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Abstract

The analysis of national mortality trends is critically dependent on the quality of
the population, exposures and deaths data that underpin death rates. This paper,
using England & Wales population data by way of example, develops a framework
that allows us to assess data reliability and identify anomalies. First, we propose a
set of graphical diagnostics that help to pinpoint anomalies. Second, we develop a
simple model that allows us to quantify objectively the size of any anomalies.

An important conclusion is that bigger anomalies can often be linked to uneven
patterns of births in cohorts born in the distant past, leading to errors of more
than 9% in the estimated size of some England & Wales birth cohorts. We propose
methods that can use the births data from these cohorts to improve estimates of the
underlying population exposures.
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1 Introduction

The field of stochastic mortality modelling has seen rapid growth in recent years,
building on the early work of Lee and Carter (1992). Different strands of research
have emerged in demography,1 in statistical methodology,2 and in the development
of new models. The latter, in particular, has seen rapid progress since the early
2000’s, driven by emerging risk management applications in the pensions and life
insurance industries.3 Model development has been driven by the need to have a
better description of the underlying pattern of mortality improvements. Examples
include: multifactor models,4 allowance for cohort (year of birth) effects,5 and multi-
population models.67

The great majority of studies that are concerned with modelling build on the as-
sumption that the underlying population data (typically deaths and exposures) are
accurate. As a rare exception to this rule, Cairns et al. (2009) , amongst others,
identified that the data for the 1886 cohort of males in the England &Wales national
data were inaccurate, leading to its exclusion from their modelling work. However,
they assumed that the remaining data for England & Wales males were accurate.
They found some unusual patterns of mortality amongst some other birth cohorts,
but they focused on finding explanations for these effects, rather than question the
accuracy of the underlying data. For example, the 1918, 1919 and 1920 cohorts in
England & Wales males exhibit unusual characteristics which have been attributed
to a combination of lifelong frailty effects linked to the end of World War I and the
devastating Spanish flu epidemic. Further discussion of these effects can be found
in Richards (2008), who speculates, additionally, that the real cause of the 1919 co-
hort effects might be down to misstatements of the exposure to risk due to uneven
patterns of birth. This line of reasoning is developed further in Section 2.

Two types of data are available to mortality modellers. The first consists of death
counts which are typically available by calendar year and individual year of age.
The format of the data varies from country to country. For example, in England &
Wales, death counts, D(t, x) represents the number of persons who died in year t,

1For example, Booth et al., 2002, and Hyndman and Ullah, 2007.
2For example, Brouhns et al., 2002, Czado et al., 2005 , Li et al., 2009.
3For example, Blake and Burrows, 2001, Blake et al., 2006, Coughlan et al., 2007, Cairns et al.,

2008, Dahl et al., 2008, Li and Hardy, 2011, Li and Luo, 2012, Blake et al., 2013, Cairns et al.,
2013, Cairns 2011, 2013, 2014.

4For example, Cairns et al., 2006, 2009, Hyndman and Ullah, 2007, Plat, 2009, Currie, 2011,
Hunt and Blake, 2014, and Mavros et al., 2014.

5For example, Willets, 2004, Renshaw and Haberman, 2006, Cairns et al. 2009, 2011a.
6For example, Li and Lee, 2005, Cairns et al., 2011b, Dowd et al., 2011, Jarner and Kryger,

2011, Li and Hardy, 2011, and Börger et al., 2014.
7Cairns (2014) has charted the genealogy of these new models. He argues that the accompanying

complexity might not deliver improved forecasts, and that there is a need to get back to simpler,
more robust models (see, also, Mavros et al., 2014, Hunt and Blake, 2014).
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aged x last birthday at the date of death. But, in other countries, deaths might be
further subdivided by year of birth, or the definition of the age, x, might be different
or refer to the date of registration rather than the date of death.

The second consists of exposures (a measure of the underlying population), again
frequently available by calendar year and individual year of age. We define P (s, x)
as the number of persons aged x last birthday at exact time s. Typically this
quantity is only calculated once per year rather than continuously. In England &
Wales, for example, the Office for National Statistics (ONS) estimates the mid-year
population, P (t + 1

2
, x). The ONS then calculates death rates by dividing death

counts by mid-year population estimates: that is,

m(t, x) = D(t, x)/P (t+
1

2
, x).

Normally, though, the death rate is defined as

m(t, x) = D(t, x)/E(t, x) (1)

where E(t, x) is called the central exposed to risk, and is equal to the mean of the
population aged x last birthday during the year (see, for example, Wilmoth et al.,
2007). Thus

E(t, x) =

∫ 1

0

P (t+ s, x)ds. (2)

England & Wales is typical of a number of countries in which population numbers
are estimates based on data from a number of sources, primarily decennial cen-
suses. Censuses are affected by uncertainty in the extent of under-enumeration and,
between censuses, the estimation of net emigration8 at individual ages is difficult.

Following the 2011 census, the ONS published revisions to the 2001-2011 intercensal
population estimates (ONS, 2012a,b).9 The extent of these revisions is highlighted
in Figure 1. Death rates above age 60 are shown in the left-hand plot with only
modest differences up to about age 88. Above age 88, the post-2011-censal revisions
to the underlying population caused a significant increase in crude death rates. The
relative magnitude of these revisions is shown in the right-hand chart in Figure 1,
where we plot the ratios of the crude death rates after the revision to those before.
At most ages above age 90, the increase was about 15%. Between ages 40 and 85,
the impact of the revisions was modest, but below age 40, there were also significant
revisions, which are most likely due to adjustments in migration. At the highest
ages, migration is very modest and so is unlikely to be the main reason for the
change. It is more likely that the population at ages 80+ was slightly overestimated
at the 2001 census which led to bigger overestimates by 2010 (see Figure 4 below).

8Net emigration is defined as the number of emigrants minus the number of immigrants.
9There were no revisions in 2012 to population estimates before 2001.
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Figure 1: England & Wales males death rates in 2010. Dashed red lines: based on
post-2001-censal population estimates. Solid blue line: based on 2001-2011 inter-
censal population estimates. Left plot: death rates on a log scale. Right plot: ratio
of revised death rates to post-censal death rates in 2010.
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Figure 2: Historical and forecast mortality under the second-generation CBD model
(M7, Cairns et al., 2009). Dots: historical death rates. Fans: forecast levels of
uncertainty in death rates ranging from the 5% to 95% quantiles. Red dots and
fans: historical and forecast mortality using the post-2001-censal population data.
Blue dots and fans: historical and forecast mortality using the revised 2001-2010
intercensal population data.



5

These revisions have an impact on our predictions of future rates of mortality at
particular ages. Such predictions are, necessarily, model based, but an example
is shown in Figure 2 which uses the second-generation Cairns-Blake-Dowd (CBD)
model, M7, proposed by Cairns et al. (2009). In general, revisions to the historical
data will have three types of impact on mortality forecasts:

• the base table (most obviously at age 94);

• the central trend or improvement rate (for selected ages between 54 and 94);

• uncertainty around the central trend (not much change).

Revisions of a similar magnitude after the 2001 census can be inferred from a com-
parison of current ONS historical population tables with the original population
data for 2000 published by the ONS (ONS 2002a).

It was these censal revisions to the population data that led to the wider study of
data errors that we conduct in this paper. It is, of course, inevitable that there
will be errors in both population and (to a lesser extent) deaths data, and that
the magnitude of this problem will vary from country to country. What we seek
to do in this study is analyse population and deaths data in as objective a manner
as possible (a) to identify potential anomalies or errors in the data, and (b) to
‘clean’ the data prior to embarking on a mortality modelling exercise. Understanding
and quantifying errors is important for a number of stakeholders with interests in:
population mortality forecasts; forecasts of sub-population mortality; calibration of
multi-population mortality models; assessment of levels of uncertainty in mortality
forecasts; the calculation of life insurer liabilities and economic capital; pension plan
buyout pricing; the assessment of basis risk in longevity hedges; and the assessment
of hedges and hedging instruments.

In Section 2, we discuss in detail how errors might arise in deaths, population and
exposures data, and propose a new methodology, which we call the Cohort-Births-
Deaths (CBD) Exposures Methodology for calculating exposures data that exploits
monthly or quarterly births data. The CBD methodology is also used to improve the
calculation of mid-year population estimates based on census data. In Section 3, we
develop some model-free graphical diagnostics that allow us to identify anomalies in
population data. We find that the more significant anomalies can usually be linked
to unusual patterns of birth rates. We propose a method in Section 4 for quantifying
errors in exposures data. Although this is a Bayesian, model-based approach, we
try deliberately to keep the model simple to allow the data to speak for themselves
as much as possible. Section 6 looks at the impact of these error adjustments on
forecasts and financial calculations. We provide further discussion and proposals for
a way forward in Section 6.
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2 Data Issues: Deaths, Population, Exposures

In this section, we review the reliability of the building blocks of the death rate
m(t, x) = D(t, x)/E(t, x). We will start with a brief discussion of death counts,
before moving on to population estimates and their relationship with exposures.
We will discuss how a detailed knowledge of birth patterns can help explain some
of the errors that might arise in practice.

2.1 Deaths

Published death counts in England & Wales (EW), and in many other countries,
D(t, x), measure the number of deaths in calendar year t of people aged x last
birthday at the date of death. In general, these statistics are generally accepted as
accurate, but there are some issues that need to be noted.

In any given year, the total number of deaths,
∑

x D(t, x), can also be regarded as
accurate: it is extremely difficult for any death to go unreported in EW. But, it is
possible for there to be an error in the reported age at death (e.g., the informant
does not know for sure the age of the deceased). To combat this, death registrars
will carry out some some cross checking at the point of registration where this is
possible and afterwards on government databases (ONS, 2013). Cross-checking is
not always possible (e.g., for immigrants) leaving open the possibility for errors to
creep in and, where checks are not carried out, there might be biases towards certain
ages being recorded (e.g., if the deceased was thought to be ’about’ age 80, then the
age at death is reported as age 80). We have assumed in the analyses that follow
that these potential errors are not material in the EW data. However, we do revisit
this assumption towards the end of the paper.

A second issue concerns incurred but not yet reported deaths (IBNR). Specifically,
a small proportion of deaths occurring in year t will not be registered in year t (e.g.
ONS, 2013). Mostly, this is because the date of death is towards the end of December
and is not registered until January the following year. But a small proportion of
deaths require an inquest and the death cannot be registered until the inquest has
reached a verdict on the cause. This can delay registration by some months and
occasionally by more than a year.

These delays influence how the ONS reports death counts. For deaths in year t,
the ONS first publishes in year t+ 1 an estimate, D̃(t, x), that represents deaths at
age x that were registered in year t: this is a statistic that can be published much
more quickly than deaths occurring in year t. Subsequently (year t + 2), D̃(t, x) is
revised to D(t, x): the deaths occurring in year t (see ONS, 2013). For modelling
purposes, therefore, death counts in the most recent year need to be treated with
some caution as there will be some overlap with the previous year (double counting)
with potential biases in forecasts linked to the severity of the weather and strength
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of any flu epidemic in December (which particularly affect death rates amongst the
very old).

2.2 Population Estimates, Exposures, Death Rates

A potentially greater source of estimation error lies in the exposures, E(t, x) =∫ 1

0
P (t+ s, x)ds (sometimes called the central exposed to risk). Since the population

is not monitored or estimated on a continuous basis, it is not possible to derive
the exact calculation of this expression. For example, in EW, mid-year population
estimates are published annually, and the ONS then use the approximation E(t, x) ≈
P (t + 1

2
, x).10 11 In contrast to the ONS, the Human Mortality Database adopts a

more sophisticated approach to exposures, as documented in Wilmoth et al. (2007)
(see Appendix A).

Errors in E(t, x) can occur in the following ways:

• Type 1: mid-year population estimates can be inaccurate. Typical reasons for
this in EW would be: no universal ID card system; censuses are 10 years apart
and suffer from under-enumeration problems; and ages might be misreported
at census dates.

• Type 2: the estimation of migration from year to year between censuses is
difficult.

• Type 3: the assumption that E(t, x) = P (t + 1
2
, x) might be a poor approxi-

mation at some ages.

• Type 4: the method used to derive mid-year population estimates from census
data might be inaccurate at some ages.

Errors of type 1 and 2 are well known, are difficult to reduce except at considerable
cost, and lead to periodic revisions to population data, especially after decennial
censuses. Errors of types 3 and 4 are less widely known and we will argue in this
section that the current methodology for estimating exposures can be improved upon
if we have access to monthly or quarterly births data.

10Some countries operate in a similar way to EW. Other countries publish estimates of population
on 1 January each year, and employ the equally simple approximation E(t, x) ≈ 1

2 (P (t, x)+P (t+
1, x)).

11An alternative interpretation of the ONS approach is that they define m(t, x) = D(t, x)/P (t+
1
2 + x). Either way, users of death rate data need to understand better that the numbers they are
working with are not necessarily exactly what they believe.
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Figure 3: Relationship between mid-year population counts following cohorts and
reported death counts. Population decrements include deaths and net emigration.
P (s + 1

2
, y): mid-year population estimates. D(s, y): reported death counts. For

a given (t, x) cohort, the mid-year population count changes from P (t + 1
2
, x) to

P (t+ 3
2
, x+1) with the difference due to deaths and net emigration attributable to

that cohort: d(t+ 1
2
, x) and M(t+ 1

2
, x) respectively.

2.2.1 Propagation of General Errors Through Time

It is clear that once errors in population counts arise, they will persist through time
with the associated cohort, i.e., the errors follow the cohort.

To understand this, see Figure 3. First, assume that mid-year population counts,
deaths and migration are accurate. Then, we have the identity

P (t+
3

2
, x+ 1) = P (t+

1

2
, x)− d(t+

1

2
, x)−M(t+

1

2
, x)

where d(t + 1
2
, x) is the number of individuals in the cohort who die between t + 1

2

and t+ 3
2
, and M(t+ 1

2
, x) is the corresponding net emigration from the cohort.

If, in fact, there is an error in the population count, but accurate deaths and net
emigration figures in the following year, then we have the identity

P̂ (t+
3

2
, x+ 1) = P̂ (t+

1

2
, x)− d(t+

1

2
, x)−M(t+

1

2
, x)

where P̂ (s + 1
2
, y) = P (s + 1

2
, y) + ϵP (s + 1

2
, y) and ϵP (s + 1

2
, y) is the error in

the population count. If deaths and net emigration figures are accurate, then it is
straightforward to see that ϵP (t+

1
2
, x) = ϵP (t+

3
2
, x+ 1): that is, the error at time

t + 1
2
follows the cohort. Finally, death counts and (much more so) net emigration
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are themselves subject to errors and so

ϵP (t+
3

2
, x+1) = ϵP (t+

1

2
, x)+d(t+

1

2
, x)− d̂(t+

1

2
, x)+M(t+

1

2
, x)− M̂(t+

1

2
, x).

At younger ages, errors in net emigration figures from year to year will tend to
dominate, but, at higher ages, the error in the population count at time t + 1

2
will

dominate until such time as the population counts are subject to revision (e.g., at
the next census). We call the overestimated population “phantoms”. This is because
phantoms never die (at least between period revisions). That is, if we overestimate
the population (P̂ (t + 1

2
, x) > P (t + 1

2
, x)), then the ϵP (t +

1
2
, x) phantoms persist

through time, while members of the true population die off. Figure 4 illustrates
this in a stylised way. The cohort has been overestimated by 200 at the time of the
census at time 0. The extra 200 form a growing percentage of the total over the
next 10 years until the time of the next census. Additionally, the reported death
rate (actual deaths divided by over-estimated population) will be lower than the true
death rate, and the relative error in the reported death rate will grow over the 10
years.

After 10 years (Figure 4), there is a further census and it is estimated that the
cohort is rather smaller (dark grey bar) than the time-10 post-censal estimate (black
and light grey bars), although the revised estimate is likely still to differ from the
true value. The question then arises: how do we accommodate this change in
population estimates at time 10? What the ONS does is, rather than recognise
that the error was made at the time of the previous census, it assumes that its
previous population estimate was accurate and linearly “kills off” the phantoms. If
the required adjustment is A at time 10, then the ONS adopts the simple approach of
deducting A/10 from the cohort population in each of years 1 to 10 in addition to the
existing post-censal decrements (ONS, 2002c, Duncan et al., 2002) (see the red down
arrows in Figure 5). This means that following the new census, population estimates
for the previous 10 years are likely to be revised. Specifically, let PP (s +

1
2
, x + s)

be the post-censal estimates and PI(s +
1
2
, x + s) the inter-censal estimates. The

adjustment at the time 10 census is A = PP (10
1
2
, x + 10)− PI(10

1
2
, x + 10) and we

then define PI(s+
1
2
, x+ s) = PP (s+

1
2
, x+ s)− A× s/10 for s = 1, . . . , 10.

Implicit within this procedure is the assumption that the census measure at time 0
was correct. But the stylised example presented in Figures 4 and 5 suggests that, in
some circumstances, the ONS’s method only partly fixes the problem. Furthermore,
the stylised example is more likely to be representative of reality (if exaggerated) for
the oldest ages than at younger ages. At younger ages, it is very likely that errors
at time 10 are simply due to the difficulties in estimating net emigration.
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Figure 4: Stylised representation of the changing cohort size between censuses at
times 0 and 10. Black bars: true cohort size. Light grey bars: additional phantoms.
Dark grey bar (time 10): revised cohort size at the time 10 census.
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x− 1 progressing to x. D: x− 1 at both dates.

2.2.2 Census to Mid-year Shift

The next potential error concerns the census to mid-year shift. In EW, censuses
occur every 10 years on variable dates in the spring.12 The issue is illustrated in
Figure 6. Suppose the census occurs at time Tc and the middle of the same year is,
say, Tc + ωc. At Tc + ωc, we wish to estimate the population aged x last birthday.
This will consist of a mixture of people aged x and x− 1 last birthday at the time
of the census. P (Tc + ωc, x) will consist of those aged x at time Tc who did not
have a birthday between Tc and Tc + ωc (Figure 6, group B), plus those aged x− 1
at time Tc who did have a birthday between the census and the middle of the year
(group C). P (Tc+ωc, x), therefore, consists of appropriate proportions of P (Tc+, x)
and P (Tc, x− 1) (Figure 6), adjusted for deaths and net emigration between Tc and
Tc + ωc.

In 2001, the ONS used the assumption that birthdays were spread evenly throughout
the year at all ages (Duncan et al., 2002). On this basis, a proportion ωc of those
aged x− 1 at the census would reach their xth birthday before 30 June 2001, and a
proportion 1− ωc aged x would remain aged x.13 As a consequence

P (Tc + ωc, x) = ωcP (Tc, x− 1) + (1− ωc)P (Tc, x)− deaths− net emigration.

We have not been able to establish what assumptions were employed in other census

12Most recently: 25/4/1971; 5/4/1981; 21/4/1991; 29/4/2001; 27/3/2011. In the US, censuses
fall every 10 years on 1 April; most recently 1/4/2010.

13The census was on 29 April 2001, so ωc = 62/365.
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Figure 7: EW quarterly births from 1890 to 1990.

years. However, on the basis of statistical analysis, we conjecture in Section 3 that
different assumptions were probably employed.

The assumption of an even distribution of births is reasonable for most birth cohorts
when birth rates were reasonably stable from year to year. However, for a few cohorts
the assumption results in a very poor approximation.

2.2.3 The Cohort-Births-Deaths (CBD) Exposures Methodology

We now propose an alternative approach that refines the even distribution of births
assumption. Our underlying hypothesis is simple: at any point in time, t, the
pattern of birthdays at age x will reflect the actual pattern of births x years earlier.
At older ages, the relative proportions across a single age needs to reflect mortality.
The accuracy of the assumption will depend on the proportion of the population
at a given age that are immigrants (born and registered outside EW) and on any
differences between the average birth pattern of immigrants and those born in EW.

In Figure 7, we have plotted quarterly births from 1890 to 1990. Two features
are apparent: a clear seasonal pattern that persists to recent times; and significant
fluctuations in birth rates over time. In particular, sudden jumps in birth rates after
the first and second world wars, and we argue below that these jumps can have an
impact on how mid-year population estimates should be derived from census data.

We can use the births data to estimate what proportion of those aged x− 1 at the
time of the census will reach their next birthday before 30 June, and what proportion
of those aged x at the census will still be x on 30 June. This can be used to calculate
prospectively: out of those aged x−1 and x at the time of the census, how many are
due to be (i.e., ignoring deaths) aged x last birthday on 30 June? We then compare
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these CBD-based numbers for each age x with the uniform distribution of birthdays
used by the ONS in 2001.

To simplify the discussion very slightly let us assume that the 2001 census took
place right at the end of April, to allow us to focus on months of birth only. As an
example, let us look at males born between May 1918 and April 1920 who were thus
aged 82 or 81 at the time of the 2001 census. Tables 1 and 2 show how the CBD
and ONS methods, respectively, work in terms of estimating how many males will
be aged 82 on 30 June 2001 based on those aged 81 and 82 at the census date. This
calculation for age 82 reveals the most significant difference between the CBD and
ONS methodologies.

The figures 72741 (CBD) and 79352 (ONS) make the assumption that there are no
deaths or net emigration between the census and 30 June. The ONS published mid-
year population at age 82 in 2001 of 78615 does adjust for deaths and net emigration
between the census and 30 June, and so, under the CBD method, we would propose
to multiply the ONS mid-year population estimate of 78615 by 72741/79352, giving
a revised population estimate of 72065 for age 82 on 30 June 2001.14

The difference between the CBD and ONS uniform distribution of deaths assump-
tions in the 2001 mid-year population estimates is illustrated in Figure 8 (red dashed
line). The 1919 cohort discussed above stands out, but the 1920 cohort also has a
large difference and there are also significant differences between the methods for
cohorts born during and after the second world war (there was a sharp baby boom
in 1947; see Figure 7). At most other ages, the difference is at most ±1%.15

The CBD method can be refined further by adjusting the number of births in Table
1 for mortality between the exact date of birth and the current measurement date.
This would have the impact of reducing slightly the proportion of 82-year-olds at
the census date who were born in May-June 1918. This is illustrated in Figure
8 (thin grey line) using a stylised Gompertz pattern of mortality. It can be seen
that adjusting for mortality has little effect at younger ages, and only just starts to
become noticeable amongst the oldest cohorts plotted.

We conclude that the CBD method is robust relative to the mortality assumption.
However, as already remarked, the CBD method makes no allowance for migration.
The approach might be less accurate if immigrants form a significant proportion of
the population at certain ages, and if the pattern of births for these immigrants is
significantly different from EW births.

14Equivalently, we could take the unadjusted CBD figure (72741) and multiply this by the ratio
of the ONS mid-year population estimate at age 82 in 2001 adjusted for deaths and net emigration
to the corresponding ONS unadjusted population estimate (78615/79352) to give the same revised
population estimate of 72065 for age 82 on 30 June 2001.

15However, at high ages, e.g. age 80, an error of 1% in a census year can grow to three times
that over the next 10 years (see Figure 4), so even these modest errors are potentially important
and deserve our attention.
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Birth No. of Age on Proportion 2001 CBD Age at CBD
month births 30/4/2001 census estimate mid-year mid-year

5-6/1918 113475 82 0.17785
72114

12825 83
7/1918-4/1919 524566 82 0.82215 59289 82 }

72741
5-6/1919 99174 81 0.11642

115545
13452 82

7/1919-4/1920 752725 81 0.88358 102093 81

Table 1: Calculation of mid-year population estimates based on population at the
end-April-2001 census date using the CBD assumption, and assuming no deaths or
net emigration between the census and 30 June. Birth counts are for males and
females. 2001 census counts from ONS (2002b).

Birth month Age on Proportion 2001 ONS Age at ONS
30/4/2001 census estimate mid-year mid-year

May-June 1918 82 2/12
72114

12019 83
July 1918-April 1919 82 10/12 60095 82 }

79352
May-June 1919 81 2/12

115545
19257 82

July 1919-April 1920 81 10/12 96288 81

Table 2: Calculation of mid-year population estimates based on population at the
end-April-2001 census date using the ONS uniform distribution of birthdays as-
sumption, and assuming no deaths or net emigration between the census and 30
June.
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2.2.4 P (t+ 1
2
, x) ≈ E(t, x): How Good is this Approximation?

The true exposures are E(t, x) =
∫ 1

0
P (t + s, x)ds (equation 2), but, since the

ONS publishes only mid-year population estimates, it (in common with many other
agencies) makes the assumption that E(t, x) = P (t + 1

2
, x) leading to m(t, x) =

D(t, x)/P (t + 1
2
, x). So how good is this approximation? The answer lies in the

convexity of the underlying population function as illustrated in Figure 9. As can
be seen, the approximation will be quite good if the function P (t+s, x) is reasonably
linear in the interval 0 < s < 1. However, if P (t + s, x) is non-linear (right hand
plot) then there could be a significant difference between P (t + 1

2
, x) and the true

E(t, x).

We can investigate readily how this approximation works in practice by using births
data to estimate the population aged 0 at any point in time. Let P̃ (t, 0) represent the
population at time t aged 0 last birthday, assuming no deaths and net emigration.
Although, infant mortality was high in the early 20th century (approximately 1 in
10 died in their first year, mostly very soon after birth), the pattern of mortality
changes much more slowly over time relative to the variation in birth rates that we
seek to analyse here. Additionally, we only make use of age 0 exposures relative to
the mid-year population counts. The resulting ratios will be relatively insensitive to
the underlying rates of infant mortality, provided these change slowly over time.

P̃ (t, 0) can be calculated quarterly or monthly (depending on the granularity of
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births data) and is, simply, the sum of the births in the preceding 12 months and is
shown over the period 1910 to 1925 in Figure 10 (continuous black line). The mid-
year population estimates at age 0 assuming no deaths or net emigration are shown
as black dots. The equivalent exposure estimates are Ẽ(t, 0) =

∫ 1

0
P̃ (t+ s, 0)ds and

these are approximated using Simpson’s rule16 based on the quarterly P̃ (t + s, 0).
These exposure estimates are shown in Figure 10. Mostly the Ẽ(t, 0) (red diamonds)
are very close to the mid-year P̃ (t + 1

2
, 0) (black dots). However, where there is

significant non-linearity, differences can be quite striking. And the most significant
non-linearities and differences occur when there is a sudden baby boom,e.g., at the
end of 1919.

Irregular patterns of birth convert into similar patterns of birthdays in later years
and so we argue that the relationship between the mid-year population estimate at
age x and exposures should be approximately the same as it was at age 0 for the
same cohort. We, therefore, propose a convexity adjustment ratio to be applied to
mid-year population estimates, P (t+ 1

2
, x), namely

E(t, x) = P (t+
1

2
, x)× Ẽ(t− x, 0)

P̃ (t+ 1
2
− x, 0)

(3)

where we call CAR(t− x) = Ẽ(t− x, 0)/P̃ (t+ 1
2
− x, 0) the Convexity Adjustment

Ratio (CAR) for the t−x birth cohort. The CAR is plotted in Figure 11. As we can
see, the CAR is generally close to 1 (that is, the assumption that E(t, x) = P (t+ 1

2
, x)

is a reasonable approximation). But in a few years (1919, 1920, 1946, 1947) there
is a significant deviation from 1. And these deviations coincide with periods when

16See Appendix A.
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there were rapid changes in birth rates around the end of the first and second world
wars.

2.2.5 Application of the CBD Exposures Methodology

Summarising Sections 2.2.3 and 2.2.4, we would propose two actions. First, mid-
year population estimates can be improved in census years using the CBD exposures
methodology, augmented by existing ONS procedures for following cohorts between
censuses to allow for deaths and migration. We have not attempted to apply this
method retrospectively as we do not have accurate accounts of how mid-year popu-
lation estimates were derived in census years other than 2001. However, backfilling
methods could be used to interpolate between census years after these have been cor-
rected. Second, and in addition to these census-to-mid-year adjustments, exposures
can be calculated using the convevity adjustment ratio.

2.2.6 High Age Methodology

The ONS mid-year population estimates give population counts at individual ages
up to age 89 and then a single number each for males and females for age 90 and
above. Death counts are available for individual ages above 90. The ONS use the
Kannisto-Thatcher (KT) method (an adaptation of the extinct cohort method; see,
Thatcher et al., 2002) to calculate population estimates for individual ages up to
age 104 (ONS, 2014).

The KT method attempts to estimate exposures at individual ages from limited
underlying data and, therefore, gives rise to the possibility of errors. In particular, we
will investigate in the following sections the possibility that there are discontinuity
errors at the age 89-90 boundary where the high-age methodology kicks in.

3 Graphical Diagnostics and Signature Plots

In this section, we outline and illustrate a variety of graphical diagnostics that are
designed to help verify the quality of the data or identify where anomalies might lie.
The use of a graphical diagnostic might contain the following elements:

• a hypothesis that concerns some characteristics of the underlying data;

• a specified way of plotting some aspect of the data;

• if the hypothesis is true, then the plot should exhibit a recognisable structure
or pattern;
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• if the plot does not exhibit the expected structure, then the type of deviation
might provide us with pointers on how the underlying hypothesis might be
varied or point to particular types of problem with the data.

3.1 Graphical Diagnostic 1

Hypothesis: Crude death rates by age for successive cohorts should look similar.

The diagnostic that we will employ to test visually this hypothesis is to plot the
curve of crude death rates for each cohort against age. Since we wish to compare
cohorts (as required in the hypothesis), we compare, for each cohort, the curve of
death rates with its four nearest neighbours.

Our first examples are presented in Figure 12 centred on the 1909 and 1929 birth
cohorts. Both the left (1909) and right-hand (1929) plots exhibit the expected
pattern: namely that each of the five lines in each plot all follow a consistent upwards
trend that is close to linear. Each curve exhibits a certain amount of randomness as
age increases. This reflects (a) random variation in the number of deaths given the
true underlying death rate (known as Poisson type risk), and (b) randomness in the
period effects that drive improvements in the underlying death rates. At the higher
ages, the Poisson randomness is relatively modest, given the size of the underlying
population.

In the left-hand plot of Figure 12, the lines almost lie on top of each other across
the full range of ages. In the right-hand plot, the lines are more or less parallel, but
the positions of the five curves reflects a greater rate of improvement in mortality
rates between these cohorts. This greater rate of improvement between cohorts born
around 1930 is well known (see, for example, Willets, 2004). These plots are typical
of most birth cohorts.

Now contrast Figure 12 with Figure 13 (left), centred on the 1919 cohort. As a
graphical diagnostic, this latter plot does not exhibit the characteristics that we
would expect to see (as it does in Figure 12). Instead, we can see that the solid
black curve for the 1919 cohort after about age 75 trends below its neighbours. We
will discuss this in more detail later, but will just remark here that the pattern
is consistent with the emergence of phantoms in the 1919 cohort exposures over
the period between the censuses of 1991 (when the 1919 cohort was aged 72) and
2001: in other words, the problem with the 1919 cohort began in 1991. Thereafter,
the existence of the phantoms (who never die) causes the curve to drift lower still
relative to its neighbours (see Figure 4).

In Figure 13 (right), we have also plotted the cohort curves of death rates after
some model-based adjustments. Specifically, the crude death rates had systematic
period (calendar year) effects estimated by the model M9 outlined in Appendix C.
The procedure does not eliminate any of the Poisson-type randomess, so the greater
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Figure 12: Cohort death rates by age for the 1907 to 1911 cohorts (left) and the
1927 to 2031 cohorts (right). The right-hand end point for each curve corresponds
to 2011. ONS (revised) EW males data up to 2011.
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based on crude death rates. Right: modified death rates with model-based period
effects subtracted out. Other details as in Figure 12.
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degree of smoothness clearly indicates that randomness in the year-to-year period
effects is quite significant. Although the procedure produces smoother curves, our
conclusions about the 1919 cohort are clearly unchanged. Nevertheless, we mention
the procedure here because it might make detection of more modest anomalies easier,
albeit at the cost of introducing some modelling assumptions.

3.2 Graphical Diagnostics 2A and 2B

Hypothesis: Underlying log death rates are approximately linear within each cal-
endar year

This hypothesis leads us to the use of two graphical diagnostics that allow us to
visualise the same derived statistics in different ways.

As a starting point, we calculate how far individual groups of observations (three
consecutive ages within a calendar year) deviate from linearity as measured using
the empirical concavity function

C(t, x) = logm(t, x+ t)− 1

2

(
logm(t, x+ t− 1) + logm(t, x+ t+ 1)

)
We then plot this in two ways:

• 2A: plot C(t, x) by cohort: that is, (x0 + s, C(t0 + s, x0 + s)) for the (t0 − x0)
birth cohort;

• 2B: a 2-dimensional heat map of C(t, x) by age and calendar year.

If the hypothesis is true, the concavity function should stay close to zero without
exhibiting any systematic bias above or below.

Some typical results for graphical diagnostic 2A are plotted in Figure 14. The
pattern exhibited in the plot for the 1924 cohort is consistent with the hypothesis:
the dots are randomly above and below zero. However, the plots for the 1920, 1919,
and 1947 cohorts all contain structure that is not consistent with the hypothesis.
So we consider next what the irregular patterns tell us about the underlying data.

The 1919 and 1920 cohort plots each contain two specific effects. Before 1991,
the plots are level but are consistently above (1919) or below (1920) the zero line.
After 1992, both plots suddenly start to drift at a steady rate. The shift up or
down is consistent with our earlier discussion in Section 2.2.4 where we argued that
mid-year population estimates were not always good approximations to the true
exposures for some cohorts. In the 1919 and 1920 cohort plots, we have added a
horizontal dashed line which makes an allowance for this effect. The adjustment
means that, up to 1991, the plots of the empirical concavity function now look
more reasonable. However, the positioning of the dashed line in both cases could be
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improved suggesting that other factors are at play beyond the proposed Convexity
Adjustment Ratio. However, up to 1991, both plots are consistent with a systematic
bias in the estimate of cohort exposures.

After 1992, both plots drift steadily down or up. This is consistent with the intro-
duction of phantoms into the 1919 cohort and ’negative’ phantoms into the 1920
cohort from 1992 onwards. We infer from this that the method for shifting from a
census to the mid-year population estimate discussed in Section 2.2.2 was applied
at the time of the 2001 census but not in previous census years. Furthermore, the
apparent inconsistencies revealed in 2001 as a result of applying this method then
led the ONS to backfill by cohort over the period 1992 to 2001 to provide a smoother
progression of population estimates between the 1991 and 2001 censuses. In other
words, the ONS has corrected an error by smoothing it out rather than identifying
the cause of the error (see Figure 5). This will be discussed further when we consider
graphical diagnostic 3 below.

The plot for the 1947 cohort is generally more dispersed. The reason for this is that
the cohort is younger and, therefore, the underlying death counts are much smaller
and more random. However, we can still see that the dots are biased below zero, to
an extent that is consistent with a requirement to apply the Convexity Adjustment
Ratio as indicated by the horizontal dashed line.

We move on next to graphical diagnostic 2B, and plot the empirical concavity func-
tion in two dimensions in the form of a heat map in Figure 15. Apart from some
obvious structural features, we can also see greater randomness at the high ages and
low ages caused by low death counts. We can normalise the empirical concavity
function by dividing by an estimated standard error that is based on the Poisson
assumption. The normalised concavity function, CN(t, x), is plotted in Figure 16.

If the hypothesis about linearity in the log deaths rates were true, then the heat
map should essentially be completely random apart from some autocorrelation be-
tween cells within each calendar year as a result of the common contributors to, for
example, C(t, x) and C(t, x+ 1). Figure 16 does contain plenty of randomness, but
it also contains significant structure. The clear diagonals reflect the cohort biases
that we have already dicussed for the 1919, 1920 and 1947 cohorts as well as one or
two others. But other structural elements are ones that are new. Specifically, there
is a number of clear horizontal traces. In most cases, these horizontal bands are con-
sistent with small biases in the reporting of age at death. In general, these bands
of blue colour tend to be stronger towards the left suggesting that the reporting of
age at death has become steadily more accurate as time progresses.

The colour bands around age 90, suggest that deaths reported at age 90 and 91 are
too low rather than too high. Furthermore, this band is consistent across all years.
An alternative explanation to bias in the reporting of age at death is based on the
fact that exposures at age 90 and above are calculated using the Kannisto-Thatcher
method instead of the standard census and inter-censal methods estimates used at
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all ages up to 89. This simple graphical diagnostic suggests that the current way
in which the Kannisto-Thatcher method is employed potentially introduces a small
but systematic bias.

These age-related biases are investigated further in Figure 17 where we plot the
empirical cumulative distribution functions of the C(t, x) for specific ages, x. The
curve for age 88 looks about right (median close to 0). However, visually, the curves
for ages 90 and 91 look to be well to the left and those for ages 89 and 92 look
to be well to the right.17 The negative values for ages 90 and 91 point to either
significant under-reporting of deaths at ages 90 and 91 (implausible) or significant
overestimation of mid-year populations at those ages (and, possibly, also age 92) by
as much as 5%. Comparable plots for lower ages reveal shifts to the left and right,
but, typically, the sizes of the shifts are smaller and potentially less significant.
Additionally, as remarked previously, at lower ages, the age effects seem to diminish
gradually with time.

17The significance of these biases was confirmed informally using an adapted Kolmogorov-
Smirnov test that allowed for cross correlation between ages. The distribution of the test statistic
under the null hypothesis (no difference) was generated using simulation, revealing that the CDF’s
for ages 90 and 91 were very significantly different from those for ages 89 and 92.
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3.3 Graphical Diagnostic 3

Hypothesis: Changes in cohort population sizes should match closely the pattern
of reported deaths.

Recall that we have two types of data: death counts, D(t, x), and mid-year popula-
tion estimates, P (t+ 1

2
, x). We will now define the decrement

d̂(t+
1

2
, x) = P (t+

1

2
, x)− P (t+

3

2
, x+ 1)

which equals the sum of the deaths from the cohort aged x last birthday at time
t + 1

2
, denoted by d(t + 1

2
, x), and net emigration, M(t + 1

2
, x) (see Figure 3). At

high ages, net emigration will be modest compared to deaths and so d̂(t + 1
2
, x)

will be approximately equal to d(t + 1
2
, x). It is natural, therefore, to compare

d̂(t + 1
2
, x) with the reported death counts. However, as can be seen from Figure

3, four different reported death counts are linked to the decrement, d̂(t + 1
2
, x)

(namely, D(t, x), D(t, x + 1), D(t + 1, x) and D(t + 1, x + 1)). Consequently, we
plot d̂(t + 1

2
, x) for each cohort, and compare this with the reported deaths by

cohort. We need to make two types of adjustment to the data. First, death counts
D(t, x+ 1) and D(t+ 1, x) will be disproportionately high or low if the underlying
birth rates for these two cohorts were much higher or lower, respectively, relative to
the D(t, x) and D(t + 1, x + 1) cohort. Thus deaths in adjacent cohorts are scaled
to reflect this. Second, for the cohort in question, the mid-year population might
not be an adequate approximation to the true exposures, E(t, x), that corresponds
to the deaths, D(t, x). Thus, we scale the mid-year populations by the Convexity
Adjustment Ratio (CAR) and, hence, the d̂(t+ 1

2
, x), before these are plotted.

We summarise the above procedure as follows. For a plot that follows the t−x birth
cohort:

• plot (solid dots) d̂(t+ 1
2
, x)×CAR(t−x), where CAR(t−x) = E(t−x, 0)/P (t+

1
2
− x, 0);

• plot (black and blue lines respectively) D(t, x) and D(t + 1, x + 1) with no
adjustment;18

• plot (green line) D(t, x+ 1)× E(t− x, 0)/E(t− x− 1, 0);

• plot (red line) D(t+ 1, x)× E(t− x, 0)/E(t+ 1− x, 0).

Figures 18 and 19 show typical examples of how the plot should look if the hypothesis
is true. Specifically, the black dots and the four lines for the reported deaths follow
each other quite closely. The four curves of reported deaths all follow each other quite

18The blue line is simply the black line shifted by a year.
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closely, indicating that the adjustment for unequal births is about right: without this
adjustment, some curves would be significantly higher or lower than the central case.
The similar shape for each curve links to the hypothesis underpinning Graphical
Diagnostic 1. At younger ages and earlier years, the decrements d̂(t + 1

2
, x) are

rather more variable, reflecting year to year variations in net emigration.

Closer inspection reveals some unusual effects that indicate that there are issues
with the population data. For the 1914, 1915 and 1916 cohorts, the decrement
at age 90 is significantly and systematically below where we would expect it to
be. This provides support for our conclusions under Graphical Diagnostic 2B that
the alternative methodology for estimating exposures at age 90 and above needs
revision. For the 1914 cohort, for example, the decrement at age 90 is about 1500
below where it should be. The mid-year population at age 90 is 24,842 and so the
excess of 1500 equates to 6% of the cohort size at that age: again consistent with
our conclusions after Graphical Diagnostic 2B.

The plots in Figure 20 show examples where the plot is not consistent with the
hypothesis. For the 1919 and 1947 cohorts we can see that in the years 1992 to 2001
inclusive (grey bar), the dots are significantly and systematically below (1919) or
above (1947) the reported curves of deaths. The 1919 cohort and the left-hand 1947
cohort plots are based on the inter-censal population estimates as revised after the
2011 census. Now compare the left hand 1947 plot with the right hand 1947 plot
based on the post-2001-censal population estimates. Differences only exist in the
years 2002 to 2010, and we can see that the inter-censal values (middle plot) have
been subjected to what looks like a parallel shift down relative to the post-censal
values (right-hand plot). The shift down suggests that the previous error over the
1992-2001 period has been subjected to a reversal following the 2011 census.

Similar patterns of parallel shifts exist for other cohorts including 1920, 1944, 1945
and 1946 amongst others. However, the relationship between the 1992-2001 and
2002-2010 shifts is not always similar to the pair of 1947 cohort plots.

These parallel shifts up and down are consistent with the following sequence of
events:

• census to mid-year population adjustments up to 1991 seem to have produced
reasonable results. The method used is not reported;

• the method for adjusting from census to mid-year outlined in Section 2.2.2
was applied in 2001;

• differences between the resulting mid-year population estimates and the post-
1991-censal population estimates were then backfilled evenly over the years
1992 to 2001, producing the signature parallel shift down or up;
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Figure 18: Death curves for the 1924 (left), 1925 (centre) and 1926 (right) cohorts
by calendar year or, alternatively, by age (black and blue curves), and dots (cohort
population decrements multiplied by the Covexity Adjustment Ratio). Red and
green curves: death counts in adjacent cohorts adjusted for unequal cohort sizes.
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Figure 19: As Figure 18 but for the 1914 to 1916 cohorts.
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Figure 20: Death curves for the 1919 (left) and 1947 (centre and right) cohorts by
calendar year or, alternatively, by age (black and blue curves), and dots (cohort
population decrements multiplied by the Convexity Adjustment Ratio). Red and
green curves: death counts in adjacent cohorts adjusted for unequal cohort sizes.
The left and middle plots use the revised ONS data published in 2012 for years 1961
to 2011. The right plot uses the post-2001-censal ONS data for 1961 to 2010.

• the census to mid-year methodology applied in 2011 might have changed
back.19

The method of backfilling employed by the ONS in 2001 (Duncan et al., 2002) is
illustrated in a stylised way in Figure 21. This method of backfilling also produces a
signature plot for Graphical Diagnostic 1 for the 1919 cohort (Figure 13): the build
up of phantoms over the years 1992 to 2001 causes death rates for the 1919 cohort
to drift downwards relative to neighbouring cohorts.

For the 1919 cohort, the difference between the CBD census-to-mid-year method and
the method employed by the ONS amounted to 9.1% (Figure 8) or a potential error
of about 6600 people. If this error did not exist in 1991 and was spread evenly over
the years 1992 to 2001 then the adjustment would be 660 per year: this is entirely
consistent with the magnitude of the parallel shift that we observe in Figure 20 for
the 1919 cohort.

3.4 Summary

The combination of these three graphical diagnostics reveal that there remain sig-
nificant anomalies in the England & Wales males population data and how it is

19This is difficult to establish from the data, as the older 1919 and 1920 cohorts are now above
age 90 and subject to the 90+ methodology for estimating mid-year populations. Adjustments in
2011 attributable to those born in the 1940’s might be due to post-censal errors in assumed net
emigration.
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Figure 21: Stylised example of backfilling. Black bars: true population equal post-
1991-censal population estimates. Dark grey bar: Mid-year population estimate
following 2001 census to mid-year adjustment. Light grey bars: inter-censal adjust-
ments build up evenly over the preceding 10 years, with zero adjustment to 1991.

used to construct crude death rates. Furthermore, although the three diagnostics
are qualitatively different, they produce consistent results.

The 1919 and 1920 cohorts have been known for some time to have unusual patterns
of mortality. The graphical diagnostics indicate that the anomalies are the result
of unusual patterns of births and its interaction with the methodology employed in
any given census year to produce mid-year population estimates.

The three diagnostics produce a stronger set of conclusions than would be possible
using only one. Sometimes an anomaly will reveal itself clearly in only one of the
three diagnostics and might go unobserved in the other two.
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4 Model-Based Analysis of Historical Population

Data

We have identified anomalies in the England & Wales males data, leading us to
consider how these might be corrected in an objective way. The method we propose
here uses only given sets of exposures and deaths data.20 In addition, it would be
possible to exploit monthly or quarterly births data as we did in our discussion
of Graphical Diagnostic 2. However, we seek to develop an approach that can be
applied to a wide variety of datasets, many of which will not have births data in
addition to mid-year population and deaths data.

4.1 Underlying Modelling Hypotheses

In seeking to model errors in exposures, we will be guided by the following hypothe-
ses:

• Hypothesis A: death counts are accurate;

• Hypothesis B: exposures are subject to errors, and errors following cohorts are
correlated through time;

• Hypothesis C: within each calendar year the curve of underlying death rates
is “smooth”.

Based on these hypotheses, we adjust exposures to achieve a balance between B and
C. In order to make these adjustments, we need to translate these hypotheses into
a model for the errors.

4.2 Model for Errors in Exposures

We summarise here the main characteristics of the proposed model, with further
details provided in Appendix D:

• for notational convenience we will assume the data runs from years 1 to ny,
covering ages 1 to nx;

• Ê(t, x) = ONS estimate of the exposures for year t and age x: this is a known
(published) quantity;

20Exposures might be equated to mid-year population estimates or, as in the case of the Human
Mortality Database, data that are derived from population and deaths data. See Wilmoth et al.
(2007) and Appendix B.
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• E(t, x) = corresponding true, but unobserveable, exposures;

• D(t, x) = corresponding death count: this is assumed to be accurate;

• m(t, x) = true, but unobserveable, death rate;

• define ϵ(t, x) = logE(t, x) and Y (t, x) = logm(t, x);

• define ϕ(t, x) = ϵ(t, x) − ϵ̂(t, x), where ϵ̂(t, x) is the a priori unconditional
mean of ϵ(t, x). Specifically, ϵ̂(t, x) is chosen below so that the a priori mean
of E(t, x) = exp[ϵ(t, x)] equals Ê(t, x);

• conditional on m(t, x) and E(t, x), deaths, D(t, x) have a Poisson distribution
with mean and variance equal to m(t, x)E(t, x);

• consistent with hypothesis B, individual time series ϕ(t+ s, x+ s) for a given
(t, x) are modelled as AR(1) processes (details in Appendix D);

• consistent with hypothesis C, for a given t, Y (t, x) is modelled as an ARIMA(0,3,0)
process with low-variance innovations. An ARIMA(0,3,0) model with zero-
variance innovations would result in a quadratic curve. With a low variance,
the choice of model means that quadratic curvature is acceptable in terms of
“smoothness”. An ARIMA(0,2,0) process was also considered (implying that
linearity was acceptable, while quadratic curvature was penalised), but we
found that estimated exposure errors were not robust relative to the choice of
the lowest age in the dataset (e.g., 40 or 50). By contrast, whereas results for
the ARIMA(0,3,0) model were robust.

Our use of a Bayesian framework brings a number of advantages. As described above
it provides a natural setting in which we can build in our prior beliefs about the error
structure. The model plus data then allow us to estimate the true exposures, as well
as provide a full posterior distribution for the true exposures, the true death rates,
and the associated process parameters. This can then be used to make mortality
forecasts that incorporate uncertainty in exposures in a very straightforward way.

The latent state variables and process parameters are estimated using Markov chain
Monte Carlo (MCMC) and the Gibbs sampler (see Appendix D). This produces a
vector-valued Markov chain, M(i) under which, for each i, M(i) records a single
drawing of the latent state variables ϕi(t, x) and Yi(t, x) from the posterior distri-
bution. This means that not only can we obtain a point estimate of each error in
the exposures, but the Markov chain also gives us additional information about how
much uncertainty there is around these point estimates of the errors.

Figure 22 provides a heat plot of the posterior means of the errors, ϕ(t, x), on the
basis that the exposures are equal to the mid-year population. Greens and blues
indicate that the true exposures are lower than the ONS estimates; yellows and
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oranges indicate exposures need to be adjusted upwards. Mostly the errors are quite
small. However, we have highlighted some (but not all) features of the plot where
errors are significantly different from zero and consistently positive or negative. Most
of these significant features lie on diagonals that follow specific cohorts. The 1919
and 1886 cohorts exhibit the strongest negative errors, while the strongest positive
errors are for the 1900 cohort, with others associated with individual cohorts born
in the 1940’s, 50’s and 60’s. The pattern of errors for the 1919 and 1920 cohorts
are entirely consistent with the conclusions that we drew from Section 3. While the
earlier cohorts are either extinct or close to being so, the younger cohorts are still
large in number, so any measurement errors associated with them will be materially
significant.

The Bayesian analysis was repeated using exposures that had been adjusted for the
uneven pattern of births using the Convexity Adjustment Ratio (CAR), as outlined
in Section 2.2.4. The result of this is shown in Figure 23. The most obvious impact
is that the significant negative errors for the 1920 cohort and positive errors for
the 1919 cohort up to the early 1990’s have now been eliminated. However, other
errors, although modified, persist. For example, for the 1919 cohort in the last
15 years, errors are still significant and, from our investigation in Section 3, these
errors can be attributed to a change in census-to-mid-year methodology in 2001.
For the younger cohorts, the more extreme errors observable in Figure 22 have been
mitigated slightly, but clearly there are additional problems with the population
estimates for some of these cohorts. Adjusting for these types of errors is less easy,
as at least in some cases, they reflect changes from time to time in methodology.
In contrast, the Convexity Adjustment Ratio provides a straightforward, objective
and constant adjustment to the exposures for each cohort. Further, a key feature
of this section is that the simple model for errors and the Bayesian methodology
provides us with an objective method for estimating the true exposures that was
missing from Section 3.

Figure 22 also exhibits some persistent but small negative errors around ages 90
and 91, that are consistent with the concavity function in Figure 16. We can also
stress that there is nothing in the model that might inadvertently produce age effects
like this: what we observe is a genuine anomaly in the data. This is investigated
further in Figure 24, where we plot the empirical cumulative distribution functions
(ECDF) for the means of ϕ(1961, x), . . . , ϕ(2010, x) for ages x = 88 to 92. This
confirms observations in Section 3 that there are some modest issues that need to
be addressed in the high age methodology for estimating population and exposures
above age 90.

Plots similar to Figure 24 have been considered for other age groups and some ages
do stand out in a similar way. However, when we repeat the ECDF plots for two
time periods 1961-1985 and 1986-2010, we see that these other age effects disappear
over time (not the case for the age 88-92 plot). This points to these age-related
anomalies at lower ages being the result of bias in the reporting of age at death, and
reductions in this bias over time and/or improved cross checks.
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Figure 22: Heat plot of the posterior mean of the exposures error function, ϕ(t, x).
Exposures are assumed to be equal to the mid-year population estimates.
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4.3 ONS Females Data

The model was also applied to ONS England and Wales females data. The more
significant estimated exposure errors in general follow a similar pattern to males
(e.g., Figure 22). However, the errors for the 1919 and 1947 (and surrounding)
cohorts are not quite as extreme as for males. For the 1919 cohort, a possible
explanation is that, since females have lower mortality rates, the relative importance
of ‘phantoms that never die’ grows more slowly. For the 1947 and nearby cohorts,
the slightly bigger errors for males perhaps reflect greater problems in estimating the
number of migrants. However, these are conjectures and other explanations might
be equally valid.
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5 Impact of Exposure Errors on Future Mortality

Projections

We next consider what the impact is of these errors on future mortality-contingent
problems. We will compare two cases:

• model-based forecasts using the unadjusted ONS exposures data (2012 revi-
sions);

• model-based forecasts using adjusted exposures data outlined in Section 4,
incorporating uncertainty in the estimated exposure errors.

Forecasts using adjusted exposures, therefore, include partial allowance for param-
eter uncertainty: that is, they allow for uncertainty in the exposures, but do not
allow for uncertainty in estimates of, for example, model-specific period effects (see
below).

By way of example, we use the following model (see Appendix C)

logit q(t, x) = β(0)(x) + κ(1)(t) + κ(2)(t)β(2)(x) + κ(3)(t)β(3)(x) + γ(4)(t− x).

Mortality projections using adjusted exposures are generated using the following
algorithm:

• we generate i = 1, . . . , N stochastic scenarios;

• for scenario i, draw the matrix of errors, ϕ(i)(t, x), from the posterior distribu-
tion independent of the other scenarios;

• let E(i)(t, x) = Ê(t, x) exp[ϕ(i)(t, x)] be the matrix of adjusted exposures;

• fit the stochastic mortality model M9 to actual deaths, D(t, x), and scenario
i exposures, E(i)(t, x);

• forecast uncertainty based on scenario i exposures plus the fitted period and
cohort effects under M9;

• combine the N forecasts into one set of scenarios and analyse the results.

In Figure 25, we compare mortality fan charts for unadjusted (red) and adjusted
(blue) exposures data. Broadly speaking, the fans are quite similar in terms of cen-
tral trajectory and spread. The similar spread indicates that parameter uncertainty
in the adjusted exposures is not that large compared to uncertainty in future period
and cohort effects. However, in terms of the detail the blue fans are quite smooth,
while the red fans are relatively lumpy. This lumpiness is linked to the estimated
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cohort effect (see Figure 26). Specifically, the blips associated with the progress
through time of the 1919 and 1947 cohorts (Figure 25) correspond to jumps in the
fitted cohort effect in model M9 (Figure 26). Figure 26 shows the cohort effect.
The red line shows the cohort effect using the unadjusted exposures data. Mostly
this is fairly smooth, but there are extreme jumps associated with the 1919 and
1947 cohorts. When the model is refitted to adjusted exposures data, the fitted
cohort effect ceases to have these extreme jumps (see, for example the yellow line).
Otherwise the fitted cohort effect has a similar level of smoothness as before.

We consider next the impact on cohort effects and annuity values. In Figure 27,
we show, as a blue fan, the difference between the cohort effects after and before
adjustment (blue fan minus the red line in Figure 26, to demonstrate the impact of
the adjustment on cohort effects. Generally the differences are quite smooth and
centred close to zero. However, there are some significant jumps associated with
the 1919 and 1947 cohorts. We then compare these differences with the impact
on annuity values (Figure 27, red line). By way of example, Figure 28 shows, by
reference to cohort survivorship fan charts, why the annuity price changes by so
much. Over a period of only 8 years, the proportion of survivors is 11% lower using
the adjusted exposures.

From Figure 27, we can see that the impact on annuity values is strongly correlated,
as we would expect, with the impact on annuity values. The expected present value
of an annuity from the end of year t payable annually in arrears to a male aged x
at the end of year t is

a(t, x) =
∞∑
s=1

(1 + r)−sE[S(t, s, x)|Mt] (4)

where S(t, s, x) is a survivor index that represents the proportion of males aged x at
time t who survive to t+ s, and Mt represents the mortality information available
at time t. An interest rate of r = 2% has been assumed.

Annuity values are tabulated in Table 3 for selected cohorts, mean values are given
using both unadjusted and adjusted exposures data along with the standard de-
viation of the random present value of the annuity (per £1 of annuity for a large
population). We can see that while the 1919 cohort has the largest proportional
change, the 1947 cohort has the largest nominal change, reflecting the fact that this
cohort will live much longer. On the other hand, the impact of uncertain survivor-
ship for this cohort is more distant and so its effect is dampened by the discount
factor.

The 1919 cohort is the most interesting visually in much of our analyses. However,
for the majority of pension plans and annuity providers, cohorts born in the 1940’s
and 1950’s for whom we also detect significant (but smaller than 1919) anomalies
should be of most concern from a financial perspective. Additionally, although price
impacts are currently modest, we should take account of them, and monitor the
development of the anomalies over time.
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Age PV: Unadjusted PV: Adjusted Percentage
x Cohort Mean St.Dev. Mean Difference
63 1948 17.24 2.2% 17.16 +0.5%
64 1947 16.83 2.2% 16.58 +1.5%
65 1946 15.97 2.3% 15.99 −0.1%
92 1919 3.02 4.2% 2.90 +4.2%

Table 3: Annuity present values for various cohorts from the end of 2010, assuming
r = 2%, using unadjusted and adjusted exposures. Age= age at the end of 2010.
Standard deviations are of PV =

∑∞
s=1(1+ r)−sS(t, s, x)|Mt for t = end 2010 using

unadjusted exposures and are expressed as a percentage of the mean. Mean present
values are shown before and after adjustment of the exposures.

6 Conclusions and Next Steps

The 2011 census revisions to England & Wales population estimates by the ONS
drew attention to the possibility that there are widespread errors in how population
data are measured and reported in many countries. In particular, we have discovered
that an uneven pattern of births within a given calendar year is a major cause of
errors in population and exposures data. Different countries or agencies might derive
population and exposures in different ways. But, however they do this, the estimates
will be subject to potentially significant errors unless they take into account monthly
or quarterly births data.

We have developed a range of methods to help identify specific errors in population,
exposures and deaths data:

• graphical diagnostics providing a powerful model-free toolkit for identifying
anomalies in the form of signature plots;

• a Bayesian framework enabling the size of these anomalies to be quantified;

• two-dimensional diagnostics enabling the detection of small systematic errors
in exposures and deaths of less than 1%.

Our analysis using these methods has shown that errors remain in ONS population
data. We have developed the Cohort-Births-Deaths (CBD) Exposures Methodology
which can be used to explain many of the bigger errors. The first component was
the convexity adjustment ratio which can be used to explain how persistent cohort-
related errors arise when exposures are derived from mid-year population estimates.
The second component was the improved method for deriving mid-year population
estimates in census years from census data. Other errors were identified but only
partially explained by the CBD Exposures Methodology.
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Figure 29: Heat plot of the posterior mean of the exposures error function, ϕ(t, x),
for US males. Source data for deaths and exposures: Human Mortality Database.

In addition, anomalies in death rates have been identified that we believe are due
to:

• potential small biases in the reported age at death;

• use of the Kannisto-Thatcher high age methodology resulting in a discontinuity
at age 90.

Collectively, these errors can make substantial differences, particularly in respect of
cohorts that are still large enough to have a significant financial impact, an example
being the 1947 cohort within an annuity portfolio.

The same sources of errors – with possible variants – will apply to other countries.
Some countries are similar to England & Wales in that they derive their population
data from periodic (typically decadal) censuses. As one example, data collection
in the US shares similar characteristics and reveals similar anomalies to England
& Wales (see Figure 29). Other (typically smaller) countries have compulsory sys-
tems of registration, meaning that both deaths and population counts are accurate.
However, there is still the potential for errors to be introduced when exposures are
derived from annual published population values. As an example, the Netherlands
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publishes accurate start of year population data. So, if average population expo-
sures data are derived from the start of year population data, then errors can be
introduced as a result of an uneven pattern of births. The implication of all this is
that definitions of published data need to be read carefully and published numbers
that are exact should be used wherever possible, while population figures that are
derived from these (possibly by other agencies) should be used with caution.

Our analysis also suggests the following next steps:

• A fundamental review of all official mortality data and how users interpret
these data.

• Until this review is complete, we need to recognise that stochastic mortal-
ity modelling is potentially flawed; in particular, we need to stop assuming
exposures equal the mid-year population.

• Engagement with a range of stakeholders, including, government and supra-
national agencies, professional bodies, specialist longevity modelling consul-
tancies, and private-sector holders of longevity risk (e.g., pension plans, insur-
ers, reinsurers).

• Better communication between government agencies to exploit information
contained in different public databases.

• Collection of monthly/quarterly births data (which is essential for error mit-
igation).

• Revisit the census to mid-year population methodology.

• Revisit the high-age population methodology, including comparison with that
employed by the Human Mortality Database (Wilmoth et al., 2007).

• Develop software for tackling errors in population data. The software would
incorporate: a module for graphical diagnostics, a model-based quantification
of errors, and a (revised) high-age methodology. The output would comprise
updated population and mortality tables.

• Further numerical and modelling work, such as: a review of the Kannisto-
Thatcher methodology, allowance for uncertainty in reported deaths, model
future revisions to data, analysis of data from other countries, and the impact
on multi-population modelling.
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A Estimating Age 0 Population and Exposures

from Births Data

UK Office for National Statistics (ONS) data for numbers of male and female births
has been sourced by quarter of birth from 1838 to 1937, and by month from 1938
to 2003 inclusive (166 years).

Throughout this appendix we will assume that after birth there are no deaths at
age 0 and no migration.

A.1 Quarterly births data

With quarterly births data (1838 to 1937), we have BQ(t) = births in the quarter t
to t+0.25, where t is itself an integer multiple of 0.25. For the period 1938 to 2003,
we simply aggregate the monthly births data into quarterly data.

At quarterly intervals, the population aged 0 last birthday at time t is then known
exactly and is the sum of the previous four quarterly birth counts. Thus, if t is a
multiple of 0.25,

P (t, 0) = BQ(t− 1) +BQ(t− 0.75) +BQ(t− 0.5) +BQ(t− 0.25).

For times t in between quarter dates, we suggest linear interpolation, although other
methods involving local fitting of polynomials or splines could be considered. Linear
interpolation is equivalent to the assumption that quarterly births are uniformly
distributed over the three months.

A.2 Monthly births data

With monthly births data (1938 to 2003), we have BM(t) = births in the month t
to t+1/12 where t is itself an integer multiple of 1/12. For the period 1838 to 1937,
we make the simple assumption that quarterly births are spread uniformly across
each of the three months.

At monthly intervals, the population aged 0 last birthday at time t is then known
exactly and is the sum of the previous twelve monthly birth counts. Thus, if t is a
multiple of 1/12,

P (t, 0) =
12∑
i=1

BM(t− i/12).
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For times t in between each month end, we suggest linear interpolation, although
other methods involving local fitting of polynomials or splines could be considered.

The use of monthly data is clearly better than quarterly where these data are avail-
able. Furthermore, where source data are quarterly, the proposed linear interpola-
tion makes age 0 population estimates under the monthly and quarterly give iden-
tical results. Consequently, we will use monthly births data to calculate population
estimates.

A.3 Exposures

Lastly, we seek to estimate the exposures for age 0 last birthday in year t. We
have E(t, 0) =

∫ 1

0
P (t + s, 0)ds where the function P (t + s, 0) has been estimated

using the monthly births data as above. We then use Simpson’s Rule for numerical
integration:

E(t, 0) =
12∑
i=0

wiP (t+ i/12, 0)

where wi = 1/36 for i = 0, 12, wi = 4/36 for i = 1, 3, 5, 7, 9, 11 and wi = 2/36 for
i = 2, 4, 6, 8, 10. Equivalently,

E(t, 0) =
11∑

i=−12

biBM(t+ i/12)

where b = (1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 35, 31, 29, 25, 23, 19, 17, 13, 11, 7, 5, 1)/36.21

B Human Mortality Database Estimation of Ex-

posures

We summarise here the main elements of Wilmoth et al. (2007) that concern the
calculation of exposures over the majority of ages (i.e., not age 0, and not very high
ages):

• If 1 January population estimates are not published then these are derived
using linear interpolation. For example, in England & Wales (EW), mid-year
population estimates, P (t + 1

2
, x), are published. Linear interpolation means

that P (t, x) = 1
2

(
P (t− 1

2
, x) + P (t+ 1

2
, x)

)
.

21Note the elements of b sum to 12 rather than 1 as the births are monthly rather than annual.



48

• Exposures are then (for EW)

E(t, x) =
1

2
(P (t, x) + P (t+ 1, x)) +

1

6
(DL(t, x)−DU(t, x))

=
1

4
P (t− 1

2
, x) +

1

2
P (t+

1

2
, x) +

1

4
P (t+

3

2
, x) +

1

6
(DL(t, x)−DU(t, x))

where DL(t, x) and DU(t, x) are the lower and upper Lexis triangles of deaths.
DL(t, x) = deaths in year t aged x last birthday, and born in year t − x,
DU(t, x) = deaths in year t aged x last birthday, and born in year t − x − 1,
andDL(t, x)+DU(t, x) = D(t, x). Typically, DL(t, x) is a bit less thanDU(t, x)
(the t− x− 1 birth cohort are older and, therefore, experience slightly higher
mortality rates), but the method proposed by Wilmoth et al. (2007, equations
(4) and (7)) adjusts the balance further to take account of age and, more
importantly, relative birth counts in years t − x − 1 and t − x. Birth counts
are by calendar year rather than by month or quarter.

C The M9 Stochastic Mortality Model

By way of example in this paper, we have used the following model labelled M9 (an
extension of model M7 proposed by Cairns et al., 2009, and similar in motivation
to that of Plat, 2009)

logit q(t, x) = β(0)(x) + κ(1)(t) + κ(2)(t)β(2)(x) + κ(3)(t)β(3)(x) + γ(4)(t− x)

where the κ(i)(t) are stochastic period effects, γ(4)(c) is a stochastic cohort effect,
β(2)(x) = (x − x̄) and β(3)(x) = (x − x̄)2 − σ2

x are fixed age effects, x̄ and σx are
the mean and standard deviation respectively of the ages under consideration, and
β(0)(x) is an additional non-parametric age effect (borrowing from the Lee-Carter
approach). As with Plat (2009), the introduction of β(0)(x) allows the model to
be applied with greater accuracy to a wider range of ages than would normally be
recommended for the first and second-generation CBD mortality models (M5, M6
and M7).

M9 has seven identifiability constraints:
∑

t κ
(i)(t) = 0 for i = 1, 2, 3 and

∑
c γ

(4)(c)ck =
0 for k = 0, 1, 2, 3.

D Modelling Uncertainty in Exposures

We assume that, for each t and x, E(t, x)/Ê(t, x), the ratio of true to published
exposures, has a log-normal distribution with mean 1: that is, there is no a priori
reason to assume that the ONS would deliberately over or under-estimate exposures.
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Additionally, we model the logarithm of the latent death rates, Y (t, x) = logm(t, x),
as having an underlying smoothness across ages in a given calendar year, t. Basic
notation is defined in Section 4.

The components of the modelling process are as follows:

• Define ϵ(t, x) = logE(t, x) and Y (t, x) = logm(t, x).

• Define ϕ(t, x) = ϵ(t, x) − ϵ̂(t, x) where ϵ̂(t, x) is the prior unconditional mean
of ϵ(t, x). ϵ̂(t, x) is chosen below so that E(t, x) = exp[ϵ(t, x)] has prior uncon-
ditional mean Ê(t, x).

• Conditional onm(t, x) and E(t, x), deaths, D(t, x), have a Poisson distribution
with mean and variance equal to m(t, x)E(t, x).

• Model for the propagation of errors in exposures.

– Let 0 < θ < 1, and σϕ > 0 be the model parameters.

– Let Zϕ(t, x) for t = 2, . . . , ny and x = 1, . . . , nx be independent and
identically distributed standard normal random variables.

– For t = 2, . . . , ny and x = 2, . . . , nx:

ϵ(t, x) = ϵ̂(t, x) + θ (ϵ(t− 1, x− 1)− ϵ̂(t− 1, x− 1)) + σϕZϕ(t, x)

or, more simply,

ϕ(t, x) = θϕ(t− 1, x− 1) + σϕZϕ(t, x).

– For t = 2, . . . , ny and x = 1:

ϕ(t, 1) = θϕ(t− 1, 1) + σϕZϕ(t, 1).

– Thus, if we write ϕ(t) = (ϕ(t, 1), . . . , ϕ(t, nx))
′, then, for t = 2, . . . , ny,

ϕ(t) has a multivariate normal distribution with mean Aϕ(t − 1) and
covariance matrix Vϕ, where

A =



θ 0 0 . . . 0
θ 0 . . .
0 θ 0 . . .
0 0 θ 0 . . .
...

. . . . . . . . .
...

0 . . . . . . 0 θ 0


, and Vϕ =


σ2
ϕ 0 . . . 0

0 σ2
ϕ

. . .
...

...
. . . . . . 0

0 . . . 0 σ2
ϕ





50

– Let ϕ(1) = (ϕ(1, 1), . . . , ϕ(1, nx))
′ be the vector of errors in year 1. ϕ(1)

has a multivariate normal distrubution with mean vector 0 and covariance
matrix V0ϕ, this being the stationary distribution of the vector autore-
gressive (VAR) process for ϕ(t), and is independent of the Zϕ(t, x) for
t > 1.

For the simple VAR process we have:

V ar(ϕ(1, x)) = σ2
ϕ/(1− θ2) for all x

and, for y > x,
cor (ϕ(1, x), ϕ(1, y)) = θ2(y−1)

which, in combination, define the covariance matrix V0ϕ. The reality con-
cerning the introduction and propagation of errors in exposure estimates
is, no doubt, much more complex than this VAR model. Our choice has
been kept deliberately simple in the hope that the data themselves will
prevail and that the VAR model will not influence strongly the actual
estimates of the true exposures.

• Model for the underlying death rates.

Individual years are treated in isolation and assume the following:

Y (t, x) = 3Y (t, x− 1)− 3Y (t, x− 2) + Y (t, x− 3) + σYZY (t, x)

where the ZY (t, x) are i.i.d. standard normal random variables. Thus, for a
given t, Y (t, x) is an ARIMA(0,3,0) process, giving locally quadratic predic-
tions plus noise proportional to σY .

Specifically, we choose σY to be small so that, for each t, the observed process
Y (t, x) prefers to be smooth and linear rather than rough or curved. The choice
of an ARIMA(0,3,0) was preferred to an ARIMA(0,2,0) (linear prediction plus
noise) because the former resulted in a much greater degree of robustness in
the exposures errors relative to the choice of minimum age.

• Model for deaths.

For each t and x, and given ϕ(t, x) and Y (t, x), we assume that deaths, D(t, x),
have a log-normal distribution. d(t, x) = logD(t, x) thus has a normal distri-
bution and we define its mean to be ϵ̂(t, x) + ϕ(t, x) + Y (t) (which is the log
of the mean of D(t, x) under the alternative conditional Poisson assumption)
and its variance to be SD(t, x) = 1/D̂(t, x), where D̂(t, x) is set equal to the
observed deaths. The rationale for this choice is that

– E[exp d(t, x)] ≈ exp[ϵ̂(t, x)+ϕ(t, x)+Y (t)] and V ar[exp d(t, x)] ≈ exp[ϵ̂(t, x)+
ϕ(t, x)+Y (t)]: this is consistent with the conditional Poisson assumption.
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– Fixing SD(t, x) in the self referential way that we have is consistent with
the idea that if we were to resimulate a Poisson random variable based
on a single observation, we might simulate a Poisson with mean (and
variance) equal to the value of that one observation. This is a good
approximation if numbers of deaths are relatively large.

• Apart from the time-series structures specified above, the matrices of latent
state variables, Y and ϕ, are assumed to have uninformative, uniform prior
distributions on (−∞,∞)nY ×nx .

• We treat the process parameters as exogenously specified: σY = 0.01, σV =
0.02 and θ = 0.9. σY = 0.01 reflects our desire for a high degree of smoothness
in Y (t, x). σV = 0.02 reflects the revisions that we have seen in the ONS ex-
posures data. ϕ = 0.9 reflects the strong persistence of errors in the exposures
data. Estimated exposure errors have been tested for sensitivity to these three
parameters and results have been found to be robust.

The log-likelihood for our model is then:

f(ϕ, Y |d, Ê) = f1(d|Y, ϕ, Ê) + f2(ϕ) + f3(Y ) (5)

where

d(t, x) = logD(t, x)

f1(d|Y, ϕ, Ê) = −1

2

ny∑
t=1

(d(t)− Y (t)− ϵ̂(t)− ϕ(t))′ SD(t)
−1 (d(t)− Y (t)− ϵ̂(t)− ϕ(t)) + const.

f2(ϕ) = f2A(ϕ(1)) +

n1∑
t=2

f2B(ϕ(t))

f2A(ϕ(t)) = −1

2
(ϕ(t)− Aϕ(t− 1))′ V −1

ϵ (ϕ(t)− Aϕ(t− 1)) + const.

f2B(ϕ(1)) = −1

2
ϕ(1)′V −1

0ϵ ϕ(1) + const.

and

f3(Y ) = −1

2

ny∑
t=1

1

σ2
Y

Y (t)′∆′∆Y (t) + const.

and where

∆ =


1 −3 3 −1 0 · · · · · ·
0 1 −3 3 −1 0 · · ·
... 0 1 −3 3 −1 · · ·
...

. . . . . . . . . . . . . . .

0 1 −3 3 −1

 (an nx − 3× nx matrix).

Since Y and ϕ have uniform prior distributions, the log-likelihood above (Equation
5) is equal to the log-posterior density. The posterior distribution for the combined
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(Y, ϕ) can be seen to be multivariate normal. However, the dimension of the state
space (2nxny) is very large, and so identifying the mean and covariance matrix for the
posterior is computationally almost impossible. Instead, we adopt a Markov chain
Monte Carlo (MCMC) approach using the Gibbs sampler as a proposal distribution.
The MCMC algorithm proceeds as follows:

• Let Y (t)C represent all elements of (Y, ϕ) apart from the vector Y (t), and
ϕ(t)C represent all elements of (Y, ϕ), apart from the vector ϕ(t).

• For t = 1, . . . , ny, the conditional posterior for Y (t) given Y (t)C is multivariate
normal with mean µY ≡ µ(Y (t)C) and covariance matrix HY ≡ H(Y (t)C))
where

HY = SD(t)
−1 +

1

σ2
Y

∆′
2∆2

µY = H−1
Y SD(t)

−1 (d(t)− ϵ̂(t)− ϕ(t)) .

• The conditional posterior distribution for ϕ(1) given ϕ(1)C is multivariate nor-
mal with mean µϕ(1, ϕ(1)

C) and covariance matrix Hϕ(1, ϕ(1)
C) where

Hϕ = SD(1)
−1 + A′V −1

ϵ A+ V −1
0ϕ

µϕ = H−1
ϕ

(
SD(1)

−1(d(1)− ϵ̂(1)− Y (1)) + A′V −1
ϕ ϕ(2)

)
.

• The conditional posterior distribution for ϕ(t) given ϕ(t)C , for t = 2, . . . , ny−1,
is multivariate normal with mean µϕ(t, ϕ(t)

C) and covariance matrixHϕ(t, ϕ(t)
C)

where

Hϕ = SD(t)
−1 + V −1

ϕ + A′V −1
ϕ A

µϕ = H−1
ϕ

(
SD(t)

−1(d(t)− ϵ̂(t)− Y (t)) + V −1
ϕ Aϕ(t− 1) + A′V −1

ϕ ϕ(t+ 1)
)
.

• The conditional posterior distribution for ϕ(ny) given ϕ(ny)
C is multivariate

normal with mean µϕ(ny, ϕ(ny)
C) and covariance matrix Hϕ(ny, ϕ(ny)

C) where

Hϕ = SD(ny)
−1 + V −1

ϕ

µϕ = H−1
ϕ

(
SD(ny)

−1(d(ny)− ϵ̂(ny)− Y (ny)) + V −1
ϕ Aϕ(ny − 1)

)
.


