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ABSTRACT 10	

The reservoir quality (porosity and permeability) of deeply buried hydrocarbon reservoir 11	

sandstones in sedimentary basins is significantly affected by burial diagenesis. Many deep 12	

reservoirs develop anomalous fluid overpressures during burial. Previous studies on the effect 13	

of fluid overpressure on reservoir quality in these deep reservoirs have been inconclusive 14	

because of the difficulty in constraining the individual contributions of various porosity 15	

preserving factors which are simultaneously active in these reservoirs. Owing to its rapid 16	

burial and low burial temperatures, the Neogene turbidite sandstone reservoirs from the 17	

Magnolia Field, Gulf of Mexico, offers a unique opportunity to investigate in isolation the 18	

effect of fluid overpressure on reservoir quality. Examination of petrography, pore pressure, 19	

and routine core analysis datasets showed a positive correlation between high fluid 20	

overpressure and enhanced reservoir quality. This study confirms that fluid overpressure 21	

preserves reservoir quality in deeply buried sandstone reservoirs in compaction dominated, 22	

high sedimentation basin settings. 23	

Introduction 24	

As the quest for hydrocarbons moves into deeper and more complex petroleum basins, 25	

understanding the evolution of reservoir quality in sandstone reservoirs that have been 26	

exposed to high pressures and high temperatures for significant periods of geological time 27	

becomes paramount. Deeply buried sandstones are often expected to have poor reservoir 28	

quality as a result of porosity and permeability loss during burial compaction and later stage 29	

chemical compaction (e.g. Ehrenberg and Nadeau, 2005, Bjorlykke, 2014). In normally 30	

pressured reservoirs, upon burial, sediments will compact mechanically when the effective 31	

stress (expressed as the difference between mean stress and pore pressure acting on the 32	

sediments) due to the deposition of overburden increases, so that the porosity is reduced. 33	



Mechanical compaction in sandstones is dominant to burial depths of ~2 km (>70-80 °C) 34	

(Bjørlykke, 1999, Bjorlykke, 2014). The porosity loss in sandstones is also very sensitive to 35	

grain size and sorting (Nagtegal, 1979, Bloch, et al., 2002, Chuhan, et al., 2002). 36	

Furthermore, poorly sorted sandstones have much lower starting porosity than well sorted 37	

sandstones but show less porosity loss by mechanical compaction (e.g. Fawad, et al., 2010, 38	

Fawad, et al., 2011). Commonly at burial depths greater than ~2 km (>70-80 °C) chemical 39	

compaction becomes an important process and is thought to be independent of effective stress 40	

(e.g. Walderhaug and Bjørkum, 2003). The transport and precipitation of silica from the 41	

adjacent shales (mudrocks) during illite to smectite transformation has also been attributed to 42	

the porosity loss and cementation in deeply buried sandstones (Boles and Franks, 1979, 43	

Sullivan and McBride, 1991). Conversely, localised pressure solution in the chemical 44	

compaction regime during burial has been credited to widespread quartz cementation and 45	

porosity loss in sandstones (Renard, et al., 2000, Worden and Morad, 2000, Sheldon, et al., 46	

2003). 47	

Factors such as the presence of clay mineral coats, microcrystalline quartz coats, early 48	

emplacement of hydrocarbon, presence of salt related thermal anomalies, mineral dissolution, 49	

and fluid overpressures can all play a crucial role in preserving anomalous high porosity in 50	

sandstones (e.g. Spotl, et al., 1994, Worden and Morad, 2000, Taylor, et al., 2010, Wilkinson 51	

and Haszeldine, 2011, Sathar, et al., 2012, Nguyen, et al., 2013). Fluid overpressure, defined 52	

as the excess pore pressure above the hydrostatic pressure for a given depth, is commonly 53	

encountered in deep High Pressure High Temperature (HPHT) reservoirs (Osborne and 54	

Swarbrick, 1999). Mechanisms such as disequilibrium compaction, tectonic compression, 55	

aquathermal expansion, volume expansion due to clay diagenesis, mineral transformations, 56	

kerogen maturation, gas generation, and buoyancy effects occurring in reservoirs can lead to 57	

fluid overpressures in subsurface reservoirs (Osborne and Swarbrick, 1997). 58	



Previous studies on the effect of overpressure and its influence on reservoir quality 59	

has been inconclusive because under reservoir conditions, a multitude of factors act jointly to 60	

preserve reservoir quality (Osborne and Swarbrick, 1999, Bloch, et al., 2002, Taylor, et al., 61	

2010), and isolating individual contributions of these factors in the evolution of reservoir 62	

quality is problematic. Ramm and Bjorlykke (1994) and Wilson (1994) reported relatively 63	

high porosity in highly overpressured reservoirs in the Haltenbanken area, Offshore Norway 64	

and in the Jurassic sandstones from the Viking Graben, North Sea respectively. Similarly, 65	

reduced amount of quartz cement was observed in overpressured HPHT reservoirs when 66	

compared to the normally pressured reservoirs in the Fulmar Formation, Central North Sea 67	

(Osborne and Swarbrick, 1999). However the relative contributions of different factors in 68	

porosity preservation were impossible to constrain in these studies because of the complex 69	

burial diagenesis that the sediments had undergone. 70	

In this study, datasets from the Magnolia Field, Gulf of Mexico are utilized to 71	

investigate the effect of overpressure on reservoir quality where the influence of chemical 72	

compaction are negligible or absent. Turbidite reservoir sands in the study area have 73	

undergone rapid burial to depths of ~5200 m and experienced low burial temperatures of 74	

~60-70 °C. The Magnolia Field provides a unique sedimentary setting to investigate the 75	

effect of overpressure on reservoir quality of sandstones in isolation to the onset of chemical 76	

diagenesis. 77	

Study area and methods 78	

Magnolia Field is located in the Garden Banks Block 783 within the Titan intra-slope 79	

minibasin, Gulf of Mexico (Fig. 1). The exploration wells were drilled in water depths of 80	

1423 m to maximum depths of ~ 5200 m below sea level. The sediments are of Upper 81	

Miocene to Plio-Pleistocene in age and were deposited in a minibasin system formed by 82	

allochthonous salt sourced from Jurassic autochthonous salt accumulations (Weissenburger 83	



and Borbas, 2004, Kane, et al., 2012). The reservoirs form part of an amalgamated turbidite 84	

system and are composed of channel complexes, mass transport deposits, levee deposits, and 85	

composite sheet sands (McGee, et al., 2003). Based on these variations and age, the reservoir 86	

sand units were divided into sub-units namely B10, B15, B20, B25, B30, C50, C60, C70 and 87	

D10 sands. 88	

Dataset from seven wells GB 783 #1, #1ST1, #2, #2ST1, #2ST2, #3, and #3ST1 are 89	

analysed for this study. Well logs (comprising Gamma-Ray, Sonic Velocity, Resistivity, 90	

Density, Lithology, and Neutron Porosity), Modular Dynamic Tester (MDT) pore pressure 91	

data, and routine core analysis data (comprising porosity and permeability measurements 92	

under formation confining pressures from core plugs sampled at selected depths) available 93	

from six wells have been analysed. The porosity values measured from routine core analysis 94	

were comparable to the log derived neutron porosity and density porosity. Petrographic 95	

studies were performed on thin-sections from core samples and core plugs from selected 96	

depth intervals within the reservoir units. In order to minimize the effect of reservoir 97	

heterogeneities associated with the varying distribution of clays on porosity and permeability 98	

measurements, the measured values were averaged for each reservoir unit and only the 99	

reservoir units with good permeability (≥100 mD) were considered in this study. 100	

The pressure calculations in this study were performed assuming hydrostatic and 101	

lithostatic gradients of 0.01052 MPa/m and 0.02262 MPa/m respectively. The vertical 102	

effective stress was calculated by subtracting the fluid pore pressure from the lithostatic stress 103	

(overburden), and the fluid overpressure was determined by subtracting the estimated 104	

hydrostatic pressure from the pore pressure (Terzaghi, 1943, Mann and Mackenzie, 1990). 105	

Results 106	

The Magnolia Field reservoirs constitute coarse silt to very fine grained sandstones with 107	

angular to subangular grains and are moderate to well sorted (Fig. 2A). The sandstones facies 108	



is frequently inter-bedded within thick successions of mudstones. No diagenetic cements 109	

were observed in any of the studied thin sections. However, reworked detrital quartz 110	

cemented grains and detrital feldspar grains showing evidence of dissolution were observed 111	

(Fig. 2). The sandstones are feldspathic litharenites and are composed of 40-56 % quartz, 10-112	

24 % feldspar, 11-18 % carbonate rock fragments and 5-8% heavy minerals. 113	

All reservoirs are overpressured in the study area with a minimum overpressure of 114	

~12.4 MPa to a maximum overpressure of ~35.2 MPa. Dissimilar pore pressure transitions 115	

were observed in different wells in the area (Fig. 3). In well #1, the pressure transition occurs 116	

gradationally from 66 MPa at 4420 m depth to 79 MPa at a depth of 4660 m. However, in 117	

well #1ST1, an abrupt pressure transition of ~15 MPa occurs between depths of 4755 m and 118	

4880 m. Identical reservoir units in adjacent wells showed diverse pore pressures at similar 119	

depths. For instance, B30 sands in well #1 have a pore pressure of ~74 MPa at depth of 4570 120	

m. However in wells #1ST1 and #2ST1, B30 sands experience a pore pressure of 69 MPa at 121	

4720 m and 77 MPa at 5000 m respectively (Fig. 3). Miocene-Pliocene sediments have 122	

relatively higher pore pressures and hence higher overpressures than the younger Pleistocene 123	

sediments (Fig. 3). Also, prominent pore pressure transition zone occurs between the 124	

Pliocene and Pleistocene sediments in the area (Fig. 3). 125	

The porosity-depth plot does not exhibit a systematic decrease in porosity with 126	

corresponding increase in depth (Fig. 4A). The average porosity values of the reservoir units 127	

ranged from 27-34 %. Higher porosities were generally observed in reservoirs experiencing 128	

relatively high overpressures (Fig. 4). Overpressure steadily increased with depth up to ~4570 129	

m. At depths greater than 4570 m, two distinct sets of overpressures were observed (Fig. 4B). 130	

The porosity-VES plot displays an inverse relationship (Fig. 5B). Relatively higher porosity 131	

of up to ~34 % were observed in reservoir sands with higher overpressures than those 132	

experiencing lower overpressures which have a lower porosity of ~30 % (Fig. 5B). A weak 133	



inverse relationship exists between permeability and VES (Fig. 5D). Reservoir sands 134	

experiencing relatively low VES of ~8 MPa has a permeability of ~1000 mD whereas those 135	

experiencing relatively higher VES of ~20-25 MPa have relatively low permeability of ~600 136	

mD (Fig. 5D). 137	

Discussion 138	

In the Magnolia Field, due to the rapid burial of the sediments within a short time span of ~10 139	

Ma, the sediments have undergone burial to depths of ~5330 m below sea level and fluid 140	

overpressures developed as a result of disequilibrium compaction (Fig. 6). The low thermal 141	

exposure and rapid burial of the sediments in the past ~2 Ma in the area did not facilitate 142	

chemical diagenesis irrespective of the presence of texturally and compositionally immature 143	

feldspathic litharenite sandstone reservoir units (Figs 2 and 6). 144	

The Magnolia Field has multiple vertical and lateral seals. This is supported by 145	

diverse values of overpressure which has been recorded in different reservoir units (Fig. 3), 146	

and from fluid geochemical data which showed heterogeneous and unmixed reservoir fluids 147	

(Weissenburger and Borbas, 2004, McCarthy, et al., 2005). In the case of highly 148	

overpressured sand units, the presence of stratigraphic flow barriers such as thick mudstone 149	

units will have provided adequate seals for the efficient trapping of pore fluids and 150	

overpressure development (Fig. 3). Faults and fractures may have formed as a result of the 151	

halokinetic processes in the area and facilitated in the loss of pore pressures in the case of low 152	

overpressured reservoirs (Kane, et al., 2012). Furthermore, a distinct relationship between the 153	

geological age of the sediments and the degree of overpressure was observed in the Magnolia 154	

Field with older Miocene-Pliocene sediments experiencing relatively higher overpressures 155	

(~29-35 MPa) than the younger Pleistocene sediments (~19-25 MPa) (Fig. 3). The Miocene-156	

Pliocene sands are relatively thin sands and are interbedded within thick successions of 157	

mudstones. Therefore, during the rapid burial of the sediments in the past few million years, 158	



the fluids expelled from the compacting mudstones will have generated relatively higher 159	

overpressures in these sand units as a result of more overburden being supported by the pore 160	

fluids in the sand units. On the other hand, in the case of geologically younger Pleistocene 161	

formations, the sand units are relatively thicker than the Miocene-Pliocene units and hence 162	

the fluids expelled from the compaction of mudstone during burial could dissipate into 163	

relatively larger volume of sands and therefore the overpressure generated were relatively 164	

small. 165	

Unlike normally pressured reservoirs where porosity decreases progressively with 166	

depth, no systematic decrease in porosity was observed in the overpressured reservoirs (Fig. 167	

4A). On the contrary, anomalous high porosity was observed at deeper depths when 168	

compared to shallower depths in the study area. Porosity in the overpressured reservoir rocks 169	

were significantly higher than those shown by the regional porosity depth trend for normally 170	

pressured reservoirs from offshore Gulf of Mexico (Ehrenberg, et al., 2008) (Fig. 4A). The 171	

porosity between depths of ~4000 m to 4880 m was ~2-4% more than the regional porosity 172	

depth trend. At greater depths, the porosity was ~6-8% greater than the regional porosity 173	

depth trend for normally pressured reservoirs (Fig. 4A). The data identifies that high porosity 174	

is generally associated with high pore pressures in the Magnolia Field (Figs 3 and 4A). The 175	

overpressure-depth plot (Fig. 4B) demonstrates that high porosity is generally linked with 176	

high overpressures and vice versa. 177	

In the Magnolia Field, fluid overpressures resulted in the reduction of VES which 178	

preserved up to ~8 % more porosity than normally pressured reservoirs in the area (Fig. 4A). 179	

Relative differences in the magnitude of overpressures experienced by different reservoirs 180	

also had significant effect on their porosity distributions. Reservoirs experiencing relatively 181	

higher overpressures tend to have up to 4% more porosity than those reservoirs experiencing 182	

low to moderate overpressures (Figs 4A and 5A). 183	



The effect of relative variations in fluid overpressure on permeability is less distinct in 184	

the Magnolia Field. Nonetheless, highly overpressured reservoirs exhibited relatively higher 185	

permeability compared to low overpressured reservoirs in the area. The enhanced 186	

permeability in highly overpressured reservoirs suggests that an increase in overpressure 187	

leads to reduction in VES acting on the grain contacts which help in maintaining the pore 188	

throats open and hence results in high permeability. Conversely, at lower overpressures (high 189	

VES), the pore fluid pressures are not adequate to retain the pore throats open and hence they 190	

tend to have lower permeability (Fig. 5B). Moreover, the spread in the permeability dataset 191	

may be due to the variations in clay distribution within the samples.  192	

The observations from the Magnolia Field demonstrate that fluid overpressure has a 193	

positive effect on reservoir quality during burial in mechanical compaction dominated 194	

settings, prior to the onset of any chemical compaction. This may result in a higher than 195	

average starting porosity during burial at the commencement of chemical compaction and 196	

lead to relatively higher porosities even in the chemical compaction regime. Moreover, in 197	

diagenetic settings where pressure solution is the dominant process, fluid overpressures will 198	

reduce the VES acting on the grain contacts and facilitate porosity preservation. However, in 199	

the case of deeper HPHT reservoirs in complex diagenetic settings, the reservoir quality will 200	

be controlled by a combination of early mechanical and later chemical diagenetic processes. 201	

Hence, in the case of complex overpressured (HPHT) reservoirs, reservoir quality prediction 202	

should take into account the role of fluid overpressure in arresting porosity loss through 203	

slowing the rate of mechanical compaction and enhancing reservoir quality prior to the onset 204	

of later chemical compaction processes. 205	

Conclusion 206	

Datasets from the Upper Miocene to Plio-Pleistocene turbidite sandstone reservoirs of the 207	

Magnolia Field, Gulf of Mexico demonstrate that high fluid overpressures can be developed 208	



and importantly maintained in geologically young sediments undergoing rapid burial. In this 209	

setting, where mechanical compaction dominates, fluid overpressures preserve up to ~6-8% 210	

of additional porosity compared to the regional porosity-depth trend in the highly 211	

overpressured reservoirs. Highly overpressured reservoirs generally tend to have better 212	

permeabilities. A diverse overpressure distribution associated to reservoir 213	

compartmentalization is likely to result in reservoirs with dissimilar reservoir quality. In 214	

deeper HPHT reservoirs, fluid overpressure is likely to play a major role in preserving 215	

reservoir quality by reducing the degree of primary mechanical compaction of the sediments, 216	

nonetheless chemical diagenesis and associated quartz cementation can also play a role in 217	

governing reservoir quality. The positive effect of fluid overpressure in the preservation of 218	

reservoir quality gives promise to future hydrocarbon exploration activities in deeply HPHT 219	

reservoirs. 220	

Acknowledgements 221	

ConocoPhillips is thanked for providing an extensive dataset and approval for publication of 222	

the results from the Magnolia Field. Jamie Middleton, Neil Grant, Jim Chodzko, Phil 223	

Heppard, and Brackin Smith are thanked for their recommendations and access to the dataset. 224	

The research consortium GeoPOP involving BG, BP, Chevron, ConocoPhillips, DONG 225	

Energy, E.ON, ENI, Petrobras, Petronas, Statoil, Total and Tullow Oil, at Durham University 226	

is thanked for funding this research. The Editor and the reviewers are thanked for their 227	

valuable recommendations which have vastly improved the manuscript. 228	

229	



FIGURES 230	

Fig. 1 – The location and stratigraphy of the study area. (A) Magnolia Field is located in the 231	

Titan minibasin, Garden Banks block 783, Gulf of Mexico. (B) Stratigraphy of the Titan 232	

minibasin showing Miocene-Lower Pliocene ponded zone, Lower Pleistocene ponded to 233	

channelized bypass zone, and Upper Pleistocene bypass zone (after Kane, et al., 2012).  234	

Fig. 2 - Photomicrographs showing that the reservoir sandstones have not undergone any 235	

burial diagenesis and cementation: A) well sorted sandstone with angular to subangular 236	

grains under plane polarised light. A reworked detrital feldspar (dF) grain with inherited 237	

dissolution features can also be seen (#2ST2, depth 4849m), B) well sorted grains with 238	

abundant grain fractures (fQ) under crossed polars (#2ST2, depth 4798m), C and D) quartz 239	

grains with detrital quartz cements (dQ) which have been reworked and re-deposited in the 240	

basin under crossed polars (#1ST1BP, depth 5014m and #3ST1, depth 5115m respectively). 241	

The rounded to subrounded outline of the quartz overgrowths (Fig. 2D) and the indentations 242	

within the quart cement (arrowed) formed due to transport of the quartz grain indicates that 243	

the grain is reworked.  The scale bars are 100µm. 244	

Fig. 3 – Pore pressure dataset from the Magnolia Field, Gulf of Mexico measured using the 245	

Modular Dynamic Tester (MDT). The reservoirs are overpressured with a minimum and 246	

maximum overpressure of ~12 MPa and ~35 MPa respectively. The lithostatic pressure 247	

gradient (black line) and hydrostatic pressure gradient (grey line) are 0.0226 MPa/m and 248	

0.0105 MPa/m respectively. The varying magnitude of pore pressure transition in different 249	

wells reflects the efficiency of different vertical and/or lateral seals and compartmentalisation 250	

of the Magnolia reservoir sands. For similar depth range, geologically older (Miocene-251	

Pliocene) formations have higher pore pressures and hence higher overpressures than the 252	

geologically younger (Pleistocene) formations in the area. SSTVD is Sub-sea true vertical 253	

depth. 254	



Fig. 4 - Porosity and overpressure distribution to depth in the Magnolia Field. A) Porosity-255	

Depth plot showing no decreasing trend in porosity with depth. The dashed line is the 256	

regional porosity-depth trend for normally pressured Neogene reservoirs from offshore Gulf 257	

of Mexico (after Ehrenberg, et al., 2008), and shows that the reservoirs have higher porosity 258	

distributions than the regional trend. B) Overpressure-Depth plot showing three distinct sets 259	

of overpressure distribution in the area. At relatively shallow depths overpressure increased 260	

steadily with depth (i). At depths below 4600 m, some reservoirs showed relatively lower 261	

overpressure (ii) while others showed relatively higher overpressures (iii). SSTVD is Sub-sea 262	

true vertical depth. 263	

Fig. 5 - The relationship of fluid overpressure on reservoir quality in the Magnolia Field. A) 264	

Porosity versus vertical effective stress (VES) plot showing the effect of the relative 265	

magnitudes of overpressure on porosity. Higher porosity were preserved in reservoirs with 266	

higher overpressure and vice versa. B) Permeability-VES plot showing the relationship 267	

between relative variations in fluid overpressure and permeability. Reservoirs with high 268	

overpressures generally have high permeability. The dashed lines indicate the overall trend in 269	

in the dataset. 270	

Fig. 6 – Burial history model for well GB 783 #1 generated using basin modelling program 271	

PetroMod©. A) The sediments in the Magnolia Field are Miocene to Recent in age and have 272	

undergone rapid burial to depths of ~5000 m below sea level since the Pliocene epoch. The 273	

maximum temperature that the sediments have been exposed to is ~60-70 °C. B) The rapid 274	

burial in the last 2 Ma and associated disequilibrium compaction has resulted in the 275	

generation of anomalous fluid overpressures in the area. 276	

	277	

  278	
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