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Three new weighted rank correlation coe�cients are proposed which are sensitive to both
agreement on top and bottom rankings. The first one is based on the weighted rank correlation
coe�cient proposed by Maturi and Abdelfattah [13], the second and the third are based on
the order statistics and the quantiles of the Laplace distribution, respectively. The limiting
distributions of the new correlation coe�cients under the null hypothesis of no association
between the rankings are presented, and a summary of the exact and approximate quantiles for
these coe�cients is provided. A simulation study is performed to compare the performance of
Kendall’s tau, Spearman’s rho, and the new weighted rank correlation coe�cients in detecting
the agreement on the top and the bottom rankings simultaneously. Finally, examples are given
for illustration purposes, including a real data set from financial market indices.

Keywords: Weighted correlation; Measures of agreement; Measures of association; Rank
correlation; Laplace distribution, Order statistics.

1. Introduction

There are many situations where n objects are ranked by two independent sources
or observers and the interest is in measuring the agreement between these sets of
rankings. Measures of agreement or association are of much interest in practice, for
example to evaluate the agreement between several experts, methods or models.
In many cases the interest is particularly focused on agreement on the top and

bottom rankings (lower and upper rankings), as e.g. in the study of the agreement
between preference rankings, the agreement between football ranking league tables,
evaluate the agreement between two methods of assessing platelet aggregation [21],
and the agreement between financial markets [16]. There maybe situations where
judges believed to give more attention to the allocation of the top and bottom
rankings, than the middle ranks (they may even randomly allocate ranks to the
middle subjects). In this case, an analyst may wish to focus on the agreement
between judges with respect to the top and bottom rankings [4].
Statistics such as Spearman’s rho [18] or Kendall’s tau [10] correlation coe�-

cients are not appropriate for such a scenario since they assign equal weights to all
rankings. Several correlation coe�cients have been proposed in the literature which
are more sensitive to the agreement on the top rankings, such as the top-down cor-
relation coe�cient by Iman and Conover [9] which is based on Savage scores, the
weighted Kendall’s tau by Shieh [17], the Blest’s correlation coe�cient [2] and its
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symmetric version [5]. Maturi and Abdelfattah [13] presented a weighted rank cor-
relation coe�cient with the flexibility of choosing weights to reflect the emphasis
of agreement on the top rankings.
This paper presents three new weighted rank correlation coe�cients which are

sensitive to agreement on top and bottom rankings simultaneously. The first one
is based on the weights that are proposed by Maturi and Abdelfattah [13] which is
more sensitive to the agreement on the top and bottom rankings simultaneously.
The second and the third are based on the order statistics and the quantiles of the
Laplace distribution, respectively.
The rest of the paper is organized as follows. The three new weighted rank cor-

relation coe�cients are introduced in Section 2. The limiting distributions of these
correlation coe�cients under the null hypothesis of no association among the rank-
ings are presented in Section 3. A summary of the exact and approximate quantiles
for these correlation coe�cients is also provided in this section. A simulation study
has been performed in order to investigate the performance of the new correlation
coe�cients compared to Spearman’s rho and Kendall’s tau correlation coe�cients,
the results are presented in Section 4. In order to illustrate the important features
of the new correlation coe�cients, examples are given in Section 5, including a
real data set from financial market indices. Some concluding remarks are given in
Section 6.

2. New weighted rank correlation coe�cients

In this section we introduce three weighted rank correlation coe�cients to assess
the agreement on the top and bottom rankings simultaneously. The first weighted
rank correlation coe�cient is based on the weight scores introduced by Maturi
and Abdelfattah [13]. The weighted correlation coe�cient proposed by Maturi and
Abdelfattah [13] is sensitive to the agreement on the top (or bottom) rankings
but not on the top and bottom simultaneously, also their rank correlation is not
symmetric. Coolen-Maturi [3] extended the rank correlation in [13] for more than
two sets of rankings but again the focus was only on the agreement on the top or
bottom rankings. The new weighted rank correlation presented in Section 2.1, uses
the weight scores in [13], is symmetric and can be used to evaluate the agreement
on the top and the bottom rankings at the same time. In addition it enjoys the
same flexibility as the one in [13] in terms of choice of weight scores which take the
value between 0 and 1, exclusive.
Two further weighted rank correlation coe�cients are presented in Section 2.2.

These are based on the Laplace distribution which is also known as the Double
Exponential distribution, because it can be thought of as the distribution of the
di↵erence of two independent identically distributed exponential random variables
[11]. The first coe�cient is based on the order statistics of the Laplace distribu-
tion while the second is based on the quantiles of the Laplace distribution. The
performance of these three coe�cient will be considered in Section 4.
Throughout this paper, we assume that there are no ties among rankings, however

if ties occur we suggest to use the randomization tool [6] to deal with ties as the
randomization methods do not a↵ect the null distribution of the rank correlation
coe�cients [6, 14].
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2.1 A new weighted correlation coe�cient based on Maturi and Abdelfattah

[13] scores

Maturi and Abdelfattah [13] introduced a weighted rank correlation coe�cient, rw,
to test the null hypothesis that two set of rankings are independent. This weighted
rank correlation rw is sensitive to agreement on the top ranks, it is based on the
weighted scores (wR1i , wR2i) where (R1i, R2i) are the paired rankings of object
i = 1, 2, . . . , n, with weight w 2 (0, 1).
The weighted rank coe�cient rw is given by [13]

rw =

 
n

nX

i=1

wR1i+R2i � a1

!
/(na2 � a1) (1)

where a1 = w2(1�wn)2/(1�w)2 and a2 = w2(1�w2n)/(1�w2). The statistic rw
has a maximum value of 1, yet its minimum possible value is not �1. In fact, the
minimum value of Rw is �1 only for n = 2 and increases away from �1 towards
approximately from �2⇥ 10�6 to �3⇥ 10�4, depending on the value of w. This is
very similar behaviour to the top-down correlation coe�cient introduced by Iman
and Conover [9]. Maturi and Abdelfattah [13] showed that rw is a locally most
powerful rank test. For n ! 1 and under the null hypothesis of independence,
they showed that the statistic rw

p
n� 1 has asymptotically a standard normal

distribution.
We will use the weighted scores proposed by Maturi and Abdelfattah [13] to

derive the new correlation coe�cient, and by using the notation introduced above,
the weighted scores are wRji where Rji is the rank given by the jth observer to the
ith object (j = 1, 2 and i = 1, 2, . . . , n) and 0 < w < 1. The choice of w reflects
the desire to emphasize the lower and upper rankings. For ease of presentation
and without loss of generality, let qi be the rank given by the second observer
corresponding to the rank i given by the first observer. That is we have paired
rankings (i, qi), i = 1, 2, . . . , n, of n objects. The new weighted scores that give
more weights to the lower and upper rankings are defined as

Swi
=

8
<

:

�wi if i < n+1
2

0 if i = n+1
2

wn+1�i if i > n+1
2

(2)

For example, from Table 1, the scores Swi
for the rankings 1,2,3,4,5 (n = 5) and

w = 0.3 are �0.30,�0.09, 0, 0.09, 0.30. Notice that the scores Swi
for n = 4 and

w = 0.3 are �0.30,�0.09, 0.09, 0.30.
The new weighted rank coe�cient Rw is defined by computing the well-known

Pearson correlation coe�cient on the weighted scores in (2) as

Rw =

Pn
i=1 Swi

SwqiqPn
i=1 S

2
wi

qPn
i=1 S

2
wqi

(3)

which is equal to

Rw =
1

A

nX

i=1

Swi
Swqi

(4)

where A = 2w2(1�w2m)
1�w2 and m =

⌃
n�1
2

⌥
, as shown in the proof of Theorem 3.1.
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2.2 Two correlation coe�cients based on the Laplace distribution

Iman and Conover [9] proposed the top-down correlation coe�cient, by computing
the well-known Pearson correlation coe�cient on Savage scores (Si =

Pn
l=i 1/l),

which is more sensitive to the agreement on the top rankings. The statistic that uses
Savage scores is shown to be asymptotically normal under the null hypothesis of
independence and to be a locally most powerful test for some alternatives, for more
details see [8, 9]. However, the top-down correlation coe�cient is not symmetric,
one can make it symmetric by taking �1+Si = �1+

Pn
l=i 1/l, but this is not fully

symmetric.
The savage score Sn�i+1 can also be defined as the expected value of the ith

order statistic in a random sample of size n from the exponential distribution [8,
p. 78]. This leads to the idea of a new correlation coe�cient which is based on the
following scores

SOi
=

1

2n

(
iX

r=1

✓
n

r � 1

◆
E(i� r + 1, n� r + 1)�

nX

r=i

✓
n

r

◆
E(r � i+ 1, r)

)

where E(a, b) =
Pa

l=1
1

b�l+1 for any integers a < b. The SOi
score is the expected

value of the ith order statistic in a random sample of size n from the Laplace
distribution (also known as Double Exponential distribution) [1, 7]. These scores
SOi

are symmetric around the middle ranks. A new rank correlation coe�cient RO

is obtained by computing the Pearson correlation coe�cient on scores SOi
,

RO =

Pn
i=1 SOi

SOqiqPn
i=1 S

2
Oi

qPn
i=1 S

2
Oqi

(5)

This rank correlation coe�cient takes the values between -1 and 1, inclusive, with
-1 (+1) for perfect negative (positive) correlation. We should emphasize that the
rank correlation coe�cient RO gives more weight to the lower and upper rankings
simultaneously. For example, from Table 1, the scores SOi

for the rankings 1,2,3,4,5
(n = 5) are �1.5885,�0.5729, 0, 0.5729, 1.5885.

A second new correlation coe�cient can also be based on the Laplace distribu-
tion, namely on the quantiles of Laplace distribution. We define the score for the
rank i as

SLi
= F�1

L

✓
i

n+ 1

◆

where F�1
L is the inverse cumulative distribution function of Laplace distribution.

These scores can be easily obtained using any statistical software, e.g. the pack-
age ‘rmutil’ 1 in R. These scores SLi

are symmetric around the middle ranks,
for example, from Table 1, the scores SLi

for the rankings 1,2,3,4,5 (n = 5) are
�1.0986,�0.4055, 0, 0.4055, 1.0986.
The rank correlation coe�cient RL is defined by computing the Pearson corre-

1http://www.commanster.eu/rcode.html
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Table 1. Scores for n = 5

Ranks 1 2 3 4 5

S0.1 -0.10 -0.01 0 0.01 0.10
S0.2 -0.20 -0.04 0 0.04 0.20
S0.3 -0.30 -0.09 0 0.09 0.30
S0.4 -0.40 -0.16 0 0.16 0.40
S0.5 -0.50 -0.25 0 0.25 0.50
S0.6 -0.60 -0.36 0 0.36 0.60
S0.7 -0.70 -0.49 0 0.49 0.70
S0.8 -0.80 -0.64 0 0.64 0.80
S0.9 -0.90 -0.81 0 0.81 0.90
SL -1.0986 -0.4055 0 0.4055 1.0986
SO -1.5885 -0.5729 0 0.5729 1.5885

Figure 1. Scores for n = 5

lation coe�cient on scores SLi
,

RL =

Pn
i=1 SLi

SLqiqPn
i=1 S

2
Li

qPn
i=1 S

2
Lqi

(6)

Like RO, the rank correlation coe�cient RL is symmetric and gives more weight
to the lower and upper rankings simultaneously. RL is easy to calculate using
statistical packages and, as shown in Section 4, its power is close to the power of
the correlation coe�cient RO.
To summarize, all three proposed weighted rank correlation coe�cients are sym-

metric, taking the value -1 for prefect negative agreement and +1 for prefect pos-
itive agreement. All give more weights to the lower and upper rankings simulta-
neously. To illustrate the di↵erent weights that are given by the three new rank
correlation coe�cients, consider the weight of the ranks 1,2,3,4,5 as given in Table
1 and Figure 1. Obviously, the scores SO and SL assign more weights to the lower
and upper rankings compared to R0.7 and R0.9.

3. The exact and limiting distributions

In order to use the proposed weighted rank correlation coe�cients to test the
null hypothesis of no agreement between the two rankings, one needs to find
the distribution of these weighted rank correlation coe�cients under the null
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hypothesis. The exact quantiles of Rw for n = 4(1)12, and the approximate
quantiles for larger n (n = 13(1)19 and n = 20(10)100) are listed in Tables 2, 3
and 4. The exact quantiles were obtained by generating all possible permutations
of (1, 2, . . . , n), then the three proposed rank correlation coe�cients are calculated
between (1, 2, . . . , n) and each of these (equally likely) permutations. The approx-
imate quantiles were obtained by one million Monte Carlo simulations for each
n. Similarly, the exact and approximate quantiles of RL and RO are reported in
Tables 5 and 6, respectively.

For large values of n, the asymptotic distribution of Rw under the null hypothesis
is given in the following theorem. The three weighted rank correlation coe�cients
have the same asymptotic distribution, that is the limiting distribution of Rw,
RL and RO is the normal distribution with mean 0 and variance 1/(n � 1). The
proof for Rw is given below, the proof for the other two weighted rank correlation
coe�cients, RL and RO, is very similar.

Theorem 3.1 Under the null hypothesis of independence, E(Rw) = 0, V (Rw) =
1/(n � 1) and the asymptotic distribution of Rw

p
n� 1 is the standard normal

distribution.

Proof
The mean and the variance of the Rw, under null hypothesis of independence, are
computed as follows. Since E(Swi

Swqi
) = E(Swi

)E(Swqi
) = 0 then by substituting

in (4) we directly obtain that E(Rw) = 0. Let m =
⌃
n�1
2

⌥
, from (2),

A =
nX

i=1

S2
wi

=
X

i

(�wi)2 +
X

i

(wn+1�i)2 = 2
mX

i=1

w2i =
2w2(1� w2m)

1� w2

For the variance, from (4),

V ar(Rw) =
1

A2
V ar(

nX

i=1

Swi
Swqi

)

where

V ar(
nX

i=1

Swi
Swqi

) = nV ar(Swi
)V ar(Swqi

) + n(n� 1)Cov(Swi
, Swj

)Cov(Swqi
, Swqj

)

and

V ar(Swi
) = V ar(Swqi

) =
1

n

nX

i=1

S2
wi

=
1

n

nX

i=1

S2
wqi

=
1

n
A

Cov(Swi
, Swj

) = Cov(Swqi
, Swqj

) = E(Swi
Swj

)� E(Swi
)E(Swj

)

=
1

n(n� 1)

X

i 6=j

Swi
Swj

� 0

=
1

n(n� 1)

0

@
 

nX

i=1

Swi

!2

�
nX

i=1

S2
wi

1

A =
�A

n(n� 1)
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then

V ar(
nX

i=1

Swi
Swqi

) = n

✓
A

n

◆2

+ n(n� 1)

✓
�A

n(n� 1)

◆2

=
A2

n� 1

therefore V ar(Rw) = 1/(n� 1).
Using an(Rni, f) = Swi

/
p
A and an(Qni, g) = Swqi

/
p
A, we can write Rw =Pn

i=1 an(Rni, f)an(Qni, g). That is, Rw is written as a linear rank statistic. Under
H0, using Theorem V.1.8 in [8], the distribution of the statistic Rw for n ! 1 is
asymptotically normal with mean 0 and variance 1/(n� 1). ⌅

4. Simulation study

A simulation study has been carried out to compare the performance of the three
new correlation coe�cients, Kendall’s tau and Spearman’s rho and in detecting the
agreement on top and bottom rankings simultaneously. To compare the power of
the three new weighted rank correlation coe�cients we followed Legendre [12] in
generating the following simulation scenario1.
For the first set of observations, a standard normal distribution sample is gener-

ated then this sample is sorted ascendingly. To obtain the second sample, (1) two
random normal distribution samples (of size m = [np] where 0 < p < 1) with mean
zero and standard deviations � = 0.25, 0.5, 1, 2, 3 are simulated and then added to
the first (sorted) set of observations, for i = 1, . . . ,m and i = n�m+1, . . . n, (2) a
random normal distribution sample (of size n� 2m) with mean zero and standard
deviations � = 0.25, 0.5, 1, 2, 3 is simulated for i = m+ 1, . . . , n�m. Three values
of the proportions of ranks are considered here, namely p = 0.1, 0.2, 0.3, which al-
low us to compare the performance of the new correlations coe�cients at di↵erent
levels of focus on the top and bottom rankings simultaneously.
The performances (power) of the three weighted correlation coe�cients are as-

sessed, at significance level ↵ = 0.05, using the percentage of rejections of the null
hypothesis when the null hypothesis is false. For the rank correlation coe�cient Rw

we are going to consider the weights w = 0.4(0.1)0.8. Based on 10,000 replications
and n = 10, 20, 30, 50, 100, the simulation results are summarised in Table 7.
From Table 7 and as expected all the new weighted rank correlation coe�cients

perform much better compared with Spearman’s rho and Kendall’s tau for p = 0.1
than for p = 0.3. And of course the powers are much higher for small � where
larger values of � correspond to lower degrees of agreement.
Table 7 also shows that the Spearman’s rho performs slightly better than

Kendall’s tau but both are very close. The two weighted rank correlation coef-
ficients that are based on the Laplace distribution, RL and RO, perform very well
compared to Spearman’s rho and Kendall’s tau. The performance of RL and RO

is very close to each other, however RO performs better than RL for p = 0.1 while
RL performs slightly better than RO for p = 0.3.
The performance of the weighted rank correlation Rw varies depending on the

sample size n, � and p. For small p, � and n, the Rw (for small w) performs
better than other correlation coe�cients. For large n, Rw performs better than
(or close to) other correlation coe�cients, except for large variance �. This is not
surprising, as for Rw one has huge freedom on how to choose the weight to reflect
the amount of emphasis on agreement on top and bottom rankings. Therefore one

1The R codes are available on request from the author.
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should choose the weights very carefully taking into account the research interest
and sample size.
As a rule of thumb, if one wishes to find the agreement on 10% of both the top

and bottom rankings without giving much attention to the ranks on the middle
then one may choose small values of w, e.g. w  0.3. And if one would like to find
the agreement on 20% of both the top and bottom rankings with some attention
to the values in the middle then one may want to choose medium values of w, e.g.
between 0.4 and 0.6. However, if the aim is to find the agreement on the 30-35% of
the top and bottom rankings with reasonable attention to the values in the middle
then the suggestion is to choose large values of w, e.g. between 0.7 and 0.9. Figure 2
shows the weighted scores Sw for n = 15, 25, 50, which illustrates how the weighted
scores change from the top/bottom rankings compared with the middle ranks.

5. Examples

In this section, two examples are presented to illustrate the new proposed weighted
rank correlation coe�cients, the second example considers real data on financial
markets indices.

Example 5.1 Let us consider seven scenarios in which two experts are asked to
rank 15 objects (n = 15) according to some criteria, this data set is given in Table
8. We calculate the three proposed rank correlation coe�cients (using (3), (5) and
(6)) along with Kendall’s tau and Spearman’s rho, the results are summarized in
Table 9. Scenarios (A,B) and (A,C) show almost perfect positive agreement on
the top and bottom rankings (4 rankings both sides) while scenario (A,E) shows
almost perfect negative agreement on the top and bottom rankings (4 rankings
both sides). For scenario (A,B), all the rank correlation coe�cients are significant
at significance level 1%, except R0.9 which is significant at 5%, with large values
for all the weighted rank correlations, except R0.8 and R0.9. The merit of the new
proposed weighted rank correlation coe�cients is more obvious in scenario (A,D)
where we have perfect positive agreement on the top and bottom rankings (2
rankings both sides). For this scenario, Kendall’s tau, Spearman’s rho and R0.9 are
significant at significance level 5% while the remaining correlation coe�cients are
significant at 1%.
On the other hand, in Scenarios (A,F), (A,G) and (A,H) we have perfect agree-

ment on the middle rankings, while there is some disagreement on the top and
bottom rankings (2, 3, 4 rankings both sides, respectively). All rank correlation
coe�cients are significant at significance level 1%, except for Rw with small values
of w which are not significant. This shows the impact of disagreement on the top
and bottom rankings on Rw for small values of w. It also shows how choosing the
wights for Rw could a↵ect the inference results.

Example 5.2 In this example a set of monthly data of four market indices is used
to illustrate the new rank correlation coe�cients, these indices are the Standard
and Poor (S&P), the Financial Times (FT), the Nikkei (Nik), and the DAX index.
Meintanis and Iliopoulos [15] used this data set to test the independence of the four
indices as well as of all combinations of three or two of them. Coolen-Maturi [3]
also used this data set to test the independence of the four indices with more focus
on agreement on the top rankings via the weighted rank coe�cient of concordance,
which is an extension of the correlation coe�cient by [13] for more than two sets
of rankings. The sampling period was September 2001-December 2005, yielding a
sample size of n = 50 filtered returns (filtered by Meintanis and Iliopoulos [15]
using ARMA(1,1) process).
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Figure 2. Sw scores for n = 15, n = 25 and n = 50
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Figure 3. Scatter plot of all possible pairs of the market indices for the ranked data, Example 5.2

We consider the 6 possible pairs of these market indices, (S&P, FT), (S&P, Nik),
(S&P, DAX), (FT, Nik), (FT, DAX) and (Nik, DAX). Figure 3 shows the matrix
of all possible pairs of market indices for the ranks of the original data (after
filtering). We can see from this figure that the pair (S&P, DAX) (respectively,
(FT, Nik)) is more (respectively, less) in rank agreement, which coincides with the
results obtained by Meintanis and Iliopoulos [15]. Meintanis and Iliopoulos [15]
found that all pairs of these four indices are also highly dependent, except for (FT,
Nik), the most dependent pair was (S&P, DAX) and the least dependent pair was
(FT, Nik) followed by (S&P, Nik).
Table 10 presents the Spearman’s rank correlation coe�cient Rs [18], Kendall’s

rank correlation Rk [10], the weighted rank correlation Rw as presented in (3) for
di↵erent values of w, and the weighted correlation coe�cients based on the order
statistics and the quantiles of the Laplace distribution, RO and RL, respectively.
In order to test the null hypothesis of independence against the alternative of a
positive correlation, the critical values from the tables in Section 3, for significance
level 5% and 1%, are used. Table 10 shows that for the pairs (FT, DAX) and
(S&P, DAX) we always reject the null hypothesis of independence at significance
level 1%, so there is evidence of positive correlation between these pairs of indices.
Spearman’s rank correlation coe�cient Rs, Kendall’s rank correlation Rk, and the
two weighted correlation coe�cients RO and RL always indicate positive correlation
for all 6 pairs at significance level 1% (except for (FT, NiK) which is significant
at 5%). However, for Rw this varies depending on the value of w. For example,
we do not reject the null hypothesis of independence for the pair (FT, Nik) for
w = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We can also notice that the results from Spearman’s
rank correlation coe�cient Rs are close to the results from the weighted rank
correlation R0.9, while the results from the two weighted correlation coe�cients
that based on the Laplace distribution, RO and RL are close to each other and
close to the results from the weighted rank correlation R0.9.
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6. Concluding remarks

In this paper we have presented three new weighted rank correlation coe�cients
which are aimed of evaluating the agreement of the top and the bottom rankings
simultaneously. In addition to the exact and approximate quantiles, we also de-
rived the limiting distribution of these weighted rank coe�cients under the null
hypothesis of no agreement between the rankings. We illustrated the use of the
new weighted rank coe�cients via examples, including an example using financial
markets indices.
We also carried out a simulation study to compare the performance of the three

proposed weighted rank correlation coe�cients with the well-known non-weighted
rank correlation coe�cients, namely Spearman’s rho and Kendall’s tau correlation
coe�cients. The simulation study showed that the proposed weighted correlation
coe�cients perform very well, compared with Spearman’s rho and Kendall’s tau
correlation coe�cients for p = 0.1, while their performances are close to Spearman’s
rho and Kendall’s tau for p = 0.3. For p, � and n, the Rw performs better than
other correlation coe�cients (except for large w), however, Rw performs worse
for large �. On the other hand, the Laplace distribution based rank correlation
coe�cients RL and RO perform very well.
In addition to the simulation study that has been presented in this paper, one

can also apply other methods to compare these correlation measures, e.g. via re-
sampling (bootstrap) techniques as in [14] or by visualising these concordance mea-
sures as in [22]. One can also consider extending the work presented in this paper
to evaluate the agreement with focus on the top and the bottom rankings simul-
taneously when there are more than two rankings as in [3, 20], or even with focus
on a specific range of rankings (e.g. measuring the agreement between nonlinear
rankings [19]).
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Table 2. Exact quantiles for the weighted correlation, Rw

w 90% 92.5% 95% 97.5% 99% 99.5% 99.9%

n = 4 0.1 0.5990 0.9802 0.9802 1.0000 1.0000 1.0000 1.0000
0.2 0.6923 0.9231 0.9231 1.0000 1.0000 1.0000 1.0000
0.3 0.7752 0.8349 0.8349 1.0000 1.0000 1.0000 1.0000
0.4 0.8448 0.8448 0.8448 1.0000 1.0000 1.0000 1.0000
0.5 0.9000 0.9000 0.9000 1.0000 1.0000 1.0000 1.0000
0.6 0.9412 0.9412 0.9412 1.0000 1.0000 1.0000 1.0000
0.7 0.9698 0.9698 0.9698 1.0000 1.0000 1.0000 1.0000
0.8 0.9878 0.9878 0.9878 1.0000 1.0000 1.0000 1.0000
0.9 0.9972 0.9972 0.9972 1.0000 1.0000 1.0000 1.0000

n = 5 0.1 0.5495 0.5941 0.5990 0.9851 0.9950 1.0000 1.0000
0.2 0.5962 0.6731 0.6923 0.9423 0.9808 1.0000 1.0000
0.3 0.6376 0.7339 0.7752 0.8761 0.9587 1.0000 1.0000
0.4 0.6724 0.7241 0.7931 0.8448 0.9310 1.0000 1.0000
0.5 0.7000 0.7000 0.8000 0.9000 0.9000 1.0000 1.0000
0.6 0.6618 0.7206 0.8088 0.8824 0.9412 1.0000 1.0000
0.7 0.7047 0.7349 0.8054 0.9396 0.9698 1.0000 1.0000
0.8 0.7317 0.7439 0.7927 0.9756 0.9878 1.0000 1.0000
0.9 0.7459 0.7486 0.7735 0.9945 0.9972 1.0000 1.0000

n = 6 0.1 0.5381 0.5449 0.5549 0.9851 0.9949 0.9960 1.0000
0.2 0.5576 0.5791 0.6190 0.9416 0.9785 0.9877 1.0000
0.3 0.5632 0.6029 0.6899 0.8734 0.9480 0.9799 1.0000
0.4 0.5742 0.6309 0.7389 0.8192 0.9001 0.9568 1.0000
0.5 0.5952 0.6905 0.7381 0.8095 0.8810 0.9524 1.0000
0.6 0.5661 0.6627 0.7573 0.8625 0.9270 0.9613 1.0000
0.7 0.5210 0.5800 0.7224 0.9248 0.9612 0.9745 1.0000
0.8 0.4641 0.5168 0.6003 0.9684 0.9840 0.9902 1.0000
0.9 0.4000 0.4308 0.4679 0.9927 0.9963 0.9980 1.0000

n = 7 0.1 0.5049 0.5400 0.5489 0.5989 0.9909 0.9949 0.9998
0.2 0.5184 0.5599 0.5906 0.6905 0.9670 0.9785 0.9969
0.3 0.5264 0.5669 0.6229 0.7658 0.9271 0.9480 0.9852
0.4 0.5263 0.5796 0.6552 0.7625 0.8704 0.9109 0.9676
0.5 0.5476 0.5952 0.6667 0.7619 0.8333 0.8810 0.9524
0.6 0.5526 0.6090 0.6740 0.7653 0.8512 0.8888 0.9565
0.7 0.5297 0.6020 0.6936 0.7832 0.8754 0.9170 0.9740
0.8 0.5250 0.5640 0.7002 0.8123 0.8763 0.9586 0.9875
0.9 0.5109 0.5330 0.6009 0.8285 0.8615 0.9907 0.9967

n = 8 0.1 0.4995 0.5060 0.5444 0.5544 0.9896 0.9944 0.9955
0.2 0.4963 0.5276 0.5739 0.6143 0.9579 0.9739 0.9844
0.3 0.4911 0.5373 0.5870 0.6727 0.9027 0.9398 0.9703
0.4 0.4864 0.5379 0.6034 0.7152 0.8288 0.8884 0.9547
0.5 0.5000 0.5471 0.6176 0.7059 0.7941 0.8471 0.9353
0.6 0.5054 0.5569 0.6220 0.7112 0.7965 0.8399 0.9265
0.7 0.5088 0.5558 0.6150 0.7125 0.8411 0.8903 0.9495
0.8 0.5152 0.5506 0.5936 0.6615 0.9294 0.9519 0.9789
0.9 0.5163 0.5297 0.5512 0.5913 0.9832 0.9886 0.9950

n = 9 0.1 0.4955 0.5004 0.5396 0.5494 0.9889 0.9905 0.9954
0.2 0.4840 0.5029 0.5583 0.5944 0.9506 0.9646 0.9826
0.3 0.4672 0.5075 0.5623 0.6299 0.8844 0.9261 0.9622
0.4 0.4583 0.5069 0.5648 0.6615 0.8056 0.8709 0.9337
0.5 0.4647 0.5118 0.5765 0.6647 0.7588 0.8176 0.9000
0.6 0.4699 0.5201 0.5805 0.6658 0.7515 0.8010 0.8843
0.7 0.5210 0.5800 0.7224 0.9248 0.9612 0.9745 1.0000
0.8 0.4653 0.5164 0.5810 0.6741 0.8031 0.8560 0.9350
0.9 0.4441 0.5131 0.5942 0.6558 0.8539 0.8772 0.9843

n = 10 0.1 0.4950 0.4994 0.5054 0.5450 0.9850 0.9901 0.9950
0.2 0.4800 0.4952 0.5222 0.5804 0.9401 0.9610 0.9801
0.3 0.4550 0.4867 0.5384 0.6068 0.8658 0.9140 0.9558
0.4 0.4347 0.4805 0.5381 0.6235 0.7800 0.8491 0.9212
0.5 0.4340 0.4809 0.5411 0.6320 0.7317 0.7918 0.8827
0.6 0.4415 0.4883 0.5470 0.6302 0.7168 0.7675 0.8553
0.7 0.4408 0.4907 0.5516 0.6372 0.7275 0.7804 0.8647
0.8 0.4329 0.4963 0.5666 0.6456 0.7205 0.7807 0.9332
0.9 0.4762 0.5531 0.5941 0.6361 0.6761 0.7103 0.9838

n = 11 0.1 0.4946 0.4957 0.5005 0.5445 0.5940 0.9900 0.9950
0.2 0.4768 0.4860 0.5039 0.5761 0.6726 0.9592 0.9792
0.3 0.4460 0.4720 0.5117 0.5922 0.7309 0.9066 0.9511
0.4 0.4166 0.4593 0.5148 0.5968 0.7493 0.8332 0.9108
0.5 0.4120 0.4560 0.5132 0.6012 0.7053 0.7698 0.8651
0.6 0.4170 0.4621 0.5183 0.6000 0.6868 0.7395 0.8315
0.7 0.4177 0.4640 0.5223 0.6050 0.6910 0.7421 0.8291
0.8 0.4143 0.4630 0.5235 0.6104 0.7036 0.7671 0.8684
0.9 0.4136 0.4733 0.5249 0.6109 0.7078 0.7564 0.9023

n = 12 0.1 0.4943 0.4954 0.5000 0.5440 0.5499 0.9895 0.9949
0.2 0.4740 0.4824 0.4993 0.5728 0.5992 0.9568 0.9784
0.3 0.4381 0.4627 0.4968 0.5819 0.6457 0.8997 0.9474
0.4 0.4022 0.4424 0.4949 0.5773 0.6866 0.8193 0.9019
0.5 0.3919 0.4355 0.4916 0.5766 0.6806 0.7498 0.8505
0.6 0.3961 0.4395 0.4942 0.5741 0.6608 0.7148 0.8099
0.7 0.3976 0.4420 0.4976 0.5774 0.6612 0.7122 0.8010
0.8 0.3937 0.4377 0.4953 0.5856 0.6776 0.7290 0.8394
0.9 0.3753 0.4026 0.4492 0.6303 0.6919 0.7206 0.9545
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Table 3. Approximate quantiles for the weighted correlation, Rw (Cont.)

w 90% 92.5% 95% 97.5% 99% 99.5% 99.9%

n = 13 0.1 0.4910 0.4950 0.4995 0.5400 0.5494 0.9894 0.9944
0.2 0.4684 0.4803 0.4957 0.5645 0.5951 0.9552 0.9755
0.3 0.4294 0.4566 0.4873 0.5659 0.6312 0.8894 0.9392
0.4 0.3903 0.4294 0.4788 0.5613 0.6561 0.8052 0.8942
0.5 0.3744 0.4168 0.4714 0.5542 0.6560 0.7289 0.8366
0.6 0.3778 0.4198 0.4731 0.5511 0.6379 0.6931 0.7918
0.7 0.3802 0.4223 0.4759 0.5532 0.6340 0.6833 0.7754
0.8 0.3785 0.4221 0.4778 0.5590 0.6462 0.7020 0.7990
0.9 0.3736 0.4163 0.4733 0.5667 0.6522 0.7162 0.8590

n = 14 0.1 0.4904 0.4950 0.4960 0.5098 0.5454 0.9851 0.9910
0.2 0.4626 0.4794 0.4880 0.5227 0.5827 0.9408 0.9676
0.3 0.4207 0.4526 0.4787 0.5450 0.6129 0.8692 0.9339
0.4 0.3772 0.4181 0.4641 0.5426 0.6328 0.7846 0.8837
0.5 0.3613 0.4032 0.4553 0.5369 0.6358 0.7134 0.8259
0.6 0.3618 0.4026 0.4551 0.5321 0.6170 0.6734 0.7745
0.7 0.3645 0.4060 0.4578 0.5331 0.6137 0.6641 0.7546
0.8 0.3619 0.4043 0.4579 0.5359 0.6221 0.6775 0.7743
0.9 0.3799 0.4180 0.4572 0.5147 0.6563 0.7127 0.7766

n = 15 0.1 0.4900 0.4949 0.4955 0.5009 0.5450 0.5940 0.9905
0.2 0.4606 0.4783 0.4843 0.5069 0.5795 0.6726 0.9645
0.3 0.4132 0.4485 0.4688 0.5203 0.6027 0.7317 0.9252
0.4 0.3677 0.4113 0.4535 0.5245 0.6143 0.7548 0.8749
0.5 0.3487 0.3902 0.4417 0.5208 0.6177 0.6979 0.8172
0.6 0.3473 0.3871 0.4381 0.5143 0.5996 0.6558 0.7564
0.7 0.3506 0.3904 0.4400 0.5129 0.5910 0.6399 0.7332
0.8 0.3497 0.3901 0.4415 0.5171 0.5989 0.6517 0.7468
0.9 0.3487 0.3895 0.4404 0.5182 0.6105 0.6676 0.7734

n = 16 0.1 0.4896 0.4946 0.4955 0.5004 0.5446 0.5500 0.9905
0.2 0.4571 0.4767 0.4831 0.5023 0.5768 0.5990 0.9638
0.3 0.4072 0.4457 0.4656 0.5071 0.5963 0.6467 0.9221
0.4 0.3573 0.4042 0.4433 0.5091 0.6012 0.6840 0.8688
0.5 0.3377 0.3785 0.4282 0.5057 0.5981 0.6761 0.8046
0.6 0.3352 0.3741 0.4239 0.4993 0.5831 0.6407 0.7461
0.7 0.3381 0.3763 0.4251 0.4961 0.5728 0.6226 0.7145
0.8 0.3370 0.3761 0.4265 0.5003 0.5804 0.6308 0.7241
0.9 0.3254 0.3668 0.4321 0.5094 0.5767 0.6385 0.7615

n = 17 0.1 0.4851 0.4945 0.4951 0.5000 0.5445 0.5495 0.9905
0.2 0.4410 0.4761 0.4814 0.4999 0.5762 0.5953 0.9632
0.3 0.3800 0.4425 0.4608 0.4988 0.5927 0.6335 0.9205
0.4 0.3465 0.3980 0.4358 0.4977 0.5919 0.6577 0.8615
0.5 0.3273 0.3690 0.4172 0.4919 0.5832 0.6600 0.7951
0.6 0.3242 0.3627 0.4119 0.4859 0.5719 0.6294 0.7393
0.7 0.3274 0.3649 0.4120 0.4817 0.5577 0.6064 0.6988
0.8 0.3259 0.3643 0.4130 0.4844 0.5624 0.6120 0.7061
0.9 0.3237 0.3626 0.4128 0.4870 0.5700 0.6242 0.7267

n = 18 0.1 0.4455 0.4945 0.4950 0.4999 0.5445 0.5490 0.9901
0.2 0.3849 0.4754 0.4806 0.4991 0.5758 0.5913 0.9618
0.3 0.3283 0.4391 0.4581 0.4957 0.5908 0.6238 0.9158
0.4 0.3351 0.3919 0.4296 0.4882 0.5856 0.6414 0.8551
0.5 0.3171 0.3601 0.4069 0.4798 0.5720 0.6412 0.7860
0.6 0.3135 0.3511 0.3996 0.4727 0.5566 0.6137 0.7207
0.7 0.3158 0.3522 0.3985 0.4668 0.5427 0.5921 0.6847
0.8 0.3161 0.3528 0.4003 0.4694 0.5455 0.5941 0.6836
0.9 0.3170 0.3522 0.3970 0.4721 0.5581 0.6049 0.7170

n = 19 0.1 0.4450 0.4940 0.4950 0.4999 0.5445 0.5450 0.9901
0.2 0.3801 0.4723 0.4802 0.4984 0.5753 0.5806 0.9609
0.3 0.3138 0.4307 0.4558 0.4918 0.5878 0.6065 0.9139
0.4 0.3216 0.3847 0.4244 0.4808 0.5794 0.6259 0.8523
0.5 0.3080 0.3527 0.3995 0.4695 0.5620 0.6269 0.7794
0.6 0.3045 0.3417 0.3890 0.4602 0.5438 0.6008 0.7087
0.7 0.3071 0.3428 0.3878 0.4550 0.5296 0.5789 0.6707
0.8 0.3080 0.3438 0.3894 0.4565 0.5300 0.5769 0.6647
0.9 0.3060 0.3424 0.3891 0.4599 0.5400 0.5913 0.6921

n = 20 0.1 0.0995 0.4905 0.4950 0.4995 0.5440 0.5450 0.9900
0.2 0.1975 0.4646 0.4800 0.4954 0.5730 0.5798 0.9606
0.3 0.2817 0.4252 0.4550 0.4848 0.5825 0.6027 0.9117
0.4 0.3034 0.3788 0.4216 0.4745 0.5723 0.6149 0.8478
0.5 0.2975 0.3455 0.3916 0.4605 0.5533 0.6124 0.7697
0.6 0.2958 0.3325 0.3790 0.4499 0.5318 0.5884 0.7018
0.7 0.2979 0.3329 0.3773 0.4431 0.5170 0.5654 0.6586
0.8 0.2989 0.3339 0.3783 0.4442 0.5163 0.5628 0.6519
0.9 0.2955 0.3322 0.3786 0.4462 0.5225 0.5762 0.6717

n = 30 0.1 0.0496 0.0545 0.4945 0.4950 0.4999 0.5440 0.9895
0.2 0.0975 0.1160 0.4762 0.4807 0.4992 0.5722 0.9562
0.3 0.1433 0.1813 0.4426 0.4579 0.4952 0.5783 0.8979
0.4 0.1847 0.2410 0.3933 0.4288 0.4859 0.5613 0.8108
0.5 0.2171 0.2730 0.3492 0.3989 0.4695 0.5406 0.7161
0.6 0.2341 0.2704 0.3155 0.3780 0.4531 0.5090 0.6299
0.7 0.2379 0.2678 0.3065 0.3658 0.4350 0.4821 0.5753
0.8 0.2403 0.2688 0.3055 0.3606 0.4231 0.4644 0.5445
0.9 0.2399 0.2689 0.3066 0.3617 0.4249 0.4667 0.5481
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Table 4. Approximate quantiles for the weighted correlation, Rw (Cont.)

w 90% 92.5% 95% 97.5% 99% 99.5% 99.9%

n = 40 0.1 0.0495 0.0495 0.0990 0.4950 0.4955 0.5000 0.5450
0.2 0.0960 0.0968 0.1928 0.4800 0.4838 0.4992 0.5783
0.3 0.1362 0.1402 0.2767 0.4550 0.4673 0.4961 0.6035
0.4 0.1667 0.1794 0.3218 0.4201 0.4470 0.4879 0.6030
0.5 0.1856 0.2099 0.2888 0.3774 0.4252 0.4745 0.6086
0.6 0.1970 0.2300 0.2803 0.3404 0.4062 0.4570 0.5765
0.7 0.2036 0.2311 0.2671 0.3219 0.3870 0.4315 0.5255
0.8 0.2065 0.2315 0.2640 0.3135 0.3704 0.4087 0.4840
0.9 0.2066 0.2316 0.2636 0.3115 0.3674 0.4037 0.4765

n = 50 0.1 0.0490 0.0495 0.0500 0.4950 0.4950 0.4955 0.5445
0.2 0.0922 0.0960 0.0999 0.4799 0.4808 0.4846 0.5760
0.3 0.1254 0.1365 0.1491 0.4545 0.4587 0.4746 0.5918
0.4 0.1456 0.1681 0.1956 0.4175 0.4308 0.4586 0.5888
0.5 0.1643 0.1891 0.2342 0.3710 0.4008 0.4462 0.5675
0.6 0.1747 0.2020 0.2484 0.3198 0.3767 0.4231 0.5315
0.7 0.1785 0.2048 0.2395 0.2913 0.3522 0.3963 0.4875
0.8 0.1823 0.2052 0.2348 0.2805 0.3339 0.3693 0.4436
0.9 0.1847 0.2067 0.2355 0.2786 0.3290 0.3617 0.4259

n = 60 0.1 0.0054 0.0495 0.0495 0.4950 0.4950 0.4955 0.5445
0.2 0.0230 0.0959 0.0962 0.4793 0.4802 0.4838 0.5760
0.3 0.0533 0.1357 0.1377 0.4516 0.4561 0.4672 0.5914
0.4 0.0942 0.1654 0.1733 0.4121 0.4244 0.4467 0.5869
0.5 0.1287 0.1820 0.2006 0.3628 0.3874 0.4218 0.5608
0.6 0.1509 0.1859 0.2213 0.3080 0.3564 0.3983 0.5118
0.7 0.1620 0.1869 0.2204 0.2705 0.3286 0.3718 0.4604
0.8 0.1664 0.1876 0.2155 0.2581 0.3085 0.3426 0.4149
0.9 0.1676 0.1880 0.2142 0.2541 0.2995 0.3303 0.3922

n = 70 0.1 0.0050 0.0490 0.0495 0.4945 0.4950 0.4950 0.5049
0.2 0.0193 0.0922 0.0960 0.4762 0.4800 0.4808 0.5184
0.3 0.0420 0.1253 0.1366 0.4427 0.4553 0.4588 0.5372
0.4 0.0706 0.1445 0.1685 0.3931 0.4215 0.4316 0.5540
0.5 0.1018 0.1641 0.1902 0.3460 0.3806 0.4030 0.5155
0.6 0.1313 0.1707 0.2026 0.2951 0.3404 0.3815 0.4957
0.7 0.1475 0.1724 0.2048 0.2557 0.3095 0.3505 0.4356
0.8 0.1524 0.1727 0.1993 0.2405 0.2887 0.3226 0.3923
0.9 0.1547 0.1734 0.1980 0.2349 0.2769 0.3057 0.3633

n = 80 0.1 0.0050 0.0054 0.0495 0.0995 0.4950 0.4950 0.5000
0.2 0.0192 0.0230 0.0960 0.1926 0.4800 0.4807 0.4993
0.3 0.0410 0.0532 0.1365 0.2732 0.4550 0.4584 0.4963
0.4 0.0673 0.0948 0.1680 0.3351 0.4204 0.4300 0.4922
0.5 0.0943 0.1294 0.1874 0.2826 0.3770 0.3960 0.4801
0.6 0.1187 0.1520 0.1930 0.2752 0.3304 0.3645 0.4610
0.7 0.1357 0.1609 0.1917 0.2445 0.2951 0.3343 0.4202
0.8 0.1419 0.1610 0.1862 0.2256 0.2730 0.3062 0.3738
0.9 0.1447 0.1625 0.1854 0.2204 0.2606 0.2884 0.3441

n = 90 0.1 0.0049 0.0050 0.0495 0.0505 0.4950 0.4950 0.5000
0.2 0.0192 0.0194 0.0960 0.0999 0.4800 0.4802 0.4992
0.3 0.0409 0.0421 0.1364 0.1491 0.4550 0.4561 0.4960
0.4 0.0669 0.0715 0.1673 0.1991 0.4200 0.4243 0.4873
0.5 0.0925 0.1044 0.1857 0.2360 0.3755 0.3868 0.4692
0.6 0.1123 0.1341 0.1877 0.2507 0.3241 0.3523 0.4409
0.7 0.1262 0.1503 0.1820 0.2348 0.2848 0.3215 0.4076
0.8 0.1331 0.1516 0.1759 0.2139 0.2595 0.2922 0.3588
0.9 0.1362 0.1528 0.1746 0.2076 0.2460 0.2716 0.3241

n = 100 0.1 0.0049 0.0050 0.0495 0.0495 0.4950 0.4950 0.4999
0.2 0.0191 0.0192 0.0958 0.0968 0.4800 0.4800 0.4992
0.3 0.0399 0.0410 0.1354 0.1402 0.4550 0.4553 0.4958
0.4 0.0635 0.0678 0.1640 0.1788 0.4200 0.4220 0.4871
0.5 0.0879 0.0963 0.1816 0.2111 0.3750 0.3820 0.4682
0.6 0.1048 0.1224 0.1810 0.2322 0.3212 0.3442 0.4333
0.7 0.1187 0.1408 0.1744 0.2241 0.2741 0.3093 0.3939
0.8 0.1256 0.1435 0.1674 0.2043 0.2488 0.2798 0.3453
0.9 0.1289 0.1447 0.1653 0.1969 0.2336 0.2584 0.3102
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Table 5. Exact and approximate quantiles RL

n 90% 92.5% 95% 97.5% 99% 99.5% 99.9%

4 0.7299 0.8880 0.8880 1.0000 1.0000 1.0000 1.0000
5 0.6624 0.7602 0.8202 0.8248 0.9401 1.0000 1.0000
6 0.5804 0.6434 0.7328 0.8233 0.8992 0.9569 1.0000
7 0.5467 0.5967 0.6603 0.7499 0.8466 0.8935 0.9503
8 0.5021 0.5510 0.6130 0.7055 0.7932 0.8439 0.9225
9 0.4687 0.5180 0.5771 0.6641 0.7534 0.8047 0.8888

10 0.4412 0.4878 0.5460 0.6292 0.7168 0.7693 0.8588
11 0.4175 0.4625 0.5191 0.5998 0.6858 0.7385 0.8301
12 0.3973 0.4408 0.4953 0.5742 0.6583 0.7105 0.8031

13 0.3794 0.4215 0.4740 0.5510 0.6339 0.6855 0.7812
14 0.3646 0.4057 0.4571 0.5320 0.6139 0.6645 0.7566
15 0.3500 0.3900 0.4401 0.5132 0.5926 0.6435 0.7347
16 0.3389 0.3779 0.4265 0.4976 0.5752 0.6253 0.7163
17 0.3268 0.3643 0.4121 0.4818 0.5582 0.6067 0.6985
18 0.3169 0.3533 0.3999 0.4687 0.5432 0.5916 0.6813
19 0.3077 0.3434 0.3889 0.4559 0.5292 0.5759 0.6660
20 0.2981 0.3331 0.3772 0.4432 0.5160 0.5625 0.6509
30 0.2404 0.2694 0.3064 0.3614 0.4237 0.4647 0.5445
40 0.2067 0.2316 0.2640 0.3125 0.3678 0.4052 0.4775
50 0.1847 0.2070 0.2359 0.2798 0.3294 0.3621 0.4298
60 0.1677 0.1882 0.2144 0.2544 0.3004 0.3311 0.3909
70 0.1544 0.1732 0.1978 0.2352 0.2780 0.3068 0.3656
80 0.1445 0.1623 0.1852 0.2202 0.2600 0.2867 0.3416
90 0.1360 0.1526 0.1742 0.2070 0.2444 0.2698 0.3210

100 0.1291 0.1449 0.1656 0.1971 0.2333 0.2581 0.3065

Table 6. Exact and approximate quantiles for RO

n 90% 92.5% 95% 97.5% 99% 99.5% 99.9%

4 0.7337 0.8840 0.8840 1.0000 1.0000 1.0000 1.0000
5 0.6596 0.7616 0.8191 0.8273 0.9424 1.0000 1.0000
6 0.5872 0.6355 0.7260 0.8248 0.9045 0.9618 1.0000
7 0.5405 0.5957 0.6623 0.7533 0.8475 0.8898 0.9549
8 0.4999 0.5497 0.6123 0.7076 0.7984 0.8509 0.9282
9 0.4668 0.5158 0.5756 0.6653 0.7545 0.8092 0.8953

10 0.4394 0.4861 0.5448 0.6301 0.7195 0.7734 0.8635
11 0.4161 0.4612 0.5177 0.6001 0.6882 0.7420 0.8351
12 0.3962 0.4396 0.4943 0.5742 0.6605 0.7140 0.8085

13 0.3786 0.4206 0.4734 0.5510 0.6375 0.6907 0.7871
14 0.3632 0.4040 0.4557 0.5316 0.6138 0.6654 0.7632
15 0.3498 0.3892 0.4393 0.5130 0.5937 0.6455 0.7425
16 0.3379 0.3769 0.4252 0.4965 0.5755 0.6259 0.7212
17 0.3263 0.3639 0.4113 0.4812 0.5586 0.6091 0.7035
18 0.3160 0.3527 0.3992 0.4675 0.5438 0.5926 0.6877
19 0.3068 0.3426 0.3878 0.4554 0.5300 0.5780 0.6707
20 0.2991 0.3338 0.3781 0.4439 0.5167 0.5634 0.6562
30 0.2404 0.2691 0.3059 0.3610 0.4235 0.4652 0.5479
40 0.2066 0.2316 0.2636 0.3116 0.3676 0.4050 0.4790
50 0.1841 0.2065 0.2354 0.2795 0.3301 0.3642 0.4319
60 0.1675 0.1880 0.2146 0.2547 0.3014 0.3319 0.3947
70 0.1548 0.1736 0.1981 0.2352 0.2785 0.3076 0.3667
80 0.1444 0.1620 0.1849 0.2196 0.2601 0.2878 0.3445
90 0.1363 0.1529 0.1746 0.2074 0.2459 0.2711 0.3231

100 0.1290 0.1450 0.1656 0.1967 0.2324 0.2569 0.3077



November 17, 2015 Journal of Applied Statistics EWRC˙11092015rev

REFERENCES 17

Table 7. Power comparisons of Rk, Rs, Rw, RL and RO

n � Rk Rs R0.4 R0.5 R0.6 R0.7 R0.8 RL RO

p = 0.1 10 0.25 0.3496 0.3693 0.9723 0.9615 0.7200 0.4312 0.2518 0.7617 0.8471
0.50 0.3023 0.3211 0.8153 0.7974 0.6049 0.3785 0.2339 0.6358 0.7033
1 0.1961 0.2203 0.4638 0.4478 0.3573 0.2496 0.1793 0.3727 0.4037
2 0.1092 0.1329 0.2011 0.2001 0.1745 0.1433 0.1249 0.1777 0.1883
3 0.0839 0.1027 0.1409 0.1409 0.1282 0.1110 0.1073 0.1289 0.1344

20 0.25 0.7857 0.7834 1.0000 1.0000 1.0000 0.9999 0.9833 0.9999 0.9999
0.50 0.7367 0.7287 0.9903 0.9951 0.9940 0.9898 0.9351 0.9818 0.9865
1 0.4973 0.4842 0.7754 0.8084 0.8144 0.7852 0.6401 0.7453 0.7663
2 0.2461 0.2402 0.3851 0.3912 0.3924 0.3688 0.2953 0.3444 0.3561
3 0.1683 0.1654 0.2643 0.2516 0.2425 0.2346 0.1964 0.2226 0.2294

30 0.25 0.9404 0.9545 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 0.9084 0.9223 0.9963 0.9998 1.0000 1.0000 0.9999 0.9994 0.9997
1 0.6871 0.6964 0.8123 0.8842 0.9253 0.9432 0.9245 0.9161 0.9242
2 0.3332 0.3417 0.4020 0.4569 0.5128 0.5378 0.5083 0.4993 0.5106
3 0.2106 0.2165 0.2478 0.2709 0.2989 0.3164 0.3002 0.2951 0.3005

50 0.25 0.9985 0.9994 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 0.9952 0.9973 0.9935 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9098 0.9117 0.8272 0.9135 0.9655 0.9892 0.9959 0.9933 0.9942
2 0.5345 0.5285 0.3758 0.4655 0.5734 0.6789 0.7495 0.7212 0.7319
3 0.3167 0.3124 0.2217 0.2718 0.3403 0.4073 0.4625 0.4405 0.4445

100 0.25 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9820 0.9979 0.9999 1.0000 1.0000 1.0000 1.0000
1 0.9976 0.9979 0.8128 0.9014 0.9683 0.9964 0.9999 1.0000 1.0000
2 0.7971 0.7967 0.4107 0.4591 0.5675 0.7228 0.8839 0.9479 0.9486
3 0.5281 0.5281 0.2557 0.2807 0.3359 0.4443 0.6054 0.7140 0.7168

p = 0.2 10 0.25 0.9161 0.9571 0.9859 0.9885 0.9867 0.9585 0.6764 0.9882 0.9883
0.50 0.7705 0.8152 0.9045 0.9200 0.9091 0.8270 0.5575 0.9158 0.9168
1 0.4647 0.5070 0.5768 0.6066 0.5955 0.5208 0.3753 0.6071 0.6073
2 0.1999 0.2344 0.2613 0.2763 0.2725 0.2441 0.2134 0.2741 0.2758
3 0.1236 0.1528 0.1637 0.1676 0.1669 0.1599 0.1515 0.1695 0.1686

20 0.25 0.9998 1.0000 0.9986 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 0.9959 0.9967 0.9693 0.9940 0.9988 0.9994 0.9990 0.9993 0.9993
1 0.8610 0.8620 0.7456 0.8335 0.9027 0.9305 0.9059 0.9290 0.9271
2 0.4419 0.4407 0.3782 0.4241 0.4685 0.5142 0.4884 0.5123 0.5129
3 0.2691 0.2699 0.2652 0.2748 0.2930 0.3141 0.2921 0.3095 0.3101

30 0.25 1.0000 1.0000 0.9986 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 0.9999 1.0000 0.9689 0.9948 0.9997 1.0000 1.0000 1.0000 1.0000
1 0.9728 0.9748 0.7429 0.8525 0.9418 0.9833 0.9919 0.9918 0.9912
2 0.6087 0.6246 0.3665 0.4381 0.5388 0.6488 0.7095 0.7048 0.7017
3 0.3563 0.3699 0.2400 0.2733 0.3287 0.3958 0.4324 0.4272 0.4244

50 0.25 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9733 0.9938 0.9999 1.0000 1.0000 1.0000 1.0000
1 0.9990 0.9992 0.7426 0.8574 0.9454 0.9906 0.9994 0.9997 0.9997
2 0.8280 0.8274 0.3399 0.4332 0.5560 0.7077 0.8490 0.8891 0.8853
3 0.5462 0.5459 0.2144 0.2623 0.3399 0.4478 0.5702 0.6221 0.6166

100 0.25 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9723 0.9934 0.9990 1.0000 1.0000 1.0000 1.0000
1 1.0000 1.0000 0.7620 0.8392 0.9317 0.9884 0.9997 1.0000 1.0000
2 0.9807 0.9807 0.3884 0.4327 0.5280 0.6859 0.8891 0.9929 0.9919
3 0.8141 0.8164 0.2376 0.2605 0.3149 0.4230 0.6234 0.8830 0.8783

p = 0.3 10 0.25 0.9870 0.9939 0.9869 0.9935 0.9937 0.9923 0.9586 0.9947 0.9941
0.50 0.9136 0.9386 0.8994 0.9392 0.9507 0.9325 0.8346 0.9557 0.9521
1 0.6002 0.6570 0.6012 0.6603 0.6871 0.6527 0.5384 0.6948 0.6855
2 0.2517 0.2944 0.2682 0.2941 0.3113 0.2970 0.2664 0.3148 0.3092
3 0.1531 0.1894 0.1686 0.1824 0.1940 0.1924 0.1794 0.1954 0.1903

20 0.25 1.0000 1.0000 0.9971 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 0.9997 0.9997 0.9538 0.9881 0.9984 1.0000 0.9999 1.0000 1.0000
1 0.9386 0.9417 0.7177 0.8116 0.9057 0.9529 0.9540 0.9588 0.9559
2 0.5504 0.5543 0.3735 0.4248 0.4940 0.5711 0.5783 0.5904 0.5823
3 0.3338 0.3351 0.2534 0.2709 0.3000 0.3441 0.3522 0.3544 0.3470

30 0.25 1.0000 1.0000 0.9980 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9589 0.9901 0.9992 1.0000 1.0000 1.0000 1.0000
1 0.9915 0.9927 0.7012 0.8249 0.9266 0.9851 0.9957 0.9961 0.9958
2 0.7163 0.7356 0.3621 0.4355 0.5456 0.6685 0.7604 0.7653 0.7567
3 0.4423 0.4572 0.2366 0.2706 0.3298 0.4100 0.4804 0.4849 0.4763

50 0.25 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9670 0.9912 0.9991 1.0000 1.0000 1.0000 1.0000
1 0.9999 0.9999 0.7113 0.8248 0.9235 0.9849 0.9994 1.0000 0.9999
2 0.9065 0.9102 0.3386 0.4309 0.5459 0.7023 0.8681 0.9318 0.9244
3 0.6501 0.6483 0.2077 0.2578 0.3346 0.4407 0.5900 0.6836 0.6752

100 0.25 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.50 1.0000 1.0000 0.9691 0.9915 0.9991 1.0000 1.0000 1.0000 1.0000
1 1.0000 1.0000 0.7388 0.8155 0.9170 0.9795 0.9994 1.0000 1.0000
2 0.9955 0.9949 0.3853 0.4244 0.5137 0.6660 0.8766 0.9976 0.9972
3 0.8961 0.8971 0.2419 0.2623 0.3149 0.4261 0.6183 0.9188 0.9151
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Table 8. Data set, Example 5.1

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B 1 2 3 4 11 10 9 8 7 6 5 12 13 14 15
C 1 2 3 4 10 8 6 11 7 5 9 12 13 14 15
D 1 2 8 12 10 7 6 5 3 13 9 4 11 14 15
E 15 14 13 12 5 6 7 8 9 10 11 4 3 2 1
F 2 1 3 4 5 6 7 8 9 10 11 12 13 15 14
G 3 2 1 4 5 6 7 8 9 10 11 12 15 14 13
H 4 3 2 1 5 6 7 8 9 10 11 15 14 13 12

Table 9. Rank correlation coe�cients’ results, Example 5.1

(A,B) (A,C) (A,D) (A,E) (A,F ) (A,G) (A,H)

Rs 0.8000⇤⇤ 0.8714⇤⇤ 0.5679⇤ -0.8000⇤⇤ 0.9929⇤⇤ 0.9714⇤⇤ 0.9286⇤⇤

Rk 0.6000⇤⇤ 0.7524⇤⇤ 0.3905⇤ -0.6000⇤⇤ 0.9619⇤⇤ 0.8857⇤⇤ 0.7714⇤⇤

R0.1 1.0000⇤⇤ 1.0000⇤⇤ 0.9999⇤⇤ -1.0000⇤⇤ 0.1981 0.0297 0.0040
R0.2 1.0000⇤⇤ 1.0000⇤⇤ 0.9984⇤⇤ -1.0000⇤⇤ 0.3856 0.1153 0.0307
R0.3 0.9999⇤⇤ 0.9999⇤⇤ 0.9916⇤⇤ -0.9999⇤⇤ 0.5541 0.2464 0.0983
R0.4 0.9987⇤⇤ 0.9992⇤⇤ 0.9731⇤⇤ -0.9987⇤⇤ 0.6976⇤⇤ 0.4073 0.2157
R0.5 0.9923⇤⇤ 0.9951⇤⇤ 0.9332⇤⇤ -0.9923⇤⇤ 0.8125⇤⇤ 0.5781⇤ 0.3789
R0.6 0.9679⇤⇤ 0.9799⇤⇤ 0.8608⇤⇤ -0.9679⇤⇤ 0.8975⇤⇤ 0.7377⇤⇤ 0.5694⇤

R0.7 0.8976⇤⇤ 0.9368⇤⇤ 0.7483⇤⇤ -0.8976⇤⇤ 0.9538⇤⇤ 0.8664⇤⇤ 0.7557⇤⇤

R0.8 0.7410⇤⇤ 0.8434⇤⇤ 0.6034⇤⇤ -0.7410⇤⇤ 0.9849⇤⇤ 0.9512⇤⇤ 0.9007⇤⇤

R0.9 0.4769⇤ 0.6898⇤⇤ 0.4589⇤ -0.4769⇤⇤ 0.9975⇤⇤ 0.9911⇤⇤ 0.9799⇤⇤

RL 0.9197⇤⇤ 0.9482⇤⇤ 0.7583⇤⇤ -0.9197⇤⇤ 0.9400⇤⇤ 0.8493⇤⇤ 0.7395⇤⇤

RO 0.9271⇤⇤ 0.9531⇤⇤ 0.7857⇤⇤ -0.9271⇤⇤ 0.9157⇤⇤ 0.8102⇤⇤ 0.6953⇤⇤

‘⇤’ significance at 5% and ‘⇤⇤’ significance at 1%

Table 10. Rank correlation coe�cients for all pairs of the market indices, Example 5.2

(S&P, FT) (S&P, Nik) (S&P, DAX) (FT, Nik) (FT, DAX) (Nik, DAX)

Rs 0.7419⇤⇤ 0.4144⇤⇤ 0.8240⇤⇤ 0.2449⇤ 0.6959⇤⇤ 0.4779⇤⇤

Rk 0.5527⇤⇤ 0.2980⇤⇤ 0.6376⇤⇤ 0.1771⇤ 0.5200⇤⇤ 0.3437⇤⇤

R0.1 0.1089⇤ 0.0505⇤ 0.5059⇤⇤ 0.0495 0.5941⇤⇤ 0.0544⇤

R0.2 0.2304⇤ 0.1039⇤ 0.5262⇤⇤ 0.0967 0.6728⇤⇤ 0.1151⇤

R0.3 0.3554⇤ 0.1625⇤ 0.5628⇤⇤ 0.1400 0.7324⇤⇤ 0.1765⇤

R0.4 0.4731⇤⇤ 0.2278⇤ 0.6139⇤⇤ 0.1778 0.7707⇤⇤ 0.2319⇤

R0.5 0.5734⇤⇤ 0.2990⇤ 0.6744⇤⇤ 0.2083 0.7885⇤⇤ 0.2744⇤

R0.6 0.6476⇤⇤ 0.3713⇤ 0.7352⇤⇤ 0.2296 0.7894⇤⇤ 0.2999⇤

R0.7 0.6929⇤⇤ 0.4344⇤⇤ 0.7840⇤⇤ 0.2401 0.7791⇤⇤ 0.3130⇤

R0.8 0.7212⇤⇤ 0.4737⇤⇤ 0.8134⇤⇤ 0.2439⇤ 0.7619⇤⇤ 0.3408⇤⇤

R0.9 0.7572⇤⇤ 0.4568⇤⇤ 0.8371⇤⇤ 0.2560⇤ 0.7379⇤⇤ 0.4428⇤⇤

RL 0.7616⇤⇤ 0.4660⇤⇤ 0.8338⇤⇤ 0.2646⇤ 0.7558⇤⇤ 0.4200⇤⇤

RO 0.7602⇤⇤ 0.4656⇤⇤ 0.8317⇤⇤ 0.2679⇤ 0.7652⇤⇤ 0.4161⇤⇤

‘⇤’ significance at 5% and ‘⇤⇤’ significance at 1%


