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ABSTRACT. Consider a soccer competition among various teams playing against
each other in pairs (matches) according to a previously determined schedule. At
some stage of the competition one may ask whether a particular team still has a
(theoretical) chance to win the competition. The complexity of this question de-
pends on the way scores are allocated according to the outcome of a match. For
example, the problem is polynomially solvable for the ancient FIFA rules (2:0
resp. 1:1) but becomds P-hard if the new rules (3:0 resp. 1:1) are applied. We
determine the complexity of the above problem for all possible score allocation
rules.

1. INTRODUCTION

Consider a sports competition like a national soccer league in which all participat-
ing teams play against each other in pairs (matches) according to a prefixed sched-
ule. Initially all teams have total score zero. When a team participates in a match,
its total score is increased bye R if it loses the match, by € R if the match ends

in a draw, and by € R if it wins the match. We always assume that 8 < y and

call the triple ¢, 8, y) therule (score allocation rule) of the competition. In case

of a soccer competition, the former FIFA rule was g, y) = (0, 1, 2), but this

has been changed into the new rie 8, y) = (0, 1, 3). Other sports like chess

or draughts still use the ruley, 8, y) = (0, 1, 2), while stratego, also a strategic
board game, has as score allocation Kdes, y) = (0, 1, 6).

At a given stage of the competition one may ask whether a particular Tgatiil
has a (theoretical) chance of “winning” the competitiam,, ending up with the
highest final total score. To analyze this, we may w.l.0.g. assuméhains all
remaining matches, resulting in a final total scgyér Tp and a current total score
s for all other teamd; # Ty. The question is now whether the teams Tp can
finish the remaining matches in such a way that €éaciollects at most; := s5— S
additional score points.

This can be modeled by a multigraggh= (V, E) whose vertices correspond to
teamsT; # Tp and edges are in 1-1 correspondence with remaining matches. Each
nodei € V has a capacitg; € R. We represent the outcome of a mag&k (i, j)

by directing the edge from the winner to the loser (and leaving the edge undirected
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in case of a draw). Our sports competition problem (“SC”) can now be formulated
as follows:

SCe, B.v)
Given a multigraphG = (V, E) and node capacities € RV can G be partially

oriented such that for each node V:
ad~ (i) + i)+ ysti)<c ? (1.1)

Here, as usualjt and s~ denote the outdegree and indegree of a node, whereas
80 denotes the number of incident unoriented edges. A partial orientati@h of
satisfying the capacity constraints (1.1) is callezblutionof the instance@, c).

A simplified version of this (disallowing draws) was presented in Getak.[1998].

In this case the problem reduces to a flow problem, cf. Ceiokl. [1998] or
section 2 below. As we shall see, however, the question becomes more interest-
ing if draws may occur. Our main result implies that in this case the problem
is polynomially solvable ife + y = 28 (assumingP # NP). This means that

for games like draughts and chess the problem is polynomially solvable. How-
ever, for soccer competitions, by changing the score allocation rule into the rule
(o, B, y) = (0, 1, 3), the problem has becomd P-complete. Also for stratego
competitions the problem s P-complete.

We end our introduction with the following simple observation. Given an instance
(G, ¢) of SC(, B, y), we can derive an equivalent instaneg, ¢) of SC(Q 8 —

a, y — o) by settingc] = ¢; — «é(i). (Here,s refers to the degree i6.) So with
respect to computational complexity of SCg, ) we may always assume that
(o, B, y) isnormalizedi.e,a =0< B < y.

2. COMPLEXITY RESULTS

Our main result completely determines the computational complexity of the sports
competition problem:

Theorem 2.1. SCg, B, y) is polynomially solvable in each of the following three
cases:

() a=8
(i) p=vy
(i) o«+y=2B

In all other cases, the problem is N P-complete.

Proof: First recall that we may assume, (3, y) is normalized, sa = 0. (Note that
normalization does not affect (i)-(iii).Case (i)is then trivial. Indeed, an instance
(G, ¢) has a solution if and only i€ > 0. (Leave all edges unoriented.)

In all other cases we haygé> 0. By scaling, we may assume that= 1. (Divide
B, v as well axc by 8.)

Case (i) p=y=1.

Consider an instance given iy = (V, E) andc € RY. Construct a directed bi-
partite graph with node se$ and E and arcs linking eache V to all edges in
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E incident withi in G. Then add an additional sours&nd sinkt as indicated in
Figure 2.1:

E

Figure 2.1

The arcs fronsto V all get lower capacity 0 and upper capadity] (i € V). The

arcs fromV to E get lower capacity 0 and upper capacity 1. The arcs fioto t

get lower capacity and upper capacity 1. The resulting network has a fessiltle

flow x € RIVI+3IEl if and only if our instance @, ¢) has a solution. Indeed, as all
capacities are integral, a feasible flow may also be assumed to be integral. Given
an integral feasible flow we can interpret an arci( j)) from V to E which carries

1 unit of flow asi winning the matcke = (i, j) and conversely (cf. also Coat

al [1998)).

Case (iii) B =1, y = 2 (ancient FIFA rule).

This can be solved similarly. In the network of Figure 2.1 we simply redefine the
upper capacities of all arcs froM to E to be 2. The lower and upper capacities
of arcs fromE to t are also set to 2. Again, feasible integral flows are in 1-1
correspondence with solutions of our instanG ). Each nodee € E in our
network has two incoming arcs which carry a total flow of 2 units, distributed as
2:0o0r1:1, corresponding to a win/loss match or a draw.

Case (v)p=1,y > 2.

We proveN P-completeness by reduction from 3DM (cf. Garey and Johnson [1979]).
SupposgX| = |Y|=|W|=qgandRC X x Y x W is given. We are to determine
whetherR contains a matchin® C R, i.e., a set of triples covering each element

of XUY U W exactly once. Assume w.l.0.g. that each elemeatXuyY uW
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actually occurs in some triplee R. We write z € r to indicate thatz occurs in
reR

GivenRC X x Y x W, we construct a grap8 = (V, E) as follows. We first make
one copy of each elemerte XU Y U W for each occurrence ofin R, i.e.,, we
define

= {(Xr)|xeX,reRxer}
= {(y,n)|lyeY,reRyer}
= {(w,r)|weW,re Rwer}.

S <t
I

Construct a graple = (V, E) with node setv = XUYUWU XUYUWUR
and edges as defined by the incidence relations in a straightforward evay,

E {(X (X)) | (X1) € X}

(. (.T) | (y.1) € Y}

{(w, (w, 1)) | (w, 1) € W}

{r,x ) (xr)eX}

{r,Gy,r) 1 y.r)eY}

{(r, (w,r)) | (w, r) e W} (cf. Figure 2.2 below)

U
U
U
U
U

Figure 2.2
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Next define node capacitiess RV as follows:

c =1 onXuyY
c = 1+y onXuY
c = maxy,3} onR
c =1 onW
c = y6—1)+1 onW.

(Again, é refers to the degree function &)

We claim that this instance3, c) has a solution if and only iR contains a match-
ing.

“«” SupposeR C Ris a matching. Define a corresponding partial orientation
of G as follows. For eachv € W choose the unique’ € R with (w,r’) € W.
We leave the edgéw, (w, r’)) unoriented and orient all other edges franto W.
This way the capacity constraints afare met. For each = (x, y, w) € R we
orient the edgér’, (w,r’)) from r’ towards(w, r’) and the edge&’, (x,r")) and
(r', (y, ")) from X respectivelyY towardsr’. All edges incident withr € R\R/
remain unoriented. This way we ensure that the capacity constraiig amd R
are respected. Finally, orient all edges betwiesnd X from X towardsX except
those that correspond to an elemen&nthese remain unoriented). This way the
capacity constraints fox and X are met. We orient edges betwegémndY in the
same way. This partial orientation gives a solution of the insta@ce)(

"=" Conversely, suppose we are given a partial orientatio® oéspecting the
capacity constraints. The latter imply that foe X we haves~(x) > §(x) — 1 and
5t(x) = 0. We may assume w.l.o.g. that actually(x) = §(x) — 1. (Otherwise,

i.e, if 7 (xX) = 8(X), pick an arbitrary edge incident withand make it unoriented.
The modified orientation will still respect all capacity constraints.) A similar argu-
ment holds for elementge Y. Nodes inX have degree 2. In view of their capacity
bound 1+ y, we may assume w.l.0.g. that eaohr) € X hass® = 1 ands* = 1.
(Otherwise, again maodify the solution without violating the capacity constraints.)
As eachx € X hass~ (x) = §(x) — 1 ands®(x) = 1, we conclude that

e There are exactlyX| arcs directed fronX to R. Moreover, if ((x,r),r) is di-
rected towards and((X, r’'), r’) is directed towards’, thenx # X.

The same holds for the directed arcs frifto R.

Arguing similarly for nodes inV, we find that eachw € W has w.l.0.g.8% (w) =
§(w) — 1 ands®(w) = 1. (Otherwise modify the orientation such thatactually
uses its full capacity.) Because nodeshhhave degree 2 and capacity bound 1,
this implies that

e There are exactljW| arcs directed fronR towardsW. Moreover, if(r, (w, r)) is
directed fronr towards(w, r) and(r’, (w’, r’)) is directed fronr’ towards(w’, r’),
thenw # w'.
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Finally, the capacity constraints ddimply that a node € R can have™ > 1 only
if 6~ > 2. From this and the above observations, it is straightforward to check that

R={reR|§(r)=1)
actually is a matching.
Case (V) B=1<y<?2.

Again, we proveN P-completeness by reduction from 3DM. In the gra@hof
Figure 2.2 we redefine the node capacitiesR" as follows:

c = y6—-1)+1 onXUuyY
c =1 onXuUY
c = maX{2y,3} onR
c = 1+y onW
c =1 onW.

Analogously to Case (iv) one can prove that the instaii&ec) has a solution if
and only if R contains a matching.
<&

3. REMARKS

As noted already, our results imply that sport competition problems with the new
FIFA rules @ =0, 8 =1, y = 3) are hard. The reason for this is that the network
model we used for solving cases (ii) and (iii) of our main theorem does not apply
for this case. Indeed, if we increase the upper capacities to 3 on all arcd/ftom

E and fromE to t in the network of Figure 2.1, then a feasible flow does no longer
necessarily represent a solution of our instance.(A total flow of 2 entering a node
e= (i, j) € E distributed as 2 : 0 on the two entering arcs does not correspond to
awin /loss or a draw.) If we "repair” this by introducing a "capacity gap,’3Lon

all arcs fromV to E we get a flow problem with capacity gaps which again nicely
describes our sports competition problem. So as a consequence of our result, the
following class of problems is alsbl P-complete (this might be known, but we
could not find it in the literature):

FLOWS WITH CAPACITY GAPS (“FCG”)

Instance:

A digraph D = (V, A) with sources and sinkt and for each ara € A two dis-
joint capacity intervald; (a) =[c1(a), co(a)] andlz(a) = [cz(a), ca(a)] (ci(a) €
Z,i=1,...,4).

Question:
Does a (w.l.o.g. integral — t flow x € ZA exist withx(a) € 11(a) U I(a) (ae
A)?

Corollary 3.1. FCG is N P-complete.
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Finally, as to sports competitions, we would like to remark that also other questions
can be treated in the same way. For example "Is there a chanc@&tkatls up

with the lowest final score?” turns out to be of exactly the same complexity as SC:
Assume thafly has a current total scosg and loses all remaining matches. This
results in a current total scoeg for all other teamsdl; # Tp. The first question is
now whether the teanig # Ty can finish the remaining matches in such a way that
eachT; collectsat least ¢ := 55 — 5 additional score points. Again we model this
by a multigraphG = (V, E) whose vertices correspond to teaist Tp and edges

are in 1-1 correspondence with remaining matches. Eachinedéhas a (lower)
capacityc; € R. Our “reverse” sports competition problem (“RSC”) can now be
formulated as follows:

RSCe, B, ):
Given a multigraphG = (V, E) and node capacities € RV can G be partially

oriented such that for each node V:
ad (i) + B +ysT (i) =¢ ? (3.1)
It is easy to see that fore V, (3.1) is equivalent to
(r =B + (y — )8~ (i) < y3(D) — ci.

Hence an instancéG, ¢) of RSCe, B, y) corresponds to an instan¢6, y§ — ¢)
of SC(Q y — B, y — «) and the corollary below immediately follows from Theorem
1.1.

Corollary 3.2. RSC¢, 8, y) is polynomially solvable in each of the following three
cases:

() =8
(i) B=v
(i) a+y=28

In all other cases, the problem is N P-complete.

Questions such as "Is there a chance aends up being one of the three teams
that have the three lowest final scores?” can also be treated in a similar way. Again,
assume thatp has a current total scosg and loses all remaining matches. Further-
more choose two tean®s, T; # Tp and letT; andT; lose their remaining matches
against team3i (k # 0,1, j). (Choose, if necessary, an arbitrary outcome for the
matches betweel andT;.) These outcomes result in final total scosgss and

sj, and current total scoreg for all other teamsly (k # O, 1, j). If it is possible

that the team3y (k # 0,1, j) can finish the remaining matches in such a way that
eachTy collects at leasty := sp — Sk additional score points, thefy can indeed

end up being one of the three lowest teams. If this is not possible for any; p&jr
thenTy can never end up being one of the three lowest teams. So one has to solve
at most%|V|(|V| — 1) problem instances in RS&(S, y). Hence also this question

is of the same complexity as SC.
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