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ABSTRACT

The face-selective region of the right posterior superior temporal sulcus (pSTS) plays an

important role in analysing facial expressions. However, it is less clear how facial

expressions are represented in this region. In this study, we used the face composite effect

to explore whether the pSTS contains a holistic or feature-based representation of facial

expression. Aligned and misaligned composite images were created from the top and

bottom halves of faces posing different expressions. In Experiment 1, participants

performed a behavioural matching task in which they judged whether the top half of two

images was the same or different. The ability to discriminate the top half of the face was

affected by changes in the bottom half of the face when the images were aligned, but not

when they were misaligned. This shows a holistic behavioural response to expression. In

Experiment 2, we used fMR-adaptation to ask whether the pSTS has a corresponding holistic

neural representation of expression. Aligned or misaligned images were presented in blocks

that involved repeating the same image or in which the top or bottom half of the images

changed. Increased neural responses were found in the right pSTS regardless of whether the

change occurred in the top or bottom of the image, showing that changes in expression

were detected across all parts of the face. However, in contrast to the behavioural data, the

pattern did not differ between aligned and misaligned stimuli. This suggests that the pSTS

does not encode facial expressions holistically. In contrast to the pSTS, a holistic pattern of

response to facial expression was found in the right inferior frontal gyrus. Together, these

results suggest that pSTS reflects an early stage in the processing of facial expression in

which facial features are represented independently.



3

1. INTRODUCTION

Interpreting the facial expressions of others is important to effective social interaction

(Bruce & Young, 2012). Facial expressions result from characteristic patterns of movement

of the facial muscles that can easily be seen in static photographs (usually showing the apex

of the movement itself) or in videos (Johnston et al., 2013). However, little is known about

how expressions are encoded at the neural level. The most widely-used neural model of

face perception (Haxby et al., 2000) proposes that the superior temporal sulcus (STS) is a

key neural structure in the perceptual analysis of facial expressions, and this is borne out by

a number of studies that have implicated STS in neural responses to expression (Calder &

Young, 2005; Psalta, Young, Thompson & Andrews, 2014) and social perception from visual

cues (Allison, Puce & McCarthy, 2000).

Relatively few studies address the question of how STS encodes expression. Said et

al. (2010) were able to demonstrate that patterns of activation to different facial

expressions across voxels in posterior STS (pSTS) were correlated with the rated perceptual

similarities of the expressions themselves, suggesting that the functional organisation of

pSTS reflects this underlying perceptual structure. Similarly, Harris et al. (2012) found that

right pSTS responded to changes in facial expression regardless of whether or not these

changes crossed or remained within emotional category boundaries, which again suggests a

form of encoding that is largely driven by the perceptual input. Importantly, Harris et al.

(2014) showed that right pSTS is relatively insensitive to contrast reversal, which implies

that the critical perceptual input for pSTS involves feature shapes. Contrast reversal is

known to have a dramatic effect on face identity recognition, but it has relatively little effect

on the recognition of expression because information about feature shapes that is critical to
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interpreting facial expressions is conveyed through the position of edges that remain largely

invariant to contrast reversal (Bruce & Young, 1998).

Here, we take the study of the perceptual representation used by pSTS a step further

by asking whether it represents features such as the eyes and mouth independently from

each other, or as part of a perceptual whole (the face). The critical test of holistic processing

that we use for this purpose is the expression composite effect. Composite effects have

been demonstrated in many studies of facial identity perception (Young, Hellawell & Hay,

1987; Rossion, 2013), but their extension to understanding facial expression perception is

less well-known. The paradigm involves combining the top half of one facial expression with

the bottom half of another expression and determining whether this combination of

different parts results in the perception of a new whole expression (Prazak & Burgund,

2014, Calder & Jansen, 2005, Calder et al., 2000, Palermo et al., 2011). The critical test of

holistic perception involves contrasting performance between images in which the top and

bottom halves are aligned into a highly face-like overall configuration, or misaligned so that

they are less face-like. Contrasting aligned and misaligned versions of composite images

created from the top and bottom parts of different facial expressions makes it possible to

differentiate responses based on face features, which will be equivalent across aligned and

misaligned image variants, from holistic responses that will only be evident for aligned and

not for misaligned images.

In this study, we used the facial expression composite effect to investigate whether

neural responses to facial expression in right pSTS reflect feature changes or are dependent

on the face as a perceptual whole. To do this, we first established in a behavioural study

that the stimuli and presentation parameters we intended to use in fMRI elicited a robust
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expression composite effect. We then compared neural responses in right pSTS to

composite expressions in which the top (eye region) and bottom (mouth region) parts were

aligned into an overall face-like configuration with neural responses to misaligned stimuli

created by shifting one part horizontally with respect to the other (see Figure 1).

Misalignment still allows the separated parts of the face to be encoded as features, but it

interferes with the integration of expressive information from the eye and mouth region

into a perceptual whole (Calder et al., 2000).

Our fMRI experiment used a block design adaptation paradigm in which participants

viewed blocks comprising a series of facial expressions that were all the same (no change

condition) or that varied across the top half of each image (top change condition) or across

the bottom half of each image (bottom change condition). During these blocks, participants

were asked to fixate between the eyes (i.e. in the top half of each face) and further to

encourage fixation they had to detect the presentation of an occasional small red spot at

the fixation point. The no change condition, with identical stimuli throughout the block,

served as a baseline that will lead to maximal adaptation of neural responses, and the top

change or bottom change conditions measured any release from adaptation in neural

regions that can encode these changes. The stimuli were aligned into overall face-like

composites, or horizontally misaligned so that they were not face-like (see Figure 1),

allowing us to establish whether the pattern of neural responses across conditions involving

no change, top change, or bottom change was dependent on the presence of a face-like

(aligned) configuration.
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2. MATERIAL AND METHODS

2.1. Participants

Sixteen participants took part in experiment 1 (8 male, 8 female, mean age 27.6 ± 4.4).

Twenty-seven participants took part in experiment 2 (17 male, 10 female, mean age 24.7 ±

5.0). All participants had normal or corrected-to-normal vision, with no known history of

neurological disorder and no abnormalities that were immediately evident from structural

MRI in experiment 2. Written consent was obtained from all participants and the studies

were approved by the York Neuroimaging Centre Research Ethics Committee and the

Department of Psychology Ethics Committee at the University of York. One participant was

removed from the fMRI analysis due to excessive head movement.

2.2. Experiment 1

2.2.1. Stimuli and Design

The initial behavioural study used to validate key procedural parameters, experiment 1,

involved six conditions. Stimuli consisted of aligned composite and misaligned non-

composite images of greyscale faces which either had the same top and bottom half (no

change), the same bottom half with the top half varying in expression (top change), or the

same top half with the bottom half varying in expression (bottom change). The top and

bottom half images were separated by a gap of 5 pixels, in line with the procedural

strictures of Rossion (2013). Examples can be seen in Figure 1. Top and bottom half face

images were derived from Ekman faces taken from the FEEST set (Young et al. 2002). Two

individuals posing four facial expressions (fear, anger, happiness and disgust) were used to

create the stimuli. These individuals were selected on the basis of a high recognition rate
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for all expressions and consistency of the action units used to pose each expression (Young

et al. 2002).

Aligned or misaligned images were presented in sequential pairs in which both

members of the pair had aligned constituent parts or both had misaligned parts. In

misaligned pairs the offset was to the left in half the trials, or to the right in the other half.

Images were presented using an LCD monitor, approximately 57 cm from the participant.

The images were presented for 750 ms each, with a 750 ms inter-stimulus interval.

Participants were instructed to only look at the top half of the face. There was a fixation

cross located between the eyes on each ISI and a chin rest was used to help participants

maintain fixation on the top half of the images. Participants had to judge whether the top

half of the image was the same (identical) or different (in any way) across the pairs of

images. Participants could respond as soon as the second image appeared, and were given a

maximum of 3 seconds to respond.

The two images in each sequential pair were always made from parts of the same

individual's face, so that face identity was not a confound in the experiment, but the top or

bottom parts could differ in expression. Images in each pair either had the same top and

bottom halves (no change condition), the same top half but a different bottom half (bottom

change condition) or the same bottom half and a different top half (top change condition).

The combination of aligned and misaligned variants of these 3 conditions led to 6 conditions

in total. Each of these 6 conditions involved 24 trials. Images for the behavioural experiment

were presented using PsychoPy2 (Peirce, 2007).

2.3. Experiment 2

2.3.1. Stimuli and Design
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Experiment 2 used a block design fMR-adaptation paradigm. In order to identify face-

selective regions for each individual, a localiser scan was conducted prior to the

experimental scan. The localiser had 3 stimulus conditions: faces, places, and Fourier phase-

scrambled faces. Each localiser scan block lasted 9 seconds and contained 9 images from

one of the localiser conditions, with each image being presented for 900 milliseconds and a

100 ms inter-stimulus interval (ISI). Each condition was repeated 4 times. Images used in the

localiser scan were presented using Neurobehavioural Systems Presentation 16.3.

For the main fMR-adaptation scan, experiment 2 had 6 stimulus conditions (Figure 1)

presented in a block design. The same stimuli were used as in experiment 1 to create blocks

in which the same image was repeated throughout the block (no change condition), the top

half of each image was unchanged throughout the block but the bottom half differed

(bottom change condition), or the top half changed while the bottom half stayed the same

(top change condition). The use of aligned and misaligned versions of these 3 types of block

led to 6 conditions overall. There were equal numbers of aligned and misaligned blocks, and

the positioning of the image parts in the misaligned blocks was counterbalanced so that half

were misaligned to the left, and half to the right. There were 48 blocks in total (6

conditions, repeated 8 times). For the 8 repetitions of each condition, there were 4 blocks

for each of the identities used. Within these 4 blocks, each expression was used once as the

top half. This meant that within each condition, each identity and expression combination

was presented once.
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All images were back-projected onto a screen inside the bore of the scanner,

approximately 57cm from the participants� eyes. Images were presented in 6 second blocks;

this overall block duration is equivalent to those used in our other recent studies of neural

responses to facial expression (Mattavelli et al., 2014; Psalta et al., 2014). Each block

contained 4 images, with each image being presented for 750ms with a 750 ms grey screen

ISI. There was a 9 second grey screen between each of the blocks. Each stimulus condition

was repeated 8 times to give a total of 48 blocks. Hence each scan lasted 12 minutes in

total. Images within a block were all derived from the same identity, and the use of each of

the 2 identities (models) was randomised across the experiment. Participants monitored all

images for the presence of a small red dot (6 pixels in width) that was superimposed at the

fixation point on 1 image in each block. Participants were required to respond, with a button

press, as soon as they saw the image containing the target red dot. Images for the

experimental scan were presented using PsychoPy2 (Peirce, 2007).

2.3.2. Imaging Parameters

All scans were conducted using a GE Signa HDx 3T MRI system (General Electric, Waukesha,

WI, USA) with an eight channel phased array head coil (MRI Devices Corp., Gainesville, FL).

Data were acquired using a gradient echo planar imaging (EPI) sequence with acquisition

parameters: 38 contiguous axial slices, repetition time (TR) 3 seconds, echo time (TE) 32.5

milliseconds, flip angle 90°. The field of view (FOV) was 28.8 x 28.8 cm with an acquisition

matrix of 128 x 128 and slice-thickness of 3mm, giving a voxel size of 2.25 x 2.25 x 3mm. A

T1-weighted Fluid-Attenuated Inversion Recovery (T1-FLAIR) volume was acquired with the

same slice orientation and slice thickness with an acquisition matrix of 512x512, giving an in-

plane resolution of 0.5625x0.5625mm. To improve registration, the EPI image was initially
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co-registered with the high resolution initial structural image (T1-weighted FLAIR)

containing the same number of slices as the EPI scan before being registered to the high

resolution main structural scan (T1-weighted, 1.13 x 1.13 x 1 mm) for each participant. This

was then co-registered to the standard MNI 152 brain.

2.3.3. fMRI Analysis

Analysis was conducted using FEAT v 5.98 (http://www.fmrib.ox.ac.uk/fsl). The initial 9

seconds of each scan were removed from the analysis to allow T1-saturation effects to

subside. Motion correction (McFLIRT; FSL) was applied followed by spatial smoothing

(Gaussian, Full Width at Half Maximum 6 mm) and temporal high-pass filtering with a cut off

of 0.01 Hz. Face-selective regions were defined in each individual from the functional

localiser by using the average of the face > place and face > scrambled face contrasts. The

combined statistical maps were thresholded at p < .01 (uncorrected). For each individual,

the OFA, FFA and pSTS were identified by contiguous clusters of voxels activated above

threshold from the above contrast in posterior occipital cortex, inferior fusiform gyrus and

superior temporal lobe.

For each individual, the time series of the filtered MR data for each voxel from the

experimental scan within each functionally localised ROI was converted to percentage signal

change. These were then averaged to produce the time series for each participant within

each ROI for each of the experimental conditions. The individual time series data were

normalised by subtracting each time point by the zero point at the beginning of the block.

These data were then averaged across participants to give the overall mean time series for

each condition. The peak response to each condition was taken as the average of TR 2 and

TR 3 (corresponding to 6 and 9 seconds after stimulus onset). These peak responses were
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then entered into repeated measures ANOVAs to determine significant differences between

conditions for each ROI.

Our primary focus of interest was in neural responses from pSTS based on a

functional localiser applied at the individual participant level. However, to determine

whether other regions might demonstrate a holistic response to expressions, we also

performed a whole brain analysis in which the behavioural data from Experiment 1 were

used as regressors. A box car function was defined modelling all blocks in the scan run, with

each block weighted by the mean RT of that condition. This was convolved with a single

gamma hemodynamic response function and then regressed against the BOLD response at

each voxel. The resulting statistical maps for each individual were combined using a higher-

level mixed effects analysis (FLAME, FSL). The combined statistical maps were thresholded

at z >2.8, p < .05 (cluster corrected). This process was then repeated using the % error data

as a regressor.
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3. RESULTS

3.1. Experiment 1

The aim of experiment 1 was to demonstrate the facial expression composite effect with the

stimuli and presentation times to be used in the fMR-adaptation study. There were 6

conditions involving aligned or misaligned pairs with no change between the images, a

bottom half change, or a top half change. Participants monitored the top half of pairs of

face images to detect whether the facial expression in the top half remained the same, or

was different across the two faces.

First we measured the accuracy of responses when judging whether the top half of

each image was the same or different. As participants were asked to make their judgements

based only the top half of each image, the correct responses in each condition were 'same'

for no change pairs, 'same' for the bottom change pairs, and 'different' for the top change

pairs. Percent correct responses were calculated for each condition for each participant, and

then averaged across all participants to give an overall percent correct response measure.

The data are displayed as percentage errors in Figure 2A to facilitate comparison with

reaction times shown in Figure 2B.

The proportion of correct responses was entered into a 2 x 3 repeated measures

ANOVA with the factors Alignment (aligned, misaligned) and Condition (no change, top

change, bottom change). The ANOVA showed a significant effect of Alignment (F(1,15) =

38.37, p < .001, partial eta squared = 0.72) and Condition (F(2,30) = 19.48, p < .001, partial

eta squared = 0.57). Bonferroni pairwise comparisons demonstrated that the effect of

Alignment was driven by more accurate responses in the misaligned versus aligned

conditions (p < .001). The effect of Condition was driven by more accurate responses in the
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no change versus top change (p < .001) and bottom change (p = .001) conditions. However,

these main effects were both qualified by the presence of a significant Alignment x

Condition interaction (F(2,30) = 10.82, p < .001, partial eta squared = 0.42). Paired t-tests

demonstrated this was a result of lower accuracy in the bottom change condition when the

stimuli were aligned, compared to misaligned (t(15) = -5.54, p < .001) but no difference

between the no change aligned and misaligned conditions (t(15) = .432, p = .672). This part

of the interaction is the critical test of the facial composite effect, because in all four of

these conditions participants were making equivalent responses (that the top halves were

the 'same'). In addition, there was also a non-significant trend demonstrating lower

accuracy for the top change condition when the stimuli were aligned, compared to

misaligned (t(15) = -1.86, p = .083). Whilst of interest, this is less crucial because the correct

response has now switched to 'different'.

We also measured response times to each condition. Median RTs were taken for

each condition, for each participant and an overall median RT was calculated for each

condition across all participants (Figure 2B). These median RTs were entered into a 2 x 3

repeated measures ANOVA with the factors Alignment (aligned, misaligned) and Condition

(no change, top change, bottom change). This ANOVA demonstrated significant main

effects of Alignment (F(1,15) = 18.24, p = .001, partial eta squared = 0.55) and Condition

(F(2,30) = 16.36, p < .001, partial eta squared = 0.52). Bonferroni pairwise comparisons

demonstrated the effect of Alignment was driven by longer RTs when the stimuli were

aligned, compared to misaligned (p = .001) and the effect of Condition was driven by a

longer RT in both top change (p = < .001) and bottom change (p < .001) conditions relative

to no change.
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Again, interpretation of these main effects needs to be qualified by a significant

Alignment x Condition interaction (F(2,30) = 11.62, p < .001, partial eta squared = 0.44).

Paired t-tests demonstrated this was due to longer response times in the aligned versions of

both top change and bottom change conditions when compared to their misaligned

counterparts (bottom change: t(15) = 4.69, p < .001, top change: t(15) = 3.04, p < .001). No

difference was seen in the response times between the aligned and misaligned versions of

the no change condition (t(15) = -1.54, p = .145). Paralleling the analysis of accuracy data,

the slower response times in the aligned compared to misaligned version of the bottom

change condition, and the lack of difference in response time for the no change condition,

illustrate the key components of the face composite effect.
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In sum, behavioural results from the RT and accuracy data show the facial expression

composite effect where participants find it more difficult to judge the top half of the images

as the same when the bottom half is changing and the two halves of each image are aligned

into an overall facial configuration, compared to when they are in a misaligned form.

3.2. Experiment 2

The aim of this experiment was to investigate properties of the right pSTS response to facial

expressions, using conditions comparable to those in the behavioural experiment 1. The

principal focus of the analysis was pSTS because of its hypothesised role in facial expression

perception in the leading neural model of face perception, (Haxby et al., 2000), and on right

rather than left pSTS because right pSTS is more reliably identified at the individual

participant level with our functional localiser scan and has therefore been targeted in

previous studies (Harris et al., 2012, 2014). To parallel experiment 1, there were 6 different

types of block in the experimental scan, involving aligned or misaligned pairs with no change

between the images, a bottom half change, or a top half change

In order to check whether participants were watching the top halves of the stimuli

throughout the experiment, as instructed, they were given the task of pressing a response

button every time they saw a small red dot presented at the fixation point. Performance on

this red dot detection task was high, with a mean accuracy of 99% correct responses and

mean RT of 447ms. To confirm that there were no differences in overall attentional

demands between aligned and misaligned stimuli, the average response times to aligned

and misaligned conditions for each participant were entered into a paired t-test. There was

no significant difference in response times to the red dot, t(21)=1.39, p = .18.
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The pSTS, FFA and OFA were localised in the left and right hemispheres using the

independent functional localiser scan. The OFA and FFA could be identified in both the left

and right hemispheres for 23/26 participants. In contrast to the OFA and FFA, the pSTS

could be reliably identified in the right hemisphere of 22/26 participants, but in the left

hemisphere for only 15/26 participants. This relatively poor face responsiveness of left pSTS

may be due to its possible role in more audiovisual integration of vocal and facial speech

signals (Calvert, 2001; Pelphrey et al., 2005; Wright et al., 2003). Average MNI coordinates

and number of voxels for each localised ROI are provided in Table 1.

Table 1. Average MNI coordinates in mm (mean and SE), size in voxels, and number of

participants where the region could be identified, for each ROI.

ROI Coordinate No. of

Voxels

No. of

Participants

x y z

Right OFA 41 ± 1 -80 ± 2 -15 ± 1 187 26

Left OFA -41 ± 1 -83 ± 1 -14 ± 1 107 23

Right FFA 41 ± 1 -56 ± 1 -23 ± 1 223 26

Left FFA -40 ± 1 -60 ± 2 -23 ± 1 114 23

Right pSTS 51 ± 1 -61 ± 2 1 ± 1 110 23

There was no effect of hemisphere for the OFA (F(1,22) = 0.16, p = .696) or FFA

(F(1,22) = 1.58, p = .221), so the data from the left and right hemispheres of these regions

were combined. For pSTS, we used only the region localised in the right hemisphere. In

terms of Haxby et al.'s (2000) neural model of face perception, results for the pSTS and FFA

are the most instructive, as these lie on separate neural pathways considered to be critically

involved in the perception of expression (pSTS) or to be involved in other aspects of face

perception (FFA). Data for the pSTS and FFA are therefore summarised in Figure 3. The OFA
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was considered as of less interest because it lies on both neural pathways in Haxby et al.'s

(2000) model, but data from the OFA were analysed, for completeness.

First, we took the time series data for each participant and averaged these across

participants to give an overall mean time series for each condition, for each ROI (Figure 3).

We then looked at the peak responses in the right pSTS, which form the study's principal

focus of interest (Figure 3, panel A). A 2x3 ANOVA with the factors Alignment (aligned,

misaligned) and Condition (no change, bottom change, top change) demonstrated a

significant effect of Condition (F(2,44) = 7.62, p = .001), but not of Alignment (F(1,22) < 1).

The Alignment x Condition interaction was not significant (F(2,44) < 1). The effect of

Condition was driven by a smaller peak percentage signal change in the no change condition

compared to both the bottom change (t(22) = -3.75, p = .001) and top change conditions

(t(22) = -2.93, p = .008), with no difference between the signal change in the bottom and top

change conditions (t(22) = .301, p = .797). This pattern is consistent with a feature-based

response, with no evidence of the critical interaction between Alignment and Condition that

would demonstrate holistic perception.

It is important to note that in this study, we looked at the response across all facial

expressions. Although our design does not allow for the data to be explored in this way, it

would be interesting to look at the response for each individual expression. This would be

particularly interesting as some facial expressions are more recognisable from their bottom

halves, and some from their top halves (Calder et al. 2000).



Figure 3. Overall mean MR time se

peak % BOLD signal change for rig

responses in right pSTS revealed a

both the bottom change (p = .001

the bottom and top change condi

there was only a main effect of Al

stimuli (p = .021). Error bars repre

20

me series for each condition for aligned and misalign

r right pSTS (row A), FFA (row B) and OFA (row C). An

ed a smaller peak response in the no change conditi

.001) and top change conditions (p = .008), with no d

conditions. This pattern held for aligned and misaligne

Alignment, with a higher peak response to aligned

represent standard error of the mean.

saligned stimuli, and

). Analysis of the

dition compared to

no difference between

saligned stimuli. In FFA,

ned than misaligned



21

The FFA showed a different pattern of results to the pSTS (Figure 3, panel B). A 2x3

ANOVA showed a significant effect of Alignment (F(1,25)= 6.11, p = .021), but only a

borderline effect of Condition (F(2,50)= 2.56, p = .088). The Alignment x Condition

interaction was not significant (F(2,50) < 1. The effect of Alignment was driven by a

significantly higher peak percent signal change to the aligned compared to misaligned

stimuli (t(25) = 2.47, p = .021).

The OFA did not produce any findings that reached conventional levels of statistical

significance (Figure 3). There was no effect of Alignment (F(1,25) < 1, and after Greenhouse-

GWｷゲゲWヴ IﾗヴヴWIデｷﾗﾐ aﾗヴ ; ┗ｷﾗﾉ;デｷﾗﾐ ﾗa ゲヮｴWヴｷIｷデ┞ ふ‐2(2) = 9.03, p = .011) only a borderline effect

of Condition (F(1.523,38.07) = 3.32, p = .059). There was no Alignment x Condition

interaction (F(2,50) < 1).

To determine if other regions showed a holistic response, we also conducted a whole

brain analysis. The % error and response time data from Experiment 1 were used as

regressors to identify regions that might show a holistic response. The resulting group

statistical parametric map identified 2 clusters of activity, in the right inferior frontal gyrus

(IFG) and in the right fusiform gyrus. Table 2 shows the peak voxel intensity, co-ordinates

and size of the ROIs based on the % error and RT data.
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Table 2. Peak intensity and MNI coordinates (mm) for maximally active voxel, and size in voxels for

each ROI identified using the mean RT and % error data from experiment 1 as a regressor.

ROI Peak Intensity

(z score)

Coordinate No. of Voxels

x y z

% Error

Right Fusiform 4.86 38 -50 -22 771

Right IFG 3.90 48 4 18 411

RT

Right Fusiform 4.97 40 -50 -24 656

Right IFG 4.09 48 6 18 654

These data were used to create masks of the regions identified (right fusiform, and

right IFG). We took the time series data for each participant and averaged across

participants to give an overall mean time series for each condition, for each ROI. The peak

responses for each condition for each ROI were then calculated. As can be seen from table

2, the peak intensities were very similar for both the ROIs identified using the RT and %

error data. This was also reflected in the peak response to each individual condition,

therefore we have only presented the % error regressor data for illustration purposes, in

Figure 4. The right IFG shows the classic pattern demonstrated in the expression composite

effect � a higher response to bottom change when the face is aligned, compared to when

misaligned. It also shows a smaller response to the no change compared to the change

conditions. In contrast, the fusiform gyrus shows a more general overall difference in

responsiveness between aligned and misaligned images. This is consistent with the known

involvement of fusiform cortex in the holistic perception of faces (Kanwisher et al., 1997;

Andrews et al., 2010), but does not imply holistic processing of expression per se.
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4. DISCUSSION

We used the fMR-adaptation paradigm to investigate neural responses to facial expressions

in core regions of Haxby et al.'s (2000) neural model of face perception, focussing

particularly on pSTS because of its hypothesised role in the perception of expression. By

using a no change condition as a baseline promoting maximal adaptation, we were able to

demonstrate release from adaptation in right pSTS to conditions in which changes in

expression were located in the upper or lower parts of the stimuli. This shows that the right

pSTS was encoding such changes, even though the incidental task of detecting a red spot

was irrelevant to perceiving the facial expression. Moreover, the degree of adaptation in

right pSTS was equivalent whether the changes occurred in the fixated, task-relevant (top

half) or non-fixated (bottom half) part of each stimulus.

This pattern of neural response in pSTS was the same regardless of whether the top

and bottom parts of the stimuli were aligned into a face-like overall configuration, or

misaligned by offsetting the parts to make the overall image less face-like. The contrast

between aligned and misaligned variants of the stimuli is of theoretical importance, as it is

now widely used to probe holistic processing of faces in studies of the perception of face

identity and facial expression (Young et al., 1987; Calder et al., 2000; Maurer et al., 2002;

Rossion, 2013). The logic underlying the contrast is that holistic processing of the stimulus as

a face is only possible when the constituent parts are correctly aligned, and that a

consequence of holistic processing will be to enhance perceived differences between stimuli

that share common parts - for example, making the top change stimuli look more different

from each other when in the aligned than in the misaligned arrangement. This enhanced

perception of differences between aligned than misaligned stimuli was demonstrated
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behaviourally in Experiment 1, so it is noteworthy that our results do not show such an

effect in the neural responses from pSTS. Instead, it seems that pSTS is sensitive to any

change in face parts (with a release from adaptation in both top change and bottom change

conditions) but does not require that the stimulus is particularly face-like (as shown by the

equivalent release from adaptation across aligned and misaligned stimuli). This

complements Harris et al.'s (2012) finding that pSTS responds more or less linearly to all

changes in facial features that communicate emotion.

A possibility that needs to be considered is that the differences in the pattern of the

results between the behavioural (Experiment 1) and fMRI (Experiment 2) data might reflect

task differences. In the behavioural experiment, participants were asked to detect changes

in facial expression. In contrast, in the fMRI experiment, participants were asked to detect a

red dot superimposed on some of the faces. An explicit holistic task was not used in the

fMRI experiment because our aim was to examine how facial expression is encoded

irrespective of task difficulty. Using an explicit task of holistic processing would introduce

differences in task difficulty across conditions and as a result, produce attentional

differences across conditions. Therefore it was important to use a task independent of the

experimental manipulation to ensure all stimuli were attended to equally in the fMR

experiment. Since the expression composite effect is considered to reflect mandatory

holistic face perception and no previous work has suggested that it is affected by the task,

this offered the best way to eliminate potential attentional confounds. It is also important to

note that the facial identity composite effect can be demonstrated using a similar fMRI

experimental procedure (Schiltz and Rossion, 2006) to that presented here.
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The FFA showed a different pattern of response than pSTS, with the only finding that

reached the conventional level of statistical significance being a main effect of alignment,

with higher overall response to aligned than to misaligned stimuli. These results are

consistent with previous studies that used fMR-adaptation with composite faces to reveal a

holistic response to facial identity in the FFA (Schiltz and Rossion, 2006; Schiltz et al., 2010;

Andrews et al., 2010). The pattern is also consistent with Kanwisher et al.'s (1997) landmark

study defining the properties of the FFA, which found a stronger response to normal faces

than to scrambled arrangements of face parts, as misaligning the stimuli can be considered

a simple variant of face scrambling. This finding reveals that there are fundamentally

different neural representations of faces in the FFA and pSTS. The representation in the FFA

is sensitive to the correct configuration of the facial features, whereas the pSTS appears to

encode facial features independently.

To determine if regions outside the core face-selective regions showed a holistic

response to facial expression, we performed a group analysis. This analysis used the

behavioural data from Experiment 1 as a regressor, as this had shown a holistic response to

expression. The independence of the behavioural (Experiment 1) and fMRI (Experiment 2)

data used in this analysis offers a strong test of whether a region can be linked to a specific

pattern of responses. This group analysis identified the right fusiform gyrus and right

inferior frontal gyrus (IFG) as regions that covaried with behavioural responses. Inspection

of the data shown in Figure 4 suggests that the fusiform activity was due to a more general

holistic response to faces per se, in the form of a higher overall response to all aligned than

misaligned stimuli, as had also been shown from the analysis of the FFA defined with the

individually-based functional localiser. In contrast, the IFG showed a pattern of response
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which was more consistent with a holistic response to facial expression, as evidenced by the

similarity between the pattern of BOLD responses in IFG (Figure 4) and the RTs and errors in

the behavioural task (Figure 2). These results are consistent with previous studies which

have shown that right IFG is part of the extended face processing network (Ishai et al. 2008;

Davies-Thompson et al., 2012) and is involved in the processing of facial expressions (Ishai,

Schmidt & Boesiger, 2005; Carr et al. 2003; Dapretto et al., 2006).

In sum, we have shown that right pSTS is sensitive to changes in the facial features

that convey emotion regardless of whether these changes occur in the fixated parts of the

image or not, and regardless of whether image parts are arranged in a more or a less face-

like configuration. Therefore, based on these results, the pSTS cannot be considered the

neural locus of the facial expression composite effect. Nonetheless, these findings are

consistent with Haxby et al.'s (2000) view that pSTS is an important region in the perceptual

analysis of facial expressions and uncover something of this region's modus operandi,

showing in particular that it is very responsive to changes in expressive features whether or

not these form a face-like overall configuration.
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