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ABSTRACT 

How the lens ages successfully is a lesson in biological adaption and the emergent properties of 

its complement of cells and proteins. This living tissue contains some of the oldest proteins in 

our bodies and yet they remain functional for decades, despite exposure to UV light, to reactive 

oxygen species and all the other hazards to protein function. This remarkable feat is achieved 

by a shrewd investment in very stable proteins as lens crystallins, by providing a reservoir of 

ATP-independent protein chaperones unequalled by any other tissue and by an oxidation-

resistant environment. In addition, glutathione, a free radical scavenger, is present in mM 

concentrations and the plasma membranes contain oxidation-resistant sphingolipids, so what 

compromises lens function as it ages? In this review, we examine the role of small molecules in 

the prevention or causation of cataracts, including those associated with diet, metabolic 

pathways and drug therapy (steroids). 
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INTRODUCTION 

 

A central question of great current interest in cataract research is whether there is a role for 

small molecules coming either from the diet or as part of cellular metabolism in the 

maintenance the eye lens in a healthy, optically clear and functional state. A review on the 

nutritional modulation of cataracts appeared in 2014 (Weikel et al., 2014), which focused on 

familiar dietary components. This current review examines recent exciting developments in 

sterol-based small molecule biochemistry in the lens and what led to these findings in order to 

focus attention on the opportunity to deliver small molecules to prevent and treat lens 

cataract. 

 

PHYSIOLOGY AND BIOCHEMISTRY OF THE LENS 

 

First and foremost, the fundamental feature of the lens is that it is one of the most optically 

transparent tissues in the body. This is achieved by a series of distinctive cell biological events 

to deliver this essential property for its function. These include the orchestrated spatial 

organisation of the differentiating lens fibre cells to minimize light scatter, the expression of 

stable proteins so that concentrations of up to 800 mg/ml protein have been reported in some 

vertebrate lenses (Mirarefi et al., 2010) to refract light onto the retina, the development of a 

graded refractive index system to minimize spherical aberration (Land, 2012) and lastly the 

removal of all organelles that would otherwise scatter light, e.g., nuclei, mitochondria and 

endoplasmic reticulum (Bassnett et al., 2011).  As only the first few outermost layers of cells in 

the lens retain their organelles, all the other differentiated fiber cells that comprise the bulk of 

the lens are unable to synthesize new proteins (Lieska et al., 1992) despite the presence of 

mRNAs (Jaworski and Wistow, 1996). Nevertheless, as the lens ages, lens proteins are subjected 

to continuous and also significant post-translational modifications (Truscott and Friedrich, 

2015) that accumulate as the lens cells age leading to the loss of protein function (Zhu et al., 

2010b).  
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This presents a biological paradox for the lens. It must age successfully and avoid pathological 

consequences, i.e., cataracts, but without replenishing its original protein complement 

(Lynnerup et al., 2008; Zhu et al., 2010b). A possible replenishment by a soluble protein 

exchange process (Shestopalov and Bassnett, 2003) has yet to be fully assessed (Stewart et al., 

2013). The lens fiber cells have biochemical mechanisms to ensure that proteins synthesized 

early in life resist becoming misfolded with time and the eventual aggregation and cataract 

formation (Truscott and Friedrich, 2016). Also, transporters ensure that avaricious proteases 

lying in wait in the fiber cells are denied the calcium ions needed for their activity (Duncan and 

Jacob, 1984). Other membrane proteins such as the aquaporins regulate water flow in and out 

of the lens cells, as occurs during accommodation (Gerometta et al., 2007) and in a pH 

dependent manner (Nemeth-Cahalan et al., 2004). This activity of the aquaporins relies on the 

lipid environment that they occupy (Laganowsky et al., 2014; Tong et al., 2013). 

 

SUSTAINING THE SOLUBILITY OF LENS PROTEINS 

Lens cells have a large reservoir of particular protein chaperones called α-crystallins (Horwitz, 

1992). These are members of the small heat shock protein family (Garrido et al., 2012). The α-

crystallins can suppress the aggregation of off-pathway intermediates in refolding human γC-, 

γD- and γS-crystallins (Acosta-Sampson and King, 2010) and so are thought to be a major factor 

in securing lens function. The paradox, however, is that in the centre of the lens, there is very 

little full length αA- or αB-crystallin (Grey and Schey, 2009; Truscott and Friedrich, 2015). The 

truncated products in combination with other age-related post-translational modifications such 

as deamidation can preserve some chaperone activity (Asomugha et al., 2011), but some 

peptides derived from these lenticular chaperones have compromised activity (Kannan et al., 

2013; Santhoshkumar et al., 2011).  So, while the chaperone reservoir is one of the biochemical 

mechanisms maintaining lens transparency over the lifetime of the tissue, it is not without 

ageing effects.  

 

Another mechanism is the innate stability of the proteins responsible for the refractive 

properties of the lens (Slingsby et al., 2013). There are often structurally related to enzymes 
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(Bloemendal et al., 2004; Piatigorsky et al., 1994; Wistow, 2012) and were also called crystallins 

(Morner, 1894), but they are quite distinct from the α-crystallin protein chaperones. In 

mammalian lenses these are the β- and γ-crystallin protein families (Slingsby et al., 2013). The 

combination, therefore, of the most abundant lens proteins being very stable proteins and the 

presence of the largest reservoir of protein chaperones in the vertebrate body being located in 

the lens loads the die in favour of sustained protein function throughout the lifetime of the lens 

(Slingsby et al., 2013), although not all the mechanistic details are currently known. 

 

As with other protein chaperones, α-crystallins also assist in the assembly/disassembly of 

protein complexes and also influence phospholipid head group organization (Zhu et al., 2010a), 

They are also nucleotide-independent protein chaperones, a distinct advantage in the low 

oxygen tension environment of the lens (Barbazetto et al., 2004; Beebe et al., 2014) where ATP 

is replenished by glycolysis (Cheng et al., 1991). The lens α-crystallins comprise two proteins, 

αA- and αB-crystallin. They form large, dynamic protein complexes (Hochberg and Benesch, 

2014). The applications of advanced physical techniques such as ion mobility mass 

spectrometry (Hilton et al., 2013; Hochberg and Benesch, 2014; Hochberg et al., 2014) and 

nuclear magnetic spectroscopy (Roos et al., 2015) have produced important new insights  into 

oligomer dynamics, subunit organization and therefore the structure-function relationship. 

 

ANTIOXIDANTS AND OTHER OXIDATION LIMITING MECHANISMS IN THE LENS 

Besides the switching off of DNA transcription and protein synthesis (Jaworski and Wistow, 

1996; Lieska et al., 1992; Lynnerup et al., 2008; Stewart et al., 2013) and a reduction in 

metabolism to a maintenance level (Dovrat et al., 1986; Dovrat et al., 1984; Scharf et al., 1987; 

Zhu et al., 2010b), a third biochemical process occurs to assist the lens in preventing premature 

protein denaturation, namely the presence of antioxidants in or near the lens. The anterior side 

of the lens is washed with the aqueous humor, a selected ultrafiltrate of the blood. In animals 

such as humans that operate in the light rather than the dark, the aqueous humor and the lens 

epithelial cells (but not the fiber cells) contain millimolar concentrations of ascorbate due to an 

ascorbate transporter in the ciliary epithelium (Helbig et al., 1989).  In the lens cells there are 
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millimolar concentrations of the tripeptide glutathione (GSH). High-resolution magic angle 

spinning proton NMR spectroscopy of ocular tissues revealed that GSH is present at much 

higher concentrations in the lens (Kryczka et al., 2014). GSH can react with free radicals and 

other oxidants generated by the formation of singlet oxygen (
1
O2) from the interaction between 

ultraviolet photons and tryptophan residues on the proteins (Ortwerth et al., 2009) and can 

also react with the oxidized form of ascorbate, dehydroascorbate, to regenerate ascorbate 

(Sasaki et al., 1995). The resulting oxidized glutathione (GSSG) is reduced back to GSH by 

NADPH, produced by residual metabolic activity (the pentose phosphate shunt) in the lens 

(Ganea and Harding, 2006). An important question is where GSH comes from (Srinivas, 2014). 

There is evidence for transporters for glutamate and cysteine in the differentiated fiber cells in 

the lens (Lim et al., 2013), thereby offering a continuing source of GSH. Whether this extends to 

the nuclear region of the lens remains to be seen. It is possible that like other biochemical 

entities in the lens, GSH in the nuclear region is generated during the undifferentiated, 

epithelial stage of lens cells and is therefore “old”, particularly as GSH exchange between 

nuclear and cortical regions is compromised by the barrier that develops in older human lenses 

(Sweeney and Truscott, 1998). This would imply that there would be a loss of GSH with aging in 

this critical region of the lens (Srinivas, 2014; Truscott, 2005). 

 

The lens plasma membranes are a further barrier to oxidation. Those membranes in the centre 

(nucleus) of the lens are less permeable to oxygen than those in the lens cortex and ageing 

decreases further that permeability to oxygen (Raguz et al., 2015; Subczynski et al., 2012).  The 

nuclear membranes of the human lens are rich in sphingomyelin and dihydro-sphingomyelin 

that can help protect cholesterol against free-radical mediated oxidation (Sargis and Subbaiah, 

2006). Nonetheless, despite these protective mechanisms, 7-ketocholesterol accumulates in 

ageing human lenses (Rodriguez et al., 2014) and 7β-hydroxycholesterol, 7-ketocholesterol, 5α, 

6α-epoxycholestanol, 20α-hydroxycholesterol and 25-hydroxycholesterol are all found in 

human cataract (Girao et al., 1998). So, these mechanisms minimize, but don't prevent lipid 

oxidation events in the lens. Oxidation of the gap junction proteins may alter the passage of 
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small molecules (<1,000 Da) between the cells of the lens (Berthoud and Beyer, 2009), although 

this may be relatively, non-selective. 

 

LENS PROTEIN MODIFICATIONS 

Despite large concentrations of antioxidants in the lens system, extensive posttranslational 

modifications (PTMs) of lens proteins occur with aging (Truscott and Friedrich, 2015). The most 

common PTM, however, does not come from interaction with oxidants. Instead, it is a purely 

chemical process whereby asparagine and glutamine residues undergo deamidation to form 

aspartate, isoaspartate and glutamate residues (Robinson et al., 2005). The other PTMs 

represent many types of oxidation reactions. Some of these are due to UV light (
1
O2) and result 

in oxidation of tryptophan, tyrosine, cysteine, methionine and histidine residues (Andley et al., 

1985; Goosey et al., 1980; Ortwerth et al., 1998) and can induce disulphide bond cleavage 

(Wang and Wen, 2010), loss of chaperone activity (Mafia et al., 2008) to promote protein 

aggregation. Others involve dehydroascorbate-induced modifications (Dickerson et al., 1995; 

Linetsky et al., 2008; Nemet and Monnier, 2011) and include α-crystallin protein chaperones 

(Dickerson et al., 1995). Proteins on long storage (not just in the lens) undergo the Maillard 

reaction between their free lysine and arginine amino groups and aldehyde and ketone groups 

coming from monosaccharides and oxidized lipids. These rearrange to form Amadori products 

that can form crosslinks between proteins and are prevalent in patients with diabetes (Smuda 

et al., 2015). 

 

Another process that alters the lens proteins is proteolysis. Using a variety of methods, 

including imaging mass spectrometry, extensive C-truncation has been shown to occur of the α-

crystallins (Grey and Schey, 2009). For αA-crystallin in rats, this process has already begun by 

the stage of weaning (Stella et al., 2010). It continues with aging. αA-crystallin truncated forms 

from residues 1-100 are restricted to the nuclear zone of the lens. At weaning, the full length 

αA-crystallin is found throughout the cortical region and in the undifferentiated outermost 

epithelial cell layer, but not in the nuclear region (Stella et al., 2010). As rats age, full length αA-

crystallin is only found in the newest epithelial cell layer (Anderson et al., 2015). The reason for 
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C-truncation is multi-factorial. The other crystallins as well as cytoskeletal and integral 

membrane proteins are all proteolysed during the ageing process (Korlimbinis et al., 2009; 

Lampi et al., 2014; Sandilands et al., 1995; Truscott and Friedrich, 2016). It may be due to the 

activity of calcium-dependent proteases such as calpain, alternative enzymatic capabilities of 

other lens proteins, or by purely chemical processes that occur over the long period of life. 

 

Less is known about other compounds arising from the diet itself, intermediates in normal 

cellular metabolism or from modifications of endogenous or exogenous substances by the gut 

microbiota, that may have an impact on the lens cell system. While it has been suggested that 

fatty acids in the diet do not influence the lipid composition of the lens (Nealon et al., 2008), 

both sterols and flavonoids in the diet can prevent or even reverse cataract in animal and ex 

vivo human models (Weikel et al., 2014).   One of the impacts of modern –omics is that 

investigators are returning to a close examination of the metabolome, the summation of all the 

known physiological pathways as well as pathways of the organism’s associated microbiota. The 

analytical approaches have revealed previously unidentified small molecules that were not 

detected in the heyday of pathway research. 

 

DIETARY FACTORS ASSOCIATED WITH ALTERED LENS CATARACT RISKS 

 

A. Compounds with antioxidant properties 

The diet provides many sources of the antioxidant ascorbic acid, particularly in fruits and 

vegetables. However, it alone does not necessarily prevent lens cataracts. Introduction of a 

human ascorbate transporter to increase ascorbate concentrations in the aqueous humor of 

mice, led to a more rapid onset of lens cataracts (Fan et al., 2006), likely by elevated glycation 

as a result of ascorbic acid oxidation products (Linetsky et al., 2014; Linetsky et al., 2008). It is 

possible that the increased ascorbate in aqueous humor also increased dehydroascorbate and 

outstripped the capacity of the GSSG-NADH regenerative cycle. Other plant phytochemicals 

that are part of the diet have shown preventive activities in models of oxidative stress. Ellagic 

acid inhibited the formation of cataracts induced by selenite in Wistar rats (Sakthivel et al., 
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2008) and prevented alterations in lens proteins (Sakthivel et al., 2011). The polyphenols in 

Moringa oleifera also prevented cataract formation in selenite-treated rat pups (Sasikala et al., 

2010). Diabetic cataracts in streptozotocin-induced diabetic rats were prevented by soy 

isoflavones (Lu et al., 2008a; Lu et al., 2008b) although it was suspected that isoflavones were 

increasing insulin secretion/susceptibility rather than having antioxidant activity. It’s worth 

noting that Chacko et al. have shown that isoflavones are PPAR-γ agonists (Chacko et al., 2007; 

Chacko et al., 2005). Soy isoflavones also inhibited cataract in galactose-induced cataracts 

(Huang et al., 2007). However, in a model of age-related senile cataracts, the Ihara Cataractous 

Rat strain f (ICR/f), where insulin or its action where not deficient, soy isoflavones were not 

preventive and even accelerated the early onset of cataracts (Floyd et al., 2011). This result 

appears to confirm an earlier report using the Royal College of Surgeons Pink Eyed Rat, that less 

than 1% of animals on a soy-free AIN76A diet developed lens cataracts with aging, as opposed 

to 29% of those on a lab chow diet containing copious amounts of soy (Hess et al., 1985). Grape 

seed proanthocyanidins were shown to delay the late stages of development of cataracts in 

ICR/f rats (Yamakoshi et al., 2002) and the selenite model (Zhang and Hu, 2012).  

 

Another dietary antioxidant, vitamin E, prevents lens cataract in selenite-induced cataracts 

(Mathew et al., 2003). Other studies suggest a role for vitamin E in prevention of cataracts in 

other rodent models (Haque and Gilani, 2005; Kojima et al., 2002; MacDonald-Wicks and Garg, 

2003) but not in humans (Olmedilla et al., 2003). A meta-analysis of epidemiological data 

revealed that dietary, but not supplemental vitamin E reduced the risk of age-related cataracts 

(Zhang and Hu, 2012). 

 

In contrast, some dietary supplements and drugs increase the risk of lens cataracts by 

absorbing incident light at non-UV wavelengths and generating 
1
O2 and other oxidation 

products through their photophore properties. Examples are intermediates in porphyrin 

synthesis and metabolism (Roberts and Dillon, 1987), compounds in dietary supplements such 

as hypericin in St John’s wort (Schey et al., 2000) and drugs such as ciprofloxacin (Zhao et al., 

2010). 
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B. Lipids and fatty acids 

A feature of the maturing lens is gradual association of the α-crystallins with membrane 

components (Borchman and Tang, 1996; Cobb and Petrash, 2002; Grami et al., 2005). It 

therefore is important to understand how the lens lipid composition changes with age. In 

humans, the relative amounts of sphingolipids increase with aging (Huang et al., 2007). 

However, this may be more a reflection of the disappearance of the other major membrane 

lipids, the phosphatidylcholines and phosphatidylethanolamines (Li et al., 1987; Zigman et al., 

1984). Although not proven, long chain unsaturated fatty acids released from PCs and PEs may 

be the source of energy needed to maintain lens function over a lifetime, although the low 

levels of butyrate measured in the lens (Kryczka et al., 2014) and the spatial restriction for fatty 

acid oxidation to the lens epithelium and outer cortex because of the lack of mitochondria 

(Bassnett et al., 2011) challenges this concept. Based on the 
14

C/
12

C isotopic ratio of the lens 

lipid matching that of the ratio of their year of birth, lipid replacement in lens membranes is 

minimal (Hughes et al., 2015). Nonetheless, the changing lipid composition, paralleled by the 

establishment of membrane domains in the aging lens nucleus (Raguz et al., 2015), may alter 

the distribution of the crystallins (and other proteins) within the differentiated, old fiber cell. 

With the increase in sphingolipids in the nuclear lens membranes, α-crystallins then bind more 

strongly to these membranes (Grami et al., 2005) and in doing so may recruit other lens 

proteins and thereby increase total light scattering, again an ageing signature for the lens 

(Michael and Bron, 2011). 

 

C. Sterols and other small molecules 

Two recent studies have revealed the role of compounds in the cholesterol biosynthesis and 

metabolism pathways. In the first (Zhao et al., 2015), clever analysis of genetic mutations of 

two family members with frank lens cataracts revealed a mutation in the active site of 

lanosterol synthase (LSS), the enzyme responsible for the conversion of a linear unsaturated 

hydrocarbon, 2,3-oxidosqualene, into the steroid ring conformation of mammalian sterols, 

steroids and bile acids. Examination of a further 150 subjects with lens cataracts identified a 
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second mutation in the active site of LSS (Zhao et al., 2015). Expression of the two mutant LSS 

demonstrated that both mutations led to loss of LSS activity. However, this was not the first 

finding concerning the association of loss of LSS activity and cataracts. It had been previously 

shown that in the Shumiya rat that cataracts were associated with deletion of exon 4 of LSS 

(Mori et al., 2006). In addition, drug candidates for inhibiting cholesterol synthesis, each 

inhibitors of LSS, caused the formation of lens cataracts (Fouchet et al., 2008; Funk and Landes, 

2005; Pyrah et al., 2001). A mechanism of action was proposed by (Cenedella et al., 2004) 

where inhibition of lanosterol synthesis (and therefore products downstream of it) resulted in a 

“stiffer” membrane, thereby altering the way in which proteins associate with the membranes. 

The α-crystallins become attached to the lipid membrane (Borchman and Tang, 1996; Grami et 

al., 2005; Maddala and Rao, 2005) and their association with lens membranes coincides with 

decreased lens compliance (Heys et al., 2007). The α-crystallins influence the head group 

organization of the phospholipids (Zhu et al., 2010a). Other lens proteins also become 

associated as the membranes age (Truscott et al., 2011) and it is thought that this will also 

contribute to the complexity of the protein complement on the membranes in aged lenses.  

Zhao et al. (2015) found that applying lanosterol, but not cholesterol, to the eyes of dogs with 

age related (non-diabetic) cataract, cells transfected with mutant αA-crystallin and to ex vivo 

cataractous rabbit lens resulted in solubilization of the cataracts and solubilisation of the 

protein aggregates. In the latter case, lanosterol-induced solubilization obeyed first order 

kinetics with a T1/2 of 4 h. Excitingly, a nanoparticle preparation of lanosterol when applied as 

eye drops to one eye of a dog with bilateral cataracts for 6 weeks led to a marked dissolution of 

that cataract. This remarkable study suggests that dietary-derived small molecules may not only 

reduce the risk of lens cataracts, but may even be used to effect a therapeutic reversal of 

cataracts.  

 

A second study, recently published in Science (Makley et al., 2015), took a completely different 

approach but arrived nevertheless at cholesterol-related small molecules to help reverse 

cataract caused by α-crystallin mutations.  From a relative small screen (~2,500) of bioactives, 

two oxysterols were eventually identified (5α-cholestan-3β-ol-6-one and 5-cholesten-3β,25-
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diol) that reversed cataract caused by R120G αB-crystallin and R49C αA-crystallin. Molecular 

modeling suggested that these molecules bind at the dimer interface of the crystallin domain 

for αB-crystallin. 

 

Steroids are associated with cataracts – use of prednisone to treat lupus, glucocorticoid 

injections for Addison’s disease and other conditions – are they displacing “beneficial” 

oxysterols? Of course, the Zhao paper (Zhao et al., 2015) identified mutations in lanosterol 

synthase as the genetic basis of inherited cataract in humans, an observation made also for the 

Shumiya rat cataract model (Mori et al., 2006). This quite clearly establishes lanosterol and 

cholesterol metabolism as key factors in preventing cataract, complementing the observation 

that patients with Smith-Lemli-Opitz syndrome (Cotlier and Rice, 1971; Fitzky et al., 1998), 

mevalonic aciduria (Hoffmann et al., 1986; Schafer et al., 1992) and cerebrotendidinous 

xanthomatosis (Chen et al., 1996; Yoshinaga et al., 2014) and those affected by Coats’ Disease 

with ocular deposits of cholesterol (Beby et al., 2005; Chang et al., 1984) also present with 

cataract. The debate over the increased risk or otherwise of cataract associated with statin use 

continues (Desai et al., 2014; Kostis and Dobrzynski, 2015). There are many documented 

changes in lipid composition that accompany cataract in human lenses (Borchman and Yappert, 

2010). Dietary linoleic acid levels are correlated with increased nuclear cataract (Lu et al., 

2007), although dietary fatty acids do not influence the lipid composition of the rat lens (Nealon 

et al., 2008), the inability to synthesise ether lipids in the plasmalogen biosynthesis pathway is 

still linked to cataract in mice (Gorgas et al., 2006; Liegel et al., 2011; Park et al., 2014) and 

humans (Buchert et al., 2014; Liegel et al., 2013). Nevertheless, lipids and sterols are clearly 

linked to cataractogenesis and its prevention. 

 

Comparing the three sterols  (Figs. 2A-C) that have been shown to improve mutant αA-crystallin 

solubility or clarify pre-existing lens cataracts with three well known examples of xenobiotics 

(therapeutic agents and a botanical) (Figs. 2D-F) whose use leads to cataract formation, a 

common structural feature in the former but not the latter is the presence of a hydrophobic 

side chain. Thus, prednisone, while having a steroid ring nucleus, lacks the side chain of the 
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sterols. While this would appear to advocate for a beneficial effect of a more familiar sterol, 

cholesterol, a previous study showed cholesterol led to a more tightly packed bilayer than 

lanosterol (Cournia et al., 2007). Accordingly, lanosterol–enriched membranes had a lower 

melting temperature (increased fluidity). In contrast, hypericin increased membrane stiffness 

(Chaloupka et al., 1999). 

 

FUTURE DIRECTIONS 

Lipids and their exchange through the lens over short (week) timescales compared to protein 

exchange and turnover in the membrane and soluble fractions are clearly areas of interest. This 

is because of the possibility of pharmacological alternatives to surgery for the treatment and 

prevention of cataract in humans and in animals. The lens also offers insight into the ageing 

process itself and the biochemical and cell biological processes that accompany the ageing of 

the lens and the consequences for its proteins and lipids. In the lens, time is measured in 

decades and therefore that parameter is an area of the biochemical and cell biological time 

scale that is rarely considered let alone studied, but is key to understanding how to age 

successfully. The recent reports that certain sterols prevent and even reverse lens cataract will 

encourage a more thorough understanding of the role of the changing lipid environment with 

aging on the primary function of the lens, to remain clear and pass observed light to the rest of 

the visual apparatus. Finally, delivery of these sterols or lipid domain modifiers to the lens 

environment, particularly orally via the diet, will remain a challenge. 
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Fig. 1.  A summary of the major ageing effects on lens proteins and plasma membranes. The 

recent discovery of the effects of selected sterols (Makley et al., 2015; Zhao et al., 2015) on lens 

transparency and the data from 
14

C distribution in the soluble protein fraction of human lenses 

(Stewart et al., 2013) suggest the protein and sterol content of the lens nucleus exchanges with 

the cortex.    

Fig. 2. Chemical structures of small molecules that influence the solubilities of lens proteins. 

The sterols, lanosterol (A), 5α-cholestan-3β-ol-6-one (B) and 5-cholesten-3β,25-diol (C), have 

recently been shown (Makley et al., 2015; Zhao et al., 2015) to solubilize mutant αA-crystallin 

and proteins in lens cataracts. In contrast, the therapeutic agents, prednisone (D) and 

ciprofloxacin (E) and the botanical, hypericin (F), are associated clinically with the formation of 

lens cataract.   
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