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Abstract

For a connected graph G = (V,E), a subset U ⊆ V is called a disconnected cut if
U disconnects the graph and the subgraph induced by U is disconnected as well.
We show that the problem to test whether a graph has a disconnected cut is NP-
complete. This problem is polynomially equivalent to the following problems: testing
if a graph has a 2K2-partition, testing if a graph allows a vertex-surjective homomor-
phism to the reflexive 4-cycle and testing if a graph has a spanning subgraph that
consists of at most two bicliques. Hence, as an immediate consequence, these three
decision problems are NP-complete as well. This settles an open problem frequently
posed in each of the four settings.
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1 Introduction

We solve an open problem that showed up as a missing case (often the missing
case) in a number of different research areas arising from connectivity theory,
graph covers, graph homomorphisms and graph modification. It is the only
open question in the papers by Dantas et al. [8] and Fleischner et al. [15], a
principal open question of Ito et al. [24,25], and the central question discussed
by Cook et al. [6] and Dantas et al. [9]. Indeed, the problem is considered
important enough to generate its own complexity class [13,29], and it is known
to be tractable for many graph classes [6,9,15,24].

1 An extended abstract of this paper appeared in the proceedings of CP2011 [28].
2 The first author was supported by EPSRC grant EP/G020604/1.
3 The second author was supported by EPSRC grant EP/G043434/1.



Before we explain how these areas are related, we briefly describe them first.
Throughout the paper, we consider undirected finite graphs that have no mul-
tiple edges. Unless explicitly stated otherwise they do not have self-loops ei-
ther. We denote the vertex set and edge set of a graph G by VG and EG,
respectively. If no confusion is possible, we may omit the subscripts. We
let n = |V (G)| denote the number of vertices of G. The complement of a
graph G = (V,E) is the graph G = (V, {uv /∈ E | u 6= v}). For a subset
U ⊆ VG, we let G[U ] denote the subgraph of G induced by U , which is the
graph (U, {uv | u, v ∈ U and uv ∈ EG}).

1.1 Vertex Cut Sets

A maximal connected subgraph of G is called a component of G. A vertex cut
(set) or separator of a graph G = (V,E) is a subset U ⊂ V such that G[V \U ]
contains at least two components.

Vertex cuts play an important role in graph connectivity, and various kinds
of vertex cuts have been studied in the literature. For instance, a cut U of
a graph G = (V,E) is called a k-clique cut if G[U ] has a spanning subgraph
consisting of k complete graphs; a strict k-clique cut if G[U ] consists of k
components that are complete graphs; a stable cut if U is an independent set;
and a matching cut if EG[U ] is a matching. The problem that asks whether a
graph has a k-clique cut is solvable in polynomial time for k = 1 and k = 2,
as shown by Whitesides [35] and Cameron et al. [5], respectively. The latter
authors also showed that deciding if a graph has a strict 2-clique cut can be
solved in polynomial time. On the other hand, the problems that ask whether
a graph has a stable cut or a matching cut, respectively, are NP-complete, as
shown by Chvátal [7] and Brandstädt et al. [2], respectively.

For a fixed constant k ≥ 1, a cut U of a connected graph G is called a k-cut
of G if G[U ] contains exactly k components. Testing if a graph has a k-cut
is solvable in polynomial time for k = 1, whereas it is NP-complete for every
fixed k ≥ 2 [24]. For k ≥ 1 and ` ≥ 2, a k-cut U is called a (k, `)-cut of a
graph G if G[V \U ] consists of exactly ` components. Testing if a graph has
a (k, `)-cut is polynomial-time solvable when k = 1, ` ≥ 2, and NP-complete
otherwise [24].

A cut U of a graph G is called disconnected if G[U ] contains at least two
components. We observe that U is a disconnected cut if and only if V \U is a
disconnected cut if and only if U is a (k, `)-cut for some k ≥ 2 and ` ≥ 2. The
following question was posed in several papers [15,24,25] as an open problem.

Q1. How hard is it to test if a graph has a disconnected cut?
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The problem of testing if a graph has a disconnected cut is called the Dis-
connected Cut problem. It is known that every graph of diameter 1 has
no disconnected cut, and every graph of diameter at least 3 has a discon-
nected cut [15]. Hence, in order to determine the computational complexity of
Disconnected Cut, we may restrict ourselves to graphs of diameter 2.

A disconnected cut U of a connected graph G = (V,E) is minimal if G[(V \U)∪
{u}] is connected for every u ∈ U . Recently, the corresponding decision prob-
lem called Minimal Disconnected Cut was shown to be NP-complete [25].

1.2 H-partitions

A model graph H with VH = {h0, . . . , hk−1} has two types of edges: solid and
dotted edges, and an H-partition of a graph G is a partition of VG into k
(nonempty) sets V0, . . . , Vk−1 such that for all vertices u ∈ Vi, v ∈ Vj and for
all 0 ≤ i < j ≤ k − 1 the following two conditions hold. Firstly, if hihj is a
solid edge of H, then uv ∈ EG. Secondly, if hihj is a dotted edge of H, then
uv /∈ EG. There are no such restrictions when hi and hj are not adjacent.
Let 2K2 be the model graph with vertices h0, . . . , h3, solid edges h0h2, h1h3

and no dotted edges, and 2S2 be the model graph with vertices h0, . . . , h3,
dotted edges h0h2, h1h3 and no solid edges. We observe that a graph G has a
2K2-partition if and only if its complement G has a 2S2-partition.

The following question was mentioned in several papers [6,8,9,13,29] as an
open problem.

Q2. How hard is it to test if a graph has a 2K2-partition?

One of the reasons for posing this question is that the (equivalent) cases
H = 2K2 and H = 2S2 are the only two cases of model graphs on at most
four vertices for which the computational complexity of the corresponding de-
cision problem, called H-Partition, is still open. In fact it is known that H-
Partition is polynomial-time solvable for all other 4-vertex model graphs H.
In particular, the model graph H with vertices h0, . . . , h3, solid edge h0h2 and
dotted edge h1h3 is well known. In that case the H-Partition problem is
called the Skew Partition problem. Note that this problem is equivalent
to asking whether the vertex set of a given graph can be partitioned into two
sets V1 and V2 such that V1 induces a disconnected graph in G and V2 in-
duces a disconnected graph in G. Even the list version of this problem, where
each vertex has been assigned a list of blocks in which it must be placed,
is polynomial-time solvable, as shown by de Figueiredo, Klein and Reed [14]
(later, Kennedy and Reed [27] presented a faster polynomial-time algorithm
for the non-list version). All other cases of H-Partition for 4-vertex model
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graphs H /∈ {K2, S2} have been settled by Dantas et al. [8].

In the literature, 2K2-partitions have been well studied, see e.g. three recent
papers of Cook et al. [6], Dantas, Maffray and Silva [9] and Teixeira, Dantas
and de Figueiredo [29]. The first two papers [6,9] study the 2K2-Partition
problem for several graph classes, and the third paper [29] defines a new class
of problems called 2K2-hard. In addition, the first paper also proves that 2K2-
Partition can be solved in O((2d−1)n2) time for n-vertex graphs of minimum
vertex degree d. By a result on retractions of Hell and Feder [11], which we
explain later, the list versions of 2S2-Partition and 2K2-Partition are NP-
complete. A variant on H-partitions that allows empty blocks Vi in an H-
partition is studied by Feder et al. [12], whereas Cameron et al. [5] consider
the list version of this variant.

1.3 Graph Covers

Let G be a graph and S be a set of (not necessarily vertex-induced) subgraphs
of G that has size |S|. The set S is a cover of G if every edge of G is contained
in at least one of the subgraphs in S. The set S is a vertex-cover of G if every
vertex of G is contained in at least one of the subgraphs in S. If all subgraphs
in S are bicliques, that is, complete connected bipartite graphs, then we speak
of a biclique cover or a biclique vertex-cover, respectively. Testing whether a
graph has a biclique cover of size at most k is polynomial-time solvable for
any fixed k; it is even fixed-parameter tractable in k as shown by Fleischner
et al. [15]. The same authors [15] show that testing whether a graph has a
biclique vertex-cover of size at most k is polynomial-time solvable for k = 1
and NP-complete for k ≥ 3. For k = 2, they show that this problem can
be solved in polynomial time for bipartite input graphs, and they pose the
following open problem.

Q3. How hard is it to test if a graph has a biclique vertex-cover of size 2?

The problem of testing if a graph has a biclique vertex-cover of size 2 is called
the 2-Biclique Vertex-Cover problem. In order to answer question Q3
we may without loss of generality restrict to biclique vertex-covers in which
every vertex is in exactly one of the subgraphs in S (cf. [15]).

1.4 Graph Homomorphisms

A homomorphism from a graph G to a graph H is a mapping f : VG → VH

that maps adjacent vertices of G to adjacent vertices of H, i.e., f(u)f(v) ∈
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EH whenever uv ∈ EG. The problem H-Homomorphism tests whether a
given graph G (also called the guest graph) allows a homomorphism to a
graph H called the target which is fixed, i.e., not part of the input. This
problem is also known as H-Coloring. Hell and Nešetřil [22] showed that
H-Homomorphism is solvable in polynomial time if H is bipartite, and NP-
complete otherwise. Here, H is assumed not to have a self-loop xx, as otherwise
we can map every vertex of G to x.

A homomorphism f from a graph G to a graph H is surjective if for each
x ∈ VH there exists at least one vertex u ∈ VG with f(u) = x. This leads to
the problem of deciding if a given graph allows a surjective homomorphism to
a fixed target graph H, which is called the Surjective H-Homomorphism
or Surjective H-Coloring problem. For this variant, the presence of a
vertex with a self-loop in the target graph H does not make the problem
trivial. Such vertices are called reflexive, whereas vertices with no self-loop are
said to be irreflexive. A graph that contains one or more reflexive vertices is
called partially reflexive. In particular, a graph is reflexive if all its vertices are
reflexive, and a graph is irreflexive if all its vertices are irreflexive. Golovach,
Paulusma and Song [18] showed that for any fixed tree H, the Surjective H-
Homomorphism problem is polynomial-time solvable if the (possibly empty)
set of reflexive vertices in H induces a connected subgraph of H, and NP-
complete otherwise. They mention that the smallest open case is the case, in
which H is the reflexive 4-cycle denoted C4.

Q4. How hard is it to test if a graph has a surjective homomorphism to C4?

The following two notions are closely related to surjective homomorphisms.
A homomorphism f from a graph G to an induced subgraph H of G is a
retraction from G to H if f(h) = h for all h ∈ VH . In that case we say
that G retracts to H. Note that this implies that G allows a vertex-surjective
homomorphism to H, whereas the reverse implication does not necessarily
hold. For a fixed graph H, the H-Retraction problem has as input a graph
G that contains H as an induced subgraph and is to test if G retracts to H.
Hell and Feder [11] showed that C4-Retraction is NP-complete.

We emphasize that a surjective homomorphism is vertex-surjective. A stronger
notion is to require a homomorphism from a graph G to a graph H to be
edge-surjective, which means that for any edge xy ∈ EH with x 6= y there
exists an edge uv ∈ EG with f(u) = x and f(v) = y. Note that the edge-
surjectivity condition only holds for edges xy ∈ EH ; there is no such condition
on the self-loops xx ∈ EH . An edge-surjective homomorphism is also called
a compaction. If f is a compaction from G to H, we say that G compacts
to H. The H-Compaction problem asks if a graph G compacts to a fixed
graph H. Vikas [30–32] determined the computational complexity of this prob-
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lem for several classes of fixed target graphs. In particular, he showed that
C4-Compaction is NP-complete [30]. More recently, Vikas [33,34] considered
H-Compaction for guest graphs belonging to some restricted graph class.

1.5 Graph Contractibility

A graph modification problem has as input a graph G and an integer k. The
question is whether G can be modified to belong to some specified graph class
that satisfies further properties by using at most k operations of a certain
specified type such as deleting a vertex or deleting an edge. Another natural
operation is the contraction of an edge, which removes both end-vertices of the
edge and replaces them by a new vertex adjacent to precisely those vertices
that were adjacent to at least one of the two end-vertices. If a graph H can
be obtained from G by a sequence of edge contractions, then G is said to be
contractible to H. The problem Π-Contractibility has as input a graph G
together with an integer k and is to test whether G is contractible to a graph
in Π by using at most k edge contractions.

Asano and Hirata [1] show that Π-Contractibility is NP-complete if Π
satisfies certain conditions. As a consequence, this problem is NP-complete for
many graph classes Π such as the classes of planar graphs, outerplanar graphs,
series-parallel graphs, forests and chordal graphs. By a result of Heggernes et
al. [20], Π-Contractibility is NP-complete for trees even if the input graph
is bipartite. If Π is the class of paths or cycles, then Π-Contractibility
is polynomially equivalent to the problems of determining the length of a
longest path and a longest cycle, respectively, to which a given graph can
be contracted. The first problem has been shown to be NP-complete by van
’t Hof, Paulusma and Woeginger [23] even for graphs with no induced path
on 6 vertices. The second problem has been shown to be NP-complete by
Hammack [19]. Heggernes et al. [21] observed that Π-Contractibility is
NP-complete when Π is the class of bipartite graphs, whereas Golovach et
al. [17] showed that Π-Contractibility is NP-complete when Π is the class
of graphs of a certain minimum degree d; they show that d = 14 suffices.

A graph G contains a graph H as a minor if G can be modified to H by a se-
quence of vertex deletions, edge deletions, and edge contractions. Eppstein [10]
showed that it is NP-complete to decide if a given graph G has a complete
graph Kh as a minor for some given integer h. This problem is equivalent to
deciding if a graph G is contractible to Kh. Hence, Π-Contractibility is
NP-complete if Π is the class of complete graphs.

The biclique with partition classes of size k and `, respectively, is denoted
Kk,`. A star is a biclique K1,` for some integer ` ≥ 2. If Π is the class of stars,
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then Π-Contractibility is NP-complete. This can be seen as follows. Let
K1 1 G denote the graph obtained from a graph G after adding a new vertex
and making it adjacent to all vertices of G. Then G has an independent set of
size h for some given integer h ≥ 2 if and only if K1 1 G is contractible to a
star K1,h. Since the first problem is NP-complete [16,26], the result follows.

A remaining elementary graph class is the class of bicliques Kk,` with k ≥ 2
and ` ≥ 2; we call such bicliques proper. In order to determine the complexity
for this graph class, we first consider the following question.

Q5. How hard is it to test if a graph is contractible to a proper biclique?

The problem of testing whether a graph can be contracted to a proper bi-
clique is called the Biclique Contractibility problem. By setting k =
n, we see that this problem is a special instance of the corresponding Π-
Contractibility problem. If one of the two integers k ≥ 2 or ` ≥ 2 is fixed,
then testing if G is contractible to Kk,` is known to be NP-complete [24].

1.6 The Relationships Between Questions Q1–Q5

Before we explain how questions Q1–Q5 are related, we introduce some new
terminology. The distance dG(u, v) between two vertices u and v in a graph
G is the number of edges in a shortest path between them; if there is no path
between u and v then dG(u, v) = ∞. The diameter diam(G) is defined as
max{dG(u, v) | u, v ∈ V }. A biclique is called nontrivial if k ≥ 1 and ` ≥ 1.

Proposition 1 ([24]) Let G be a connected graph. Then statements (1)–(5)
are equivalent:

(1) G has a disconnected cut.
(2) G has a 2S2-partition.
(3) G allows a vertex-surjective homomorphism to C4.
(4) G has a spanning subgraph that consists of exactly two nontrivial bicliques.
(5) G has a 2K2-partition.

If diam(G) = 2, then (1)–(5) are also equivalent to the following statements:

(6) G allows a compaction to C4.
(7) G is contractible to some biclique Kk,` for some k, ` ≥ 2.

Due to Proposition 1, questions Q1–Q4 are equivalent. Recall that we may
restrict ourselves to graphs of diameter 2, as every graph of diameter 1 has
no disconnected cut, and every graph of diameter at least 3 has a discon-
nected cut [15]. Under this restriction, Proposition 1 tells us that Q1–Q4 are
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also equivalent to Q5 and to the question of determining the computational
complexity of C4-Compaction. Recall that Vikas [30] showed that the latter
problem is NP-complete. However, the gadget in his NP-completeness reduc-
tion has diameter 3 as observed by Ito et al. [25].

Our Result. A pair of vertices in a graph is a dominating (non-)edge if the
two vertices of the pair are (non-)adjacent, and any other vertex in the graph
is adjacent to at least one of them. We solve question Q4 by showing that the
problem Surjective C4-Homomorphism is indeed NP-complete for graphs
of diameter 2 even if they have a dominating non-edge. In contrast, Fleis-
chner et al. [15] showed that this problem is polynomial-time solvable on input
graphs with a dominating edge. As a consequence of our result and Propo-
sition 1, we find that the problems Disconnected Cut, 2K2-Partition,
2S2-Partition, and 2-Biclique Vertex-Cover and also that the problems
C4-Compaction and Biclique Contraction are NP-complete for graphs
of diameter 2 even if they have a dominating non-edge. Hence, we have not
only solved question Q4 but also questions Q1, Q2, Q3 and Q5.

Our approach to prove NP-completeness is as follows. As mentioned before,
we can restrict ourselves to graphs of diameter 2. We therefore try to reduce
the diameter in the gadget of the NP-completeness proof of Vikas [30] for C4-
Compaction from 3 to 2. This leads to NP-completeness of Surjective C4-
Homomorphism, because these two problems coincide for graphs of diameter
2 due to Proposition 1. The proof that C4-Compaction is NP-complete [30]
has its roots in the proof that C4-Retraction is NP-complete [11]. So far, it
was only known that C4-Retraction stays NP-complete for graphs of diame-
ter 3 [25]. We start our proof by showing that C4-Retraction is NP-complete
even for graphs of diameter 2. The key idea is to base the reduction from an
NP-complete homomorphism (constraint satisfaction) problem that we obtain
only after a fine analysis under the algebraic conditions of Bulatov [3] and
Bulatov, Krokhin and Jeavons [4], which we perform in Section 2. This ap-
proach is novel in the sense that usually graph theory provides a test-bed for
constraint satisfaction problems whereas here we see a case where the flow of
techniques is the other way around. We present our NP-completeness proof
for C4-Retraction on graphs of diameter 2 in Section 3. This leads to a spe-
cial input graph of the C4-Retraction problem, which enables us to modify
the gadget of the proof of Vikas [30] for C4-Compaction in order to get its
diameter down to 2, as desired. We explain this part in Section 4.

We also point out that Vikas [33,34] has announced to have an NP-completeness
proof of C4-Homomorphism as well but so far has not made his proof publicly
available.
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2 Constraint Satisfaction

The notion of a graph homomorphism can be generalized as follows. A struc-
ture is a tuple A = (A;R1, . . . , Rk), where A is a set called the domain of A
and Ri is an ni-ary relation on A for i = 1, . . . , k, i.e., a set of ni-tuples of
elements from A. Note that a graph G = (V,E) can be seen as a structure
G = (V ; {(u, v), (v, u) | uv ∈ E}). Throughout the paper we only consider
finite structures, i.e., with a finite domain.

Let A = (A;R1, . . . , Rk) and B = (B;S1, . . . , Sk) be two structures, where
each Ri and Si are relations of the same arity ni. Then a homomorphism
from A to B is a mapping f : A → B such that (a1, . . . , ani

) ∈ Ri implies
(f(a1), . . . , f(ani

)) ∈ Si for every i and every ni-tuple (a1, . . . , ani
) ∈ Ani . The

decision problem that is to test if a given structure A allows a homomorphism
to a fixed structure B is called the B-Homomorphism problem, also known
as the B-Constraint Satisfaction problem.

Let A = (A;R1, . . . , Rk) be a structure and ` be an integer. The power struc-
ture A` has domain A` and for 1 ≤ i ≤ k, has relations

R`
i := {((a11, . . . , a1`), . . . , (a

ni
1 , . . . , ani

` )) | (a11, . . . , a
ni
1 ), . . . , (a1` , . . . , a

ni
` ) ∈ Ri}.

We note that R1
i = Ri for 1 ≤ i ≤ k. An (`-ary) polymorphism of A is

a homomorphism from A` to A for some integer `. A 1-ary polymorphism
is also called an endomorphism. The set of polymorphisms of A is denoted
Pol(A).

A binary function f on a domain A is a semilattice function if f(h, f(i, j)) =
f(f(h, i), j), f(i, j) = f(j, i), and f(i, i) = i for all i, j ∈ A. A ternary function
f is a Mal’tsev function if f(i, j, j) = f(j, j, i) = i for all i, j ∈ A. A ternary
function f is a majority function if f(h, h, i) = f(h, i, h) = f(i, h, h) = h for
all h, i ∈ A. On the Boolean domain {0, 1}, we may consider propositional
functions. The only two semilattice functions on the Boolean domain are the
binary function ∧, which maps (h, i) to (h ∧ i), which is 1 if h = i = 1 and 0
otherwise, and the binary function ∨ which maps (h, i) to (h ∨ i), which is 0
if h = i = 0 and 1 otherwise. We may consider each of these two functions on
any two-element domain (where we view one element as 0 and the other as
1). For a function f on B, and a subset A ⊆ B, we let f|A be the restriction
of f to A.

A structure is a core if all of its endomorphisms are automorphisms, i.e., are
invertible. We will make use of the following theorem from Bulatov, Krokhin
and Jeavons [4] (it appears in this form in Bulatov [3]).

Theorem 2 ([3,4]) Let B = (B;S1, . . . , Sk) be a core and A ⊆ B be a subset
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of size |A| = 2 that as a unary relation is in B. If for each f ∈ Pol(B), f|A is not
majority, semilattice or Mal’tsev, then B-Homomorphism is NP-complete.

Let D be the structure on domain D = {0, 1, 3} with four binary relations

S1 := {(0, 3), (1, 1), (3, 1), (3, 3)}

S2 := {(1, 0), (1, 1), (3, 1), (3, 3)}

S3 := {(1, 3), (3, 1), (3, 3)}

S4 := {(1, 1), (1, 3), (3, 1)}.

We use {0, 1, 3} (instead of, say, {0, 1, 2}) to tie in exactly with the Vikas [30]
labelling of C4.

Proposition 3 The D-Homomorphism problem is NP-complete.

PROOF. We use Theorem 2. We first show that D is a core. Let g be an
endomorphism of D. We must show that g is an automorphism. If g(0) = 3
then g(1) = 3 by preservation of S2, i.e., as otherwise (1, 0) ∈ S2 does not imply
(g(1), g(0)) ∈ S2. However, (1, 1) ∈ S4 but (g(1), g(1)) = (3, 3) /∈ S4. Hence
g(0) 6= 3. If g(0) = 1 then g(3) = 1 by preservation of S1. However, (3, 3) ∈ S3

but (g(3), g(3)) = (1, 1) /∈ S3. Hence g(0) 6= 1. This means that g(0) = 0.
Consequently, g(1) = 1 by preservation of S2, and g(3) = 3 by preservation of
S1. Hence, g is the identity mapping, which is an automorphism, as desired.

Let A = {1, 3}, which is in D in the form of S1(p, p) (or S2(p, p)). Suppose
that f ∈ Pol(D). In order to prove Proposition 3, we must show that f|A is
neither majority nor semilattice nor Mal’tsev.

Suppose that f|A is semilattice. Then f|A = ∧ or f|A = ∨. If f|A = ∧, then
either f(1, 1) = 1, f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3, or f(1, 1) = 1,
f(1, 3) = 1, f(3, 1) = 1, f(3, 3) = 3 depending on how the elements 1, 3
correspond to the two elements of the Boolean domain. The same holds if
f|A = ∨. Suppose that f(1, 1) = 1, f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3. By
preservation of S4 we find that f(1, 3) = 1 due to f(3, 1) = 3. This is not
possible, as f(1, 3) = 3. Suppose that f(1, 1) = 1, f(1, 3) = 1, f(3, 1) = 1,
f(3, 3) = 3. By preservation of S3 we find that f(1, 3) = 3 due to f(3, 1) = 1.
This is not possible either.

Suppose that f|A is Mal’tsev. By preservation of S4, we find that f(1, 1, 3) = 1
due to f(3, 1, 1) = 3. However, because f(1, 1, 3) = 3, this is not possible.

Suppose that f|A is majority. By preservation of S1, we deduce that f(0, 3, 1) ∈
{0, 3} due to f(3, 3, 1) = 3, and that f(0, 3, 1) ∈ {1, 3} due to f(3, 1, 1) =
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1. Thus, f(0, 3, 1) = 3. By preservation of S2, however, we deduce that
f(0, 3, 1) ∈ {0, 1} due to f(1, 3, 1) = 1. This is a contradiction. Hence, we
have completed the proof of Proposition 3. 2

3 Retractions

In the remainder of this paper, the graph H denotes the reflexive 4-vertex
cycle C4. We let h0, . . . , h3 be the vertices and h0h1, h1h2, h2h3, and h3h0 be
the edges of H. We prove that H-Retraction is NP-complete for graphs of
diameter 2 by a reduction from D-Homomorphism.

Let A = (A;R1, . . . , R4) be an instance of D-Homomorphism, where we may
assume that each Ri is a binary relation. From A we construct a graph G as
follows. We let the elements in A correspond to vertices of G. If (p, q) ∈ Ri

for some 1 ≤ i ≤ 4, then we say that vertex p in G is of type ` and vertex q
in G is of type r. Note that a vertex can be of type ` and r simultaneously,
because it can be the first element in a pair in R1 ∪ · · · ∪ R4 and the second
element of another such pair. For each (p, q) ∈ Ri and 1 ≤ i ≤ 4 we introduce
four new vertices ap, bp, cq, dq with edges app, apbp, bpp, cqq, cqdq and dqq. We
say that a vertex ap, bp, cq, dq is of type a, b, c, d, respectively; note that these
vertices all have a unique type.

We now let the graph H be an induced subgraph of G (with distinct vertices
h0, . . . , h3). Then formally G must have self-loops h0h0, . . . , h3h3, because H
has such self-loops. Outside of H in G, it does not matter whether we con-
sider G to have self-loops or not. In any case we do not draw any loops in our
figures in order to keep these uncluttered.

In G we join every a-type vertex to h0 and h3, every b-type vertex to h1 and
h2, every c-type vertex to h2 and h3, and every d-type vertex to h0 and h1.
We also add an edge between h0 and every vertex of A.

We continue the construction of G by describing how we distinguish between
two pairs belonging to different relations. If (p, q) ∈ R1, then we add the edges
cqp and qh2; see Figure 1. If (p, q) ∈ R2, then we add the edges h2p and bpq; see
Figure 2. If (p, q) ∈ R3, then we add the edges h2p, h2q and apcq; see Figure 3.
If (p, q) ∈ R4, then we add the edges h2p, h2q and bpdq; see Figure 4.

We finish the construction of G by adding an edge between any two vertices of
type a, between any two vertices of type b, between any two vertices of type c,
and between any two vertices of type d. Note that this leads to four mutually
vertex-disjoint cliques in G; here a clique means a vertex set of a complete
graph. We call G a D-graph and prove the following result.
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Fig. 1. The part of a D-graph G for a pair
(p, q) ∈ R1.
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Fig. 2. The part of a D-graph G for a pair
(p, q) ∈ R2.
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q

Fig. 3. The part of a D-graph G for a pair
(p, q) ∈ R3.

ap bp

cq

dq 0
h

h2

h3

h1

q

p

Fig. 4. The part of a D-graph G for a pair
(p, q) ∈ R4.

Lemma 4 Every D-graph has diameter 2 and a dominating non-edge.

PROOF. Let G be a D-graph. We first show that G has a dominating non-
edge. Note that h0 is adjacent to all vertices except to h2 and the vertices of
type b and c. However, all vertices of type b and c are adjacent to h2. Because
h0 and h2 are not adjacent, this means that h0 and h2 form a dominating
non-edge in G.

We show that G has diameter 2 in Table 1. In this table, `, r, a, b, c, d denote
vertices of corresponding type, and superscripts denote the vertex or its type
that connects the two associated vertices in the case they are not adjacent
already. The distances in the table must be interpreted as upper bounds. For
example, the distance between a vertex p of type ` and a vertex ap′ of type
a is either 1 if p = p′ or 2 if p 6= p′. In the latter case, they are connected
by h0 (and perhaps by some other vertices as well). The table denotes this
as 2h0 . In two cases the connecting vertex depends on the relation Ri. Then
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h0 h1 h2 h3 ` r a b c d

h0 0 1 2h1 1 1 1 1 2h1 2h3 1

h1 . 0 1 2h0 2h0 2h0 2h0 1 2h2 1

h2 . . 0 1 2b 2c 2b 1 1 2c

h3 . . . 0 2h0 2h0 1 2a 1 2c

` . . . . 2h0 2h0 2h0 2b 2h2
c 2h0

r . . . . . 2h0 2h0 2h2
b 2c 2h0

a . . . . . . 1 2a 2h3 2h0

b . . . . . . . 1 2h2 2h1

c . . . . . . . . 1 2c

d . . . . . . . . . 1

Table 1
Determining the diameter of a D-graph G.

a subscript denotes the necessary second possibility that occurs when the
superscript vertex is not valid. For instance, when a vertex p of type ` is not
adjacent to h2, then p must be the first element in a pair (p, q) ∈ R1, and then
p is adjacent to cq, and hence there is always an intermediate vertex (either
h2 or cq) to connect p to an arbitrary vertex of type c not necessarily equal to
cq. In the table this is expressed as 2h2

c . 2

Recall that Feder and Hell [11] showed that H-Retraction is NP-complete.
Ito et al. [25] observed that H-Retraction stays NP-complete on graphs
of diameter 3. For our purposes, we need the following theorem. Note that
Lemma 4 and Theorem 5 together imply that H-Retraction is NP-complete
for graphs of diameter 2 that have a dominating non-edge.

Theorem 5 The H-Retraction problem is NP-complete even for D-graphs.

PROOF. We recall that H-Retraction is in NP, because we can guess a
partition of the vertex set of the input graph G into four (non-empty) sets and
verify in polynomial time if this partition corresponds to a retraction from G
to H.

To show NP-hardness, we reduce from the D-Homomorphism problem. From
an instance A = (A;R1, . . . , R4) of D-Homomorphism we construct a D-
graph G. We claim that A allows a homomorphism to D if and only if G
retracts to H.
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p q ap bp cq dq

h0 h3 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 2
g-values when (p, q) ∈ R1.

p q ap bp cq dq

h1 h0 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 3
g-values when (p, q) ∈ R2.

p q ap bp cq dq

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 4
g-values when (p, q) ∈ R3.

p q ap bp cq dq

h1 h1 h0 h1 h2 h1

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

Table 5
g-values when (p, q) ∈ R4.

First suppose that A allows a homomorphism f to D. We construct a map-
ping g from VG to VH as follows. For each a ∈ A we let g(a) = hi if f(a) = i,
and for i = 0, . . . , 3 we let g(hi) = hi. Because f is a homomorphism from
A to D, this leads to Tables 2–5, which explain where ap, bp, cq and dq map
under g, according to where p and q map. From these, we conclude that g is a
retraction from G to H. In particular, we note that the edges cqp, bpq, apcq, and
bpdq each map to an edge or self-loop in H when (p, q) belongs to R1, . . . , R4,
respectively.

To prove the reverse implication, suppose that G allows a retraction g to H.
We construct a mapping f : A → {0, 1, 2, 3} by defining, for each a ∈ A,
f(a) = i if g(a) = hi. We claim that f is a homomorphism from A to D. In
order to see this, we first note that g maps all a-type vertices to {h0, h3}, all
b-type vertices to {h1, h2}, all c-type vertices to {h2, h3} and all d-type vertices
to {h0, h1}. We now show that (p, q) ∈ Ri implies that (f(p), f(q)) ∈ Si for
i = 1, . . . , 4.

Suppose that (p, q) ∈ R1. Because p is adjacent to h0, we find that g(p) ∈
{h0, h1, h3}. Because q is adjacent to h0 and h2, we find that g(q) ∈ {h1, h3}.
If g(p) = h0, then g maps cq to h3, and consequently g(q) = h3. If g(p) = h1,
then g maps cq to h2, and consequently, dq to h1, implying that g(q) = h1.
Hence, we find that (f(p), f(q)) ∈ {(0, 3), (1, 1), (3, 1), (3, 3)} = S1, as desired.

Suppose that (p, q) ∈ R2. Because p is adjacent to h0 and h2, we find that
g(p) ∈ {h1, h3}. Because q is adjacent to h0, we find that g(q) ∈ {h0, h1, h3}.
If g(q) = h0, then g maps bp to h1, and consequently, g(p) = h1. If g(q) = h3,
then g maps bp to h2, and consequently, ap to h3, implying that g(p) = h3.

14



Hence, we find that (f(p), f(q)) ∈ {(1, 0), (1, 1), (3, 1), (3, 3)} = S2, as desired.

Suppose that (p, q) ∈ R3. Because both p and q are adjacent to both h0 and
h2, we find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(p) = h1, then g maps
ap to h0, and consequently, cq to h3, implying that g(q) = h3. Hence, we find
that (f(p), f(q)) ∈ {(1, 3), (3, 1), (3, 3)} = S3, as desired.

Suppose that (p, q) ∈ R4. Because both p and q are adjacent to both h0 and
h2, we find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(q) = h3, then g maps
dq to h0, and consequently, bp to h1, implying that g(p) = h1. Hence, we find
that (f(p), f(q)) ∈ {(1, 1), (1, 3), (3, 1)} = S4, as desired. This completes the
proof of Lemma 5. 2

4 Surjective Homomorphisms

Vikas [30] constructed the following graph from a graph G = (V,E) that con-
tains H as an induced subgraph. For each vertex v ∈ VG\VH we add three new
vertices uv, wv, yv with edges h0uv, h0yv, h1uv, h2wv, h2yv, h3wv, uvv, uvwv, uvyv,
vwv, wvyv. We say that a vertex uv, wv and yv has type u, w, or y, respectively.
We also add all edges between any two vertices uv, uv′ and between any two
vertices wv, wv′ with v 6= v′. For each edge vv′ in EG\EH we choose an arbi-
trary orientation, say from v to v′, and then add a new vertex xvv′ with edges
vxvv′ , v

′xvv′ , uvxvv′ , wv′xvv′ . We say that this new vertex has type x. The new
graph G′ obtained from G is called an H-compactor of G. See Figure 5 for an
example. This figure does not depict any self-loops, although formally G′ must
have at least four self-loops, because G′ contains G, and consequently, H as an
induced subgraph. However, for the same reason as for the H-Retraction
problem, this is irrelevant for the Surjective H-Homomorphism problem,
and we may assume that G and G′ are irreflexive.

Vikas [30] showed that a graph G retracts to H if and only if an (arbitrary)
H-compactor G′ of G retracts to H if and only if G′ compacts to H. Recall
that an H-compactor is of diameter 3 as observed by Ito et al. [25]. Our aim
is to reduce the diameter in such a graph to 2. This forces us to make a
number of modifications. Firstly, we must remove a number of vertices of type
x. Secondly, we can no longer choose the orientations regarding the remaining
vertices of type x arbitrarily. Thirdly, we must connect the remaining x-type
vertices to H via edges. We explain these modifications in detail below.

Let G be a D-graph. For all vertices in G we create vertices of type u, v, w, y
with incident edges as in the definition of a compactor. We then perform the
following three steps.
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xvv’

v v’

yv

yv’uv’ uv

h0

h1 h2

h3

wv’wv

Fig. 5. The part of G′ that corresponds to edge vv′ ∈ EG \EH as displayed in [30].

1. Not creating all the vertices of type x.
We do not create x-type vertices for the following edges in G: edges between
two a-type vertices, edges between two b-type vertices, edges between two c-
type vertices, and edges between two d-type vertices. We create x-type vertices
for all the other edges in EG \ EH as explained in Step 2.

2. Choosing the “right” orientation of the other edges of G−H.
For (p, q) ∈ Ri and 1 ≤ i ≤ 4, we choose x-type vertices xapp, xpbp , xapbp ,
xqcq , xqdq , and xdqcq . In addition we create the following x-type vertices. For
(p, q) ∈ R1 we choose xpcq . For (p, q) ∈ R2 we choose xqbp . For (p, q) ∈ R3 we
choose xapcq . For (p, q) ∈ R4 we choose xdqbp . Note that in this way we have
indeed created x-type vertices for all the other edges of EG \ EH .

3. Connecting the created x-type vertices to H.
We add an edge between h0 and every vertex of type x that we created in
Step 2. We also add an edge between h2 and every such vertex.

We call the resulting graph a semi-compactor of G and prove two essential
lemmas.

Lemma 6 Let G be a D-graph. Every semi-compactor of G has diameter 2
and a dominating non-edge.

PROOF. Let G′′ be a semi-compactor of a D-graph G. We first show that G′′

has a dominating non-edge. We note that h0 is adjacent to all vertices except
to h2 and the vertices of type b, c, and w. However, all vertices of type b, c,
and w are adjacent to h2. Because h0 and h2 are not adjacent, this means that
h0 and h2 form a dominating non-edge in G′′.
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v u w y x

v 2 2 2 2 2

u . 1 2w 2h0 2h0

w . . 1 2h2 2h2

y . . . 2h0 2h0

x . . . . 2h0

Table 6
Determining the diameter of a semi-compactor G′′.

We show that G′′ has diameter 2 in Table 6. In this table, v denotes a vertex
of VG, and u, w, y, x denote vertices of the corresponding type. For reasons
of clarity we explain the first row of Table 6 below; superscripts for the other
rows are used in the same way as in Table 1.

For the first position of row 1 we use Table 1 to determine an upper bound
for the distance between two vertices in G′′; hence, there is no superscript
for this position. For the second position of row 1 we use the fact that every
vertex v ∈ VG \ VH is adjacent to uv and that uv is adjacent to every other
vertex of type u. Furthermore, if v = h0 or v = h1 then v is adjacent to every
vertex of type u, and if v = h2 or v = h3 then v is of distance two from every
vertex of type u by using h0 or h1 as an intermediate vertex, respectively. The
third position of row 1 can be explained by similar arguments. The fourth and
fifth positions follow from the already deduced property of G′′ that h0 and h2

form a dominating non-edge combined with the property that every vertex
of type x and y is adjacent to both h0 and h2. This completes the proof of
Lemma 6. 2

Lemma 7 Let G′′ be a semi-compactor of a D-graph G. Then the following
statements are equivalent:

(i) G retracts to H;
(ii) G′′ retracts to H;

(iii) G′′ compacts to H;
(iv) G′′ has a vertex-surjective homomorphism to H.

PROOF. We show the following implications: (i) ⇒ (ii), (ii) ⇒ (i), (ii) ⇒
(iii), (iii)⇒ (ii), (iii)⇒ (iv), and (iv)⇒ (iii).

“(i) ⇒ (ii)” Let f be a retraction from G to H. We show how to extend f
to a retraction from G′′ to H. We observe that every vertex of type u can
only be mapped to h0 or h1, because such a vertex is adjacent to h0 and h1.
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We also observe that every vertex of type w can only be mapped to h2 or h3,
because such a vertex is adjacent to h2 and h3. This implies the following. Let
v ∈ VG \ VH . If f(v) = h0 or f(v) = h1, then wv must be mapped to h3 or h2,
respectively. Consequently, uv must be mapped to h0 or h1, respectively, due
to the edge uvwv. If f(v) = h2 or f(v) = h3, then uv must be mapped to h1 or
h0, respectively. Consequently, wv must be mapped to h2 or h3, respectively,
due to the edge uvwv. Hence, f(v) fixes the mapping of the vertices uv and
wv. Moreover, we showed that either uv is mapped to h1 or wv is mapped to
h3. Note that both vertices are adjacent to yv. Then, because yv can only be
mapped to h1 or h3 due to the edges h0yv and h2yv, the mapping of yv is fixed
as well; if uv is mapped to h1 then yv is mapped to h1, and if wv is mapped
to h3 then yv is mapped to h3.

What is left to do is to verify whether we can map the vertices of type x. For
this purpose we refer to Table 7, where v, v′ denote two adjacent vertices of
VG \ VH . Every possible combination of f(v) and f(v′) corresponds to a row
in this table. As we have just shown, this fixes the image of the vertices uv,
uv′ , wv, wv′ , yv′ and yv. For xvv′ we use its adjacencies to v, v′, uv and wv′ to
determine potential images. For some cases, this number of potential images is
not one but two. This is shown in the last column of Table 7; here we did not
take into account that every xvv′ is adjacent to h0 and h2 in our construction.
Because of these adjacencies, every xvv′ can only be mapped to h1 or h3. In
the majority of the 12 rows in Table 7 we have this choice; the exceptions are
row 4 and row 9. In rows 4 and 9, we find that xvv′ can only be mapped to
one image, which is h0 or h2, respectively. We will show that neither row can
occur.

By Steps 1-2 of the definition of a semi-compactor, we have that (v, v′) belongs
to

{(ap, p), (p, bp), (ap, bp), (q, cq), (q, dq), (dq, cq), (p, cq), (q, bp), (ap, cq), (dq, bp)}.

We first show that row 4 cannot occur. In order to obtain a contradiction,
suppose that row 4 does occur, i.e., that f(v) = h1 and f(v′) = h0 for some
v, v′ ∈ VG \ VH . Due to their adjacencies with vertices of H, every vertex of
type a is mapped to h0 or h3, every vertex of type b to h1 or h2, every vertex
of type c to h2 or h3 and every vertex of type d to h0 or h1. This means that v
can only be p, q, bp, or dq, whereas v′ can only be p, q, ap or dq. If v = p then
v′ ∈ {bp, cq}. If v = q then v′ ∈ {cq, dq, bp}. If v = bp then v′ cannot be chosen.
If v = dq then v′ ∈ {cq, bp}. Hence, we find that v = q and v′ = dq. However,
then f is not a retraction from G to H, because cq is adjacent to dq, q, h2, h3,
and f maps these vertices to h0, h1, h2, h3, respectively. Hence, row 4 does not
occur.

We now show that row 9 cannot occur. In order to obtain a contradiction,
suppose that row 9 does occur, i.e., that f(v) = h2 and f(v′) = h3. As in the
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v v′ uv uv′ wv wv′ yv yv′ xvv′

h0 h0 h0 h0 h3 h3 h3 h3 h0/h3

h0 h1 h0 h1 h3 h2 h3 h1 h1

h0 h3 h0 h0 h3 h3 h3 h3 h0/h3

h1 h0 h1 h0 h2 h3 h1 h3 h0

h1 h1 h1 h1 h2 h2 h1 h1 h1/h2

h1 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h1 h1 h1 h2 h2 h1 h1 h1/h2

h2 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h3 h1 h0 h2 h3 h1 h3 h2

h3 h0 h0 h0 h3 h3 h3 h3 h0/h3

h3 h2 h0 h1 h3 h2 h3 h1 h3

h3 h3 h0 h0 h3 h3 h3 h3 h0/h3

Table 7
Determining a retraction from G′′ to H.

previous case, we deduce that every vertex of type a is mapped to h0 or h3,
every vertex of type b to h1 or h2, every vertex of type c to h2 or h3 and every
vertex of type d to h0 or h1. Moreover, every vertex of type ` or r cannot be
mapped to h2, because it is adjacent to h0. Then v can only be bp or cq, and
v′ can only be p, q, ap or cq. However, if v = bp or v = cq then v′ cannot be
chosen. Hence, row 9 cannot occur, and we conclude that f can be extended
to a retraction from G′′ to H, as desired.

“(ii)⇒ (i)” Let f be a retraction from G′′ to H. Then the restriction of f to
VG is a retraction from G to H. Hence, this implication is valid.

“(ii) ⇒ (iii)” This implication is valid, because every retraction from G′′ to
H is an edge-surjective homomorphism, so a fortiori a compaction from G′′

to H.

“(iii) ⇒ (ii)” Let f be a compaction from G′′ to H. We will show that f is
without loss of generality a retraction from G′′ to H. Our proof goes along
the same lines as the proof of Lemma 2.1.2 in Vikas [30], i.e., we use the
same arguments but in addition we must examine a few more cases due to our
modifications in steps 1–3; we therefore include all the proof details below.

We let U consist of h0, h1 and all vertices of type u. Similarly, we let W consist
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of h2, h3 and all vertices of type w. Because U forms a clique in G, we find
that f(U) is a clique in H. This means that 1 ≤ |f(U)| ≤ 2. By the same
arguments, we find that 1 ≤ f(W ) ≤ 2.

We first prove that |f(U)| = |f(W )| = 2. In order to derive a contradiction,
suppose that |f(U)| 6= 2. Then f(U) has only one vertex. By symmetry, we
may assume that f maps every vertex of U to h0; otherwise we can redefine
f . Because every vertex of G′′ is adjacent to a vertex in U , we find that G′′

contains no vertex that is mapped to h2 by f . This is not possible, because f
is a compaction from G′′ to H. Hence |f(U)| = 2, and by the same arguments,
|f(W )| = 2. Because U is a clique, we find that f(U) 6= {h0, h2} and f(U) 6=
{h1, h3}. Hence, by symmetry, we assume that f(U) = {h0, h1}.

We now prove that f(W ) = {h2, h3}. In order to obtain a contradiction, sup-
pose that f(W ) 6= {h2, h3}. Because f is a compaction from G′′ to H, there ex-
ists an edge st in G′′ with f(s) = h2 and f(t) = h3. Because f(U) only contains
vertices mapped to h0 or h1, we find that s /∈ U and t /∈ U . Because we assume
that f(W ) 6= {h2, h3}, we find that st is not one of wvwv′ , wvh2, wvh3, h2h3.
Hence, st is one of the following edges

vwv, wvyv, vxvv′ , yvh2, vh2, vh3, vv
′, v′xvv′ , wv′xvv′ , xvv′h2,

where v, v′ ∈ VG \ VH . We must consider each of these possibilities.

If st ∈ {vwv, wvyv, vxvv′} then f(uv) ∈ {h2, h3}, because uv is adjacent to
v, wv, yv, xvv′ . However, this is not possible because f(uv) ∈ {h0, h1}.

If st = yvh2, then f(wv) = h2 or f(wv) = h3, because wv is adjacent to both
yv and h2, and {f(yv), f(h2)} = {h2, h3}. This means that either f(wv) =
f(yv) or f(wv) = f(h2). If f(wv) = f(yv), then {f(wv), f(h2)} = {h2, h3}.
Consequently, f(W ) = {h2, h3}, which we assumed is not the case. Hence,
f(wv) 6= f(yv). Then f maps the edge wvyv to h2h3, and we return to the
previous case. We can repeat the same arguments if st = vh2 or st = vh3.
Hence, we find that st cannot be equal to those edges either.

If st = vv′, then by symmetry we may assume without loss of generality that
f(v) = h2 and f(v′) = h3. Consequently, f(uv) = h1, because uv ∈ U is
adjacent to v, and can only be mapped to h0 or h1. By the same reasoning,
f(uv′) = h0. Because wv is adjacent to v with f(v) = h2 and to uv with
f(uv) = h1, we find that f(wv) ∈ {h1, h2}. Because wv′ is adjacent to v′

with f(v′) = h3 and to uv′ with f(uv′) = h0, we find that f(wv′) ∈ {h0, h3}.
Recall that f(W ) 6= {h2, h3}. Then, because wv and wv′ are adjacent, we
find that f(wv) = h1 and f(wv′) = h0. Suppose that xvv′ exists. Then xvv′

is adjacent to vertices v with f(v) = h2, to v′ with f(v′) = h3, to uv with
f(uv) = h1 and to wv′ with f(wv′) = h0. This is not possible. Hence xvv′

cannot exist. This means that v, v′ are both of type a, both of type b, both
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of type c or both of type d. If v, v′ are both of type a or both of type d, then
f(h0) ∈ {h2, h3}, which is not possible because h0 ∈ U and f(U) = {h0, h1}.
If v, v′ are both of type b, we apply the same reasoning with respect to h1.
Suppose that v, v′ are both of type c. Then both v and v′ are adjacent to h2.
This means that f(h2) ∈ {h2, h3}. Then either {f(v), f(h2)} = {h2, h3} or
{f(v′), f(h2)} = {h2, h3}. Hence, by considering either the edge vh2 or v′h2

we return to a previous case. We conclude that st 6= vv′.

If st = v′xvv′ then f(v) ∈ {h2, h3}, because v is adjacent to v′ and xvv′ . Then
one of vv′ or vxvv′ maps to h2h3, and we can return to a previous case. Hence,
we find that st 6= v′xvv′ .

If st = wv′xvv′ then f(v′) ∈ {h2, h3}, because v′ is adjacent to wv′ and xvv′ .
Then one of v′wv′ or v′xvv′ maps to h2h3, and we can return to a previous
case. Hence, we find that st 6= wv′xvv′ .

If st = xvv′h2 then f(wv′) ∈ {h2, h3}, because wv′ is adjacent to xvv′ and
h2. Because f(W ) 6= {h2, h3}, we find that f(wv′) = f(h2). Then wv′xvv′

is mapped to h2h3, and we return to a previous case. Hence, we find that
st 6= xvv′h2.

We conclude that G′′ has no edge st with f(s) = h2 and f(t) = h3. This is a
contradiction; recall that f is a compaction. Hence, f(W ) = {h2, h3}.

The next step is to prove that f(h0) 6= f(h1). In order to obtain a contradic-
tion, suppose that f(h0) = f(h1). By symmetry we may assume without loss
of generality that f(h0) = f(h1) = h0. Because f(U) = {h0, h1}, there exists
a vertex uv with f(uv) = h1. Because wv with f(wv) ∈ {h2, h3} is adjacent to
uv, we find that f(wv) = h2. Because h2 with f(h2) ∈ {h2, h3} is adjacent to
h1 with f(h1) = h0, we find that f(h2) = h3. However, then yv is adjacent to
h0 with f(h0) = h0, to uv with f(uv) = h1, to wv with f(wv) = h2, and to
h2 with f(h2) = h3. This is not possible. Hence, we find that f(h0) 6= f(h1).
By symmetry, we may assume without loss of generality that f(h0) = h0 and
f(h1) = h1.

We are left to show that f(h2) = h2 and f(h3) = h3. This can be seen as
follows. Because h2 is adjacent to h1 with f(h1) = h1, and f(h2) ∈ {h2, h3}
we find that f(h2) = h2. Because h3 is adjacent to h0 with f(h0) = h0, and
f(h3) ∈ {h2, h3} we find that f(h3) = h3. Hence, we have found that f is a
retraction from G′′ to H, as desired.

“(iii) ⇒ (iv)” and “(iv) ⇒ (iii)” immediately follow from the equivalence
between statements 3 and 6 in Proposition 1, after recalling that G′′ has
diameter 2 due to Lemma 6. 2
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We are now ready to state the main result of our paper. Its proof follows from
Lemmas 6 and 7, in light of Theorem 5; note that all constructions may be
carried out in polynomial time.

Theorem 8 The Surjective C4-Homomorphism problem is NP-complete
for graphs of diameter 2 even if they have a dominating non-edge.
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[22] P. Hell and J. Nešetřil, On the complexity of H-colouring, Journal of
Combinatorial Theory, Series B 48 (1990) 92–110.

[23] P. van ’t Hof, D. Paulusma and G.J. Woeginger, Partitioning graphs into
connected parts, Theoretical Computer Science 410 (2009) 4834–4843.
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