∫

Γ
u∗

ij(x, ξ, t)pj(x, t)dΓ(x) (28)

and a BIE with respect to the generalised tractions:

cij(ξ)pj(ξ, t) + Nr

∫

Γ
s∗rij(x, ξ, t)uj(x, t)dΓ(x) = Nr

∫

Γ
d∗rij(x, ξ, t)pj(x, t)dΓ(x)

(29)
which follows from the differentiation of the displacement BIE and further
substitution into the constitutive laws equation (for details see [90]). Nr stands
for the outward unit normal to the boundary at the collocation point ξ, cij is
the free term that comes from the Cauchy Principal Value integration of the
strongly singular kernels p∗ij, u∗

ij and p∗ij are the displacement and traction FS

and d∗rij and s∗rij follow from derivation and substitution into Hooke’s law of

u∗
ij and p∗ij, respectively.

In most cases, the cracks are considered to be free of mechanical tractions.
These boundaries conditions can be summarised as

∆pj = p+j + p−j = 0 (30)

where the ’+’ and ’-’ superscripts represents the upper and lower crack sur-
faces, respectively. Eqs. (28) and (29) can be redefined in terms of the crack tip
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opening displacement (∆uJ = u+
J − u−

J ) in function of the crack-free bound-

ary Γ and one of the crack surfaces, say Γ+

cij(ξ)uj(ξ, t) +
∫

Γc

p∗ij(x, ξ, t)uj(x, t)dΓ(x) +
∫

Γ+

p∗ij(x, ξ, t)∆uj(x, t)dΓ(x) =

∫

Γc

u∗
ij(x, ξ, t)pj(x, t)dΓ

(31)

pj(ξ, t) + Nr

∫

Γc

s∗rij(x, ξ, t)uj(x, t)dΓ(x) + Nr

∫

Γ+

s∗rij(x, ξ, t)∆uj(x, t)dΓ(x) =

Nr

∫

Γc

d∗rij(x, ξ, t)pj(x, t)dΓ(x)

(32)

In this latter equation, the free term has been set to unity due to the ad-
ditional singularity arising from the coincidence of the two crack surfaces.
The inconvenience of this approach is that the BEM formulation will now in-
volve integrals including both strong singularities which require special treat-
ment. Numerous hypersingular approaches have been developed, in partic-
ular to anisotropic materials under static [90, 91, 150, 282] and time-harmonic
[6, 93, 94, 226, 232, 283, 294] loadings. The use of a hypersingular formulation
does not limit at all the crack shape, being valid for curved and branched
cracks, for example. However, it is commonplace to make use of discontinu-
ous boundary elements to ensure that all collocation points lie on the smooth
surface within the body of an element; this is required to satisfy the Hölder
continuity requirement of the hypersingular BIE.

As stated previously, the Stress Intensity Factors (SIF) are the measure of
the stress amplification at the crack tip. They are used extensively when esti-
mating the structural life in a number of applications, from civil engineering
structures to aerospace devices. Therefore, a precise calculation of this param-
eter is essential. The principal difficulty, faced throughout the development
of BEM and FEM approaches for modelling LEFM problems, is the use of
these discrete techniques to capture the singular stress solution. Traditional
finite element piecewise polynomial shape functions are ineffective. We now
describe some common approaches to obtain the SIFs:

1. Quarter-point: Developed by Henshell and Shaw [119] and Barsoum [19]
for finite elements, it consists in moving the mid-side node of a quadratic
boundary element from the centre to 1/4 of the element length from the
crack tip. It was shown that the mapping between the element in real
space and in the space of the intrinsic coordinates automatically captures
the asymptotic displacement behaviour of 1/

√
r present in the vicinity of

the crack tip (refer to [231] for further explanations).
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2. J-integral: Proposed by Rice [224], a path independent integral (assuming
a non-curved crack) is used to evaluate the energy release rate due to the
presence of the crack,

J =
∫

Γj

(

Wn1 − ti
∂ui

∂x1

)

dΓ (33)

where n1 is the component of the outward unit normal vector in the x1

direction, ui are the displacement and ti are the tractions. The term W =
1
2 σijε ij is the strain energy density.

3. Interaction integral: the J-integral can be decomposed into 3 parts [110,
177]:

J = J(1) + J(2) + M(1,2) (34)

where J(1) is the J-integral of the so-called principal state, which repre-

sents the energy release rate of the material; J(2) is the J-integral of the
auxiliary state, which depends on the displacements around the crack tip;

M(1,2) is the interaction integral containing terms of the principal and aux-
iliary state, and is defined as

M(1,2) =
∫

A
(σ

(1)
ij u

(2)
i,1 + σ

(2)
ij u

(1)
i,1 − W(1,2)δ1j)q,j dA (35)

where A is the area inside the contour Γj surrounding the crack tip, and

W(1,2) is given as

W(1,2) =
1

2
(σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij ) (36)

Let us remark that the indices (1) and (2) correspond to the principal and
auxiliary states, respectively.

The quarter-point approach allows a direct extrapolation of the SIF by
using the crack opening displacement. The J-integral is more cumbersome
numerically since the displacements and tractions at the closed path integral
are part of the BEM domain and have to be evaluated first; however it is more
accurate than the direct extrapolation.

Chen [47] has analysed mixed mode SIFs of anisotropic cracks in rocks
with a definition of the J-integral for anisotropic materials and the relative
displacements at the crack tip. In Ke et al. [133], the authors have suggested
a methodology to obtain the fracture toughness of anisotropic rocks through
experimental measurements of the elastic parameters and further compari-
son with a BEM code. In another work, Ke et al. [132] have proposed a crack
propagation model for transversely isotropic rocks. Let us remark that all the
previously mentioned works have used the Lekhnitskii formalism [145] in
order to model the anisotropy of the material. The Lekhnitskii formalism is a
polynomial analogy form of the matricial Stroh formalism.

Crack propagation problems have also been studied under the BEM frame-
work. Portela et al. [215] used the maximum stress criterion as crack growth
criteria in a dual BEM. Quasi-static 3D crack growth is analysed in [170].
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Cohesive models have also been developed with the BEM: Oliveira and
Leonel [196, 197] have proposed a cohesive crack growth model, where the
zone ahead of the crack tip is modelled as a fictitious crack model. This for-
mulation gives rise to a volume integral, which must be regularised. The co-
hesive stresses are dependent on the crack tip opening displacement.

Yang and Ravi-Chandar [286] have proposed a cohesive model where the
single-domain dual integral equations are used as an artifice to avoid the
mathematical degeneration of the formulation imposed by the crack. In this
case, the domain is divided in two sub-domains, where the crack is in the fic-
tional domain division. Moreover, the cohesive zone is modelled as an elastic
spring connecting both crack faces. Normal and tangential crack tip opening
displacements are considered, and the crack growth is obtained from succes-
sive iterations of the non-linear system of equations, where the stiffness of
the cohesive zone is taken into account.

Saleh and Aliabadi [233–235] and Aliabadi et al. [7] have studied the crack
propagation problem in concrete using a fictitious crack tip zone. The cohe-
sive zone is modelled with additional boundary elements at the fictitious
crack tip that satisfy a softening cohesive law. A major drawback of this
methodology is that the crack growth path has to be known a priori.

7.1.1 Fast Multipole Method (FMM)

The linear system formed in the BEM framework is much smaller than its
equivalent with FEM formulation. However, the resulting matrix is full, not
sparse like the FEM stiffness matrix, and this considerably increases the com-
putational time required to solve a large problems. In 1985, Rokhlin [228]
developed a method to reduce the complexity of solving the system of equa-
tions to O(n) instead of O(n3), where n is the number of unknowns. This
technique was named the Fast Multipole Method (FMM), and generally in-
volves using an iterative solver (such as GMRES [230]) to solve the linear
system

Ax = b (37)

which comes from the discretisation of Eqs. (31) and (32).
The Green’s functions in the BIEs can be expanded as follows

u∗
ij(x, ξ, t) = ∑

i

u
∗ξ
ij (xe, ξ, t)u∗x

ij (xe, ξ, t) (38)

where xe is an expansion point near x obtained through Taylor series expan-
sion, for instance. The original integral containing u∗

ij can be rewritten as

∫

Γa

u∗
ij(x, ξ, t)pj(x, t)dΓ = u

∗ξ
ij (xe, ξ, t)

∫

Γa

u∗x
ij (xe, ξ, t)pj(x, t)dΓ (39)

where Γa is a boundary away from ξ. This change allows the collocation point
ξ to be independent of the observation point x due to the introduction of a
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new point xe. Eq. (39) has to be evaluated only once for different collocation
points.

The FMM applied in BEM can be described by the following steps [150]:

1. Discretise the boundary Γ ;
2. Determine a tree structure of the elements. For example, in a 2D domain,

define a square containing the entire boundary and call this square the cell
of level 0. Then, divide the square into 4 equal cells and call them level 1.
Repeat until each cell contains a predetermined number of elements (in
Figure 7, each cell has one element). Cells with no children cell are called
leafs. For 3D cases, the same principle applies using cubic cells instead of
square cells;

3. Compute the moments on all cells for all levels l ≥ 2 and trace the tree
structure (shown in Figure 8). The moment is the term from Eq. (39) that
is independent from the collocation point. The moment of parent cells is
calculated from the summation of the moments of its 4 children cells;

4. Compute the local expansion coefficients on all cells starting from level 2
and tracing the tree structure downward to all leaves. The local expansion
of the cell C is the sum of the contributions from the cell in the interaction
list of the cell and the far cells. The interaction list is composed by all the
cells from the level l that do not share any common vertices with other
cells at the same level, but their parent cells do share at least one common
vertex at level l − 1. Cells are said to be far cells of C if their parent cells
are not adjacent to the parent cell of C;

5. Compute the integrals from element in leaf cell C and its adjacent cells
as in standard BEM. The cells in the interaction list and the far cells are
calculated using the local expansion;

6. Obtain the solution of Ax = b. The iterative solver updates the unknown
solution of x and goes to step 3 to evaluate the next matrix vector product
Ax until the solution converges within a given tolerance.

The FMM has been used in 3D fracture mechanics problems as can be seen
in [193, 290], and some recent works on GPU can be found in [101, 108, 278].
The FMM is largely detailed in [149].

7.1.2 Adaptive Cross Approximation (ACA)

The Adaptive Cross Approximation (ACA) approach uses a different tech-
nique in order to reduce the complexity of the BEM with respect to the stor-
age and operations. ACA uses the concept of hierarchical matrices introduced
by Hackbusch [107], where a geometrically motivated partitioning into sub-
blocks takes place, and each sub-block is classified as either admissible or
inadmissible according to the separation of the node clusters within them.

The main idea is that admissible blocks are approximated by low-rank
approximants formed as a series of outer products of row and column vec-
tors, greatly accelerating the evaluation of the matrix vector product that lies
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within each iteration of an iterative solver. While the FMM deals with the an-
alytical decomposition of the integral kernels, ACA can evaluate only some
original matrix entries, or use a full pivoted form where all terms of matrix
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are calculated, to get an almost optimal approximation. The approximation
of matrix A ∈ Ct×S is given by

A ≈ Sk = UVt, where U ∈ Ct×k and V ∈ Cs×k (40)

where k is a low rank compared to t and s. It is important to remark that
the low rank representation can only be found when the generating kernel
function in the computational domain of A is asymptotically smooth. It has
been shown in [20] that elliptic operators with constant coefficients have this
property.

In hierarchical matrices, the near and far fields have to be separated. The
index sets I for row and J for columns so that elements far away will have
indices with a large offset.

By means of a distance based hierarchical subdivision of I and J cluster
trees TI and TJ are created. In each step of this procedure, a new level of son
clusters is inserted into the cluster trees. A son cluster is not further subdi-
vided and is said to be a leaf if its size reaches a prescribed minimal size bmin.
Usually one of two different approaches is considered. First, a subdivision
based on bounding boxes splits the domain into axis-parallel boxes which
contain the son clusters. Alternatively, a subdivision based on principal com-
ponent analysis splits the domain into well-balanced son clusters leading to
a minimal cluster tree depth.

Now, the hierarchical (H)-matrix structure is defined by the block cluster
tree TI J = TI ×TJ using the following admissibility criterion: min(diam(t), diam(s)) ≤
ηdist(t, s), with the clusters t ⊂ TI , s ⊂ TJ , and the admissibility parameter
0 < η < 1. The diameter of the clusters t and s, and their distance, are ob-
tained as

diam(t) = max
i1,i2∈t

|ξ i1 − ξ i2 | (41)

diam(s) = max
j1,j2∈s

|xj1 − xj2 | (42)

dist(t, s) = |ξ i − xj|
i∈t,j∈s

(43)

A block b is said to be admissible if it satisfies this admissibility criterion.
Otherwise, the admissibility is recursively verified for each son cluster, until
the block becomes admissible or reaches the minimum size.

Finally, the ACA method idea is to split the matrix A ∈ Ct×s into A =
Sk + Rk, where Sk is the rank k approximation and Rk is the residuum which
has to be minimised. We now present the ACA method itself:

1. Define k = 0 where S0 = 0 and R0 = A and the first scalar pivot to be

found is γ1 = (R0)
−1
ij , and i, j are the row and column indices of the actual

approximation step;
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2. For each step υ, obtain

vυ+1 = γυ+1(Rυ)i (44)

uυ+1 = (Rυ)j (45)

Rυ+1 = Rυ − uυ+1vt
υ+1 (46)

Sυ+1 = Sυ + uυ+1vt
υ+1 (47)

(48)

where the operators ()i and ()j indicate the i-th row and the j-th column
vectors, respectively;

3. The next pivot γυ+1 is chosen to be the largest entry in modulus of the
row (Rυ)i or the column (Rυ)j

4. The approximation stops when the following criterion holds:

||uυ+1||F||vυ+1||F < ε||Sυ+1||F (49)

The main advantage comparing to the FMM method is that ACA can be
implemented directly into an existing BEM code. Moreover, due to its in-
herently parallel data structure, parallel programming can be readily imple-
mented, increasing the computational efficiency. However, the original ma-
trix A will not be entirely recovered.

Note that it is not necessary to build the whole matrix beforehand. The
respective matrix entries can be computed on demand [20]. Working on the
matrix entries has the advantage that the rank of the approximation can be
chosen adaptively while kernel approximation requires an a priori choice.

A few recent works on ACA implementation can be found in [81,99]. Use
of the method for problems in 3D elasticity can be found in [28, 159] and the
application of ACA in crack problems was shown for the first in [137].

7.2 Enriched formulations

7.2.1 eXtended Finite Element Method (X-FEM)

The motivation that lay behind the development of X-FEM was to elimi-
nate some of the deficiencies of standard FEM for crack modelling, most
importantly the requirement for highly refined meshing around the crack
tips and the mandatory remeshing for crack growth problems. The parti-
tion of unity [15] is a general approach that allows the enrichment of finite
element approximation spaces so that the FEM has better convergence prop-
erties. In X-FEM, the partition of unity method allows element enrichment
such that degrees of freedom (dofs) are added to represent discontinuous be-
haviour. In this framework, the mesh is independent from the discontinuities,
so that cracks may now pass through elements rather than being constrained
to propagate along elment edges. This gives the FEM much more flexibiility
to model crack growth without remeshing.
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Two types of enrichment function are applied in the X-FEM: the Heaviside
enrichment function, responsible for characterising the displacement discon-
tinuity across the crack surfaces, and a set of crack tip enrichment functions
(CTEFs), responsible for capturing the displacements asymptotically around
the crack tip. This latter presents complex behaviour, varying for different
constitutive laws (see [12,79,194], for some different CTEF). In this sense, it is
similar to the FS, necessary in BEM formulations.

The displacement approximation uh(x) with the partition of unity can be
stated as [177]

uh(x) = ∑
i∈N

Ni(x)ui + ∑
j∈NH

Nj(x)H(x)aj + ∑
k∈N CT

Nk(x)∑
α

Fα(x)b
α
k (50)

where Ni is the standard finite element shape function associated with node
i, ui is the vector of nodal dofs for classical finite elements, and aj and bα

k are
the added set of degrees of freedom that are associated with enriched basis
functions, associated with the Heaviside function H(x) and the CTEF Fα(x),
respectively. N is the set of all nodes, NH is the set of all nodes lying on crack
surfaces, and N CT is the set of all nodes belonging to elements touching a
crack tip.

Since the CTEFs describe the displacements at the crack tip zone through
the addition of several dofs, the stress concentration around the crack tip can
be found more accurately with a significantly coarser mesh compared to the
mesh used with standard FEM in a similar problem.

The presence of blending elements, which do not contain the crack but
contain enriched nodes is also important to be considered. These elements
were analysed by Chessa et al. [48], and some studies have improved the
convergence of blending elements (see [84], for instance). The X-FEM con-
vergence rate can also be increased through the use of geometrical enrich-
ment [142], where a number of elements around the crack tip receive the
CTEF instead of a single element (this latter named topological enrichment).

Figure 9 illustrates an arbitrary elastic body with a cohesive crack. The
governing equations for a cohesive crack model are given by [179]

∫

Ω
σ.δǫ dΩ =

∫

Ω
fb.δu dΩ +

∫

Γt

αft.δu dΓ +
∫

Γc

fc.(δu+ − δu−) dΓ (51)

where Ω is the domain, fb is the body force vector, ft is the external traction
vector, σ is the stress tensor, α is the load factor which controls the load in-
crements, fc is the traction along the cohesive zone, and is a function of the
crack opening ∆u.

The discretisation of Eq. (51) yields

Ku = fext + fcohe (52)
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Fig. 9: Elastic body with a cohesive crack.

with

K =
∫

Ω
BtCB dΩ (53)

fext = α
∫

Γc

Nit dΓ +
∫

Ω
Nib dΩ (54)

f cohe = −2
∫

Γc

NiT
c(∆u) dΓ (55)

where B is the finite element strain-displacement matrix, b is the vector con-
taining the body forces and Tc(∆u) is the cohesive softening law relating the
crack surface normal traction fc to the crack opening ∆u.

X-FEM has been widely used with cohesive models in the last few years.
Some authors [45, 51, 176] have used a typical X-FEM formulation to model
the cohesive crack, i.e., a Heaviside enrichment function is used to model the
jump between the crack surfaces and a crack tip enrichment function is used
to model the asymptotic behaviour at the crack tip.

Xiao and Karihaloo [284] have obtained the asymptotic displacement at
the cohesive zone for isotropic materials based on the Williams expansion.
The authors considered only the case where the crack is traction free and the
crack is subject only to mode I. The obtained enrichment functions are

u
tip
1 =

r3/2

2µ
a11

[(

κ +
1

2

)

cos
3

2
θ − 3

2
cos

1

2
θ

]

(56)

u
tip
2 =

r3/2

2µ
a11

[(

κ − 1

2

)

sin
3

2
θ − 3

2
sin

1

2
θ

]

(57)

where κ is the Kolosov constant (for details refer to [284]), θ is the crack ori-
entation with respect to the x1 axis, a11 is a real constant and comes from
the Williams expansion. In this case, Eq. (58) receives a new crack tip enrich-
ment term, as in the X-FEM formulation for linear elastic fracture mechanics
(see [110, 176]). Zamani et al. [291] uses higher-order terms of the crack tip
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asymptotic field to obtain an enrichment function based on the Williams ex-
pansion.

This approach has provided good results for isotropic materials, but it
may not be the same for anisotropic materials. An alternative approach is
to model the crack with Heaviside elements only [139, 181, 262, 302]. Since
there is no discontinuity at the crack tip, there are no SIFs at the crack tip,
and therefore no crack tip enrichment function is required. The displacement
field u(x) is given by

u(u) = ∑
i∈N

Ni(x)ui + ∑
k∈NH

Nk(x)H(x)aj (58)

where Ni is the standard finite element shape function associated to node i
and aj is the additional set of degrees of freedom associated with the Heavi-
side enrichment function H, defined as +1 if it is evaluated above the crack or
−1 if below the crack. The sets N and NH denote the standard and enriched
nodes, respectively.

The crack growth is modelled considering some rules, for example, if the
level of stress at the crack tip is above the material tensile strength [179, 262].

In [139], a 2D cohesive model for an isotropic material was presented,
where both fluid and porous material interact. The pressure inside a crack is
also modelled. The Heaviside enrichment function is employed, as well as a
pressure enrichment function, which allows the continuity of steep gradients
without enforcing this condition. The crack propagation criteria depends on
the stress state at the crack tip. The fluid behaviour can retard crack initiation
and propagation. A local change of the flow can be seen immediately after
crack propagation. The deformation around the crack causes fluid to flow
mostly from the crack itself since the crack permeability is much higher than
the medium permeability. This flow from the crack to the crack tip causes
closing of the crack. However, a delamination test has shown that if the stiff-
ness and permeability are high, the fluid does not influence crack growth.

More methods for crack propagation in X-FEM can be found in [151, 168,
183, 184, 225] for brittle fracture and [169, 180, 291] for cohesive cracks.

7.2.2 Enriched BEM

The extended boundary element method (X-BEM) was first proposed by Simp-
son and Trevelyan [251] for fracture mechanics problems in isotropic materi-
als. The main idea is to model the asymptotic behaviour of the displacements
around the crack tips by introducing new degrees of freedom. The displace-
ments uh(x) are thus redefined as

uh(x) = ∑
i∈N

Ni(x)ui + ∑
k∈N CT

Nk(x)∑
α

Fα(x)a
α
k (59)

where N and N CT are the sets with non-enriched and enriched nodes, re-
spectively, Ni is the standard Lagrangian shape function associated with node
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i, ui is the vector of nodal degrees of freedom, and aα
k represents the enriched

basis functions which capture the asymptotic behaviour around the crack
tips. In elastic materials, aα

k is an 8-component vector for two-dimensional
problems, since only two nodal variables (u1, u2) and four enrichment func-
tions are needed to describe all the possible deformation states in the vicinity
of the crack tip [110].

Hattori et al. [110] used the following anisotropic enrichment functions
initially developed for the X-FEM

Fl(r, θ) =
√

r









ℜ{A11B−1
11 β1 + A12B−1

21 β2}
ℜ{A11B−1

12 β1 + A12B−1
22 β2}

ℜ{A21B−1
11 β1 + A22B−1

21 β2}
ℜ{A21B−1

12 β1 + A22B−1
22 β2}









(60)

where βi =
√

cos θ + µi sin θ, r is the distance between the crack tip and an
arbitrary position, θ is the orientation measured from a coordinate system
centred at the crack tip, and A, B and µ are obtained from the following eigen-
value problem:

( −L−1M −L−1

Z − MTL−1M −MTL−1

)(

Am

Bm

)

= µm

(

Am

Bm

)

(no sum on m)

(61)
with

Z := C1ij1; M := C2ij1; L := C2ij2 (62)

Let us emphasise that the anisotropic enrichment functions can also be
used for isotropic materials, since this is a degenerated case from anisotropic
materials. For more details please refer to reference [110].

An enriched anisotropic dual BEM formulation using the above enrich-
ment functions [111] for anisotropic materials is similar to the one used by
Simpson and Trevelyan [251] for isotropic materials. The extended DBIE and
the TBIE can be restated as:

cij(ξ)uj(ξ) +
∫

Γ
p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)Fα(x)aα
kdΓ = (63)

∫

Γ
u∗

ij(x, ξ)pj(x)dΓ(x)

cij(ξ)pj(ξ) + Nr

∫

Γ
s∗rij(x, ξ)uj(x)dΓ(x) + Nr

∫

Γc

s∗rij(x, ξ)Fα(x)aα
kdΓ = (64)

Nr

∫

Γ
d∗rij(x, ξ)pj(x)dΓ(x)

where Γc = Γ+ ∪ Γ− stands for the crack surfaces Γ+ and Γ−. Only the ele-
ment containing the crack tip receives the enrichment function. Strongly sin-
gular and hypersingular terms arise from the integration of the p∗ij, d∗rij and

s∗rij kernels and they may be regularised in the same way as shown in [92].
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7.3 Meshless method

Meshless (or meshfree) methods have been the subject of considerable inter-
est in recent years as alternatives to the Finite Element Method for solid me-
chanics problems. As the name suggests the main advantage of these meth-
ods is their (varying) lack of reliance on a division of the problem domain
into a mesh of elements, thus removing issues associated with mesh gener-
ation and remeshing (perhaps required following large deformations which
would lead to distorted and hence inaccurate elements). However, meshless
methods tend to be more computationally expensive largely as a result of the
lack of easily consultable connectivity information provided by a mesh, but
also because there is greater complexity in the formation of shape functions.
The most popular meshless methods for solid mechanics are the Element-free
Galerkin method [24] and the Meshless Local Petrov-Galerkin method [14].
The key difference in both of these methods compared to FE methods is the
use of shape functions based on a moving least squares (MLS) approxima-
tion [77]. Taking the Element-free Galerkin method as an example, the dis-
placement approximation uh at location x is constructed as

uh(x) = ∑
i∈N

Ni(x)ui = Nu (65)

where Ni are shape functions based on the MLS approximation (explained
below), ui are nodal values and N is the set of nodes in support at loca-
tion x, supports being defined using weighting functions centred at nodes.
To build the shape functions we choose a polynomial basis, which can be
of any order but low orders are usually used, e.g. a quadratic basis in 1D
p(x)T =

{

1, x, x2
}

or in 2D p(x)T =
{

1, x, y, x2, xy, y2
}

. At any location x we

define the matrix P whose rows are the valued basis vectors pT for the nodes
in support at x. A least squares minimisation procedure applied to the ap-
proximation at node locations and the nodal values then leads to the shape
functions as

N = p(x)TA(x)−1Bx (66)

where
A = PTWP, B = PTW. (67)

W is a diagonal matrix of values of node-centred weight functions at location
x, which may be splines or exponential functions. Carrying this out in 2D or
2D is simply done via tensor products of the 1D case. Key points of difference
as compared to FE methods should be clear, i.e. the shape function formation
requires the inversion of a matrix, albeit a small matrix (dimension same size
as the number of terms in the basis), the choice of nodal support size is crucial
but not easy to define and the use of an MLS approximation contrasts with the
interpolation used in FE methods and has the knock-on effect of making the
imposition of essential boundary conditions more complicated. Overviews of
the various meshless methods for solid mechanics can be found in a number
of references [23, 85, 147, 192].
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7.3.1 Meshless methods for fracture

Ever since their initial development in the 1990s meshless methods have been
applied to crack modelling [22, 24, 198], to dynamic fracture [26] and crack
propagation [25]. The key advantage of meshless methods over standard FE
methods for fracture is removal of the need to remesh during crack propa-
gation. Another positive feature of meshless methods is that smooth stress
results can be obtained for high stress gradients around crack tips [37] thus
requiring less effort in postprocessing compared with the X-FEM. As with all
numerical methods applied to fracture we have to find ways of dealing with
the stress singularities at the crack tips and the discontinuities introduced by
the crack surfaces. The former can be dealt in meshless methods by enriching
the approximation space just as is done in X-FEM and other enriched meth-
ods, e.g. [27], based on the the partition of unity (PU) concept [16,167] where
the jump discontinuity is included in the displacement approximation ex-
actly as already laid out for X-FEM above in Eq. (50). “Extrinsic” techniques
like this have more recently been developed into meshless “cracked particle”
methods in a number of references [37,219,220,303]. Extrinsic enrichment like
this can however lead to an ill-conditioned global stiffness matrix [21] as is
the case with many other PU methods, due to the additional unknowns at
nodes which do not correspond to the physical degrees of freedom [44]. The
cracked particle methods are examples of smeared approaches to modelling
cracks, i.e. the exact crack face/surface geometry is approximated, but this
clashes with the requirement for an accurate description of the crack geome-
try since it governs the accuracy of field solution, and hence the crack growth
magnitude and direction. Extrinsic approaches which attempt to improve on
this have used piecewise triangular facets [37,64] which however suffer from
discontinuous crack paths and requires user input to “repair” the mesh of
facets.

Greater promise lies in the use of a level set description of crack geome-
try combined with a meshless method [65,98,300,301] and an intrinsic rather
than extrinsic model of the discontinuity of a crack. Using an intrinsic method
in the EFGM there is also no problem of ill-conditioning in the stiffness ma-
trix. Here the displacement jump can be introduced simply by modifying the
nodal support via the weight function. A simple way to do this is directly to
truncate the nodal support at a crack face. This is the visibility criterion, as
shown in Figure 10. The support of a node is restricted to areas of the do-
main visible from the node with the crack faces acting as an opaque barrier.
If a line between a node and the point of interest intersects a crack, and if the
crack tip is inside the support of that node, the node will have no influence
on that point, i.e. rI between that point and the node is modified to infinity.
(The visibility criterion corresponds to the use of the Heaviside function in
the enriched trial functions used in X-FEM). An alternative to the visibility
criterion is the diffraction method which works slightly differently as shown
in Figure 11.
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Fig. 10: The visibility criterion. (From [300]).
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Fig. 11: The diffraction method. (From [300]).

The visibility criterion is simpler to implement, especially for 3D prob-
lems, but leads to spurious crack extension (thus impairing accuracy) while
the diffraction method has no spurious crack extension problem but its imple-
mentation leads to high computational complexity especially in 3D or with
multiple cracks.

Level sets offer a means accurately to represent crack surfaces and also
to track surfaces as crack fronts propagate. The level set method (LSM) is a
computational geometry technique for tracking interfaces applicable to many
areas in science and engineering [243]. The LSM was first applied to crack
modelling using the X-FEM in [98]. Instead of using an explicit representation
of a crack, such as line segments in 2D and triangular facets in 3D, the LSM
describes the surface implicitly by collecting points at the same distance to
the crack into level sets. When the LSM is applied to fracture modelling, two
orthogonal level sets, φ and ψ are used: φ measures the distance normal to
the crack and ψ measures the distance tangential to the crack (see Figure 12).
Hence we can fully define the geometry of the crack surface as

φ(x) = 0, ψ(x) ≤ 0 crack surface
φ(x) = 0, ψ(x) = 0 crack front .

(68)

As the crack propagates, the level sets are updated to the new crack surface
using the procedures in [98] and the corrected update function for φ in [65].
Recent work has led to the development of a fracture modelling method for
2D and 3D which uses intrinsic LS representations of cracks using a modified
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Fig. 12: The level sets description of a crack surface in 3D (from [301])
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Fig. 13: Phase-field domain.

visibility criterion where the crack tips are tied to avoid the spurious prop-
agation problem, and also incorporates enrichment to deal with the stress
singularities [300, 301].

7.4 Phase-field

The development of the phase-field method provided an alternative formu-
lation when dealing with different interface problems. A phase-field vari-
able is introduced to consider the interface directly into the formulation. The
phase-field formulation has been applied to different types of interface prob-
lems, including liquid-solid [13], liquid-solid-gas [166], electromagnetic wave
propagation [260], analysis in crystal structures [1, 58] and more recently in
medicine [266], to enumerate some of the applications. The method has been
successfully applied to fracture mechanics problems, where the crack is there-
fore modelled as a different interface in the domain. Figure 13 shows an ex-
ample of a domain where the damage state is given by the interface parame-
ter.

The work of Francfort and Marigo [80] is the first in fracture mechanics to
consider a variational formulation where a parameter assumes different val-
ues in order to capture the proper interface in the domain. An energy func-
tional E(u, Γ), depending on the displacement field u and the crack surface
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Γ, is defined as [8, 80]

E(u, Γ) = Ed(u) + Es(Γ) =
∫

Ω
ψ0(ε(u)) dΩ + Gc

∫

Γ
ds (69)

where Ed(u) represents the elastic energy of the body, Es(Γ) is the energy
required to create the crack, considering Griffith’s theory, ψ0 is the elastic en-
ergy density and Gc is the material fracture toughness. The work is further
extended by [39] which applied a regularised form in order to allow the nu-
merical treatment of the energy functional. The regularised energy functional
Eǫ(u, Γ) is given by

Eǫ(u, Γ) =
∫

Ω
(s2 + kǫ)ψ0(ε(u)) dΩ + Gc

∫

Ω

(

1

4ǫ
(1 − s2) + ǫ|∇s|2

)

(70)

where s is the phase-field variable, s = 0 representing the undamaged state
and s = 1 standing for the fully broken/damaged state, with 0 ≤ s ≤ 1; ǫ > 0
is a parameter designed to control the width of the transition zone set by the
phase-field variable, and kǫ is a small term depending on ǫ.

The solution of Eq. (70) is found through the minimisation of Eǫ(u, Γ). To
avoid the minimisation problem to be ill-posed, the small term kǫ has been
added to the formulation. For more details see [39].

The phase-field formulation has been modified through the years to be
more general, consider more cases of interface interaction and different types
of loading conditions to the problem. The work of Amor et al. [9] has con-
sidered the compression into the formulation, avoiding the interpenetration
between crack surfaces. The proposed idea consisted in separating the elastic
energy density according to the deviatoric and volumetric contributions.

A different phase-field formulation was proposed by [173,174], defined as
a “thermically consistent” formulation. The regularised phase-field variable
d is defined as 0 for the unbroken state and 1 for the fully broken state.

The stored energy ψ0(ε) of an undamaged solid is defined as [174]

ψ0(ε) = ψ+
0 (ε) + ψ−

0 (ε) (71)

where ψ+
0 (ε) is the energy due to tension and ψ−

0 (ε) is the energy due to
compression. The positive and negative parts of the energy are given by the
following decomposition of the strain tensor

ε =
3

∑
a=1

εana ⊗ na (72)

where ǫa and na are the principal strain and principal strain direction in the
xa-axis, respectively. The standard quadratic energy storage function of an
isotropic undamaged material is given by

ψ0(ǫ) =
1

2
λ(ε1 + ε2 + ε3)

2 + µ(ε2
1 + ε2

2 + ε2
3) (73)
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with λ > 0 and µ > 0 are elastic constants.
The phase-field model for fracture in elastic solids is given by

Div
(

(1 − d)2 + k
) ∂ψ+

0 (ε(u))

∂ε
+

∂ψ−
0 (ε(u))

∂ε
= 0 (74)

Gc

l
(d − l2∆d)−

(

2(1− d)ψ+
0 (ε(u)) + ε〈ḋ〉−

)

= 0 (75)

where Div represents the divergent, ∆d is the Laplacian of the phase-field, l
is the width of the transition zone (where 0 < d < 1), k is a small artificial
residual stiffness to prevent the full-degradation of the energy at the fully
damaged state d = 1, 〈x〉− = (|x| − x)/2 is a ramp function, ḋ is the evolution
of the phase-field parameter.

A downside of the phase-field formulation is that it can result in unre-
alistic solutions. An example analysed by [8] consists of the case when the
principal strains are negative, which is not considered in the model of [9] for
instance. Nevertheless, a strongly non-linear strain relation is used, which
requires higher computational charges as compared to [9].

A history-field variable was introduced in [173] in order to overcome
some implementations issues which arose in [174]. Since the ψ+

0 term deter-
mines the phase-field variable, we have

T (x, t) = max
s∈[0,t]

ψ+
0 (ε(x, s)) (76)

Substituting Eq. (76) into (75) and applying a viscous regularisation, the
evolution equation can be recast as

Gc

l
(d − l2∆d) = 2(1 − d)T + ηḋ (77)

where η > 0 is a viscous parameter.
The advantage of this new form is that the irreversibility of the crack

phase-field evolution is put into a more general form, allowing loading/unloading
conditions, besides allowing a better numerical treatment of the phase-field.

Crack branching effects are studied with phase-field in [117] for a 2D frac-
ture problem. The instabilities are seen to appear at the critical crack speed
of 0.48cs, where cs is the shear wave speed. It is worth to note that this re-
lation is valid for perfect brittle materials only. Moreover, it was observed
that, as the crack speed increases, the curvature of the area around the crack
tip increases, splitting into two cracks when a critical value for crack speed
is attained. In [118], a 3D study of crack branching stability is performed by
means of fractographic patterns. The authors conclude that the instability is
either restricted to a portion of the crack front or a quasi-2D branches.

A phase-field model is applied for damage evolution in composite ma-
terials in [29]. The evolution equation of the phase-field model was able to
include difficult topological changes during damage evolution, such as void
nucleation and crack branching and merging. Moreover, no meshing was re-
quired by the used phase-field model.
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In [141], the formulation used in [39] is complemented by a Ginzburg-
Landau type evolution equation, where an additional variable M is responsi-
ble for the crack propagation behaviour. If M is too small, the crack propaga-
tion may be delayed, while for sufficiently high values, the crack propagation
is not affected by M. The FEM was coupled with the phase-field theory. This
work was extended by [242] for dynamic brittle fracture.

Numerical aspects of the phase-field models used with finite differences,
FEM and multipole expansion methods are discussed in [212].

More information about phase-field methods can be found in [38, 50, 218,
242, 253, 275].

7.5 Configurational force method

Numerical implementations of brittle fracture propagation are relatively rare
in the computational mechanics literature. One of the most promising numer-
ical techniques developed within a conventional finite-element framework
over the last decade is based on configurational forces. Within this setting,
the most recent application of the configurational force methodology to the
modelling of fracture is the work of Kaczmarczyk et al. [129], which focuses
on large, hyperelastic, isotropic three-dimensional problems.

Kaczmarczyk et al.’s paper [129] is largely based on the work of Miehe and
co-workers [103,171,172]. Miehe and Gürses [171] presented a two-dimensional
large strain local variational formulation for brittle fracture with adaptive
R-refinement, the simplification of this framework to small strain problems
was presented by Miehe et al. [172]. The approach was extended to three-
dimensions for the first time by Gürses and Miehe [103].

All of the works in this area are based on Eshelby [70, 73] and Rice’s [224]
concept of material configurational forces acting on a crack tip singularity. A
more general overview can be obtained from several sources [104, 105, 135,
163, 256]. Within this setting several local variational formulations have been
proposed, for example see the works of [164, 258], and fracture initiation de-
fects of the classical Griffith-type brittle fracture overcome by global varia-
tional formulations [54,80]. Several researchers have numerically determined
the material configurational forces at static fracture fronts [61, 116, 186, 255].
Before the works of Miehe and co-workers [103, 171, 172], there were sev-
eral other attempts towards the implementation of fracture propagation in
the configurational mechanics context, including: Mueller and Maugin [187]
within the conventional finite-element context, Larsson and Fagerström [74,
143] in X-FEM and Heintz [115] within a discontinuous Galerkin (DG) set-
ting. The framework has also recently been applied to materials with non-
linear behaviour, see for example the works of Runesson et al. [229] and Till-
berg and Larsson [265] on elasto-plasticity and Näser et al. [190,191] on time-
dependent materials and the review by Özenç et al. [203]. In the following a
configurational force approach to modelling fracture propagation is outlined
based on the notation of Kaczmarczyk et al. [129].
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The method can be cast within an Arbitrary Lagrangian-Eulerian (ALE)
description of motion, where the deformation of the body is decoupled from
the development of an advancing crack front (see Figure 14). This approach
requires the specification of three configurations: a reference state, B0; and
two current states: a material configuration, Bt, containing the evolution of
the crack surface; and a spatial configuration, Ωt, containing the physical de-
formation of the body. A conventional finite-deformation mapping, ϕ(X, t),
connects the spatial, x, and material, X, configurations. Similarly the material
and reference, Ξ, frames are linked by a deformation mapping, Ξ(χ, t), that
contains the structural change of the material. The crack surface is denoted
as Γ ∈ Bt and the crack front, ∂Γ, as shown in Figure 15.

Fig. 14: Reference, spatial and material configurations for a body with a prop-
agating crack (from [129]).

From the first law of thermodynamics, equilibrium of the crack front is
governed by

Ẇ · (γA∂Γ − G∂Γ) = 0, (78)

where Ẇ is the crack front velocity, A∂Γ is a kinematic state variable that
defines the current crack front direction and γ is the surface energy. The con-
figurational force at the crack front, ∂Γ, is given by

G∂Γ = lim
|Ln|→0

∫

Ln

ΣNdL, (79)

where N is the normal to the surface encircling ∂Γ, Σ is the Eshelby stress ten-
sor, L is the length ∂Γ, Ln is the curve orthogonal to ∂Γ that defines the crack
front encircling surface (as shown in Figure 15). The Eshelby stress tensor, Σ,
is defined as

Σ = Ψ(F)1 − F
T

P, (80)
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where Ψ(F) is the free-energy function, F the deformation gradient, 1 is the
second order identity tensor and P = ∂Ψ(F)/∂F is the first Piola-Kirchhoff
stress.

Fig. 15: Configurational force crack (from [129]).

As noted by Kaczmarczyk et al. [129], three possible solutions to Eq. (78):
zero crack growth with Ẇ = 0; force balance (γA∂Γ − G∂Γ) = 0; or that the
crack front velocity is orthogonal to (γA∂Γ − G∂Γ). However, there is insuffi-
cient information in Eq. (78) to dictate the evolution of the crack front. Such
an evolution law can be obtained by considering the second law of thermo-
dynamics, supplemented by a material constitutive law and the principal of
maximum energy dissipation.

Starting from a Griffith-type criterion for crack growth

G∂Γ · A∂Γ − gc/2 ≤ 0, (81)

where gc is a material parameter controlling the critical threshold of energy
release per unit area. Combining this with the principal of maximum dissi-
pation, and through the application of Lagrange multipliers, it is possible to
arrive at the condition that

γA∂Γ = G∂Γ and 2γ = gc. (82)

Therefore, the direction of crack propagation is constrained to be coincident
with the configurational force direction. In addition, the configurational force
approaches based on the work of Miehe and co-workers [103, 129, 171, 172]
utilise R-adaptive mesh alignment. This method aligns the propagating crack
front with the direction of the configurational force by modifying the position
of the node(s) attached to the element faces to be split.

In the work of Kaczmarczyk et al. [129], this fracture methodology was
combined with a mesh quality control algorithm based on the work of Scherer
et al. [240]. Within this, the nodal positions of the elements are modified based
on a shape-based (volume to length) measure of element quality through the
determination of a pseudo force vector. This pseudo force features in the
discretised material nodal force equilibrium equation and is solved using a
Newton-Raphson process. Note, that this modification to the discrete equilib-
rium equation only influences the stability of the solution and not the crack
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propagation criterion [129]. This mesh quality control procedure reduces the
progressive degradation of the solution with fracture propagation.

Kaczmarczyk et al. [129] note that their approach could easily be extended
to anisotropic materials. However, one limitation of the approach is that it
is currently unable to capture non-smooth crack kinking [172]. Also, crack
branching and multiple crack coalescence has yet to have been demonstrated,
or even formulated.

7.6 Discrete Element Method (DEM)

The discrete element method (DEM) has been initially developed for mate-
rials which have particle-like behaviour, such as soil and rocks [146]. The
method was formally proposed by Cundall and Hart [53] and consisted of
modelling of the interaction between elements using contact. This was later
called the bonded-particle approach and is illustrated in Figure 16 for two ar-
bitrary bodies Ω1 and Ω2 having a normal contact stiffness Kn. However, one
of the main restrictions of this bonded-particle approach is that it did not al-
low rotations, and therefore does not consider momentum. To overcome this
restriction, shear contact stiffness Ks has been introduced to the formulation
and can be seen in Figure 17.

Ω1 Kn

Ω2

r2
r1

Fig. 16: Bonded-particle approach.

Ω1

Ks

Ω2

r2
r1

Fig. 17: Parallel-contact approach.

The DEM is characterised by the following properties [30, 146, 216]:
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– Finite displacements and rotations of the bodies is permitted, which in-
cludes complete detachment;

– New contacts (or the absence thereof) are recognised automatically as the
calculation progresses.

In practice, DEM is used in problems with a large number of elements,
each element representing a body in contact. The formulation itself can be
quite simplified compared to other discretisation methods, but it allows the
simulation of complex behaviour, including material heterogeneities.

The DEM can be decomposed into several subclasses, which differ in
some aspects such as the contact treatment, material models, number of in-
teracting bodies, fracturing, and integration schemes [30].

In this framework, each element is a particular body which can be in con-
tact with a number of surrounding elements. This implies that contact de-
tection is one of the main problems that can arise, since missing a contact
between elements can result in non representative behaviour of the model.
Moreover, inspecting the elements for possible contact can require large amounts
of computational processing time. The most common contact search algo-
rithms are based on so-called body based search, where the vicinity of a given
discrete element is searched for possible contact, and repeated after a num-
ber of iterations to check if the elements are still in contact. The Region Search
algorithm [263] is an example of this kind of contact detection. Other contact
detection algorithms use space search rather than a body search, and some
examples are based on binary trees [30, 36, 209].

The next step is to obtain the contact forces. The calculation is usually per-
formed with penalty based methods or Lagrange multiplier based methods.
A review of contact algorithms evaluation can be found in [112].

The modelling of fracture using DEM has been mostly confined to element
interfaces, where the breakage of the link between elements determines the
appearance or propagation of the damage [30]. Particles can be bonded into
clusters, where the bond stiffnesses are the equivalent to the continuum strain
energy. Bond failure is assumed when the strength has exceed the maximum
tension the bond can handle. Consistent breakage of the particle bonds define
the fracture shape in the material. In [18,188], a combination of the FEM with
DEM has been used to model fracture starting from a continuum represen-
tation of the finite elements, and as the damage appears it is restated in the
discrete element framework. A multifracture FEM/DEM scheme has been
proposed by [213], where sliver elements arising from poor intra-element
fracturing were avoided using local adaptive mesh refinement.

Discontinuous deformation analysis (DDA) is a variation of the DEM pro-
posed originally by Shi and Goodman [246] to simulate the dynamics, kine-
matics, and elastic deformability of a system contacting rock blocks. While
each block is treated separately in DEM, in DDA the total energy of the sys-
tem is minimised in order to obtain a solution; a linear system of equations
is obtained, resembling the finite element formulation. In fact, displacements
and strains are taken as variables and the stiffness matrix of the model is
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assembled by differentiating several energy contributions including block
strain energies, contacts between blocks, displacement constraints and ex-
ternal loads [146]. In the basic DDA implementation, each block is simply
deformable as the strain and stress fields are constant over the entire block
area, while the contacts are solved using regular contact algorithms that al-
low interpenetration between bodies [112]. To conclude, DDA is an implicit
formulation while DEM uses an explicit procedure to solve the equilibrium
equations. DDA has been used extensively in rock mechanics applications, as
can be seen in [113, 114, 156, 267] for example.

The influence of the bond parameters defined at the microscale and how
they affect the response on the macroscale are analysed in detail in [49] for
rock model analysis. It is shown that using a clumped-particle model, i.e. the
particles rotate in a cluster instead of each particle being allowed to rotate,
can reduce the limitations of the model, such as the overestimated ratio be-
tween tensile and compressive strengths, and the friction angles of the failure
envelope.

A combined Lattice Boltzmann method (LBM) and DEM have been used
to simulate fluid-particle interactions by [76]. The fluid field is solved by
an extended 3D LBM with a turbulence model, while particle interactions
are modelled using the DEM. Simulation results have matched experimental
measurements.

There are available codes for the DEM, as the universal distinct element
code (UDEC) [124], the ELFEN [154], the Yade [138] and Y-Geo [160]. More
information on the discrete element framework can be found on [30,146] and
some applications in [33, 127, 128].

8 Peridynamics

We will now introduce a new numerical method called peridynamics, which
appears to be very promising for fracking problems. The main difference be-
tween the peridynamic theory and classical continuum mechanics is that the
former is formulated using integral equations as opposed to derivatives of the
displacement components. This feature allows damage initiation and propa-
gation at multiple sites, with arbitrary paths inside the material, without re-
sorting to special crack growth criteria. In the peridynamic theory, internal
forces are expressed through non-local interactions between pairs of material
points within a continuous body, and damage is a part of the constitutive
model. Interfaces between dissimilar materials have their own properties,
and damage can propagate when and where it is energetically favourable
for it to do so.

8.1 Definitions

The peridynamics formulation was first developed by Silling [248], where he
tried to overcome the limitation of current theories dealing with discontinu-
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ity, such as in fracture mechanics problems. The main argument was that the
difficulty of existing theories was due to the presence of partial derivatives in
the formulation to represent the displacement and forces, making necessary
specific approaches to eliminate the singularities which would arise. Silling
proposed a new formulation based on particular interactions as in molecular
dynamics, but applied to continuum mechanics. The term peridynamics was
adopted to describe this formulation, and it comes from the Greek roots for
near and force. The pairwise interaction between two particles can be defined
as [249]

ρü(x, t) =
∫

H

f(u(x′, t)− u(x, t), x′− x)dVx′ + b(x, t) (83)

where ρ is the mass density, f is the pairwise force function that the particle x′

exerts on the particle x, H is the neighbourhood of x, u is the displacement
vector field, b is a prescribed force vector field (per unit volume). It is usual to
adopt the relative position ξ of the two particles in the reference configuration
as

ξ = x′ − x (84)

Analogously, the relative displacement η is stated as

η = u(x′, t)− u(x, t) (85)

The current relative position can be easily given as η + ξ. The function f
must satisfy two conditions:

f(−η,−ξ) = − f (η, ξ) (86)

which represents Newton’s third law and enforces conservation of linear mo-
mentum, and

(ξ + η)× f(η, ξ) = 0, ∀η, ξ (87)

which assures conservation of angular momentum.
The interaction between particles is defined as a bond, which in contin-

uum mechanics could also be considered as a spring connecting two par-
ticles. This definition is fundamentally the difference between the classical
theory and peridynamics, where the main idea is the direct contact between
two particles. The area of influence of a particle is defined as the horizon δ
and is stated as

∀|ξ| > δ ⇒ f(η, ξ) = 0. (88)

Figure 18 illustrates the horizon δ in an arbitrary body. Outside the hori-
zon δ, a particle has no influence on the other particles. For this reason, the
peridynamics formulation is considered as a non-local model.

A material is microelastic if the pairwise function can be obtained through
derivation of a scalar micropotential w such as

f(η, ξ) =
∂w

∂η
(η, ξ) ∀η, ξ (89)
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x

x′δ

H

Ω

Fig. 18: Particle interaction in a peridynamics solid.

The micropotential w is the energy present in a single bond (in terms of
energy per unit volume squared). Thus, the local strain energy density is de-
fined as

W =
1

2

∫

H

w(η, ξ)dVξ (90)

where the factor 1/2 is present since each particle possesses half of the energy
of the bond between them. If a material is microelastic, then every pair of
particles x and x′ is connected by a spring. The force in the spring depends
only on the distance between the particles in the deformed configuration.
Hence, there is a scalar function ŵ such that

ŵ(y, ξ) = w(η, ξ) ∀η, ξ, y = |η+ ξ| (91)

From Eqs. (89) and (91), the pairwise function f is restated as

f(η, ξ) =
ξ + η

|ξ + η| f (|ξ + η|, ξ) ∀η, ξ (92)

with

f (y, ξ) =
∂ŵ

∂y
(y, ξ) ∀y, η (93)

From Eqs. (83) and (92), the peridynamics model is fully defined for a
non-linear microelastic material. However, a linearised theory of the peridy-
namics microelasticity can be defined as

f(η, ξ) = C(ξ)η ∀η, ξ (94)

where C is the material’s micromodulus function. It will be seen that the mi-
cromodulus has similar function to the material constitutive law. For more
details, see reference [248].
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Boundary conditions in peridynamics are not completely alike to the clas-
sical theory. Although the essential boundary condition is still present (dis-
placements), there are no natural boundary conditions (tractions) in the peri-
dynamics framework. Forces at the surface of a body must be applied as body
forces b acting through the thickness of some layer under the surface. Usu-
ally, the thickness is taken to be the horizon δ. The displacement boundary
conditions also have to be imposed as a volume rather than a surface. For
more details see [248].

8.2 Constitutive modelling

We assume that the bond force f depends only on the bond stretch s, defined
as

s =
|ξ + η| − |ξ|

|ξ| =
y − |ξ|
|ξ| (95)

As expected, s is positive only when the bond is under tension. Failure is
introduced into the peridynamics model through breakage of the bonds con-
necting two particles over some stretching limit. Once a bond fails, it never
becomes reconnected (i.e. no healing is considered). An example of a history
dependent model is given by the prototype microelastic brittle (PMB) mate-
rial, and is given by

f (y(t), ξ) = g(s(t, ξ))µ(t, ξ) (96)

where g(s) = cs, c is a constant and µ is a history-dependent scalar-valued
function, assuming either the values 0 or 1 according to

µ(t, ξ) =

{

1 if s(t′, ξ) < s0 for all 0 ≤ t′ ≤ t,
0 otherwise

(97)

In this case, s0 is the critical stretch for bond failure. The local damage at
a point can be defined as

ϕ(x, t) = 1 −
∫

H
µ(x, t, ξ)dVξ
∫

H
dVξ

(98)

where x has been included as a reminder that the history model also depends
on the position in the body. One can see that 0 ≤ ϕ ≤ 1, 0 representing the
undamaged state and 1 representing full break of all the bonds of a given par-
ticle to all other particles inside the horizon δ. The broken bonds will even-
tually lead to some softening material response, since failed bonds cannot
sustain any load.

There are only two parameters that define the PMB material, the spring
constant c and the critical stretch s0. Assuming η = sξ and substituting in Eq.
(90), the local strain energy can be expressed as

W =
πcs2δ4

4
(99)
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This relation must be identical to its equivalent in the classical theory,
W = 9ks2/2, where k represents the material bulk modulus [249]. The spring
constant of the PMB material model is obtained as

c =
18k

πδ4
(100)

Now we describe the bond breakage formulation. Let the work G0 neces-
sary to break all the bonds per unit fracture area be given as

G0 =
∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1z/ξ

0
(cs2

0ξ/2)ξ2 sin ϕ dϕdξdθdz (101)

z
ϕ

A

B
cos−1

(

z
ξ

)

ξ

δ
fracture surface

θ

Fig. 19: Fracture energy evaluation.

The elements of Eq. (101) are depicted in Figure 19. Eq. (101) is the energy
to break all points A, where 0 ≤ z ≤ δ from the points B. After evaluation of
the integrals we obtain

G0 =
πcs2

0δ5

10
(102)

8.3 Anisotropic materials in peridynamics

The peridynamics formulation was initially presented for isotropic materials,
in order to make some simplifying assumptions. It is expected then that the
spring stiffness of the bonds does not vary over the direction of ξ. It was
demonstrated in detail in [248] that for isotropic materials, the Poisson ratio
in the peridynamics formulations is constrained to take the constant value of
1/4. The constant Poisson ratio is a consequence of the Cauchy relation for a
solid composed of a lattice of points that interact only through a central force
potential [153].
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Refinements of the peridynamics theory can allow the dependence of strain
energy density on local volume change in addition to two-particle interac-
tions [155].

A composite material is formed by different materials, commonly a brit-
tle and stiff material (fibre) embedded into a ductile one (matrix). In [202],
the micromodulus C is redefined in order to accommodate the new vari-
ables arising from the material’s anisotropy, including the fibre and matrix
bonds for a laminate, and the shear and interlayer bonds present between
two different laminates. However, in real composite materials, the fibre and
matrix present properties vary significantly with the direction, which was not
the case in this work. Instead, different isotropic materials were employed to
form the composite fibre and matrix. In [122], the fracture in fibre-reinforced
composites is tackled with more attention to the material modelling, where
the differences between the fibre and matrix bonds are specifically defined.
Moreover, the effect of arbitrary fibre orientation in the peridynamic model is
taken into account, and it is shown that for a given particle x, the number of
fibre bond particles within the horizon δ can vary considerably, which leads
to large variation of the strain energy density, the parameter which describes
the bond stiffness. To consider this modelling issue, a semi-analytical model
was deduced for fibre orientation of 45◦, and also for random fibre orienta-
tion.

A recent work [95] has deduced a peridynamic formulation for orthotropic
media. The micromodulus C is defined in terms of the orientation of the an-
gles ϕ, as illustrated in Figure 20. The dependency on the θ orientation can
be suppressed since the material properties do not change over θ for a trans-
versely isotropic material. After some mathematical manipulation, the new
definition of the micromodulus is given as

x1

x2

x3

ϕ

x

x′

θ

ξ

Fig. 20: Direction of a peridynamic bond in the principal axes.
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c(ϕ) =
∞

∑
n=0

An0P0
n(cos ϕ) (103)

where An0 represents constant coefficients and Pm
n are the associated Legen-

dre functions of degree n and order m

Pm
n (cos ϕ) =

(−1)m

2nn!
(1 − cos 2 ϕ)m/2 dn+m

d(cos ϕ)n+m
(cos 2 ϕ − 1)n (104)

Eq. (103) can be further simplified into

c(ϕ) = A00 + A20P0
2 (cos ϕ) = A00 + A20

1

2
(3 cos 2 ϕ − 1) (105)

Assuming c(0) = c1 and c(π/2) = c2, it can be shown that Eq. (105) is
also equivalent to

c(ϕ) = c2 + (c1 − c2) cos 2ϕ (106)

where c1 and c2 are constants of the material model and are given by

c1 =
15.41C11 − 7.41C22

πδ3t
(107)

c2 =
8.08C22 − 0.08C11

πδ3t
(108)

C12 = C66 = 0.059C11 + 0.274C22 (109)

where C11, C22, C16 and C66 are elements of the constitutive matrix given in
the Voigt notation. Note that an orthotropic material has only 2 independent
material constants in the peridynamic model instead of the normal 4 inde-
pendent constants. This restriction is used linked to the fact that a point is
only able to interact to another one individually, while in the classical the-
ory this condition does not apply (a disturbance in a continuous point will
automatically induce some disturbance on the points around the body). This
restriction on peridynamics theory has been addressed by Silling et al. [250]
and will be detailed in the next section.

The critical bond stretch also depends on the direction of ξ and is given
by

s2
0(ϕ) = B00 + B20P0

2 (cos ϕ) + B40P0
4 (cos ϕ) + B60P0

6 (cos ϕ) + B80P0
8 (cos ϕ)

(110)
where Bn0 are constants and are detailed in [95]. The critical strain energy re-
lease rates for mode I crack propagation in the planes normal to the principal
axes 1 (GIc1) and 2 (GIc2) can be obtained from the following relations

GIc1 =
∫ δ

0

∫ δ

z

∫ cos −1(z/ξ)

− cos −1(z/ξ)

[

c(ϕ)s2
0(ϕ)ξ

2
tξ dϕdξdz

]

(111)

GIc2 =
∫ δ

0

∫ δ

z

∫ π−sin−1(z/ξ)

− sin −1(z/ξ)

[

c(ϕ)s2
0(ϕ)ξ

2
tξ dϕdξdz

]

(112)
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After integration of Eqs. (111) and (112), the critical stretches s01 and s02

are given by

s2
01 =

500[(4GIc1 − 11GIc2)c1 + (112GIc1 − 72GIc2)c2]

tδ4(71c2
1 + 3168c1c2 + 994c2

2)
(113)

s2
02 =

500[(31.5GIc1 − 5GIc2)c1 + (11GIc1 − 4GIc2)c2]

tδ4(71c2
1 + 3168c1c2 + 994c2

2)
(114)

The fracture behaviour of the material is fully defined by using the mode I
energy release rates. Hence, mode II energies are not independent from mode
I, which is another consequence of the bond-based peridynamic theory.

An important issue has been highlighted in [95,202], concerning the use of
“unbreakable” bonds near to the regions where a traction boundary condition
is applied. The possible reason for this would be crack initiation and propa-
gation close to these regions, due to the high stresses that could be present. It
is important to understand the physics of the analysed problem properly in
order to use this type of assumption during a peridynamic simulation.

8.4 State-space formulation

The peridynamics formulation assumes that any pair of particles interacts
only through a central potential which is independent of all the other parti-
cles surrounding it. This oversimplification has led to some restrictions of the
material’s properties, such as the aforementioned fixed Poisson ratio of 1/4
for isotropic materials. Also, the pairwise force is responsible for modelling
the constitutive behaviour of the material, which is originally dependent on
the stress tensor. To overcome this limitation, Silling et al. [250] have extended
the peridynamics formulation to include vector states. The vector states allow
us to consider not only a particle, but a group of particles in the peridynamics
framework. Moreover, the direction of the vector states would not be condi-
tioned to be in the same direction of the bond, as in the bond-based theory.
This property is fundamental to consider truly anisotropic materials.

Let A be a vector state. Then, for any ξ ∈ H , the value of A〈ξ〉 is a vector
in R

3, where brackets indicate the vector on which a state operates. The set
of all vector states is denoted V . The dot product of two vector states A and
B is defined by

A · B =
∫

H

Ai〈ξ〉Bi〈ξ〉 dVξ (115)

The concept of a vector state is similar to a second order tensor in the
classical theory, since both map vectors into vectors. Vector states may be
neither linear nor continuous functions of ξ. The characteristics of the vector
states are listed in [250], and they imply the vector states mapping of H may
not be smooth as in the usual peridynamic model, including the possibility
of having a discontinuous surface.
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In the state theory, the equation of motion (83) is redefined as

ρ(x)ü(x, t) =
∫

H

{T[x, t]〈x′ − x〉T[x′, t]〈x− x′〉}dVx′ + b(x, t) (116)

with T as the force vector state field, and square brackets denote that the
variables are taken in the state vector framework.

To ensure balance of linear momentum, T must satisfy the following rela-
tion for any bounded body B

∫

B

ρü(x, t) dVx =
∫

B

b(x, t) dVx (117)

The balance of angular momentum for a bounded body B is also required
∫

B

y(x, t)× (ρü(x, t)− b(x, t))dVx = 0, ∀t ≥ 0, x ∈ B (118)

where
y(x, t) = x + u(x, t) (119)

The deformation vector state field is stated as

Y[x, t]〈ξ〉 = y(x + ξ, t)− y(x, t), ∀x ∈ B, ξ ∈ H , t ≥ 0 (120)

The non-local deformation gradient for each individual node is given by

B(x) =

[

∫

H

ω(|ξ|)(ξ ⊗ ξ)dVξ

]−1

(121)

F(x) =

[

∫

H

ω(|ξ|)(Y(ξ)⊗ ξ)dVξ

]

.B(x) (122)

where ⊗ denotes the dyadic product of two vectors, and ω(|ξ|) is a dimen-
sionless weight function, used to increase the influence of the nodes closes
to x. The use of this factor is still under study [280], but the assumption of
ω(|ξ|) = 1 has been seen to provide good results.

The discretisation of Eqs. (121) and (122) can be expressed as a Riemann
sum as [280]

B(xj) =

[

m

∑
n=1

ω(|xn − xj|)((xn − xj)⊗ (xn − xj))Vn

]−1

(123)

F(xj) =

[

m

∑
n=1

ω(|xn − xj|)(Y〈xn − xj〉 ⊗ (xn − xj))Vn

]

(124)

where m is the number of nodes with the horizon of node j. xj must be con-
nected to at least 3 other nodes in the system to ensure that B(xj) will not be
singular.

In state vector peridynamics, there are two ways to determine how the
force state depends on the deformation near a given point. The first consists
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of formulating a constitutive model in terms of the force vector T and the
deformation state Y[x, t]. In this case, the force state is defined as

T = ∇W (125)

where W is the strain energy density and ∇ indicates the Fréchet derivative,
which is defined as any infinitesimal change in the deformation state dY re-
sulting in a change of the strain energy density dW such as

dW = W(Y + dY)−W(Y) =
∫

Hx

T〈ξ〉.dY〈ξ〉dVξ (126)

with Hx being a sphere centred at the point x with radius equal to the horizon
δ. Note that the Fréchet derivative can be seen as an equivalent of the tensor
gradient in classical theory.

The second approach to relating the force and deformation in a state vec-
tor framework is to adopt a stress-strain model as an intermediate step [42,
280]. For a strain energy density W(F), the stress tensor can be expressed as

[σ]t =
∂W

∂F
(127)

The force vector is redefined as [250]

T = ∇W =
∂W

∂F
∇F (128)

After evaluation of the Fréchet derivative, the force vector can be defined
explicitly as

T〈x′ − x〉 = ω(|x′ − x|)[σ(F)]t.B.(x′ − x) (129)

The processing of mapping a stress tensor as a peridynamic force state is
the inverse of the process of approximating the deformation state by a defor-
mation gradient tensor. A peridynamic constitutive model that uses stress as
an intermediate quantity results in general in bond forces which are not paral-
lel to the deformed bonds. This type of modelling was called “non-ordinary”
by Silling [250].

8.5 Numerical discretisation

The discretisation of the peridynamics model is quite straightforward. Eq.
(83) can be rewritten as a finite sum

ρün
i = ∑

p

f(un
p − un

i , xp − xi)Vp + bn
i (130)

where n is the time step and subscripts denote the node number, i.e., un
i =

u(xi, tn), Vp is the volume of node p. Eq. (130) is taken over all p nodes which
satisfy |xp − ui| ≤ δ. The grid spacing ∆x is also an important parameter in
the peridynamics discretisation.
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The discretised form of the linearised peridynamics model is given by

ρün
i = ∑

p

C(un
p − un

i , xp − xi)Vp + bn
i (131)

The displacements un
i are obtained using an explicit central difference for-

mulation,

ün
i =

un+1
i − 2un

i+1 + un−1
i

∆t2
(132)

with ∆t as the time step. Some studies of the stability of the numerical dis-
cretisation were described in [155, 249]. It has been established that the time
step must not exceed a certain value in order for the numerical discretisation
to be stable. Moreover, the error associated with the discretisation depends
on the time step with (O(∆t)) and the grid spacing with (O(∆x2)),

∆t <

√

2ρ

∑p Vp|C(xp − xi)|
(133)

Convergence in peridynamics is affected by two parameters: the grid spac-
ing ∆x and the horizon δ. Reducing the horizon size for a fixed grid spac-
ing will lead to the peridynamics solution approximating the solution using
classical theory. However, fixing the horizon size while increasing the grid
spacing will lead to the exact non-local solution for that particular horizon
size [122]. As for domain discretisation methods, it is important to balance the
size of the horizon so the damage features in the analysed body are properly
considered, and the grid spacing should be sufficiently small for the results
to converge to the non-local solution. Usually, it ranges from 1/3 to 1/5 of
the size of the horizon.

In recent works, the peridynamics formulation is used conjointly with
other discretisation methods, such as meshless formulation [249] and finite
element formulation [155].

In [202], peridynamics is used only to obtain the prediction of failure of
the composite material, where an FEM code is employed to solve the global
problem. This type of combined approach is often necessary since the peridy-
namic formulation can demand significant computational power, a common
problem in molecular dynamics simulations as well.

9 Conclusions and prospective work

We have seen that the hydraulic fracture problem presents several charac-
teristics which makes its study complicated: the shale is not a homogeneous
material, it is not isotropic, the nanoporosity may retard crack propagation
as the fluid penetrates the rock, and a large fracture network has to be con-
sidered in which cracks develop at multiple length scales, all of which can
greatly increase the computational solving time. Moreover, most current an-
alytical and numerical methods do not take into account crack branching,
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a key factor in order to obtain a correct estimation of the extended fracture
network.

The current fracture models for brittle rocks and fracking have been use-
ful as a first step in offering a more realistic fracking model. There are of
course other limitations attached to each of the numerical models discussed
earlier: for instance, in cohesive models, the cohesive zone model is not a pa-
rameter to be found, so the crack propagation path is already known a priori.
Most works on X-FEM and BEM models consider that the crack propagation
path is unique; only recently have some works appeared considering crack
branching [185, 244, 285].

Fracking models developed so far have not considered the full complexity
of shale rocks. Ulm and co-workers [268–270] have established that shales are
likely to be transversely isotropic materials, with the direction perpendicular
to the bedding planes taken as the symmetry axis. This is mainly due to the
deposition process. It was also stated that the shale anisotropy is due more
to the interaction between the particles than the elastic behaviour of the shale
components.

It was seen in [139] that the fluid penetrating the crack may retard crack
propagation, so the material’s porosity has to be taken into account in the
numerical model.

9.1 Future works

The main challenges researchers are facing with respect to the development
of a new numerical formulation for modelling hydraulic fracture are: (i) the
multiscale characteristic of the fracking in shale rocks, and (ii) the require-
ment for the numerical method to deal with a large number of cracks simul-
taneously propagating and possibly branching.

For crack propagation and crack branching, the peridynamics formula-
tion has been shown to have excellent results. A few issues have been raised
about the method, such as how to choose the grid spacing (interval between
particles) and the horizon (area of influence of a given particle). Even though
an orthotropic formulation for 2D materials was developed by [95], there
are some limitations over these formulations, since a direct bond force for-
mulation is used. To overcome this limitation, a state space formulation for
anisotropic materials should be developed.

A multiscale model must be able to consider how a crack entering the
RVE interacts with the voids that are present. Moreover, there must be a cou-
pling between the microscale (anisotropic) and the macroscale (transversely
isotropic). The peridynamics formulation could be used to model the mi-
croscale, so the crack branching inside the RVE can be properly considered.
Once the crack propagation path is obtained, another numerical method (X-
FEM/X-BEM) can be employed to model the crack in the macroscale. Crack
branching has already been considered in peridynamics in [106]. A compari-
son against experimental results of X-FEM, cohesive models and peridynam-
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ics in dynamic fracture is done in [5], where it is observed that the peridy-
namics model is able to capture the physical behaviour seen in experiments.

A stochastic approach is likely to be the most useful way to model the ex-
tended fracture network, since the natural variability in geological conditions
makes us unlikely to be able to obtain a deterministic model of the fracture
system induced around any particular well. Moreover, the crack propaga-
tion obtained with the peridynamics formulation may change significantly if
changes to the grid spacing or horizon size are made.
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93. F. Garcı́a-Sánchez, A. Sáez, and J. Domı́nguez. Two-dimensional time-harmonic BEM for
cracked anisotropic solids. Engineering Analysis with Boundary Elements, 30(2):88–99, 2006.

94. F. Garcı́a-Sánchez and C. Zhang. A comparative study of three BEM for transient dynamic
crack analysis of 2-D anisotropic solids. Computational Mechanics, 40(4):753–769, 2007.

95. M. Ghajari, L. Iannucci, and P. Curtis. A peridynamic material model for the analysis of
dynamic crack propagation in orthotropic media. Computer Methods in Applied Mechanics
and Engineering, 276:431–452, 2014.

96. S. Ghosh, K. Lee, and S. Moorthy. Multiple scale analysis of heterogeneous elastic structures
using homogenization theory and Voronoi cell finite element method. International Journal
of Solids and Structures, 32(1):27–62, 1995.

97. J. C. Glorioso and A. Rattia. Unconventional reservoirs: Basic petrophysical concepts for
shale gas. In SPE/EAGE European Unconventional Resources Conference & Exhibition-From
Potential to Production, 2012.
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177. N. Möes, J. Dolbow, and T. Belytschko. A finite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.

178. S. D. Mohaghegh. Reservoir modeling of shale formations. Journal of Natural Gas Science
and Engineering, 12:22–33, 2013.

179. S. Mohammadi. Extended finite element method: for fracture analysis of structures. John Wiley
& Sons, 2008.

180. P. Moonen, J. Carmeliet, and L. Sluys. A continuous–discontinuous approach to simulate
fracture processes in quasi-brittle materials. Philosophical Magazine, 88(28-29):3281–3298,
2008.

181. P. Moonen, L. Sluys, and J. Carmeliet. A continuous–discontinuous approach to simulate
physical degradation processes in porous media. International Journal for Numerical Methods
in Engineering, 84(9):1009–1037, 2010.

182. D. Motamedi, A. S. Milani, M. Komeili, M. N. Bureau, F. Thibault, and D. Trudel-Boucher.
A stochastic XFEM model to study delamination in PPS/Glass UD composites: Effect of
uncertain fracture properties. Applied Composite Materials, 21(2):341–358, 2014.

183. D. Motamedi and S. Mohammadi. Dynamic analysis of fixed cracks in composites by the
extended finite element method. Engineering Fracture Mechanics, 77(17):3373–3393, 2010.



Numerical simulation of fracking 63

184. D. Motamedi and S. Mohammadi. Fracture analysis of composites by time independent
moving-crack orthotropic XFEM. International Journal of Mechanical Sciences, 54(1):20–37,
2012.

185. S. Mousavi, E. Grinspun, and N. Sukumar. Higher-order extended finite elements with har-
monic enrichment functions for complex crack problems. International Journal for Numerical
Methods in Engineering, 86(4-5):560–574, 2011.

186. R. Mueller, S. Kolling, and D. Gross. On configurational forces in the context of the finite
element method. International Journal for Numerical Methods in Engineering, 53(7):1557–1574,
2002.

187. R. Mueller and G. A. Maugin. On material forces and finite element discretizations. Com-
putational Mechanics, 29(1):52–60, 2002.

188. A. Munjiza. The Combined Finite-Discrete Element Method. Wiley Online Library, 2004.
189. L. C. Murdoch and L. N. Germanovich. Analysis of a deformable fracture in permeable ma-

terial. International Journal for Numerical and Analytical Methods in Geomechanics, 30(6):529–
561, 2006.
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