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ABSTRACT. Consider a soccer competition among various teams playing against
each other in pairs (matches) according to a previously determined schedule. At
some stage of the competition one may ask whether a particular team still has a
(theoretical) chance to win the competition. The complexity of this question de-
pends on the way scores are allocated according to the outcome of a match. For
example, the problem is polynomially solvable for the ancient FIFA rules (2:0
resp. 1:1) but becomesN P-hard if the new rules (3:0 resp. 1:1) are applied. We
determine the complexity of the above problem for all possible score allocation
rules.

1. INTRODUCTION

Consider a sports competition like a national soccer league in which all participat-
ing teams play against each other in pairs (matches) according to a prefixed sched-
ule. Initially all teams have total score zero. When a team participates in a match,
its total score is increased byÞ ∈R if it loses the match, byþ ∈R if the match ends
in a draw, and by ∈R if it wins the match. We always assume thatÞ ≤ þ ≤  and
call the triple (Þ; þ; ) the rule (score allocation rule) of the competition. In case
of a soccer competition, the former FIFA rule was.Þ; þ; / = .0;1;2/, but this
has been changed into the new rule.Þ; þ; / = .0;1;3/. Other sports like chess
or draughts still use the rule.Þ; þ; / = .0;1;2/, while stratego, also a strategic
board game, has as score allocation rule.Þ; þ; /= .0;1;6/.
At a given stage of the competition one may ask whether a particular teamT0 still
has a (theoretical) chance of “winning” the competition,i.e., ending up with the
highest final total score. To analyze this, we may w.l.o.g. assume thatT0 wins all
remaining matches, resulting in a final total scores0 for T0 and a current total score
si for all other teamsTi 6= T0. The question is now whether the teamsTi 6= T0 can
finish the remaining matches in such a way that eachTi collects at mostci := s0− si

additional score points.

This can be modeled by a multigraphG = .V; E/ whose vertices correspond to
teamsTi 6= T0 and edges are in 1-1 correspondence with remaining matches. Each
nodei ∈ V has a capacityci ∈ R. We represent the outcome of a matche= .i; j/
by directing the edge from the winner to the loser (and leaving the edge undirected

Date: September 23, 1999.
1991Mathematics Subject Classification.03D15, 90C27.
Key words and phrases. N P-complete, network flow.

1



2 WALTER KERN AND DANIËL PAULUSMA

in case of a draw). Our sports competition problem (“SC”) can now be formulated
as follows:

SC(Þ; þ; )
Given a multigraphG = .V; E/ and node capacitiesc ∈ RV can G be partially
oriented such that for each nodei ∈ V:

ÞŽ−.i /+ þŽ0.i /+ Ž+.i / ≤ ci ? .1:1/

Here, as usual,Ž+ andŽ− denote the outdegree and indegree of a node, whereas
Ž0 denotes the number of incident unoriented edges. A partial orientation ofG
satisfying the capacity constraints (1.1) is called asolutionof the instance (G; c).

A simplified version of this (disallowing draws) was presented in Cooket al.[1998].
In this case the problem reduces to a flow problem, cf. Cooket al. [1998] or
section 2 below. As we shall see, however, the question becomes more interest-
ing if draws may occur. Our main result implies that in this case the problem
is polynomially solvable ifÞ +  = 2þ (assumingP 6= N P). This means that
for games like draughts and chess the problem is polynomially solvable. How-
ever, for soccer competitions, by changing the score allocation rule into the rule
.Þ; þ; / = .0;1;3/, the problem has becomeN P-complete. Also for stratego
competitions the problem isN P-complete.

We end our introduction with the following simple observation. Given an instance
(G; c) of SC(Þ; þ; ), we can derive an equivalent instance (G; c′) of SC(0; þ−
Þ;  − Þ) by settingc′i := ci − ÞŽ.i /. (Here,Ž refers to the degree inG.) So with
respect to computational complexity of SC(Þ; þ; ) we may always assume that
(Þ; þ; ) is normalized, i.e., Þ = 0≤ þ ≤ .

2. COMPLEXITY RESULTS

Our main result completely determines the computational complexity of the sports
competition problem:

Theorem 2.1. SC(Þ; þ; ) is polynomially solvable in each of the following three
cases:

(i) Þ = þ
(ii) þ = 
(iii) Þ+  = 2þ

In all other cases, the problem is N P-complete.

Proof: First recall that we may assume (Þ; þ; ) is normalized, soÞ= 0. (Note that
normalization does not affect (i)-(iii).)Case (i)is then trivial. Indeed, an instance
(G; c) has a solution if and only ifc≥ 0. (Leave all edges unoriented.)

In all other cases we haveþ > 0. By scaling, we may assume thatþ = 1. (Divide
þ;  as well asc by þ.)

Case (ii) þ =  = 1.

Consider an instance given byG= .V; E/ andc ∈ RV. Construct a directed bi-
partite graph with node setsV and E and arcs linking eachi ∈ V to all edges in
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E incident with i in G. Then add an additional sources and sinkt as indicated in
Figure 2.1:
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Figure 2.1

The arcs froms to V all get lower capacity 0 and upper capacitybcic .i ∈ V/. The
arcs fromV to E get lower capacity 0 and upper capacity 1. The arcs fromE to t
get lower capacity and upper capacity 1. The resulting network has a feasibles− t
flow x ∈ R|V|+3|E| if and only if our instance (G; c) has a solution. Indeed, as all
capacities are integral, a feasible flow may also be assumed to be integral. Given
an integral feasible flow we can interpret an arc (i; .i; j/) from V to E which carries
1 unit of flow asi winning the matche= .i; j/ and conversely (cf. also Cooket
al [1998]).

Case (iii) þ = 1;  = 2 (ancient FIFA rule).

This can be solved similarly. In the network of Figure 2.1 we simply redefine the
upper capacities of all arcs fromV to E to be 2. The lower and upper capacities
of arcs fromE to t are also set to 2. Again, feasible integral flows are in 1-1
correspondence with solutions of our instance (G; c). Each nodee ∈ E in our
network has two incoming arcs which carry a total flow of 2 units, distributed as
2 : 0 or 1 : 1, corresponding to a win/loss match or a draw.

Case (iv)þ = 1;  > 2.

We proveN P-completeness by reduction from 3DM (cf. Garey and Johnson [1979]).
Suppose|X| = |Y| = |W| = q andR⊆ X× Y×W is given. We are to determine
whetherR contains a matchingR′ ⊆ R, i.e., a set of triples covering each element
of X ∪ Y ∪W exactly once. Assume w.l.o.g. that each elementz ∈ X ∪ Y ∪W
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actually occurs in some tripler ∈ R. We write z ∈ r to indicate thatz occurs in
r ∈ R.

GivenR⊆ X×Y×W, we construct a graphG= .V; E/ as follows. We first make
one copy of each elementz∈ X ∪ Y∪W for each occurrence ofz in R, i.e., we
define

X̄ := {.x; r / | x ∈ X; r ∈ R; x ∈ r}
Ȳ := {.y; r / | y ∈ Y; r ∈ R; y∈ r}
W̄ := {.w; r / | w ∈W; r ∈ R; w ∈ r}:

Construct a graphG = .V; E/ with node setV = X ∪ Y∪W∪ X̄ ∪ Ȳ∪ W̄∪ R
and edges as defined by the incidence relations in a straightforward way,i.e.,

E = {.x; .x; r // | .x; r / ∈ X̄}
∪ {.y; .y; r // | .y; r / ∈ Ȳ}
∪ {.w; .w; r // | .w; r / ∈ W̄}
∪ {.r; .x; r // | .x; r / ∈ X̄}
∪ {.r; .y; r // | .y; r / ∈ Ȳ}
∪ {.r; .w; r // | .w; r / ∈ W̄} (cf. Figure 2.2 below):
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Figure 2.2
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Next define node capacitiesc ∈ RV as follows:

c ≡ 1 on X∪Y
c ≡ 1+  on X̄∪ Ȳ
c ≡ max{;3} on R
c ≡ 1 onW̄
c ≡ .Ž− 1/+ 1 onW:

(Again,Ž refers to the degree function ofG.)

We claim that this instance (G; c) has a solution if and only ifR contains a match-
ing.

“⇐” SupposeR′ ⊆ R is a matching. Define a corresponding partial orientation
of G as follows. For eachw ∈ W choose the uniquer ′ ∈ R′ with .w; r ′/ ∈ W̄.
We leave the edge.w; .w; r ′// unoriented and orient all other edges fromw to W̄.
This way the capacity constraints ofw are met. For eachr ′ = .x; y; w/ ∈ R′ we
orient the edge.r ′; .w; r ′// from r ′ towards.w; r ′/ and the edges.r ′; .x; r ′// and
.r ′; .y; r ′// from X̄ respectivelyȲ towardsr ′. All edges incident withr ∈ R\R′
remain unoriented. This way we ensure that the capacity constraints onW̄ and R
are respected. Finally, orient all edges betweenX̄ andX from X̄ towardsX except
those that correspond to an element inR′ (these remain unoriented). This way the
capacity constraints forX and X̄ are met. We orient edges betweenȲ andY in the
same way. This partial orientation gives a solution of the instance (G; c).

”⇒” Conversely, suppose we are given a partial orientation ofG respecting the
capacity constraints. The latter imply that forx ∈ X we haveŽ−.x/ ≥ Ž.x/− 1 and
Ž+.x/ = 0. We may assume w.l.o.g. that actuallyŽ−.x/ = Ž.x/− 1. (Otherwise,
i.e., if Ž−.x/= Ž.x/, pick an arbitrary edge incident withx and make it unoriented.
The modified orientation will still respect all capacity constraints.) A similar argu-
ment holds for elementsy∈ Y. Nodes inX̄ have degree 2. In view of their capacity
bound 1+ , we may assume w.l.o.g. that each.x; r / ∈ X̄ hasŽ0 = 1 andŽ+ = 1.
(Otherwise, again modify the solution without violating the capacity constraints.)
As eachx ∈ X hasŽ−.x/ = Ž.x/− 1 andŽ0.x/ = 1, we conclude that

• There are exactly|X| arcs directed fromX̄ to R. Moreover, if..x; r /; r / is di-
rected towardsr and..x′; r ′/; r ′/ is directed towardsr ′, thenx 6= x′.

The same holds for the directed arcs fromȲ to R.

Arguing similarly for nodes inW, we find that eachw ∈ W has w.l.o.g.Ž+.w/ =
Ž.w/− 1 andŽ0.w/ = 1. (Otherwise modify the orientation such thatw actually
uses its full capacity.) Because nodes inW̄ have degree 2 and capacity bound 1,
this implies that

• There are exactly|W| arcs directed fromR towardsW̄. Moreover, if.r; .w; r // is
directed fromr towards.w; r / and.r ′; .w′; r ′// is directed fromr ′ towards.w′; r ′/,
thenw 6= w′.
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Finally, the capacity constraints onR imply that a noder ∈ Rcan haveŽ+ ≥ 1 only
if Ž− ≥ 2. From this and the above observations, it is straightforward to check that

R′ = {r ∈ R | Ž+.r / = 1}
actually is a matching.

Case (v) þ = 1<  < 2.

Again, we proveN P-completeness by reduction from 3DM. In the graphG of
Figure 2.2 we redefine the node capacitiesc ∈ RV as follows:

c ≡ .Ž− 1/+ 1 on X∪Y
c ≡ 1 on X̄∪ Ȳ
c ≡ max{2;3} on R
c ≡ 1+  on W̄
c ≡ 1 onW:

Analogously to Case (iv) one can prove that the instance (G; c) has a solution if
and only if R contains a matching.

♦

3. REMARKS

As noted already, our results imply that sport competition problems with the new
FIFA rules (Þ = 0; þ = 1;  = 3) are hard. The reason for this is that the network
model we used for solving cases (ii) and (iii) of our main theorem does not apply
for this case. Indeed, if we increase the upper capacities to 3 on all arcs fromV to
E and fromE to t in the network of Figure 2.1, then a feasible flow does no longer
necessarily represent a solution of our instance.(A total flow of 2 entering a node
e= .i; j/ ∈ E distributed as 2 : 0 on the two entering arcs does not correspond to
a win /loss or a draw.) If we ”repair” this by introducing a ”capacity gap” ]1;3[ on
all arcs fromV to E we get a flow problem with capacity gaps which again nicely
describes our sports competition problem. So as a consequence of our result, the
following class of problems is alsoN P-complete (this might be known, but we
could not find it in the literature):

FLOWS WITH CAPACITY GAPS (“FCG”)

Instance:
A digraph D = .V; A/ with sources and sinkt and for each arca ∈ A two dis-
joint capacity intervalsI1.a/= [c1.a/; c2.a/] and I2.a/= [c3.a/; c4.a/] .ci.a/ ∈
Z; i = 1; : : : ;4/.

Question:
Does a (w.l.o.g. integral)s− t flow x ∈ ZA exist with x.a/ ∈ I1.a/∪ I2.a/ .a ∈
A/?

Corollary 3.1. FCG is N P-complete.
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Finally, as to sports competitions, we would like to remark that also other questions
can be treated in the same way. For example ”Is there a chance thatT0 ends up
with the lowest final score?” turns out to be of exactly the same complexity as SC:
Assume thatT0 has a current total scores0 and loses all remaining matches. This
results in a current total scoresi for all other teamsTi 6= T0. The first question is
now whether the teamsTi 6= T0 can finish the remaining matches in such a way that
eachTi collectsat least ci := s0− si additional score points. Again we model this
by a multigraphG= .V; E/whose vertices correspond to teamsTi 6= T0 and edges
are in 1-1 correspondence with remaining matches. Each nodei ∈ V has a (lower)
capacityci ∈ R. Our “reverse” sports competition problem (“RSC”) can now be
formulated as follows:

RSC(Þ; þ; ):
Given a multigraphG = .V; E/ and node capacitiesc ∈ RV can G be partially
oriented such that for each nodei ∈ V:

ÞŽ−.i /+ þŽ0.i /+ Ž+.i / ≥ ci ? .3:1/

It is easy to see that fori ∈ V, (3.1) is equivalent to

. − þ/Ž0.i /+ . − Þ/Ž−.i / ≤ Ž.i /− ci :

Hence an instance.G; c/ of RSC(Þ; þ; ) corresponds to an instance.G; Ž− c/
of SC(0; − þ; − Þ) and the corollary below immediately follows from Theorem
1.1.

Corollary 3.2. RSC(Þ; þ; ) is polynomially solvable in each of the following three
cases:

(i) Þ = þ
(ii) þ = 
(iii) Þ+  = 2þ

In all other cases, the problem is N P-complete.

Questions such as ”Is there a chance thatT0 ends up being one of the three teams
that have the three lowest final scores?” can also be treated in a similar way. Again,
assume thatT0 has a current total scores0 and loses all remaining matches. Further-
more choose two teamsTi; Tj 6= T0 and letTi andTj lose their remaining matches
against teamsTk .k 6= 0; i; j/. (Choose, if necessary, an arbitrary outcome for the
matches betweenTi andTj.) These outcomes result in final total scoress0, si and
sj , and current total scoressk for all other teamsTk .k 6= 0; i; j/. If it is possible
that the teamsTk .k 6= 0; i; j/ can finish the remaining matches in such a way that
eachTk collects at leastck := s0− sk additional score points, thenT0 can indeed
end up being one of the three lowest teams. If this is not possible for any pairTi ; Tj,
thenT0 can never end up being one of the three lowest teams. So one has to solve
at most12|V|.|V|− 1/ problem instances in RSC(Þ; þ; ). Hence also this question
is of the same complexity as SC.
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REFERENCES

[1] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver [1998]:Combinatorial Op-
timization. Wiley, New York.

[2] M. Garey and D. Johnson [1979]:Computers and Intractability. A Guide to the Theory of NP-
Completeness. Freeman, New York.

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF TWENTE, P.O.BOX 217, 7500 AE
ENSCHEDE, THE NETHERLANDS

E-mail address: {kern,paulusma }@math.utwente.nl




