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Abstract 

The tendency of many species to abandon migration remains a poorly understood aspect of 

evolutionary biology that may play an important role in promoting species radiation by both 

allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the 

colonisation of freshwater environments, and the shift from an anadromous to a wholly-
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freshwater life-history has occurred in many families of fishes. Freshwater-resident forms 

have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and 

there has been much debate as to whether anadromous lampreys, and their derived 

freshwater-resident analogues, constitute distinct species or are divergent ecotypes of 

polymorphic species. Samples of 543  European river lamprey Lampetra fluviatilis (mostly 

from anadromous populations) and freshwater European brook lamprey L. planeri from 

across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic 

microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829bp 

of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for 

mtDNA and microsatellite DNA markers, such that low diversity and little structure were 

seen for all populations for mtDNA (consistent with a recent founder expansion event), while 

fine-scale structuring was evident for nuclear markers. Strong differentiation for 

microsatellite DNA loci was seen among freshwater-resident L. planeri populations and 

between L. fluviatilis and L. planeri in most cases, but little structure was evident among 

anadromous L. fluviatilis populations. We conclude that post-glacial colonisation founded 

multiple freshwater-resident populations with strong habitat fidelity and limited dispersal 

tendencies, that became highly differentiated, a pattern that was likely intensified by 

anthropogenic barriers. 

 

Introduction 

Although the abandonment of migration remains a poorly understood aspect of 

evolutionary biology, there is evidence to suggest that this phenomenon might act as an 

initiator for adaptive radiation (Bell & Andrews 1997; Winker 2000; Räsänen & Hendry 

2008; Langerhans & Riesch 2013). Differences in life history traits between resident and 

migrant individuals can be thought of as adaptive behaviours that act to increase growth, 
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survival rate, fecundity and egg quality. This is reflected in the fitness outcomes of both life-

history strategies, with residency favoured when the cost of migration exceeds the benefits of 

doing so, particularly in terms of growth potential and mortality risk before reproduction 

(Fryxell & Sinclair 1988; Bell & Andrews 1997; Dingle 2006; Brönmark et al. 2008; Shaw & 

Couzin 2013).  

Anadromy, which involves reproduction in freshwater and the majority of growth in 

the marine environment, is a distinctive migratory trait that is recognised in 18 fish families 

and 120 species (McDowall 1997; Chapman et al. 2012). Anadromy  inherently offers an 

opportunity to colonise previously unexploited freshwater environments, and the shift from 

an anadromous to a wholly-freshwater life-history has occurred repeatedly in many taxa of 

fishes (e.g. Petromyzontiformes, Salmonidae, Gasterosteidae; Potter 1980; Taylor et al. 1996; 

Lucas & Baras 2001). Glacial cycles may have supported the evolution of wholly-freshwater 

forms by either blocking migration routes and preventing anadromy or, upon deglaciation, 

making available new habitat and food resources that are inaccessible through freshwater but 

easily reached by anadromous fish (Bell & Andrews 1997; Lee & Bell 1999).  

The extent to which anadromy is obligatory varies among species. Many populations 

of anadromous fishes contain a component that does not migrate to sea and instead remains in 

freshwater where they mature and spawn.  In some cases they may subsequently move little, 

but in other cases migrate between distinct freshwater habitats (potamodromy), often 

reproducing with their anadromous conspecifics (Lucas & Baras 2001; McDowall 2001). 

‘Partial migration’ is the term coined for this resident-migratory dimorphism within 

populations (Chapman et al. 2011) and it is widespread in mammals, invertebrates, birds 

(Lundberg 1988; Jahn et al. 2010; ) and fishes (Olsson & Greenberg 2004; Brodersen et al. 

2008; Kerr et al. 2009; Chapman et al. 2012).   
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Incipient speciation in these systems may be promoted through both allopatric and 

sympatric mechanisms (Chapman et al. 2011). Reduced gene flow between migrants and 

freshwater-residents breeding in allopatry could promote differentiation by genetic drift or 

local adaptation. Conversely, population differentiation is limited by the large-scale dispersal 

capacity of migrants, resulting in a greater chance of panmixia (Coltman et al. 2007; Hoarau 

et al. 2002). Migratory populations that exhibit philopatry, or habitat fidelity, however, can 

maintain discrete genetic differences between populations within species. For example, 

anadromous Atlantic salmon (Salmo salar) undergo extended oceanic migrations, yet exhibit 

significant local adaptation and substantial reproductive isolation between populations owing 

to precise philopatry and a high homing fidelity to their natal river or tributary (Taylor 1991). 

In contrast to anadromous salmonids, anadromous lampreys (Petromyzontiformes)  

generally show very low inter-population differentiation across geographically distant river 

systems (Almada et al. 2008; Goodman et al. 2008), and have been shown to use pheromones 

released by stream dwelling larvae as partial cues to find suitable spawning habitats (Fine et 

al. 2004). An evolutionary trend among lampreys is the occurrence in most genera of ‘paired 

species’ (Zanandrea 1959), whereby larvae are morphologically indistinguishable, whilst the 

adults of two putative species adopt either a non-parasitic freshwater-resident, or a parasitic 

life history which can be either potamodromous or anadromous.  

Non-parasitism has arisen repeatedly among lampreys (e.g., Docker 2009) and even 

within species (e.g., Espanhol et al., 2007), suggesting that feeding-type is plastic and non-

parasitic lineages may be polyphyletic (Docker, 2009; Renaud et al. 2009). Nonetheless, 

there has been much controversy about the taxonomic status of many paired lamprey species 

(Zanandrea 1959; Hardisty 1986a; Schreiber & Engelhorn 1998; Youson & Sower 2001; Gill 

et al. 2003; Renaud et al. 2009; Docker et al. 2012). Although various studies have found 

little genetic differentiation between lamprey paired species (e.g., Docker et al. 1999; 
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Yamazaki et al. 2006; Espanhol et al. 2007; Blank et al. 2008; Lang et al. 2009), Mateus et 

al. (2013b) found significant differentiation between sympatric European river and brook 

lamprey populations in Portugal based on nuclear genomic data, and Taylor et al. (2012) 

report differentiation between anadromous and freshwater-resident parasitic lampreys in 

British Columbia based on eight microsatellite DNA loci.  

Here we explore the population genetics of the anadromous European river lamprey 

(Lampetra fluviatilis L. 1758) and its non-parasitic freshwater-resident derivative the 

European brook lamprey (Lampetra planeri Bloch 1784), together with several L. fluviatilis 

populations that comprise potamodromous individuals that migrate within freshwater only 

(i.e. freshwater-residents; Maitland et al. 1994; Inger et al. 2010).  We use a combination of 

mtDNA and microsatellite nuclear DNA markers to test the hypothesis that the post-glacial 

expansion of anadromous L. fluviatilis during the Holocene prompted the establishment of 

multiple freshwater-resident L. planeri populations that subsequently became genetically 

differentiated. We also investigated the possibility that anthropogenic barriers are isolating 

lamprey populations, and provide a robust quantitative assessment of this. In some freshwater 

fishes, the fragmentation of habitats by dams can promote genetic differentiation between the 

upstream and downstream populations resulting from the reduction of gene flow, often 

compounded by founder effects and subsequent genetic drift (Yamamoto et al. 2004; 

Palkovacs et al. 2008). Population divergence and dispersal at local to catchment scales were 

examined enabling inference about population connectivity and evolutionary viability, which 

may indicate important applications in conservation management (Latta 2008) and enhance 

our understanding of the systematics of these ancient fish. 
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Methods 

Sampling and DNA isolation 

Tissue samples were collected across a total of 18 sites (Figure 1, Table S1). Unlike, 

for example, in some Baltic regions (Sjöberg 2011), there is no evidence or likelihood of 

historical stocking or translocation of lampreys at any of these sites.  MtDNA loci were 

examined in n = 108 individuals from six sites including two paired sites (i.e. where L. 

planeri and L. fluviatilis were obtained from the same river; Table S1, Table 1, Figure 1). For 

microsatellite loci, 543 samples were collected from 18 sites, including seven paired sites 

(PS), (Table S1, Figure 1). One of these paired sites also included a freshwater-resident L. 

fluviatilis population (PS7; Loch Lomond, Scotland, Table S1). Three additional sites for L. 

fluviatilis were also included in the analysis (sites 9, 17, 18, Table S1, Figure 1); one of 

which is a freshwater- resident population of L. fluviatilis in the River Bann  (site 17). In 

Loch Lomond (PS7 in Table S1; Scotland), all three ‘ecotypes’ (i.e. L. planeri, L. fluviatilis, 

and freshwater-resident L. fluviatilis) are truly sympatric; however, in all other paired sites L. 

planeri samples were obtained upstream (within the same river) of anadromous L. fluviatilis 

populations, which were usually separated by migration barriers (Table S2). It should also be 

noted that the location from which the River Swale L. planeri samples were obtained is a 

spawning site for both L. planeri and sometimes L. fluviatilis. 

Samples were obtained by hand-netting, electro-fishing, and the utilization of static 

double-funnel traps to capture spawning, and upstream-migrating lampreys (Table S1). Both 

L. fluviatilis and L. planeri were sampled where they were found to be locally abundant prior 

to the spawning period and so were, in most cases, captured in the vicinity of their spawning 

grounds. L. planeri were normally captured in the upstream reaches of rivers where they were 

abundant and in all cases, except at the Endrick Water, Loch Lomond, were sampled 

upstream of the  L. fluviatilis spawning areas. Only adult and juvenile lampreys, 
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unambiguously identifiable to species, were included in this study. Adult anadromous, and 

freshwater-resident L. fluviatilis (e.g. Loch Lomond, Morris 1989; and the R. Bann, Goodwin 

et al. 2006), as well as non-parasitic L. planeri can be separated using standard lamprey 

taxonomic characteristics (Renaud 2011). Individuals were identified and measured under 

anaesthesia (MS-222, 0.1 g L-1) using a field key (Gardiner 2003) and fin clips taken from the 

second dorsal fin were stored in 20 % DMSO saturated NaCl solution (Amos & Hoelzel 

1991). Total genomic DNA was extracted from samples using a proteinase K digestion 

procedure followed by the standard phenol–chloroform method and stored at -20°C.  

 

Amplification and sequencing of mitochondrial DNA 

The PCR primers ATPfor and ATPrev (Espanhol et al. 2007) were used to amplify 

838bp of the mitochondrial gene ATPase subunits 6 and 8.  This locus was chosen to 

facilitate comparison with previous data from Espanhol et al.(2007) and Mateus et al. (2011). 

Each 20 µl reaction contained 1.2 µl (final conc.1.5 mM) MgCl2, 2 µl dNTPs (2.0 mM), 0.2 

µl of each primer (10mM), 4 µl of Colorless  GoTaq® Reaction Buffer (Promega), 0.1 µl 

GoTaq DNA polymerase (Promega) and 1µl of template DNA. Cycle conditions were: initial 

denaturation at 94 °C for 3 mins, followed by 30 cycles of; denaturation at 94 °C for 1 min, 

annealing temperature 57.1 °C for 1 min and extension at 72 °C for 2 mins; followed by a 

final extension at 72°C for 2 min. The resulting PCR products were purified using the Qiagen 

PCR Purification kit and sequenced using an ABI PRISM 3730 DNA Analyser (DBS 

genomics Durham University). 

 

Amplification and genotyping of microsatellites 

Thirteen recently developed polymorphic microsatellite loci were used to examine 

genetic differentiation among and between all L. fluviatilis and L. planeri populations. Eight 
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microsatellite primers developed for European Lampetra (Lp-003, Lp-006, Lp-009, Lp-018, 

Lp-027, Lp-028, Lp-046, and Lp-045; (Gaigher et al. 2013)), one primer set developed for 

Lampetra richardsoni (Lri-5 ; Luzier et al. 2010), and four microsatellite primers developed 

in this study (using the protocol described in White et al. 2010) and optimized for European 

Lampetra species (Lamper_1, Lamper_2, Lamper_3, Lamper_4) were included (Table S3).  

Microsatellite loci were multiplex amplified using a Qiagen Multiplex kit. Thermal 

cycler conditions were:  initial denaturation at 95 °C for 15 min; followed by 35 cycles of 

denaturation at 94 °C for 30 s, annealing temperature 60 °C for 90 s and extension at 72 °C 

for 60 s; followed by a final extension at 60 °C for 30 min. PCR products were genotyped on 

a 3730 ABI DNA Analyser (DBS Genomics, Durham, UK) and visualized with Geneious 

VR6 (Biomatters). Microsatellite loci were tested for null alleles, large allele dropout, and 

scoring errors due to stutter peaks using MICROCHECKER 2.2.3 (van Oosterhout et al. 

2004).  The program ARLEQUIN 3.5 (Excoffier & Lischer 2010) was then used to test 

deviation from Hardy-Weinberg equilibrium. Tests for linkage disequilibrium were carried 

out for each pair of loci using an exact test based on a Markov chain method as implemented 

in Genepop 4.2 (Raymond & Rousset 1995; Rousset 2008).  The program Lositan (Antao et 

al. 2008) was used to test for outliers indicating positive or balancing selection (using a 

forced neutral mean FST, a confidence interval of 0.99 and false discovery of 0.1), and no loci 

with evidence for selection were found. 

 

Genetic diversity and structure 

MtDNA sequences were aligned manually using Geneious vR6 (Biomatters). The 

program DNAsp 10.4.9  (Rozas et al. 2003)  was then used to calculate mitochondrial DNA 

polymorphism estimated as haplotypic diversity (Nei & Tajima 1981) and nucleotide 

diversity (Nei 1987).  To determine the level of genetic differentiation between pairs of 
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populations, F-statistics (Weir & Cockerham 1984) were calculated for mtDNA and 

microsatellite DNA loci using ARLEQUIN v 3.5. Significance was tested using 1000 

permutations. ARLEQUIN was also used to calculate Fu’s F, Tajima’s D, and mismatch 

distributions. We estimated the putative time of population expansion from the mismatch 

distribution using the statistic tau (τ; Rogers & Harpending 1992).  Substitution rate was 

estimated after  Ho et al. (2007) who suggest an average of ~50% per site per million years 

for the control region, based on recent evolutionary timeframes, though of course this varies 

among species. The substitution rate for the control region can be ten times faster than the 

rest of the mitochondrial genome (McMillan & Palumbi 1997).  Therefore, 5% per site per 

million years was used as a rough estimate for ATPase. Mutation rates of 1% and 10% per 

million years were also used to illustrate the effect that the rate of divergence will have in the 

expansion times. The relationship between haplotypes was investigated using a median 

joining network (MJN) constructed using the programme NETWORK  3.1.1.1 (Bandelt et al. 

1999) and epsilon values of 0,10, 20, and 30 were tested. 

For microsatellite DNA data, allelic richness for each locus and population and FIS 

(inbreeding coefficient) were calculated using the program FSTAT 2.9.3 (Goudet 1995).  

STRUCTURE 2.0 was used to assign individuals by genotype to a putative number of 

populations (K; Pritchard et al. 2000). ΔK, a measure of the second order rate of change in the 

likelihood of K (Evanno et al. 2005), was calculated using STRUCTURE Harvester (Earl & 

vonHoldt 2012) to assess the highest hierarchical level of structure. Four independent runs for 

each K value were performed at 2,000,000 Markov chain Monte Carlo (MCMC) repetitions 

and 500,000 burn-in using no population prior information and assuming correlated allele 

frequencies and admixture. STRUCTURE was also used with a location prior (LOCPRIOR) 

to clarify population structure within the Loch Lomond system (Hubisz et al. 2009). Burn in 

and run lengths were the same as for runs without prior population information. Due to the 
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large number of putative population subdivisions, subsamples were compared by region to 

increase resolution, in addition to an analysis involving all regions.  Full-sibling pairs within 

a sampling site (for the five localities where there are populations of both putative species: 

Wear, Dee, Derwent, Nidd & Ure) were identified using the maximum-likelihood method in 

COLONY v. 2.0.1.1 with male and female polygamy permitted and a medium run length 

(Jones & Wang 2010).  

Patterns of microsatellite differentiation were subsequently examined using a factorial 

correspondence analysis (FCA) implemented in GENETIX 4.05.2 (Belkhir et al. 1996-2004 

), which gives a visual representation of individual genotype clustering. A test for a positive 

association between genetic (FST / (1-FST) and geographic distances (Isolation by distance 

(IBD)) based on microsatellite DNA loci was carried out using a Mantel test (10,000 

permutations) in Genepop V4.2. Geographic distances were calculated between sample sites 

using linear referencing tools in Quantum GIS (Lisboa). A Mantel test was also carried out to 

test for association between genetic distances and number of physical barriers (defined as any 

anthropogenic feature larger than 0.5 m height at base river level which reaches the full width 

of the river) between sample sites. The 0.5 m value was subjective, based on the fact that 

many structures of this height or greater generate discrete water level differences (upstream-

downstream) at base flows, on published and unpublished data on the impact of different 

height potential barriers on lamprey movement (L. fluviatilis, Lucas et al. 2009; L. planeri, 

Lucas pers. obs.), and on our ability to identify potential barriers in field surveys and 

databases.  Only river systems for which information on barriers was available were utilised 

in the Mantel tests (including the Dee, Wear, and all rivers within the Ouse sub-catchment, 

excluding the Swale due to the low sample size attained for L. planeri).  

MIGRATE-N (v 3.2.6) was used to estimate levels of historical gene flow between 

populations (Beerli & Felsenstein 2001; Beerli 2006; Beerli & Palczewski 2010). Pairwise 
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comparisons were carried out between putative species (i.e., L. fluviatilis and L. planeri) at 

six locations (Wear, Dee, Lomond, Nidd, Ure, Derwent), of which the latter three are all 

tributaries in the same river catchment, where samples from both species were available. To 

implement Bayesian inference in MIGRATE-N, the Brownian motion approximation was 

selected with an MCMC search of 100,000 burn-in steps followed by 5,000,000 steps with 

parameters recorded every 100 steps; exponential prior on theta (min: 0, mean: 30, max: 60); 

and an exponential prior on migration (min: 0, mean: 650 max: 1300). MIGRATE-N was run 

with parameter values starting from FST-based estimates, and the distribution of parameter 

values was compared across runs to ensure overlap of 95% C.I.  BAYESASS 1.3 (Wilson & 

Rannala 2003) was used to the estimate the magnitude and directionality of contemporary 

gene flow between L. fluviatilis and L. planeri. Pairwise comparisons were carried out for the 

same six locations that were used in the MIGRATE-N analysis. In contrast to MIGRATE-

N, BAYESASS estimates all pairwise migration rates rather than a user-defined migration 

matrix and provides unidirectional estimates of migration for each population pair. 

BAYESASS does not assume a migration–drift equilibrium, an assumption that is frequently 

violated in natural populations (Whitlock & McCauley 1999).  10,000,000 MCMC iterations 

were run of which 1,000,000 were for the burn-in.  All other options were left at their default 

settings.  Five to 10 runs with a different starting point were performed for each population 

pair and results are given as means. The program TRACER ver. 1.5 (Rambaut & Drummond 

2007) was used as a method to qualitatively assess Markov chain Monte Carlo (MCMC) 

convergence. 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Results 

MtDNA  

ATPase subunits 6 and 8 were sequenced and haplotypes determined for 108 

lampreys (L. fluviatilis and L. planeri) from six sampling sites (Table 1).  Over all 

populations, haplotype and nucleotide diversity were low, with freshwater-resident 

populations of both L. planeri and L. fluviatilis generally exhibiting lower haplotype and 

nucleotide diversity than the anadromous L. fluviatilis populations. Both Tajima’s D and Fu’s 

F were negative and highly significant (Table 1), consistent with a population expansion 

(e.g., after a bottleneck) or a selective sweep. Using the value of tau, which was 0.673 (Fig. 

S1), an expansion time of 16,263 (10,182-26,952; 95% CI) years ago was calculated using 

the mutation rate of 5% per million years. Using mutation rates of 1% and 10%, expansion 

times would be 81,182 and 8,118 years ago, respectively.  Sixteen haplotypes were observed, 

with private haplotypes found only in the L. planeri population from the River Nidd and no 

species-specific lineages (see median joining network in Fig. 2a).  FST values between sites 

ranged from 0.01955 to 0.94093 with only FST values associated with the Nidd (L. planeri) 

being statistically significant (P < 0.0001; Table 2). 

A network showing the European haplotype distribution, incorporating data from 

Espanhol et al.(2007) and Mateus et al. (2011), revealed 46 haplotypes with Portuguese 

populations being visibly further removed from the majority of other samples (Fig. 2b). 

Identified lineages were concordant with those reported by Mateus et al. (2011), and as 

observed by Espanhol et al. (2007), not species specific. Clades I, II and III were considered 

to be composed of adult L. planeri (Mateus et al., 2011; now regarded as three cryptic 

species, L. alavariensis, L. auremensis and L. lusiticanica, Mateus et al. 2013a) and larvae of 

unknown specific status, while clade IV comprises L. planeri, anadromous and freshwater-

resident L. fluviatilis adults and larvae.  
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Microsatellite analysis 

A total of 543 lampreys were genotyped at thirteen loci. All loci were in Hardy-Weinberg 

equilibrium and not impacted by null alleles for most populations and there were no 

consistent issues for any given population (Table S4). A total of 112 of the 136 FST values 

(82.4 %) were statistically significant (P < 0.05; Fig. 3, Table S5). All FST values between L. 

planeri populations were significant with a range from 0.06045 to 0.191 (Wear vs Nidd), 

however only 45.4 % of FST values for L. fluviatilis populations were significant, with a range 

from -0.00524 to 0.11945. When the freshwater-resident L. fluviatilis populations were not 

included, the FST values ranged from -0.00524 to 0.02537. FST values between L. fluviatilis 

and L. planeri populations ranged from 0.011 to 0.18554.  Average allelic richness per locus 

ranged from 2.43 (Lp_003) to 14.9 (Lamper_4). Average FIS per site ranged from -0.095 

(Wear (L. planeri)) to 0.028 (Lomond (anadromous L. fluviatilis)).  

In COLONY, tests for the proportion of putative full siblings (as an indicator of close 

kin) in populations of either species showed this to be rare, zero % in some cases for both 

species, and no higher than 0.74%.  One randomly chosen individual of each full-sibling pair 

was excluded, and analysis was repeated. There were no differences that affected inference in 

the results with full-siblings included or excluded, so all individuals were included in the 

analysis. 

STRUCTURE analyses consistently identified L. planeri populations as being 

separate from L. fluviatilis populations (anadromous and freshwater-resident) and from each 

other (Fig. 4).  The only exception was the small sample of L. planeri on the Swale compared 

to the L. fluviatilis population downstream on the same river (Fig. S2a). Figure 4a shows the 

most likely population structure among 12 sampling locations in England and Wales 

(excluding the Scottish Loch Lomond system) incorporating both species, where K=6 showed 

the highest LnP(D) (Fig. S3). Lampetra fluviatilis samples appear as a single mixed 
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population. Representing a higher hierarchical level, ΔK = 2 primarily supports separation of 

L. fluviatilis and L. planeri (Figures S3 & S4). Figure S4c shows a comparison across all 

populations where K=9 (the highest LnP(D) outcome).  There were several peaks for ΔK at 

K= 2, 5 and 8 (Figure S4d), but the maximum LnP(D) result (K=9) was most informative, 

distinguishing all L. planeri and L. fluviatilis freshwater resident populations (with the 

exception of the L. planeri population in the Swale).   

When only L. planeri populations were compared, the highest likelihood result 

identified all populations as distinct (Fig. 4b). In this case ΔK was 4 (Figures S3 & S4), 

however this linked samples from the Nidd with the Dee, and Loch Lomond with the 

Derwent, in each case populations on opposite sides of British Isles (see Fig. 1; Figure S4b). 

When only anadromous L. fluviatilis populations were compared the outcome was K = 1 (not 

shown). The Loch Lomond system (which contains anadromous L. fluviatilis, freshwater-

resident L. fluviatilis, and L. planeri populations) was compared to an anadromous L. 

fluviatilis population (Nidd) and another freshwater-resident L. fluviatilis population (Bann). 

STRUCTURE identified three populations with highest likelihood, while ΔK was 2 (Fig. 4c; 

S3). Using prior location information for Loch Lomond, five populations were identified.  

However ΔK= 2, showing differentiation at a higher hierarchical level between the 

freshwater-resident L. fluviatilis population in Loch Lomond and the other populations (Fig. 

S2b & c). Location priors did not provide any useful additional inference for other analyses.  

The FCA plots support essentially the same clusters as identified in STRUCTURE 

showing L. fluviatilis as being dominated by one large grouping, with the freshwater-resident 

populations differentiated (Fig. S5a) and L. planeri populations as all being separated from 

each other (Fig. S5b). Mantel tests for correlation between genetic and geographic distance 

showed a significant negative trend for L. planeri populations (R² = 0.2963; P<0.05; Fig. 5a) 

and a weak but significant positive linear relationship for all L. fluviatilis populations (R2 = 
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0.0841; P<0.05). However, when freshwater-resident L. fluviatilis populations were excluded 

(Bann and Loch Lomond) the positive relationship was much stronger (R2 = 0.40, P < 

0.0001; Fig. 5b). Mantel tests examining correlations between genetic distance and the 

number of barriers along migration/dispersal routes for L. fluviatilis and L. planeri 

(populations included as described in methods) showed a highly significant positive 

correlation (R2 = 0.8256, P <0.0001; Fig. 5c).  

Migration rate estimates between species (using MIGRATE-N) ranged from 3.73 to 

10.43 migrants/ generation from L. fluviatilis to L. planeri, and from 4.18 to 16.28 from L. 

planeri to L. fluviatilis (Table S6). The six pairwise comparisons all suggested asymmetric 

gene flow greater in the direction from L. planeri to L. fluviatilis (which apart from Loch 

Lomond was always in the downstream direction), but 95% confidence intervals were large 

and overlapping.  The BAYESASS analysis indicated low-level contemporary gene flow 

between the putative species and some comparisons also suggest the downstream direction 

from L. planeri to L. fluviatilis (especially in the Derwent; Table S7a & b). It also indicated 

ongoing gene flow between the three forms in the Loch Lomond system (Table S7b). 

 

Discussion 

Population history 

This study was based in a geographic region that has undergone profound cyclical 

changes over the course of the Pleistocene (2.58 MYA – 11, 700 years ago), with suitable 

riverine habitat available only during interglacial periods (e.g. Hays et al. 1976).  For our 

study sites in the UK, mtDNA failed to show any differentiation between the two putative 

Lampetra species or among populations, which is consistent with data for some other 

northern European populations (Espanhol et al. 2007). While this may suggest on-going gene 

flow or the incomplete sorting of ancestral polymorphisms, it is also consistent with recent 
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founder events establishing these populations. The network analyses and neutrality tests 

support this, indicating small founder populations and subsequent expansion. Conversely, for 

populations in southern Europe where the climate has been more stable over time, there are 

far higher nucleotide diversities and significant mtDNA phylogeographic structuring (e.g. 

Pereira et al. 2010; Mateus et al. 2011). 

Espanhol et al. (2007) suggested that L. planeri in Europe may be polyphyletic and 

have originated within at least two evolutionary lineages, possibly the result of independent 

divergence events from L. fluviatilis with the repeated loss of anadromy. Pereira et al. (2010) 

have since found several Portuguese populations of L. planeri which are isolated among 

themselves and also from the anadromous lamprey population. These populations had only 

private haplotypes, suggesting that a significant amount of time had passed to establish 

independent evolutionary histories. The fact that genetically distinct non‐migratory Lampetra 

populations are found in many Portuguese rivers (Pereira et al. 2010; Mateus et al. 2011; 

Mateus et al. 2013a) suggests lamprey were once more abundant and widespread in Iberia. 

The higher levels of divergence shown in our mtDNA median joining network that included 

Portuguese lampreys (Fig. 2), compared to other populations examined across Europe, also 

suggests that sufficient time may have passed to establish a complex of incipient freshwater-

resident species, though further nuclear DNA data would help resolve this question. Similar 

processes generating multiple origins have been suggested, for example, in the marine to 

freshwater transitions of three-spine sticklebacks (Gasterosteus aculeatus; Hohenlohe et al. 

2010). 

Our study estimates the expansion time of L. planeri and L. fluviatilis populations in 

the British Isles and northern Europe as 16,236 (10,182 - 26,952) years ago using tau and a 

mutation rate of 5% per MY,  which roughly coincides with the last glacial maximum (19 - 

26,000 years ago; Clark et al. 2009). The Pleistocene climatic fluctuations impacted much of 
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Europe (Hays et al. 1976; Webb & Bartlein 1992) and significantly influenced the 

distribution and genetic diversity of plants and animals (Hofreiter & Stewart 2009). In 

addition to cycles of habitat loss and release as glaciers extended and receded, the ‘refugium 

theory’ proposes that temperate species survived the glacial maxima in southern refugia and 

colonised northern latitudes during interglacial periods (Taberlet et al. 1998; Hewitt 2000). 

The results shown here, coupled with data from the Iberian Peninsula, suggest that southern 

latitudes served as an important refugium for Lampetra during the Pleistocene glaciations, 

intermittently acting as a point of dispersal for post-glacial expansion (Espanhol et al. 2007; 

Mateus et al. 2012; Mateus et al. 2013b).  

Therefore, there may have been a tendency during inter-glacial periods, while 

anadromous Lampetra were expanding northwards, for populations at lower latitudes to 

abandon anadromy and eventually become restricted to freshwater. This is consistent with the 

findings of a recent study utilising restriction site associated DNA sequencing (RAD seq.) 

that identified strong genetic differentiation between sympatric L. fluviatilis and L. planeri in 

the Iberian Peninsula with numerous fixed and diagnostic single nucleotide polymorphisms 

(SNPs) between the two putative species, some associated with genes related to 

osmoregulation (Mateus et al. 2013b). A study using RAD sequencing to compare Pacific 

lamprey (Entosphenus tridentatus) geographic populations also found evidence consistent 

with local adaptation (Hess et al. 2013).  Our median joining network in Figure 2 shows that 

for the available samples, only clade IV shares a haplotype with the lineage representing the 

northern expansion, suggesting a possible link between these lineages (with clade IV 

providing the ancestor of the anadromous group that founded the postglacial population in 

northern Europe). With expansion into previously unoccupied territory, it is expected that 

genetic diversity should decrease from the south to the north (Hewitt 1996), consistent with 

our findings. 
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Population structure 

In contrast to mtDNA, we found considerable structure at microsatellite DNA loci 

between L. fluviatilis and L. planeri populations, especially among populations of L. planeri, 

but much less among anadromous L. fluviatilis populations. Anadromous lampreys 

(Lethenteron spp.) in Japan (Yamazaki et al. 2011) and Petromyzon marinus in North 

America (Bryan et al. 2005) and Europe (Almada et al. 2008) exhibit similar levels of 

panmixia, with little or no genetic structure, despite their widespread distribution. Spice et al. 

(2012) found that Pacific lamprey along the west coast of North America showed low but 

significant differentiation among locations.  However, instead of being philopatric like many 

other anadromous fish species (see McDowall 2001), differentiation was suggested to be due 

to greater restrictions to dispersal at sea compared to other anadromous lamprey species. The 

lack of population structure found in our study was, therefore, consistent with the general 

lack of natal homing seen for other anadromous lamprey species. 

The absence of a clear genetic signal for species-level differences between 

anadromous and freshwater-resident populations is consistent with findings for other paired 

lamprey species (Espanhol et al. 2007; Hubert et al. 2008; Docker 2009; April et al. 2011; 

Mateus et al. 2011; Boguski et al. 2012; Docker et al. 2012). Greater differentiation among 

populations within L. planeri, than between L. planeri and L. fluviatilis, suggests the 

unexpected pattern of greater gene flow between the putative species than within L. planeri 

(while the greatest gene flow occurs among populations of L. fluviatilis). Gene flow between 

the putative species may be possible owing to a combination of inter-specific nest association 

(Huggins & Thompson 1970; Lasne et al. 2010) and sneaker male behaviour (Malmqvist 

1983; Hume et al. 2013). Since larvae of both species tend to move downstream through 

voluntary and involuntary drift behaviour (Hardisty & Potter 1971a; Moser et al. 2014), the 

distribution and overlap of spawning adults of the two species ultimately depends on a 
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combination of the degree of downstream drift of L. planeri from upstream tributaries where 

they predominate, towards L. fluviatilis-dominated zones, and the subsequent upstream 

movements of freshwater-resident L. planeri and anadromous or freshwater-resident L. 

fluviatilis (Hardisty & Potter 1971b; Malmqvist 1980).  

 Both assignment (BAYESASS)  and coalescent (MIGRATE-N) methods suggested 

directionality in genetic migration, favouring the direction of L. planeri to L. fluviatilis, 

though the confidence limits were broad. Asymmetric gene flow occurring in these types of 

freshwater systems can significantly influence the distribution of genetic variation, with 

downstream populations typically exhibiting higher genetic diversity than headwater 

populations (Caldera & Bolnick 2008; Morrissey & de Kerckhove 2009; Julian et al. 2012). 

Yamazaki et al. (2011)  found gene flow to exist at multi-temporal scales between 

“potentially sympatric” lamprey populations, and suggested on-going gene flow was the 

result of imperfect size-assortative mating and the plastic determination of life histories. The 

observed increase in genetic diversity as one moves downstream towards the lower reaches of 

the river could result from historical patterns of colonisation, with contemporary dispersal 

reflecting movement bias, fragmented habitat or the presence of dispersal barriers (Morrissey 

& de Kerckhove 2009; Dehais et al. 2010). Asymmetric gene flow would be expected if L. 

planeri populations remain primarily resident further up the catchments with occasional 

migrants moving further downstream to where they may encounter spawning L. fluviatilis.  

 

Connectivity and anthropogenic factors 

 Mantel tests for isolation by distance revealed a positive correlation between 

geographical and genetic distance for anadromous L. fluviatilis, and a counterintuitive 

negative correlation among L. planeri populations (Fig. 5). However, while the correlation 

for L. fluviatilis was significant (especially when freshwater-resident L. fluviatilis were 
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omitted), and consistent with expectations (implying that long-range dispersal is less 

common), the correlation with L. planeri was weak, and showed a broad range of values for a 

given distance (see Figure 5a). The L. planeri correlation may, therefore, simply reflect a 

stochastic pattern or ancestral relationships. 

The number of anthropogenic barriers between populations was found to be 

significantly positively correlated with genetic distance, and such barriers have been shown 

to limit the upstream migration of L. fluviatilis (Lucas et al. 2009). Anthropogenic barriers 

could therefore be amplifying (beyond natural processes) the isolation of L. planeri 

populations by inhibiting the upstream movement of anadromous L. fluviatilis and preventing 

gene flow mediation in this manner between populations. Meldgaard et al. (2003) also 

detected a statistically significant increase of FST with the number of weirs between grayling 

(Thymallus thymallus) populations in a Danish river system. Similar decreases of genetic 

diversity from downstream towards upstream populations have been observed in other fish 

species in relation to anthropogenic barriers (Yamamoto et al. 2004; Caldera & Bolnick 

2008; Raeymaekers et al. 2009). Yamazaki et al. (2011) found freshwater-resident non-

parasitic lamprey populations in the upper regions of dammed rivers to be genetically 

divergent from seasonally sympatric, anadromous, parasitic populations. This pattern is 

consistent with a scenario where barriers amplify the asymmetry of gene flow from upstream 

towards downstream sites by allowing some passive downstream drift, whilst obstructing 

active upstream migration. Spice et al. (2012) also found that larvae from an anadromous 

population of E. tridentatus at a spawning site upstream of nine dams (which only a small 

number of adults successfully pass each year) exhibited higher genetic differentiation (i.e. 

higher FST values) than most other population comparisons. 

When a freshwater-resident lamprey population is physically isolated from 

anadromous parasitic populations (which may mediate gene flow between freshwater-
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resident populations), acceleration in genetic divergence may result in the subsequent 

establishment of allopatric speciation (Yamazaki & Goto 2000). It is probable, however, that 

freshwater-resident L. planeri populations would have become, and tended to remain, isolated 

without the added anthropogenic hurdles, as there is a degree of population separation that is 

due to the natural extent of upstream migration in anadromous L. fluviatilis. As previous 

studies have shown, this is usually limited to higher order channels, and individuals do not 

generally penetrate the smaller streams even where access is unhindered by barriers (Hardisty 

& Potter 1971c; Hardisty 1986b).  

The system in Loch Lomond offers evidence of the potential for gene flow between 

morphologically differentiated ecotypes, indicating that where they are found sympatrically, 

gene flow between L. fluviatilis and L. planeri can occur. This scenario is also supported by 

the lack of evidence for differentiation between the geographically proximate L. fluviatilis 

and L. planeri populations on the River Swale, although the sample size for the latter 

population was small (Figure S2). Similarly, Docker et al. (2012) found no genetic 

differentiation between silver (Ichthyomyzon unicuspis) and northern brook (I. fossor) 

lampreys occurring sympatrically (also using microsatellite loci), but did find differentiation 

among parapatric populations. Yamazaki et al. (2011) also found a lack of differentiation 

between sympatric populations of Arctic lamprey (Lethenteron camtschaticum) and its non-

parasitic derivatives in the Ohno River, Japan.  

The BAYESASS analysis suggests that contemporary gene flow is occurring between 

all three populations in Loch Lomond, consistent with a tendency for interbreeding when 

there are no environmental barriers to limit connectivity. The divergence of the freshwater-

resident L. fluviatilis population would then suggest a period of differentiation in isolation. 

Therefore, in Loch Lomond the anadromous strategy is also paralleled by a population 

component with potamodromous behaviour, with some fish apparently showing migration 
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mostly between the loch and spawning streams. While all three Loch Lomond populations 

were significantly differentiated from each other (Figure 3, Table S5), there were also data 

indicating contemporary gene flow among them, and the anadromous L. fluviatilis and 

parapatric L. planeri populations both showed evidence of connectivity with the wider L. 

fluviatilis populations.   

 

Conclusions 

Alternative life history strategies are common among fishes inhabiting post-glacial 

lakes, often resulting from adaptation to different foraging strategies or environments 

(Robinson & Parsons 2002). This is one of the best supported mechanisms for speciation in 

sympatry, for example among cichlid species in post-glacial lakes (e.g. Barluenga et al. 

2006).  The divergence of multiple independent populations is a common trend in the 

evolution of diversity for diadromous fish (Schluter & Nagel 1995; Waters & Wallis 2001), 

and a number of studies have shown the influence of glacial movement within the Holocene 

on the phylogeographical structure of freshwater fishes (Harris & Taylor 2010; Boguski et al. 

2012).  However, in our study the geographic scale is small for the extent of differentiation 

observed. It is apparent that at an initial stage there was a post-glacial expansion of 

anadromous L. fluviatilis from southern refugia and the subsequent establishment of multiple 

freshwater-resident L. planeri populations. These may have been relatively small founder 

groups that retained some degree of reproductive isolation that was likely intensified, though 

perhaps not entirely determined, by the anthropogenic introduction of barriers. Moreover, it 

was ascertained that there is gene flow between L. fluviatilis and L. planeri in both long-term 

and contemporary timescales and the pattern of gene flow is apparently asymmetric. This has 

significant implications for the management of L. planeri populations and the extent to which 

this is underpinned by natural processes will have important evolutionary implications with 
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respect to the mechanisms that generate diversity.  Our data emphasises the importance of 

founder events in the evolution of diversity among populations and as a frequent component 

of the speciation process (see Templeton 2008).  These data also strongly support a scenario 

of multi-temporal and multi-spatial radiation. In contrast to higher levels of Lampetra 

divergence present in the Iberian Peninsula, the northern European populations appear to 

have been established relatively recently, and the process of differentiation is still ongoing. 

There may be a natural tendency towards speciation in freshwater-resident populations that 

remain environmentally stable over time, but a dynamic process instead at higher latitudes 

experiencing a cycle of habitat loss and release.   
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Data Accessibility: DNA sequences: Genbank accessions: KP722176- KP722191; microsatellite 

DNA genotypes and mtDNA sequence alignment file: Dryad doi:10.5061/dryad.v105s 

 

Figure captions: 

 

Figure 1: Map showing location of sampling sites 1-18 (see Table S1 for detail). Inset is a 

detailed map of part of the Ouse sub-catchment of the Humber catchment, showing sampling 

locations.  Only sampled rivers are shown. 

 

Figure 2: a) Median-joining network showing 16 haplotypes found from 108 samples of 

Lampetra at six sampling locations. Note that Bann (Lf) is a freshwater –resident L. fluviatilis 

population. Lf = anadromous L. fluviatilis, Lp = L. planeri, and Lf Res= freshwater-resident 

population of L. fluviatilis. Details of the sample locations are given in Table S1. b) 43 

haplotypes from combined studies comprising of both L. fluviatilis and L. planeri. Circled 

groups show correspondence with clades identified in Mateus et al. (2011).  Clades I-III 

consist of freshwater-resident L. planeri (but see Mateus et al. 2013b) with restricted 

distribution and Clade IV contains both freshwater-resident Lp and anadromous Lf with a 

wider distribution along with haplotypes identified in Espanhol et al. (2007) from France, 

Sweden and Germany( Lp and Lf H22) and France (Lp H28). Please see the open-access 

online paper for a colour version of this figure. 

 

Figure 3: Matrix of pairwise FST values using 13 microsatellite loci, for all Lampetra 

populations sampled. Lf = anadromous L. fluviatilis, Lp = L. planeri, and Lf Res= freshwater-

resident population of L. fluviatilis. Table showing the actual values is included in the 

supplementary online material (Table S5). Numbers on axes are marked with a square to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

represent L. planeri and a circle to represent freshwater-resident L. fluviatilis. 

 

Figure 4: STRUCTURE bar plot generated from microsatellite data for three population 

clusters of lampreys. (a) Comparison between L.  fluviatilis and L. planeri populations (K=6) 

(b) L. planeri populations (K=6) (c) Loch Lomond populations compared to a population of 

L. fluviatilis from the Humber catchment  and freshwater-resident L. fluviatilis populations 

from the R. Bann in N. Ireland (K=3).  Please see the open-access online paper for a colour 

version of this figure. 

 

Figure 5: Isolation by distance tests for correlation between genetic differentiation (based on 
microsatellites) showing (a) geographic distance between freshwater-resident L. planeri 
populations (R2 = 0.30, P < 0.05), (b)   geographic distance between anadromous L. fluviatilis 
populations (R2 = 0.40, P < 0.0001) (i.e. excluding freshwater-resident Bann and Lomond 
Lf). Inclusion of freshwater-resident Lf populations in the analysis reduced the strength of the 
correlation (R2 =0.0841, P < 0.05) –not shown. (c) number of barriers between samples sites 
(R2 = 0.8256, P < 0.0001) where LP-LP signifies comparison of numbers of barriers between 
L. planeri sampling sites, LP-LF is number of barriers between L. planeri and L fluviatilis 
sampling sites, and LF-LF is the number of barriers between L. fluviatilis sampling sites. 
Only sites for which barrier information was available were included in the analysis (i.e. Lf 
and Lp for Wear, Dee, Derwent, Nidd, Ure, and Swale Lf only). 
 
 
Table 1.  Diversity indices for MtDNA ATPase. MtDNA analysis was performed on only a 

subset of the 543 lampreys and 18 sites used for the microsatellite analysis. The ‘Site No.’ 

column corresponds to the sites numbers in Figure 1 and Table S1. 

Pop. Si

te 

N

o.  

Coun

try 

N H π  h D  Dp Fs Fsp 

     Bann 

(Lf Res) 

17 N. 

Irelan

2

0 

3 0.0002 +/-  

0.0003 

0.1947 -1.5128 0.059 -

1.1801 

0.015
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d 

Scheldt 

(Lf) 

18 Belgi

um 

2

0 

1

0 

0.0012 +/-  

0.0009 

0.7105 -2.0976 0.006 -

8.7029 

0 

Nidd (Lf) 1 Engla

nd 

1

7 

2 0.0001 +/-  

0.0002 

0.1176 -1.1639 0.125 -

0.7484 

0.092

Nidd (Lp) 2 Engla

nd 

1

8 

1 0 0 0 N.A. 0 N.A. 

Dee (Lf) 12 Wale

s 

1

6 

4 0.0006 +/-  

0.0006 

0.3500 -1.8309 0.015 -

1.7904 

0.014 

Dee (Lp) 

All 

13 Wale

s 

1

7 

1

0

8 

2 

1

6 

0.0003 +/-  

0.0004 

0.0007 +/- 

0.0006 

0.2206

0.4907

-0.4913

-2.1898 

0.264 

0 

0.0353 

-

18.445

2 

0.255

0 

N= Sample size, H = number of haplotypes, π = nucleotide diversity, h = haplotype diversity, 

D = Tajima's D,  

Dp = Tajima's D p-value, Fs = Fu’s F, Fsp = Fu’s F p-value, and Lf =L. fluviatilis, Lp = L. 

planeri, and  

Lf Res = freshwater resident population of L. fluviatilis.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 2: Matrix of pairwise FST values for mtDNA analysis of six populations of Lampetra. 

Abbreviations: Lf =Lampetra fluviatilis, Lp = Lampetra planeri, and Lf Res= freshwater-

resident population of L. fluviatilis. Significant FST values (i.e. all FST values associated with 

Nidd (Lp)) are highlighted in grey (P < 0.0001). 

 

 Bann (Lf Res) Dee (Lf) Nidd (Lp) Scheldt (Lf) Nidd (Lf) 

 

Dee (Lf) 

 

0.0033 

    

Nidd (Lp) 0.8534 0.7717    

Scheldt (Lf) 0.0074 -0.0001 0.5702   

Nidd (Lf) -0.0038 0.0024 0.9409 0.0082  

Dee (Lp) -0.0258 -0.0196 0.8676 0.0024 0.0417 
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