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Abstract The potential hazard and geomorphic significance of shallow landslides depend on their location
and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot
predict landslide size. Multidimensional models must be applied to specific geometries, which are not known a
priori, and testing all possible geometries is computationally prohibitive. We present an efficient deterministic
search algorithm based on spectral graph theory and couple it with a multidimensional stability model to
predict discrete landslides in applications at scales broader than a single hillslope using gridded spatial data.
The algorithm is general, assuming only that instability results when driving forces acting on a cluster of cells
exceed the resisting forces on its margins and that clusters behave as rigid blocks with a failure plane at the
soil-bedrock interface. This algorithm recovers predefined clusters of unstable cells of varying shape and size
on a synthetic landscape, predicts the size, location, and shape of an observed shallow landslide using
field-measured physical parameters, and is robust to modest changes in input parameters. The search algorithm
identifies patches of potential instability within large areas of stable landscape. Within these patches will be many
different combinations of cells with a Factor of Safety less than one, suggesting that subtle variations in local
conditions (e.g., pore pressure and root strength) may determine the ultimate form and exact location at a
specific site. Nonetheless, the tests presented here suggest that the search algorithm enables the prediction of
shallow landslide size as well as location across landscapes.

1. Introduction

Shallow landslides generally involve only the colluvial soil mantle (less than a few meters deep) and are
often translational, failing along a quasi-planar surface [e.g., Rogers and Selby, 1980; Lehre, 1982; Glade,
1998; Robison et al., 1999; Guimaraes et al., 2003; Baum et al., 2005; Chigira and Yagi, 2006]. Often triggered
by extreme precipitation events, they can be the primary sources of debris flows, which sweep
downslope with the capability to destroy property and cause loss of life (see review in Sidle and Ochiai
[2006]). Shallow landslides also play an important role in landscape evolution. They are a primary cause of
erosion in steep landscapes, and when mobilized as debris flows can carve valley networks [e.g., Dietrich
and Dunne, 1978; Benda and Dunne, 1997; Stock and Dietrich, 2006]. The linkages between shallow
landslides and debris flow initiation are complex, as a landslide may (a) mobilize as a debris flow, (b) trigger
a debris flow upon entering a headwater channel, (c) transport sediment into channel heads and
channels and only subsequently cause a debris flow, or (d) make sediment available on the hillslope to
future hydrogeomorphic events [Sidle and Ochiai, 2006]. While the details of these processes may not be
completely understood, two key characteristics that determine the importance of a shallow landslide, both
in terms of hazard and geomorphic significance, are its location and size. Location and size affect the
amount of sediment that is mobilized, the distance that the landslide debris then travels, the potential for
mass gain (bulking up) or loss in transit, and the scale of local morphological change [Benda and Cundy,
1990; Fannin and Wise, 2001]. Moreover, Hungr et al. [2008] suggest that the volume of a shallow landslide
controls the extent of the hazard area, the intensity of impact within it and the vulnerability of elements
at risk. Location and size together thus determine the downslope effects, particularly the potential hazard
for people and property.
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Figure 1. (a) Oblique view of a discretized landscape (Coos Bay, Oregon) showing steep convergent topography with
discretized landslides in yellow. The inset shows the CB-1 landslide discretized into columns with landslide margins in
red. The collective FS for these columns is the ratio of the total resisting force to the total driving force. Colored arrows show
the driving and resistive forces acting on three example columns: an upslope boundary column, an internal column, and
a downslope boundary column. Each landslide margin has two forces acting on it because grid cells are not oriented
parallel to the slope (see Figure 2b). (b) Profile view of the landslide from A to A’indicating the upslope and downslope
wedges. (¢) Cross section from B to B’ where Z is the soil depth and h is the water table height above the failure plane.

The advent of high-resolution topographic data has improved the detection of various types of landslides
(e.g., McKean and Roering [2004], Chigira and Yagi [2006], and review in Jaboyedoff et al.[2012]), as well as the
application of slope stability models to determine locations with high landslide susceptibility (see reviews
in Casadei et al. [2003a] and Simoni et al. [2008]). However, we currently lack mechanistic models for specifically
predicting the location and size of individual shallow landslides across landscapes, thus reducing the
effectiveness of landslide hazard delineation and inhibiting our ability to formulate and apply mechanistic
models for landslide-derived sediment flux and surface erosion due to landslides [Dietrich et al., 2003].

Figure 1 presents an example of a landscape discretized into grid cells, containing information about their
physical properties (e.g., elevation, slope, soil depth, contributing drainage area, pore water pressure, and
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root strength). These cells extend vertically from the top of the bedrock to the surface, forming columns that
represent the soil mantle. Although some of the landscape properties are often underconstrained, such a
representation of a landscape is what is typically available as input to physically based models for predicting
landslides, such as those shown in Figure 1. A shallow landslide prediction procedure thus needs to identify
the collections of cells that together would be unstable considering the assigned properties for each cell.
Common models that adopt a one-dimensional representation of slope stability define a landslide as either
a single cell or a set of cells that will fail when pore water pressure is above a critical threshold [e.g., O'Loughlin
and Pearce, 1976; Wu et al., 1979; Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Pack et al., 1998;
Dietrich et al., 1995, 2001; Borga et al., 2002; Casadei et al., 2003a; Dhakal and Sidle, 2003; lida, 2004; Rosso
et al., 2006; Baum et al., 2008; Tarolli et al., 2008; Simoni et al., 2008; Lanni et al., 2012]. In these models,
landslides such as those shown in Figure 1 can be identified only if each of the cells that they contain is
individually unstable and surrounding cells are not. Furthermore, such one-dimensional approaches
cannot include lateral effects (notably root strength and soil friction), which are known to be important in
defining instability [e.g., Arellano and Stark, 2000; Schmidt et al., 2001].

In order to account for lateral effects a multidimensional slope stability analysis is required. Many
three-dimensional slope stability models have been proposed [e.g., Hovland, 1977; Chen, 1981; Burroughs,
1985; Dietrich et al., 2008]. These models perform a limit-equilibrium analysis for a defined failure surface,
assuming that the soil mass behaves as one or more rigid blocks. While they usually require similar

input parameters as the infinite-slope methods, their application has been limited as they require the
treatment of discrete shapes that are not known a priori. Because the number of possible shapes grows
exponentially with the number of grid cells, an exhaustive search that tests all possible shapes is effectively
intractable at any relevant scale [Dietrich et al., 2008].

Few attempts have been made to apply three-dimensional methods at the watershed scale; all involve

the introduction of constraints that effectively reduce the computational complexity of the problem.
Montgomery et al. [2000] incorporated the effects of lateral root strength by using a predefined single
rectangular landslide shape with fixed size, which results in the same limitations of the infinite-slope
approaches with respect to landslide size (i.e., size is defined a priori). To examine the controls of lateral root
reinforcement on landslide size, Gabet and Dunne [2002] and Casadei et al. [2003b] assumed landslides are
rectangular and have a fixed length to width ratio but did not apply their model to a landscape. Okimura
[1994] also assumed landslides to be rectangular but relaxed the restriction of a single length to width ratio.
In this model landslide size is determined by computing a least stable cell using an infinite-slope stability
model then exploring a fixed number of potential rectangular slide masses (constrained to be oriented
downslope) that include the least stable cell, resulting in good agreement between predicted locations and
shapes and of observed failures but over a very limited area. Qiu et al. [2007] instead tested potential
ellipsoidal slip surfaces, using Hovland’s method [Hovland, 1977] to compute their three-dimensional
stability. They did not account for additional resistance provided by roots on the margins of the unstable
block. To reduce the computational complexity, they took a nondeterministic approach in which 100 random
potential failure surfaces centered on each grid cell were tested (thus limiting the number of slope stability
tests to at most 100 times the number of grid cells).

Lehmann and Or [2012] proposed an alternative approach that relaxes the assumption of a regular landslide
shape but requires landslides to originate at a single cell to reduce its computational complexity. In their
model a hillslope is discretized into soil columns interconnected by frictional and tensile mechanical bonds
represented as fiber bundles [e.g., Schwarz et al., 2010]. If a failure threshold is reached based on the forces
acting on the base of a column, its load is redistributed to its neighbors via the fiber bundles which in turn can
gradually fail, allowing the failure to progress in both the upslope and downslope directions. This model
allows for irregular shapes to develop but is computationally very intensive and as a result has only been
applied to small synthetic landscapes. Ruette et al. [2013] developed a simplified version of this model that
relies on prescribed brittle mechanical bonds between adjacent columns rather than the fiber bundle
representation of lateral resistance used by Lehmann and Or [2012] and applied it to two catchments in the
foothills of the Swiss Alps. While they generally yielded reasonable predictions of landslide events, they
overpredicted the number and volume of observed landslides and greatly overpredicted the slopes on which
landsides initiated. Both these approaches can capture the progressive nature of failure observed in some
shallow landslides but have a dependence on grid resolution, as the likelihood of initial failure will vary with
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cell size. These models also implicitly assume that deformation is large enough to allow failure at the base of a
soil column and subsequent detachment upslope, yet small enough to allow the transfer of the loads by
columns leaning on their downslope neighbors. However, because these models assume failure initiates at
individual grid cells, and test the stability of groups of cells failing in series rather than failing simultaneously,
they do not require a search algorithm.

Here we develop an efficient search algorithm that can be applied at the catchment scale to identify
unstable clusters of adjacent cells without constraints on their size or shape, provided that the grid
resolution is sufficiently fine (1-2 m) to represent a landslide as a collection of grid cells. Our approach is
different from prior work in that it is deterministic rather than involving a random sample of possible
shapes and is less dependent on grid spatial resolution in the sense that it does not require instability of
individual cells to locate possible search locations. To test the search algorithm, we couple it to the
limit-equilibrium multidimensional slope stability model MD-STAB [Milledge et al., 2015], which uses a
traditional Mohr-Coulomb formulation of strength to calculate the driving and resistive forces on each cell.
Other three-dimensional limit-equilibrium models could also be used with the search algorithm that
identifies landslide location and size. With this definition of slope stability, we apply the search algorithm to
a synthetic landscape and show that it can recover predefined clusters of unstable cells having a variety
of regular and irregular shapes; and that it offers better performance and greater flexibility when compared
to constrained rectangular or elliptical exhaustive searches using the same slope stability model. We
then apply the search algorithm to a field setting and find that it recovers the size and location of a
rainfall-triggered shallow landslide at a research site near Coos Bay, Oregon (CB-1), where all the relevant
physical parameters such as hydrological conditions, soil depth, and root strength were field measured
[Montgomery et al., 2009]. We do not perform model calibration to minimize misfits between predictions
and observations. Rather, we use field measurements to estimate the landslide-relevant parameters (e.g.,
soil depth, root strength, and pore water pressure). In contrast to Milledge et al. [2015], who test the stability
of predefined shapes, we let the search algorithm find the unstable (as defined by the slope stability
model) shapes. We also assess the robustness of the procedure by varying each field-measured parameter
by £5% and +£10%, finding that it is not very sensitive to modest changes in the relevant parameters.
Finally, in Appendix A we show that our procedure is efficient, with the number of operations growing
quadratically with the number of grid cells, a dramatic reduction from the prohibitive exponential number
of operations required to test every combination of grid cells. In a companion paper (D. Bellugi, Milledge, D.,
Dietrich, W.E., McKean, J., Perron, J.T., Predicting shallow landslide size and location across a natural
landscape: Application of a spectral clustering search algorithm, submitted to JGR-Earth Surface, 2014,
hereafter referred to as Bellugi et al., submitted), we use process-based submodels to estimate soil depth,
root strength, and pore water pressure, to test the coupled search algorithm and slope stability model
across a larger landscape where the parameters have not been directly measured at all locations.

2. A Three-Dimensional Slope Stability Model

In a landscape during times of elevated pore pressure, patches of unstable ground (represented as a
collection of neighboring grid cells), where the collective driving forces exceed the resisting forces, may
develop. While our search algorithm does not depend on the specific slope stability method adopted to
characterize these forces, here we adopt the multidimensional slope stability model MD-STAB [Milledge et al.,
2015]. This model is fully three-dimensional and incorporates the effects of root strength and soil friction on
sloping boundaries and is thus appropriate for application to a natural landscape. Milledge et al. [2015]
provide an extensive derivation and discussion of this model, and we summarize the approach here. The
landscape is discretized into columns defined in the vertical by the soil layer bounded by the ground surface
and the bedrock interface (Figure 1). To compute the stability of a group of adjacent columns, a framework
similar to Hovland's [1977] method to calculate the limit equilibrium stability is utilized. The Factor of Safety

is computed from the ratio of total resisting force to total driving force along the failure surface [Hovland, 19771.
Resisting forces (forces that act against the driving force to maintain equilibrium) due to friction and root
cohesion exist on the base, cross slope, upslope (head), and downslope (toe) margins of the group of columns
(Figure 1). Driving forces are the downslope component of the block’s weight and the force exerted from the
soil mass upslope. MD-STAB assumes that failure occurs by simultaneous shear on the boundary of the
landslide, without internal deformation and with the soil columns constituting the body of the landslide not
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moving relative to each other. This implies that any intercolumn shear forces within the unstable block do
not exceed the shear strength at the time of failure. As a result, resistance to movement by internal columns
is only by basal shear resistance, and resistance to movement by boundary columns is by basal shear
resistance, shear resistance on the vertical boundary between the failure and surrounding soil columns,
and active or passive forces (forces exerted under active or passive conditions, i.e., under soil tension or
compression, respectively) from soil columns upslope or downslope. No progressive failure, strain weakening,
or strain-induced pore water pressure dynamics are considered. It is also assumed that (1) slope instability
occurs in drained conditions, in which fluids can freely drain through the pores, and effective stresses apply
throughout; (2) the base of the failure surface is at the interface between the soil and the bedrock; (3) the water
table surface, ground surface, and soil-bedrock interface are parallel within each column; and (4) groundwater
conditions are characterized by steady, slope-parallel subsurface flow. For simplicity, any infiltration, suction,
or capillary rise effects in the unsaturated zone that might cause negative pore pressures are ignored. Instead,
the block is partitioned into saturated and unsaturated zones. These can be combined as additive terms

and simplified using a ratio of water table height (h (m)) to the depth of the failure plane (z (m)) to define a
saturation ratio m = h/z (Figure 1).

The formulation for basal shear resistance force (R, (Pa)) is similar to that of the infinite-slope method [Taylor,
1948], except that the force is calculated over the basal area of each column (w/ sec 8, where / and w are
the length and width of each cell (m) and 8 is the slope angle (deg), measured parallel to the slope (Figure 1)).
The reinforcing effect of roots on the base of the block is quantified using an effective root cohesion term (C,
(Pa)). The basal shear resistance force Ry, (Pa) is defined as

Ry = (sec(0)Cp + cos(0)z(ys — y,,m)tan())lw, (1)

where ¢ is the soil’s effective friction angle (deg), y is the unit weight of the soil defined as y, = gp, (N/m>), y,
is the unit weight of water defined as y,, = gp,, (N/m?), g (m/s?) is acceleration due to gravity, p, (kg/m>) is the
soil bulk density, and p,, (kg/m?) is the density of water. A single soil density independent of soil moisture
content is assumed [Milledge et al., 2015]. It is assumed that the soils are normally consolidated, cohesionless,
and have isotropic frictional properties. Soil cohesion can be included in the model when appropriate.

Deformation on the cross-slope lateral margins is assumed to be by pure shear along the vertical faces. The
shear resistance due to earth pressure on the cross-slope sides can be calculated from the horizontal stress at
a point and the soil friction angle [Burroughs, 1985; Stark and Eid, 1998], integrated over the area of the
block’s cross-slope sides. An effective cohesion term (C) is added to account for the effect of roots on lateral
resistance. Horizontal stresses are calculated from vertical stresses using earth pressure coefficients [Lambe
and Whitman, 1969]. The cross-slope shear resistance forces R, and R, are defined as

1
R=R = EKoz2 (ys — yum?®)tan(e)l + Czl. )
The at-rest earth pressure coefficient (Kp) is calculated from the soil friction angle (¢) using Jacky’s empirical
relation: K, =1 — sin ¢ [Jacky, 1944].

The active (o,) and passive (oy,) stresses at a given depth (z) on the upslope or downslope margin of the
central block can be calculated from vertical stress (g,) using active (K,) or passive (K,) earth pressure
coefficients. Classical soil mechanics theory defines several methods for earth pressure prediction, described
in standard soil mechanics textbooks [e.g., Das, 2010]. Here we adopt the Coulomb method [Coulomb, 1776],
on the upslope margin, and the log-spiral method [Caquot and Kerisel, 1948] on the downslope margin.
The former assumes a planar failure surface on the upslope margin, while the latter accounts for the
curvature in the failure surface that typically develops on the downslope margin. Both are upper bound
plasticity solutions based on statically admissible stress fields [Das, 2010]. Both methods assume that the soil
is incompressible and that its properties are homogeneous and isotropic [Chen, 1975]. These methods
have been adapted from their original formulations to allow a sloping ground surface and cohesive soil by
Chugh and Smart [1981], in the Coulomb case, and by Soubra and Macuh [2002], in the log-spiral case.

The total passive force (Ry) on the downslope margin is calculated by integrating the passive stress over the
area of the block’s downslope side. This force is the resultant of both the normal and shear forces (due to
friction) on the downslope margin of the block and is inclined at the soil friction angle (¢). The passive force is
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Figure 2. An example grid with elevation contours (blue lines) illustrating force partitioning and reorientation. (a) A
four-cell potential landslide. The total driving force is the vector sum of the individual forces contributed by each cell. Note
that the length of the resulting vector (the vector sum) is less than or equal to the sum of the individual lengths (the
arithmetic sum). (b) The decomposition of active, passive, and at-rest earth pressure forces accounting for grid orientation.
In this example, edges a-b and a-d experience active and at-rest forces, respectively. The grid cell edge a’~b’ (which
intersects both a-b and a-d) experiences a combination of active and at-rest forces proportional to the amount of rotation
between slope direction and the grid cell.

decomposed into its slope-parallel component, which acts as a resisting force on the downslope margin, and
its slope-normal component, which modifies the normal (and thus resisting) force on the base. These forces
are combined to give the net resisting force on the passive downslope margin R, defined as

Ry = %szz (75 = 7wm?)w(cos(¢ — ) — sin(¢ — O)tan()). 3)

The active earth pressure conditions on the upslope margin can provide a net driving or resisting force,
depending on the local parameters. This force is calculated as in equation (3), but with the active earth pressure
coefficient K. In this case the slope-parallel component acts as a driving force, while the slope-normal
component modifies the normal stress on the basal failure plane and thus the basal shear resistance. These can
be combined to define the net driving force on the active upslope margin R, as

1 .
R, = EK(,z2 (ys — ywm?*)w(cos(¢p — 0) — sin(¢ — O)tan()), 4
In soils with a strong cohesive component, the force on the upslope margin is negative since the resisting
forces due to cohesion exceed the driving force of the upslope soil wedge (Figure 1). In this case R, represents
a net resisting force on the upslope margin of the central block.

The downslope driving force F,4 (the downslope component of the weight force on a column) is defined as
Fg = sin(0)zylw. (5)

The cell edges defined by the gridded topography are typically not aligned with the downslope direction at a
given location (Figure 2a), so the total driving and resisting forces acting on a cluster of columns that
represents a landslide are computed with vector sums. The driving force (equation (5)) is calculated for each
column based on its aspect, and then these vectors are summed over the entire landslide area to obtain the
total driving force. The vector sum is used for the Factor of Safety calculations, while the arithmetic sum is
used to guide the search algorithm (Figure 2a). The sum of the magnitudes of forces is an upper bound on the
true force (i.e., as computed by a vector sum) and provides an approximate criterion for identifying candidate
landslides. The resisting force of each column is the sum of its basal (equation (1)) and lateral components
(equations 2-4). Lateral components are only included for column margins that represent the edge of the
landslide. Since the grid is not oriented slope parallel, most cells have more than one-force component
(upslope, downslope, and cross slope) acting on them. The lateral resistance on each column margin is
decomposed into its components by assigning a fraction of the edge length to each resistance component
(Figure 2b). The dependence of lateral resistance on perimeter length introduces grid resolution dependence
to the stability calculations. Its impact on stability predictions is complicated by the resolution dependence
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of other driving parameters (e.g., slope) and is not examined in detail here. In a related study, Bellugi et al.
(submitted) find that, as a result of grid discretization, the perimeter length of 34 landslides mapped over a
10 year period in the area surrounding our study site can increase up to 140%. Because discretized area instead
does not vary significantly, the estimation of driving forces is not affected. As a result, the stability of these
mapped landslides tends to be overestimated (Bellugi et al., submitted).

The Factor of Safety (FS) for the group of columns is defined as the ratio of its total resisting to driving forces,

> Re+Y R+Y R+ Ri—> R

all left right down up

D _Fa ’

all

FS =

(6)

where the summation subscripts indicate whether the sums are performed over all the columns, or those on
the left, right, downslope, or upslope margins only.

3. Search Algorithm

3.1. General Framework

In a landscape such as that illustrated in Figure 1, a shallow landslide can be conceptualized as a collection
of surface elements (e.g., grid cells), which behave coherently as a solid block, mobilizing together in
accordance to their physical properties. We assume that the resolution of the grid is sufficiently fine to
represent a landslide as a collection of grid cells, i.e., that it is finer than the smallest landslide of interest.
While the effect of grid resolution is not explored in this manuscript, it is apparent that a resolution that is too
coarse will result in smaller landslides not being predicted, and a resolution that is too fine will result in
unnecessary computational burden. In practice, a grid resolution of 1-2 m results in a good balance between
these two end-member cases. Our aim is to find all unstable collections of grid cells, but the exact solution
to this problem requires testing the stability of every possible combination of grid cells. The number of
possible combinations of cells grows exponentially with the number of cells n in the grid, resulting in up to 2"
different combinations of cells. For example, exhaustively testing every combination of grid cells across a
small 1 km? landscape discretized into a square grid composed of 1000 by 1000 cells (as one would obtain
using modern lidar data) could result in exploring up to 2"°°%?%° combinations of cells, a number so vast that
the task would be unfeasible even using the world’s most powerful computers [Dasgupta et al., 2006].

Alternatively, the collection of cells that fails when its cumulative driving forces exceed the cumulative
resistive forces (the landslide) could be thought of as the result of an optimization process that minimizes the
ratio of resistive to driving forces (the FS). While no algorithm currently exists for finding exact solutions for
this class of optimization problems in a polynomial number of iterations, clustering algorithms based on
graph theory can provide good approximations. Graphs are combinatorial mathematical structures used to
model pairwise relations between objects, consisting of a set of vertices (or nodes) that represent the objects,
and a set of edges (or lines) that represent their relation or connection. Vertices and edges may have
additional attributes that describe objects and their connections. If connections are asymmetric (e.g., the flow
between two locations on a river), edges have directions and the graph is directed. If instead the connections
are symmetrical (e.g., the line of sight between two mountaintops), edges have no direction and the graph
is undirected. For more formal definitions we refer to common graph theory textbooks [e.g., Diestel, 2005;
Gross and Yellen, 2005]. Graphs can also be represented using matrices, in which entries (i, i) encode the
attributes of vertex i and entries (i, j) encode the attributes of the edge connecting vertex i and vertex j. In
recent years spectral graph theory, the study of the properties of a graph in relationship to its associated
matrices and their eigenvectors and eigenvalues (the graph’s spectrum) [Chung, 1997], has enabled the use of
modern linear algebra techniques in graph theory applications. In particular, this has allowed the development
of algorithms that, by making use of graph spectra, can efficiently solve clustering problems [Von Luxburg,
2007]. Clustering is the task of grouping a set of objects such that those in the same group (a cluster) are more
similar (in some sense or another) to each other than to those in other groups [Kaufman and Rousseeuw, 2005].
A gridded landscape can be depicted as a graph, with vertices corresponding to soil columns and edges to
the forces that can develop between them. A cluster (e.g., of unstable cells) can be obtained by cutting all the
edges that link those vertices (cells) inside the cluster (the landslide) with those outside (the stable landscape).
For example, the four cells outlined in red in Figure 2a correspond to the four blue vertices of the graph
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Figure 3. (a) Graph G=(V,E) of a discretized landscape, consisting of 16 grid cells. The vertices, labeled v;-vq¢g, are
associated with the mobilizing forces f; as well as the frictional and cohesion forces b;, contributed by each grid cell.
The edges represent the resistive forces between grid cells: the edge labeled e;, encodes the symmetrized weights w;;
between vertices v; and v;. For the partition S (the blue vertices) to fail as a landslide, their mobilizing forces must exceed
the resistive forces of the red edges combined with their frictional forces. (b) The driving force matrix F for the graph G;
the f; values are computed using equation (7). (c) The resistive force matrix R for the graph G; the r; values are computed
using equations (8) and (9). Red, blue, and black colors of entries in Figures 3b and 3c correspond to the colors in Figure 3a.
(d) The indicator vector x for partition S of G and its FS in matrix form.

shown in Figure 3a. For this group of cells to fail it must overcome the resistances that develop at its
boundary, which is equivalent to cutting the red edges shown in Figure 3a.

Choosing which vertices to include in a cluster, and therefore which edges to cut, depends on the objective,
in our case to minimize the stability of the cluster. This is a combinatorial problem involving a global
optimization (i.e., applied to all vertices and edges). In the context of image segmentation, Shi and Malik
[2000] associate each image pixel with a vertex of the graph, and a measure of pixel similarity to the edges of
the graph. To identify clusters of similar pixels, they introduced an objective function defined by the
normalized cut, which computes the cut cost (the sum of the edges that must be cut to form the cluster) as a
fraction of the total edge connections to all the vertices in the graph. They then use a spectral method to find
partitions that minimize the normalized cut. The advantage of the normalized cut is that it minimizes cost
by removing weak (low similarity) edges between clusters and maximizes benefit by including more similar
vertices in a cluster. In contrast to other graph cut definitions (e.g., the minimum cut [see Papadimitriou and
Steiglitz, 1998]) that mostly focus on removing weak edges, the normalized cut combines global and local
information resulting in more balanced graph partitions.

In the case of landslides costs and benefits derive from the resistive and driving forces experienced by a
cluster of unstable cells, and the objective function is the Factor of Safety of that cluster. Thus, we can identify
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landslides using a spectral clustering approach similar to that of Shi and Malik [2000], but with the advantage
that the objective function is physically based. Using a slope stability model such as that in section 2, we
determine the contribution of each soil column to the driving force of a potential landslide that includes that
cell, the resistance on the base of each soil column, and the resistance between each soil column and its
neighbors. We encode the driving and basal resisting forces contributed by each column in the vertices of the
graph, and the potential lateral resisting forces that can develop between columns in the edges of the graph.
Each vertex thus corresponds to a discretized soil column (i.e., a grid cell), and each edge corresponds to a
boundary between columns (Figure 1). We define the objective function as the ratio of all the resistances
acting on a cluster of cells and the total driving force contributed by those cells. We develop a spectral
method to find clusters (i.e., landslides) that minimize this function, guiding the search for the unstable areas
of the landscape.

3.2. Spectral Clustering Derivation

The landscape and all its spatial attributes are discretized into a regular grid (i.e., with square grid cells). The
attributes of the landscape relevant to shallow landslides are represented as an undirected weighted

graph G =(V,E), where the vertices v&V of the graph represent the vertical soil columns corresponding to the
original discretized grid cells. An edge e;&E is formed between every pair of neighboring vertices v; and v;
and represents the forces (which are encoded in the edge weights) acting between two adjacent columns
(Figure 3a). The discretization of the landscape into soil columns with four sides results in each vertex having
four neighbors. The edges of G are thus associated with the four lateral faces of the soil columns, on which
the forces acting between adjacent grid cells are defined. This graph G can be represented as a weighted
adjacency matrix W, with entries wj; set to 0 when v; and v; are not connected in G and to the magnitude of the
resistive forces on edge ej otherwise. G is four regular as each vertex has four neighbors (upslope, downslope,
left, and right). For a grid of size n by m, W will be of size nm by nm but will contain mostly zero values,
and thus will be extremely sparse [Cormen et al., 2001]. This is important computationally, as the use of sparse
matrices introduces little memory overhead in comparison to the original elevation grid.

The vertices of this graph are annotated with the forces contributed by each grid cell: the driving forces f
and the resistive forces b due to friction and cohesion acting on the base of the column (Figure 3a). Similarly,
the edges of the graph are annotated with the forces acting between a grid cell and its neighbors: these
resistive forces, which arise from root strength and earth pressure, are mostly positive, but may be negative to
represent the active “push” from upslope neighbors. Spectral clustering methods associate a scalar weight
with each node [Von Luxburg, 20071, and thus, we associate each grid cell with the magnitude of its driving
force, rather than magnitude and direction. The total driving force is thus the arithmetic sum rather than the
vector sum, resulting in an over estimation of the force (Figure 2a). As a result, some stable areas may be
unnecessarily examined by the search algorithm. However, when candidate landslides are examined by the
algorithm, the FS is correctly computed using the vector sum (Figure 2a). The driving and resistive forces
are encoded in two nm by nm matrices F and R. The force matrix F contains the driving forces associated with
the vertices of G along the diagonal (Figure 3b):

Fi = Fq,, 7)

where F4,, is the force contributed by vertex v;. The resistance matrix R contains the resistive forces associated
with both the vertices (basal resistance) and the edges (lateral resistance) of G (Figure 3c). The diagonal of Ris

m*n
Ri = Re, + > wj, ®)

JEi
where Ry, is the basal resistance contributed by the soil column represented by vertex v; and the wj; term is
the sum of all the resistances between v; and its neighbors. This definition differs from the general
formulation of the Laplacian matrix typically used in spectral clustering methods [e.g., Shi and Malik [2000]],
as it also includes the Ry,, terms (which are associated with the vertices of G). A central assumption of
spectral clustering approaches is that the relationship between neighbors is symmetric (i.e., the graph is
undirected) [Von Luxburg, 2007]. The pixel similarity used by Shi and Malik [2000] is a symmetrical measure. In
their graph representation, v; similar to v; implies v; similar to v; and that wj;= wj, resulting in an undirected
graph. This is not the case in this application, as the resistive forces between grid cells are not always
symmetrical. In particular, the active and passive earth pressures across a vertical boundary separating an
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upslope cell from its downslope neighbor can be different, as the passive resistance of the downslope cell
generally is greater than the active force from the upslope cell. To obtain an undirected graph, the boundary
forces are first symmetrized: the off-diagonal entries of R, visualized in Figure 3¢, contain the negated average
of the weights along a given edge:

Rij = Rji = —Wﬁtj. ©)
While this formulation is rather different from the usual spectral clustering definitions [e.g., Von Luxburg,
2007], it allows the exact computation of the numerator of equation (6) while retaining a symmetric matrix.
The matrices R and F have a similar form to the weighted adjacency (A) and degree (D) matrices of a graph,
and F~V2RF~ "2 s thus similar in form to the normalized Laplacian (L =D — A) matrix of a weighted graph
[Chung, 19971, which has the form D 2D "2 and is commonly used in spectral clustering algorithms
[Von Luxburg, 2007].

The aim is to partition G to delineate unstable clusters of cells SEG (Figure 3a), defined by a binary indicator
vector x of length nm. Each component x,&{0,1} indicates whether vertex vy is part of S: x,=1 if v, €S, and
X, =0 if vi&S. The index k corresponds to the position of a grid cell in a linearized representation of the grid
(Figure 3d). We define the cost function C(x) of the partition S as the FS of S expressed in terms of x, R, and F:

T
R
c(x) X'Rx

T XTRx]

where x" is the transpose of x. Consistent with the assumption of a rigid block with resistive forces acting on
its margins, entries R;; from equation (9), corresponding to the resistance between a pair of adjacent vertices
v; and v;, are considered only if one of v; and v; corresponds to a nonzero entry of x. This is equivalent to
assuming that lateral resistance acts between adjacent grid cells j and j if and only if they straddle the margin
of the block. Similarly, entries R;; from equation (8), which include the resistance on the base of v;, are only
considered if v; corresponds to a nonzero entry of x. This is consistent with grid cell i contributing to the
resistance on the base of the block if and only if it is part of the block. With this construction, averaging of the
weights wj; and wj; in equation (9) does not change the cost function: C(x) in equation (10) is exactly equal to
FS in equation (6) for any partition defined by an indicator vector x.

(10)

The optimal partition S” (the one having the lowest FS) is determined by the indicator vector x* which
minimizes C(x*). Finding x* in the discrete case (i.e., x*&{0,1}) is an intractable problem [see Shi and Malik,
2000, Appendix Al, and thus, an approximation must be used. Following an approach similar to Shi and Malik
[2000], we find an approximate solution by relaxing the condition that x*&{0,1}, and let x* take real values
(i.e, x*& R) (commonly referred to as a spectral relaxation). While this allows a tractable minimization of x*,
the solution is no longer discrete (i.e., landslide or not landslide). Instead, x* can be interpreted as a
continuous indicator vector, representing the fraction of each node that contributes to the optimal partition
S* If we lety= F'/2x, and substitute into equation (10), the cost function becomes
Te-2pE-"2
y) = YFURETy (1)
vy

The cost function defined by equation (11) has the same form as the Rayleigh quotient of a positive
semidefinite matrix M and a nonzero vector x, defined as (x"Mx)/(x"x) [Horn and Johnson, 1985]: as R is a
real-valued symmetric square matrix and F is a diagonal matrix with positive entries, the inner product of
F~"2RF "2 is also symmetric and positive semidefinite. The minimizing solution to the Raleigh quotient is
the eigenvector y* pointed to by the smallest nonzero eigenvalue of the linear system defined by

F'/2RF 2y = Jy (12)

[Horn and Johnson, 1985). The optimal partition S” is thus defined by x* = F~"2y*, after reversing the change

of variable y = F"?*x used to obtain the Rayleigh quotient. As x* is only an approximation of the original
discrete x, we do not limit ourselves to the first eigenvector, rather we take the first k eigenvectors, where k
can be limited by a maximal value of C(x*) or, in practice, by computational constraints. These eigenvectors
effectively guide the search algorithm in finding patches of instability in the landscape. In this study we set
k=164, a compromise between a value that results in fast running times and one that results in a more
exhaustive search.
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» 3.3. Recovering
2 v @ Discrete Landslides
Yy =]
a) Z c) L,x An approximation to the discrete
solution x of equation (10) can be
Figure 4. (a) Side view of the 3-D surface defined by the continuous vector gbtained by thresholding the
x*. Dashed contour lines define regions r; associated with threshold t; solid
contour lines indicate the regions with the minimal FS for each gray edge in the
contour tree T, with solid gray circles representing the local minima and ) .
maxima of x*. (b) The contour tree T, arising from x*. Solid gray circles are the ~ interesting threshold values t; are
vertices of T, corresponding to the birth, and merging of the regions r; solid  examined. All x; for which the
gray lines correspond to the edges of T, in which individual regions grow; corresponding x;* are greater than t;
dashes represent the thresholds t;; unfilled circles show the thresholds that
o ) . ) are set to 1, and the rest are set to 0.
minimize the FS for each edge. (c) Overhead view of Figure 4a showing only . ) .
the three overlapping regions r; from thresholds t; that minimize the FS for In other words, x* can be visualized
each edge of T, corresponding to the solid red lines in Figure 4a and the as a surface with each threshold
unfilled red circles in Figure 4b. deﬁning a contour line on the
surface, and the regions at threshold
t; are the projection on the Cartesian plane of the points with values higher than t; (Figure 4a) These
regions are extracted using connected-component analysis [Haralick and Shapiro, 1992], by which any

threshold t; may give rise to disconnected discrete regions r; in which r;=1if x;* >t;and r; = 0

continuous vector x*. As x* is also of
length nm, all nm — 1 possible

otherwise. In particular, a region r; at threshold t; must either have not existed at threshold t; _ ;, or
be an expansion of a region r; _ " at threshold t; _;, or be the result of the merging of regions r; _ '
and r; _ ;" at threshold t; _ ;. The evolution of the regions as the threshold is varied gives rise to a
topological contour tree T, (Figure 4b) in which vertices represent the birth and merging of regions,
while edges represent the expansion or contraction of an individual region [Freeman and Morse, 1967;
Carr et al., 2000].

As we are interested not only in the least stable cluster of cells in a landscape but in all the unstable clusters,
we examine the complete contour trees resulting from each eigenvector. Each edge in T_ is traversed, and at
each threshold the FS of r; is computed for the corresponding collection of cells. This allows the use of a
vector sum to correctly compute the driving forces. On each edge, multiple thresholds may result in shapes
that have a FS below unity (Figures 4a and 4b). These shapes will overlap one another (Figure 4c), but only
one will actually fail at a specific location. There are many ways to choose among these unstable shapes.
Here we choose the unstable shape with the lowest unstable FS, (referred to as FSyin) as it is most consistent
with the optimization and is commonly assumed to be the most probable [e.g., Montgomery and Dietrich,
1994; Rosso et al., 2006; Stark and Guzzetti, 2009]. However, it is also the case that under evolving conditions
the first cluster of cells to cross the stability threshold can be the one that fails [Casadei et al., 2003a]. Thus,
the algorithm offers the option of retaining the overlapping shape with FS closest to but less than unity
(i.e., the highest unstable FS, referred to as FSax).

The thresholding process is then repeated for the complement of x*, x*' (x*' = —x*), which is also an
eigenvector of equation (12), after the change of variables. This is equivalent to inverting the x* surface and
generating a new contour tree T, Thresholding x*' results in the complements of the discrete regions
arising from x* (i.e,, r;=0 if x;* > t;, and 1 otherwise), thus allowing the exploration of all the regions
initiating from the local maxima and minima of x* (the local maxima of x* are the local minima of x*'). The
set of all regions extracted from T, and T.' represent the predicted landslides from the eigenvector y*.
This process is repeated for each of the k eigenvectors. While only one landslide is retained per edge of T,
and T, multiple landslide predictions arise from the many thresholds applied to many eigenvectors, and
these landslides may overlap (Figure 4 illustrates the case of overlapping predictions from a single
eigenvector). As only one of these overlapping landslides will fail for a particular storm event, they are
pruned a posteriori using the same criterion (FSyin Or FSmax) as in the thresholding process. In the FSin
case, predicted shapes are sorted by their FS in ascending order into a list. The first element of the list is
pairwise compared to all the other elements in sorted order, and whenever another element of the list
overlaps with the first it is removed from the list. The process is then repeated for the next element of the
list until the list is fully traversed. The pruning process is similar in the FS,,,4 case, but with the predicted
shapes sorted in descending order.
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4, Testing the Shallow Landslide Prediction Procedure

We test the ability of our procedure to identify clusters of unstable cells on small synthetic and natural
landscapes. The modest size of these landscapes enables the comparison of our search algorithm to
exhaustive search methods in which the number of possible shapes is constrained by assuming landslides to
be rectangular or elliptical. The synthetic landscape consists of a stable planar slope where soil slope, depth,
pore water pressure, and root strength are constant. On this slope we introduce patches with regular and
irregular shapes and sufficiently reduced root strength to make them the only unstable parts of the
landscape. We then test the ability of the procedure to recover landslides with size and location similar to the
pre-defined patches, and contrast to the alternative search methods using the same slope stability model.
In the natural landscape, where soil slope, depth, pore water pressure, and root strength are spatially varying,
we test the ability of the procedure to recover a known landslide using field measurements to constrain all
the relevant parameters at the time of the failure. In this case we can compare size, location, and shape of
predictions to those of the known landslide. We also contrast to the alternative search methods and assess
the robustness of the procedure by varying each field-measured parameter by +5%.

4.1. Application to a Synthetic Landscape

The synthetic hillslope consists of a 51 m by 51 m planar surface inclined at 35°, discretized into 1 m? grid
cells. We set the soil depth z to T m and assume the soil has a friction angle of 35°, a bulk density of

1600 kg m™3, and is fully saturated (m = 1). We set the basal root strength (the parameter C,, in equation (1)) to
1.5 kPa and the depth-averaged lateral root strength (the parameter C; in equation (2)) to 60 kPa. These values
are chosen so that no part of the slope can be unstable and are representative of natural forests [Schmidt
et al, 2001]. We then define regular and irregular patches of reduced strength centered on the planar slope.
The four regular patches consist of a 25 m? square, a 45 m? rectangle, a 49 m? circle, and an 87 m? ellipse
(Figure 5a). The four irregular patches are generated using the method of Robidoux et al. [2011] that produces
random, smooth, simply-connected (i.e., with no holes) shapes, by connecting eight random points drawn
from a uniform distribution on a disk, applying a Gaussian blur and retaining the pixels above a 5% intensity
threshold [Robidoux et al., 2011, Figure 2]. To make these patches similar in size to the regular ones, they are
then rescaled to 76, 53, 73, and 51 m?, respectively, and translated to the center of the planar slope

(Figure 6a). We then ensure that each of the patches is just unstable by lowering the root strength parameters
Cp and C; of the patch until it becomes unstable, but the same patch is stable when eroded or dilated by
one grid cell. The C, and C; values selected for each patch are listed in Table 1 and are in the range reported
by Schmidt et al. [2001] for clear-cut conditions.

This reduced-strength patch generation method generally results in unstable areas confined to a+1 grid cell
buffer zone around the reduced strength patch boundary. However, it does not guarantee that there is a
single unstable area within any reduced-strength patch or that the least stable area has the same shape as
the reduced-strength patch. For rectangular reduced-strength shapes generated with this method, the
only possible unstable shapes are in the +1 pixel buffer around the perimeter. While this results in many
millions of possible unstable combinations, the least stable shape can still be found by an exhaustive search
of all possible shapes. For nonrectangular shapes the least stable area cannot be constrained in a+1 pixel
buffer, so the number of possible combinations grows exponentially larger, and testing all the combinations
is prohibitive. As a result no “ground truth” can be defined, and thus, we define success as (1) the ability to
identify a landslide where we know that one should exist (i.e., some configuration of cells in the low strength
patch is known to be unstable); and (2) the similarity between the predicted landslide and the defined low
strength patch, in terms of size and shape.

For each test, the force matrix F and Laplacian-like resistance matrix R are assembled (equation (7) and
equations (8) and (9), respectively). The eigenvectors associated with the 164 smallest eigenvalues of
equation (12) are examined. Thresholding these 51%-element eigenvectors is analogous to taking 5121 slices
through these surfaces parallel to the x-y plane and setting the value of each cell to be one if the surface

is above the slice at that cell or zero if not. The eigenvectors resulting in the shapes with the lowest FS out of
all the unstable shapes found are shown in Figures 5b (for regular shapes) and 6b (for irregular shapes).
The corresponding shapes with the lowest FS are shown in Figures 5c and 6c. The theoretical maximum
number of shapes examined by the search algorithmin a 51 by 51 grid is approximately 20 million, a dramatic
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Figure 5. (a) Synthetic landscape with square, rectangular, circular, and elliptical low root strength patches. (b) The eigenvectors
of equation (12) resulting in the shapes with the lowest FS. (c) Predictions resulting from thresholding the eigenvectors in
Figure 5b. (d) Predictions resulting from the exhaustive rectangular search. (e) Predictions resulting from the exhaustive elliptical
search; X indicates that an unstable shape was not found in the corresponding low-strength patch.

reduction from the theoretical maximum of 2°'*" required by an exhaustive search. As the number of

grid cells is very small in these test cases, constrained exhaustive searches are possible. If test shapes are
assumed to be rectangular [e.g., Okimura, 1994] or elliptical [e.g., Xie et al., 2006], the number of shapes to test
scales with the square of the number of grid cells, similarly to our search algorithm. We can thus compare our
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Figure 6. (a) Synthetic landscape with randomly generated irregular low root strength patches. (b) The eigenvectors of
equation (12) resulting in the shapes with the lowest FS. (c) Predictions resulting from thresholding the eigenvectors in
Figure 6b. (d) Predictions resulting from the exhaustive rectangular search. (e) Predictions resulting from the exhaustive
elliptical search; X indicates that an unstable shape was not found in the corresponding low-strength patch.

search algorithm to an exhaustive rectangular search (with rectangle orientation constrained to be axis
parallel), and to an exhaustive elliptical search (with ellipse orientation constrained to the eight principal grid
directions) by applying the same slope stability model to all candidate rectangular and elliptical shapes. The
least stable shapes found by these alternate search methods are shown in Figures 5e, 5d, 6e, and 6d.
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Table 1. Parameters and Results for the Synthetic Landscape Tests

Original Search Algorithm Rectangle Search Ellipse Search

Patch Type Size (m2) C; (kPa) Cp, (kPa) Size (mz) Difference (|%]) Size (mz) Difference (|%]) Size (mz) Difference (|%])
Square 25.00 3.97 0.14 25.00 0.00 35.00 40.00 Not found 100
Rectangle 45.00 497 0.17 39.00 1333 63.00 40.00 Not found 100
Circle 49.00 4.17 0.14 46.00 6.12 49.00 0.00 49 0.00
Ellipse 87.00 5.96 0.20 62.00 28.74 77.00 11.49 87 0.00
Irregular 1 76.00 4.67 0.16 39.00 48.68 48.00 36.84 Not found 100
Irregular 2 53.00 2.78 0.09 40.00 24.53 30.00 43.40 19 64.15
Irregular 3 73.00 536 0.18 55.00 24.66 42.00 4247 Not found 100
Irregular 4 51.00 2.78 0.09 38.00 2549 32.00 37.25 19 62.75
Average (regular) 51.50 477 0.16 43.00 12.05 56.00 22.87 68.00 50.00
Average (irregular) 63.25 3.90 0.13 43.00 30.84 38.00 39.99 19.00 81.72
Average (all) 57.38 433 0.15 43.00 21.44 47.00 3143 43.50 65.86

In all cases our procedure recovers landslides within the reduced-strength patches (Figures 5¢c and 6c¢).

The predictions are always contained within the patches and have similar shapes. This is because the
eigenvectors resulting from equation (12), shown in Figures 5b and 6b, have very localized peaks over these
patches, and thus provide very good constraints to the predicted unstable areas. The exhaustive rectangular
search also predicts landslides in every case (Figures 5d and 6d), while the exhaustive eight-direction
ellipse search predicts a landslide in only half the cases (Figures 5e and 6e). The difference in size between our
search algorithm predictions and the reduced-strength patches ranges from 0% (for the square) to almost
50% (for the first irregular shape), with an average difference of ~20% (Table 1). In comparison, the difference
in the exhaustive rectangular and elliptical search is ~30% and 65%, respectively (Table 1). These results
illustrate that our procedure is not only effective in finding unstable areas but also quite flexible with respect
to their shapes. Furthermore, to the degree that it may be considered a measure of success, our procedure
reproduces the shapes of the low-strength patches more faithfully than the alternate search methods
tested here.

4.2. Application to Field Measurements of a Known Landslide

In this section we apply the shallow landslide prediction procedure to a watershed in southwestern Oregon,
USA. To investigate the mechanisms responsible for pore water pressure development and shallow
subsurface runoff generation, an experimental monitoring site, known as CB-1, was set up in a small north
facing drainage basin about 15 km north of Coos Bay, Oregon [Montgomery et al., 19971. Unlike many
neighboring locations, CB-1 had not experienced landsliding after being clear cut in 1987. The experimental
site was equipped with rain gages, piezometers, sprinklers, wells, tensiometers, weirs, lysimeters, and a
weather station [Ebel et al,, 2007]. The CB-1 catchment area is 860 m?, and the average slope is 43°. Measured
soil depths throughout the CB-1 catchment range from a few centimeters on the divergent side slopes to a
little less than 2 m in the central portion of the hollow [Schmidt, 1999].

The largest recorded 24 h rainfall event in the Oregon Coast Range occurred in November 1996. It triggered
widespread landsliding in many areas, causing extensive damage and several deaths [Robison et al., 1999;
Beaulieu and Olmstead, 1999]. Over the period of 16-18 November, the CB-1 rain gages measured 225 mm
of rain with a maximum daily intensity of 145 mm/d and a 48 h average intensity of 85 mm/d [Montgomery
et al., 2009]. As recorded by the CB-1 instrumentation, a landslide occurred at the site approximately 1 h

after the peak rainfall. The colluvium from the axis of the CB-1 hollow mobilized as a debris flow. The debris
flow left a 156 m? scar that was on average 5m wide and 26 m long, with depths ranging from 0.3 to 1 m.
A detailed forensic investigation led to the conclusion that the initial landslide only comprised the upper
part of the scar, with an area of approximately 58 m? and that the remainder of the colluvium was likely

removed by surface erosion and debris flows later in the event [Montgomery et al., 2009]. In the upper part
of the scar, the colluvial soil was excavated to the bedrock. Very few roots were found on the base of the
scar, and those exposed in the head scarp and lateral margins were snapped, suggesting full engagement
of their tensile strength during initial failure [Montgomery et al., 2009]. The CB-1 measurements possibly
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represent one of the most complete data sets available for any catchment that underwent slope failure
[Ebel et al., 2007].

The data used for this application consist of 1 m resolution grids of elevation, soil depth, and pore pressure
values used in the reanalysis of the failure performed by Montgomery et al. [2009], without performing any
reinterpolation or adjustments (Figure 7c). The fundamental difference between the Montgomery et al. [2009]
reanalysis and the analysis presented here is that we do not prescribe the locations of the landslide
boundaries, instead allowing the search algorithm to find the least stable configuration. Triaxial tests on CB-1
colluvium samples performed by Montgomery et al. [2009] indicate that the soil friction angle ranges from
39.5°to 41° and that soil cohesion ranges from 0 to 1.8 kPa, consistent with values previously reported for the
Oregon Coast Range [e.g., Yee and Harr, 1977; Schroeder and Alto, 1983]. Based on these measurements we
set the soil friction angle to 40° and assume that the soil is cohesionless with all its effective cohesion
provided by roots [Schmidt et al,, 2001]. We set the soil density p, to 1600 kg/m?, and water density p,, to
1000 kg/m?> [Montgomery et al., 2009]. Following Schmidt et al. [2001], Montgomery et al. [2009] measured the
spatial distribution of root type, root diameter, root/area ratio, and root depth along the perimeter of the
scarp of the CB-1 landslide. They provide data on root cohesion as a function of depth [Montgomery et al.,
2009, Figure 8c], and report a depth-averaged, spatially weighted apparent cohesion value of 4600 Pa around
the CB-1 scar. Although numerous studies model basal and lateral root cohesion as invariant with depth
[e.g., Montgomery et al., 2000; Schmidt et al., 2001; Casadei et al., 2003a, 2003b; Montgomery et al., 2009], these
data suggest that the relationship between root cohesion and depth at this site is better represented as an
exponential function [e.g., Dunne, 1991; Benda and Dunne, 1997; Roering, 2008] of the form

Cp = Croe 7, (14)

where C,, (Pa) is the root cohesion at the base of a soil column of thickness z (m), C,o (Pa) is a coefficient
representing the maximum root cohesion value at the surface, and j (m™") is a coefficient that controls the
rate at which C, approaches zero with increasing depth z. Root cohesion can be averaged over the thickness
of the soil column z (in the vertical coordinate z.) to obtain the average lateral root cohesion C; per unit

perimeter area (Pa):
z

) C )
C = E!C,o‘zddzc = j—;on(1 —e 7). (15)

By fitting equations (14) and (15) to the Montgomery et al. [2009] data, we obtain values of C,o =22 kPa and
j=5m~". While the exponential representation at this site leads to an overestimation of root strength in the
top 10 to 20 cm of the soil column, it is a better fit to the data than a constant average value through the
soil profile [Montgomery et al., 2009, Figure 8c]. Although in nature root strength will vary according to
vegetation type and spacing, we assume the parameters C,o and j to be spatially uniform but note that root
strength varies spatially in this application because soil depth varies spatially (C; varies inversely and C,
declines exponentially with soil depth).

We apply the search algorithm as in the previous section, assembling the force matrix F and Laplacian-like
resistance matrix R (equation (7) and equations (8) and (9), respectively), and examining the eigenvectors
associated with the 164 smallest eigenvalues of equation (12). Because the grid is small (56 m by 30 m),

we can also apply the exhaustive rectangular and elliptical searches defined in the previous section. The
continuous solution that minimizes equation (11), the first eigenvector of the linear system defined by
equation (12), is shown in Figure 7a. Eigenvectors 2-5 (not shown) also define areas of instability. Thresholding
these eigenvectors (see section 3.3) results in a set of 475 overlapping shapes, represented in Figure 7b. The
final prediction, consisting of the shape having the lowest FS (i.e., FSp,i, method), is shown in Figure 7c. The
predicted landslide has a similar size and is in a similar location to the observed landslide. They differ only in
that our prediction extends approximately 2 m further upslope, resulting in an area 8 m? larger than the
observed failure (a 13% size increase). In contrast, the predictions resulting from the FS,,, method and from
the rectangular and elliptical searches, also shown in Figure 7b, result in larger landslides (+18%, +132%, and
+140%, respectively). We also compare the aspect ratio (the ratio of landslide length to width) as a proxy for
shape, the median topographic index (defined as In(A/(b X sin#))), where A is drainage area (m?), bis the cell size
(m), and @ is the slope angle [Dietrich et al,, 2001]) as a proxy for location, and the FS of the predicted and
observed landslides, all listed in Table 2. The predicted aspect ratio is 1% lower than observed, indicating that
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Figure 7. Application of the model to the CB-1 experimental catchment. (a) The first eigenvector x*, which corresponds to the
smallest eigenvalue of the linear system defined by equation (12). (b) The outlines of the search algorithm predictions with
the minimum FS (red), the maximum FS below unity (gray); those from an exhaustive rectangular search (dark brown), and
from an exhaustive elliptical search (light brown); the observed CB-1 landslide (black). The landslides are overlaid on a map
showing 1 m elevation contours (thin black lines) and the fraction of the 475 predicted landslide shapes that include each
grid cell. (c) The outlines of the search algorithm prediction with the minimum FS (red) and of the observed CB-1 landslide
(black). The landslides are overlaid on a map showing 1 m elevation contours, 0.2 m/m saturation ratio (h/z) contours, and the
soil depth grid. Data from Montgomery et al. [2009].

the predicted landslide is slightly rounder; the topographic index is 6% lower, indicating that the predicted
landslide is slightly shifted up the hollow axis; and the FS is 1% lower, indicating that the predicted landslide is
slightly more unstable (Table 2). We apply the same measures to the predictions resulting from the FS;,.x
methods, as well as those resulting from the application of the exhaustive rectangular and elliptical search
methods (Figure 7b). The FS,,;, method vastly outperforms the other methods in this application, based on the
relative change between the observations and the predictions (Table 2).

As errors in field measurements used to determine the input parameters in this application may impact
the results, we test the sensitivity of our procedure to modest changes in the input parameters by varying
soil depth, pore water pressure, root strength, and soil friction angle by +5%. While uncertainty in these
parameters is difficult to assess from published data, the values reported suggest that at this site
uncertainty may in fact be relatively small. Friction angle measurements for CB-1 range from 39.5° to 41°
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Figure 8. Distributions of (a) size, (b) aspect ratio, and (c) topographic index of all the 475 unstable grid cell combinations returned by the search algorithm.

Probability density

A
—All predicted Size
05" |—Observed
ossl —FSmin
’ ---FSmax
|_|~--Rectangle search <
A Lo Ellipse search /
35 +- 5% parameter space
0.3
0.25
02
015
0.1
005
0 L Il L
175 2 225 25 275
a ) log, (size) [m?
==All predicted Aspect ratio
—Observed p
—FSmin
2| -=-FSmax
---Rectangle search
‘‘‘‘‘‘ Ellipse search
+- 5% parameter space
Z 15—
£
)
Q2
g
g
05
. | | \~‘A¥ )
b) 0 05 1.5 25
length/width
| [==All predicted Topographic index
e —Observed p g p
—FSmin
06}-| ==~FSmax
---Rectangle search
“““““ Ellipse search
05| +- 5% parameter space
. N\
)
o
2
go3r
02
011
o L 1 1 | L L -
0.75 1 125 15 2 225
C) log, oAb sin(e)) (m]

Vertical lines indicate the attributes (size, aspect ratio, and topographic index) of the observed landslide, of the least stable shape (FS;nin) and of that with FS closest

to 1 (FSmax), as well as the attributes resulting from the alternate search methods (rectangle search, ellipse search). Gray-shaded area shows the range of the

attributes of the least stable (FSyin) predictions when individual parameters are varied by +5%. Aspect ratio and topographic index are defined as length/width and

In(A/(b % sind)), respectively.
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Table 2. Size, Aspect Ratio, Topographic Index, and FS of the CB-1 Observed and Predicted Landslides®
CB-1 Landslide FSmin Search FSmax Search Rectangle Search Ellipse Search

Size (mz) 62 70 (+13%) 73 (+18%) 144 (+132%) 149 (+140%)
Aspect ratio [] 1.20 1.19 (—1%) 1.95 (+62%) 1.80 (+50%) 1 (—17%)
Topographic index (m) 38.0 35.7 (—6%) 71.2 (+87%) 49 (+29%) 40.2 (+6%)
FS O 0.88 0.89 (+1%) 0.99 (+12%) 0.85 (—3%) 0.9 (+2%)

¥The FS of the observed landslide is computed using MD-STAB. Values in parentheses indicate the relative change
between the predicted shapes and the observed.

[Montgomery et al., 2009]. Fitting equations (14) and (15) to data reported by Montgomery et al. [2009]
and Schmidt et al. [2001] resulted in standard error for parameters C,o and j of 0.5 kPa and 0.7 m™",
respectively [Milledge et al., 2015]. Accounting for error in pore pressure and soil depth fields is more
difficult since they vary spatially and are the result of interpolation. While +5% is a small fluctuation at
individual grid cells, it is a large variation when applied uniformly over the entire site. The effect of these
parameter variations on the size, aspect, ratio, and topographic index of the predicted least stable
landslide is shown by the shaded areas in Figure 8. While predicted aspect ratio and topographic index
remain stable under modest variation in input parameters, predicted size can vary from 30% smaller to
87% larger than the observed landslide, with the largest variations resulting from changes in the pore
pressures. A £10% variation in the same parameters results in minimal fluctuations in predicted aspect
ratio and topographic index, but the predicted size range becomes larger (from —53% to +94% of the
observed size). Nevertheless, the resulting range in predicted least stable shape size is only a small fraction
of the size distribution of all the 475 unstable areas found, which range from 7 m? to 400 m? (Figure 8). We
compare the distributions of size, aspect ratio, and topographic index of all the 475 unstable combinations
with the predictions resulting from the FS,in, FSmax and the rectangular and elliptical search methods. We find
that FS,,,j, predictions are most similar to the observations in every case (Figure 8).

Together these results illustrate that our procedure is effective in finding unstable areas on a natural
landscape with continuously varying parameters, that it can faithfully recover the size, shape, and location of
an observed landslide and that the attributes of the least stable predicted shape are relatively stable under
modest changes in the relevant parameters.

5. Discussion
5.1. Assumptions

One of the strengths of our approach is that it allows an efficient search (see Appendix A) of unstable patches
of the landscape without assuming predefined shapes or that instability must originate from a single
unstable cell [e.g., Okimura, 1994; Xie et al., 2006; Qiu et al., 2007; Lehmann and Or, 2012; Ruette et al., 2013].
However, to make this possible we assume that the forces can be represented as an undirected planar
graph, relax the solution of the FS-based objective function from binary (equation (10)) to continuous
(equation (11)), and perform an instantaneous global optimization. Each of these terms is explained below.

A planar graph implies that the search is not performed in the vertical domain, which corresponds to our
assumption of the base of the failure surface at the soil-bedrock interface. An undirected graph does not
allow the encoding of the force vectors but rather only their magnitude (see section 3.2). As a result the ratio
of resistance over force C(x) in equation (10) may be underestimated (i.e., the values in the matrix F are
upper bounds), and thus the eigenvectors of equation (12) may show peaks over areas that are in fact stable.
While this could lead to unnecessarily examining stable shapes, it does not affect the FS of the predictions,
which is correctly calculated using vector sums (see section 3.3). However, because the eigenvectors of
equation (12) are also computed using the matrix F, their shape could be affected and some potentially
unstable clusters of cells may never be examined. Testing how many clusters are missed is prohibitive since it
would require an exhaustive search.

Solving the force balance instantaneously and globally is consistent with limit equilibrium approaches that
assume that the potential failure mass behaves coherently as a rigid entity [Duncan, 1996], that the tensile
strength of individual root fibers is fully mobilized, and that all roots fail simultaneously.
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Failure may also occur in a progressive fashion, both at the scale of individual roots [Schwarz et al., 2010] and
at the hillslope scale [Petley et al., 2005]. Alternative stability models that account for internal deformation
explicitly [e.g., Griffiths and Lane, 1999; Itasca, F. L. A. C., 2000; Borja and White, 2010] or implicitly [e.g.,
Lehmann and Or, 2012; Ruette et al., 2013] can capture some of these effects. However, since the mechanics of
progressive failure remain poorly understood, we opt to use a limit-equilibrium framework in which the
stability problem is well defined, resulting in a suite of robust approximations [e.g., Fellenius, 1927; Bishop,
1955; Spencer, 1967; Hovland, 19771. In its current form, the algorithm could be used to represent progressive
failure with an iterative approach in which the unstable shapes are removed or redistributed, in a manner
similar to Lehmann and Or [2012].

While the search algorithm can use any three-dimensional slope stability model within the limit-equilibrium
framework, specific models make different assumptions. The model MD-STAB [Milledge et al., 2015] used here
assumes that the central block is rigid with failure by shear on a surface parallel to the ground surface at a
prescribed depth. Additionally, the model assumes (1) that failure occurs in drained conditions under steady
slope-parallel groundwater flow without suction in the unsaturated zone; (2) that the soil is normally
consolidated with isotropic frictional properties and its density is independent of moisture content; (3) that
the cross-slope boundaries are vertical, and that earth pressure on these boundaries is in an at-rest condition;
(4) that earth pressure on the upslope and downslope margins is characterized by active and passive
conditions, respectively; and (5) that intercolumn shear forces do not exceed the shear strength within the
unstable block.

5.2. Multiple Overlapping Predictions

Applying this search algorithm even to very small landscapes introduces a new problem: the search identifies
multiple overlapping clusters of unstable cells (e.g., Figure 7), but any cell can only fail once. This problem
is not specific to our search algorithm but to any search that calculates the stability of many candidate
clusters (e.g., an exhaustive search). In our search algorithm overlapping predictions may arise when each
edge of the contour tree is traversed (Figure 4c), when contour tree edges merge (i.e., within the same
eigenvector), and when combining results from many eigenvectors or from overlapping spatial windows.
Here we propose to retain the least stable shape (FSynin), Which performed best in our tests and is most
consistent with the optimization; and also test an alternate end-member method that retains the unstable
shape with FS closest to unity (the FS,,x method). Selecting which model output is most likely to occur in
reality is not a well-studied problem, particularly given the levels of approximation that go into all models. In
our tests we found that the FS,,,;, method performed consistently well, but that while most of the 475
unstable clusters found in the CB-1 test overlap with the observed landslide (Figure 7b), the choice of which
overlapping prediction to select can have an impact on predicted landslide location and size. For example,
the FS,,.x method predicted a larger and more elongated landslide, located further downslope (gray line in
Figure 7b). While retaining all the possible unstable configurations in a catchment-scale application is
impractical, retaining the size distribution of all landslides found at each location would not require
significant additional computational costs and would provide probabilistic constraints on the possible
outcomes. However, sampling from this distribution is a nontrivial problem. Figure 8 shows that the observed
landslide did not correspond to the modes of the size, location, and shape distributions, suggesting the
need for a weighted sampling based on prior knowledge. This weighting could be based on the FS, as
suggested by Stark and Guzzetti [2009], whereby the least stable overlapping shape would be assigned a
higher probability of being selected than more stable shapes. Alternatively, as more accurate and diverse
landslide data sets become available, data-driven methods could be used to make an informed choice on
which of the overlapping predictions is more likely under a specific set of conditions (e.g., using observed
landslide size and shape data for a particular region to constrain which landslide to pick from the

modeled distribution).

The presence of many overlapping predictions does indicate that many outcomes are possible for any
scenario and suggests that subtle variations in local conditions not captured by the model could determine
which outcome is ultimately realized. In most natural landscapes the details of the local conditions are not
known, and may be unknowable at a scale relevant to shallow landslides. This implies that data quality
may place an unsurpassable constraint on our ability to forecast the exact size of a landslide at a specific
location and suggests that instead calibration and testing of the model should be based on the frequency
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distribution of sizes and locations of the predicted and observed landslides rather than on prediction of
exact location of individual slides. Nevertheless, Figure 8 suggests that estimating field parameters (e.g.,
soil depth, root strength, and pore pressure) to a few percent of their actual value can lead to satisfactory
approximate results, highlighting the importance of characterizing these parameters in the field as
accurately as possible.

5.3. Performance

In the synthetic tests we planted landslides on a landscape, applied a search algorithm to find them, and
recovered their approximate size and location, irrespective of the shape of the low-strength patch. However,
in many cases all the search methods found different landslides within the same low-strength patch. In
absence of any other information, each of these predictions is equally likely. While the set of possible
landslides is tightly constrained to a+1 grid cell from the boundary of the low-strength patches, making
these tests nontrivial, multiple configurations of grid cells can fail implying that there is not a single true
answer. This prevents a strict quantitative comparison between the search methods and the planted
landslides. Nevertheless, the tests demonstrate that our search algorithm always found the landslides and
that the predictions had similar size and shape to the low-strength patches.

Application of the search algorithm to a real landslide at CB-1 is a somewhat stricter test because (1) thereis a
ground truth (i.e., we know which of the possible landslides actually failed) and (2) all the landslide-relevant
parameters vary continuously across the landscape rather than changing abruptly as in the synthetic
landscape. The search algorithm applied to a real landscape at CB-1 predicted failure at the same location and
of similar size to the landslide that occurred during the November 1996 storm (Figure 7c), without any
parameter tuning (all parameters are defined by field measurements). The least stable predicted landslide
precisely straddles the area of high pore pressure and thicker soils, while the observed head scarp intersects
the pore pressure peak (Figure 7c). As a result, it has an area that is 9 m? larger than the observed failure,
extending approximately 2 m further upslope. This is likely due to the small-scale parameter variations that
exist in natural landscapes which cannot be captured even in a site as well studied as CB-1. In particular,
we note that the spatial arrangement of the piezometer nests used to measure the pore pressure values
(maps in Montgomery et al. [2009]) will inevitably result in the highest pressure values being extended
upslope when a continuous field is interpolated, because no other piezometers were in the immediate
vicinity. Moreover, the use of a raster framework will inevitably result in slight differences between
predictions and observations that could become more significant with coarser resolutions.

Any failure at this site is likely to be centered around the maximal values of pore pressure and soil depth, so
that location alone is not a definitive test. However, considering the wide distributions of the possible
unstable configurations, their size, shape, and location (Figure 8), the similarity of the least stable predicted
landslide to the observed is very strong. In contrast, the predictions resulting from the alternative exhaustive
search methods deviate considerably from the observations (Table 2 and Figure 8).

The rectangular search finds a landslide with a FS that is lower than both that for our predicted landslide
and that for the observed landslide. This is likely due to the fact that, in situations where the grid is oriented
slope parallel, rectangles will minimize perimeter length for a given area. Furthermore, the calculated FS
of the observed landslide is also affected by grid discretization. The reason that our search identifies a
rounder landslide (despite the higher perimeter to area ratio for this shape) is very likely related to the balance
between global and local components in the optimization, resulting in a smooth eigenvector surface (Figure 7a)
guiding the search algorithm. This points to the fact that while the mathematical properties of Laplacian
matrices are extremely useful (see overview in Mohar [1991]), the link between those matrices and real-world
clustering problems such as ours is somewhat heuristic.

From a methodological point of view this application (searching for potential landslides) is particularly well
suited to spectral clustering. The lack of a rigorous definition of what is a good measure of similarity in

the input data results in a number of spectral clustering algorithm variants, and no agreement on which one
is best (see review in Von Luxburg [2007]). In contrast, we were able to take a physically based model and use
a well-defined Factor of Safety formulation to define the objective function for the spectral clustering.
While we ultimately use similar linear-algebraic techniques as in other spectral clustering methods [e.g., Shi
and Malik, 2000], we suggest that their justification is in this case much stronger.
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6. Conclusion

To calculate the size and location of shallow landslides, we propose conceiving of landscapes as clusters of
small cells with properties (e.g., soil depth, root strength, and pore pressure) that influence the forces
driving their failure and the forces resisting failure that they exert on one another. The potential hazard
and geomorphic significance of shallow landslides depend on their location and size. Commonly applied
one-dimensional stability models do not include lateral effects and cannot predict landslide size.
Multidimensional models must be applied to specific geometries that are typically not known a priori, and
testing all possible geometries is computationally prohibitive. We present an efficient deterministic search
algorithm based on spectral graph theory and couple it with a multidimensional stability model to predict
discrete landslides in catchment-scale applications using gridded spatial data. The algorithm is general,
assuming only that instability results when driving forces acting on a cluster of cells exceed the resisting
forces on its margins and that clusters behave as rigid blocks with a failure plane at the soil-bedrock interface.
When applied to a synthetic landscape with predefined regularly and irregularly shaped reduced-strength
unstable patches, the algorithm recovers landslides with shape and size similar to these patches. When
applied to an intensely investigated field site near Coos Bay, Oregon (CB-1), the algorithm predicts the size
and location of an observed shallow landslide using field-measured physical parameters. While predictions of
location and shape are robust to modest variations in input parameters, size is more sensitive, particularly
to pore pressure variations. In these applications, the search algorithm identifies patches of potential
instability within large areas of stable landscape. Within these patches will be many different combinations of
cells with Factor of Safety less than one, suggesting that subtle variations in local conditions may determine
the ultimate form and exact location at a specific site. Nonetheless, the preliminary tests presented here
suggest that the search algorithm enables the predictions of shallow landslide locations, sizes, and shapes
across landscapes.

Our results suggest that in natural landscapes prone to landsliding, the procedure identifies large areas of
stable landscape and patches of potential instability. Within these patches, many different combinations of
cells are found with FS less than unity, implying that subtle variations in local conditions determine the form
and location of failure at a specific site. This implies that, in the absence of high-resolution strength and
resistance data, calibration and testing of the model should be based on the frequency distribution of sizes
and locations of the predicted and observed landslides rather than on prediction of exact location of
individual slides. This new search algorithm enables the prediction of shallow landslide size and locations
across landscapes. However, application of our method to a larger landscape will involve making choices on
how to parameterize landslide-relevant spatial properties at sufficiently fine resolution. This is the subject of
subsequent research presented in D. Bellugi et al. (submitted).

Appendix A: Computational Complexity and Implementation

A naive approach that tests every combination of grid cells requires a number of operations that grows
exponentially with the number of grid cells. In contrast, here we show that the number of operations required
by our procedure grows quadratically with the number of grid cells and linearly with the number of
eigenvectors examined. This appendix also presents implementation details, including the parallelization of
the search algorithm.

Iterative algorithms for numerical computation of eigenvectors and eigenvalues, typically based on the
Lanczos algorithm [Lanczos, 1950], proceed by multiplying the target matrix by a series of vectors and are
thus dominated by matrix-vector multiplication [Demmel et al., 2007]. Due to the sparsity of our Laplacian-like
resistance matrices which have at most five nonzero entries in each row (Figure 3c¢), the cost of one sparse
matrix-vector multiplication scales linearly with the number of grid cells. The number of Lanczos iterations
is upper bounded by the matrix dimension n, so in the worst case the number of operations required to
compute k eigenvectors is kn”. In practice the Lanczos method often converges to numerical precision after
many fewer than n iterations, and thus, running time is significantly lower than the kn? bound.

The cost of finding connected components in a graph is linear in the number of nodes and edges [Tarjan,
1972], but the process is repeated for n thresholds of k eigenvectors, resulting in an upper bound of kn?
operations. Similarly, comparing at each threshold the current and previous connected components to
determine which regions overlap can be accomplished via a loop which examines each spatial cell once, also
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resulting in a kn? upper bound on the number of operations. The a posteriori pruning of regions is also
bounded by the number of regions, which is always less than n.

The use of more sophisticated algorithms and data structures that exploit the very small and controlled
change in the regions after each thresholding step would further reduce the maximum number of operations
to knlog(n). Nevertheless, the current kn? upper bound is a huge reduction from the intractable brute-force
method. In particular, kn® operations are not prohibitive when the problem size is small (i.e.,, small n). Thus,
the input layers are partitioned into N windows, each with a small n. In order to avoid edge effects, these
windows must have significant overlap in both the x and y directions. In practice, nN is approximately 25%
greater than the number of cells of the landscape grid. A typical window size should be significantly larger
than the size of shallow landslides in the region of interest, in the range of 40,000 m? and upward (100 by
100 pixels for a 2m grid resolution).

Noise on the surface of the eigenvectors of equation (12) x* or x*' (see section 3.3) could result in a very large
number of insignificant regions, which impose an unnecessary computational cost. To further reduce the
computational cost of the procedure, we include a maximum number of p edges in the contour trees T, and
T.' (see section 3.3), corresponding to the p tallest peaks in x* and x*'. Examining both x and x*’ ensures
that all the regions associated with the p most significant peaks are tested as potential landslides. The
choice of p should reflect a compromise between redundancy and computational efficiency. For a typical
window size of 100 by 100 pixels, p = 50 guarantees that the tallest 5% of all possible peaks will be examined in
the worst case of the eigenvector surface consisting only of noise. In this study the window size is
significantly smaller (51 by 51 and 30 by 56) so our choice p =50 results in approximately 35% to 50% most
significant of all possible peaks. The maximum number of regions examined is thus given by (nm — 1)pk,
the product of the maximum number of thresholds, the maximum number of contour tree edges, and the
maximum number of eigenvectors.

There are two trivial levels of parallelization that are compatible with the procedure: both the order in which
windows are examined within the landscape and the order in which eigenvectors are examined within each
window are irrelevant, making this an “embarrassingly parallel” problem [Foster, 1995]. The implementation

is also well suited to modern parallel computing architecture, which typically consists of many nodes each with
multiple processors and shared memory. The landscape can be partitioned across nodes that do not require
shared memory, while the processing of eigenvectors, although independent, uses the same information and
thus is most efficient on a shared memory platform.

The software is written in MATLAB R2014a (v. 8.3.0.532) and runs similarly under Linux, Windows, and Mac OS
operating platforms. Two versions have been developed and tested: a standard serial version and a parallel
implementation. The parallel version uses the MATLAB Parallel Computing toolbox and can take advantage
of up to 12 processor cores with a nearly linear speedup.
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