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Abstract 

The nanoscopic details of the crystal growth of zeolite A in the presence of the organic modifiers 

diethanolmaine (DEA) and triethanolamine (TEA) has been determined using a combination of atomic 

force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM) coupled with 

Monte Carlo simulations. Crystallization of zeolite A in the presence of TEA was faster than when the 

growing solution contained DEA. In addition the morphology of the final zeolite A crystals depended on 

the type of organic molecule, with TEA producing crystals bound only by {100} facets and DEA lead-

ing to the formation of relatively large {110} faces. These features can be explained in terms of the rela-

tive Si/Al in the growing medium and its control due to the different affinity of the organic molecules to 

Al.   In addition, synthesis performed at 90 °C showed the appearance of {211} facets. Careful review 

of the HRSEM and AFM images, in addition to comparison with the MC simulations reveal that these 

are in fact pseudo-facets, product of the slow dissolution of the metastable zeolite A crystals.  This 



proves that the final habit of the LTA crystals can be governed by very small changes of saturation of 

the growing medium and a control of this paremeter can prove advantageous when designing crystals 

for industrial applications. 
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1. INTRODUCTION 

The role of organic additives in the synthesis of zeolite A has received considerable attention in 

the past.1-7  The most widely used additive is triethanolamine (TEA), which has been used to produce 

large zeolite A crystals.5, 6  This is because TEA complexes with Al3+ ions through its hydroxyl groups, 

and then it releases them slowly, reducing the rate of nucleation.
2
  Other tertiary alkanolamines have 

shown a similar behaviour.
1
  Petranovskii et al.

7
 investigated the effect of TEA in addition to triisopro-

panolamine, diisopropanolamine and diethanolamine (DEA). They found that crystals formed in the 

presence of secondary amines showed the formation of large {110} faces. This was in contrast to the 

morphology of those crystals grown with tertiary amines which were bound exclusively by {100} faces. 

Petranovskii et al. attributed the change in morphology to the formation of a new aluminium complex in 

the presence of the secondary amines, as shown by NMR spectroscopy7. In spite of these studies, no de-

tailed nanoscopic analysis of the crystal growth of zeolite A in the presence of additives exists in the lit-

erature. In a previous paper
8
 we demonstrated the usefulness of atomic force and high resolution scan-

ning electron microscopy (AFM and HRSEM) for unravelling the full picture of zeolite A crystal 

growth, from nucleation to the end of synthesis, in an organic-free system. In this paper we have fol-

lowed a similar approach to study the synthesis of zeolite A in the presence of two organic additives: 

triethanolamine and diethanolamine. Additionally, we have performed Monte Carlo simulations to fur-

ther understand the growth features observed at near-equilibrium conditions on all crystal faces.  

2. EXPERIMENTAL SECTION 

2.1 Synthesis.  Synthesis of zeolite A in the presence of TEA, DEA and a 50%-50% TEA-DEA 

mixture was carried out following the procedure developed by Petranovskii,
7
 which is, in turn, derived 
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from the original method of Charnell to grow large zeolite A and zeolite X crystals.
5
 The molar compo-

sition of the solutions used was: 0.86Na2O:0.44SiO2:0.42Al2O3:5.71R-OH:111H2O. The concentration 

of DEA/TEA was adjusted to achieve a constant molar ratio of 5.71 R-OH groups per synthesis. A solu-

tion of sodium metasilicate was prepared by dissolving the corresponding amount of sodium metasili-

cate pentahydrate (Fluka, purum >97%)  in one half of the total water. To this solution one half of the 

corresponding DEA (BDH) or TEA (Aldrich) was added. The aluminate solution was prepared by mix-

ing the required amount of sodium aluminate (FSA, anhydrous) to the remaining water. The second half 

of TEA/DEA was added to this solution. The two solutions were mixed and stirred for a few minutes 

before being divided into several polypropylene bottles and introduced in ovens at the required tempera-

ture. Two different batches of experiments were carried out. In the first batch, experiments were carried 

out at two different temperatures (75 and 90 °C), three experimental times (10, 14 and 20 days) and for 

three different contents of DEA/TEA, as shown in Table 1.  The second batch was carried out exclusive-

ly in the presence of diethanolamine and is summarized in Table 2. Once a specified synthesis time was 

completed the corresponding polypropylene bottle was extracted from the oven and immediately intro-

duced in a bath of cold water. This “quenching” step decreased the solution temperature (and the rates of 

any growth/dissolution reactions) very rapidly minimising any possible changes in the surface topology. 

The synthesis product was then washed in deionized water until the pH was below 9, filtered, and left to 

dry overnight at 80 °C. This treatment was not expected to produce any modifications on the zeolite A 

surface topography either as it has been shown that dissolution of this phase only takes place at very 

high pH (above 13) at a significant rate (to modify the surface features in a few hours). 
9
 

2.2 Scanning Electron Microscopy. SEM images were obtained using a FEI Quanta environmen-

tal scanning electron microscope. Samples were prepared by spreading zeolite powder on a carbon tape 

stuck on a metal stub followed by sputter coating with gold to reduce charging effects under the electron 

beam. For acquiring high-resolution SEM images, samples were placed on a conductive surface but left 
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uncoated and were taken using a JEOL JSM-7401F (cold-FESEM) using the Everhart–Thornley sec-

ondary electron detector. 

Table 1. Samples prepared to compare different organic additives in the synthesis of zeolite A 

 

Temperature 100% 100% 50%/50% Time 

(°C) TEA DEA TEA/DEA (days) 

75 S1 S5 S9 10 

75 S2 S6 S10 14 

75 S3 S7 S11 20 

90 S4 S8 S12 10 

 

Table 2. Samples prepared to compare different temperatures and times in the synthesis of zeolite A 

 

60°C 75°C 90°C 

Time 

(days) 
code 

Time 

(days) 
code 

Time 

(days) 
code 

2 S13 2 S19 2 S25 

4 S14 3 S20 3 S26 

6 S15 4 S21 4 S27 

8 S16 5 S22 5 S28 

12 S17 7 S23 7 S29 

14 S18 10 S24 10 S30 

 

2.3 Atomic Force Microscopy. AFM images were acquired using a JPK instruments Nano Wizard 

II. Images were taken on contact mode. Standard silicon nitride tips (NP Bruker Probes), with a nominal 

radius of 20 nm and a nominal spring constant of 0.58 N/m were used. 

2.4 Powder X-ray diffraction. Powder X-ray diffraction patterns were obtained by means of a 

Philips X’pert diffractometer using Cu−Kα radiation. 

2.5 Monte Carlo simulations.  Monte Carlo simulations were performed using an in-house 

Fortran 90 program with graphics rendered in an in-house program constructed in C++ utilising the 
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OpenGL application programming interface. In order to investigate the crystal growth of zeolite A, a 

highly simplified model was constructed in order to draw out the most important aspects that control 

crystal habit. The simplification is based upon our knowledge that closed-cage structures in zeolites are 

substantially more stable than open-cage structures
10

. This comes from a careful analysis of the AFM 

aided dissolution of zeolite L whereby the structure was “unstitched” unit-by-unit.  This dissolution oc-

curred in a set of seven discrete steps all of which involved closed-cage structures indicating that these 

are by far and away the most stable entities and therefore the rate-determining structures.  In zeolite A 

there are three closed-cage structures: the double four ring (D4R), the BETA (β) cage and the ALPHA 

(α) cage. These cages fill space to form the zeolite A framework. If a given cage is closed, that  cage is 

complete in terms of all tetrahedral silicon or aluminium atoms being present. Then every tetrahedral 

site (T-site) is of Q3 connectivity at the surface of the crystal. If a given cage is incomplete then T-sites 

at the surface can be of Q1 or Q2 connectivity, making the energy of the open-cage substantially higher 

and more unstable. Therefore, in terms of the kinetics of crystal growth the formation of stable closed-

cage structures will be rate determining. As a consequence the simulation can be coarse grained into the 

growth of whole closed-cages – even though in reality the fundamental growth mechanism will be by 

smaller oligomers.  By adopting this approach it is not important the nature of the growth units because 

the kinetics are controlled overwhelmingly by the relative stability of the more stable surface structures.  

This, in effect, allows us to concentrate on the crystalline phase rather that the solution phase. In this 

simplified model there are only four unknown energy values that need to be determined. These are the 

energy penalties for T-O-T condensation in each of the three cage types UD4R, Uβ and Uα (given as Ui in 

the equations below) plus the driving force energy ∆µ  (related to the supersaturation).  Supersaturation 

is notoriously difficult to measure in zeolite syntheses but, for our purposes, we focus on a well-defined 

driving force, ∆µ , without trying to make the precise link between ∆µ  and supersaturation.  This is a 

pragmatic approach but still quite powerful as we are able to determine the consequences of increasing 
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or decreasing driving force which, for the experimentalist, means increasing or decreasing supersatura-

tion respectively. The program is able to determine the value of ∆µeq at the equilibrium point by de-

creasing ∆µ for a growth event and increasing ∆µ for a dissolution event.  In this manner the dynamic 

equilibrium is approached.  As a consequence it is possible to run the program in conditions of either 

super-saturation or under-saturation by choosing values of ∆µ above or below ∆µeq.  Also, as the pro-

gram determines the value of the driving force energy at equilibrium the ∆µ term becomes known when 

equilibrium is reached reducing the unknown parameters to three if comparisons are made with crystals 

withdrawn at the end of the synthesis close to equilibrium. To understand the energetic considerations 

made in this simplified approach a number of hypothetical cases can be considered. The β cage consists 

of 24 T-sites, two hypothetical extremes can be considered. The first is a β cage that is within the crystal 

bulk, all 24 T-sites will be present and exhibit Q4 connectivity. This first extreme case represents the 

most stable configuration a closed-cage can take, every other configuration can be considered to be en-

ergetically destabilised with respect to this configuration. The second case would be the formation of a 

closed β cage from all 24 T-sites (all are Q3 connectivity), this would represent the most energetically 

destabilised case with respect to the crystal bulk. Every growth site at the crystal surface will fall be-

tween these two extremes, where the energy required for formation of a given closed-cage is propor-

tional to the number n of Q3 T-sites in the closed cage. Thus if the energy penalty of transforming a Q3 

to a Q4 site in the β cage is Uβ then the energy required to form the closed cage is proportional to n. The 

same logic can then be applied to the energetics of the remaining two cage types to yield an energetic 

model in which the energy penalty parameters can be assigned various quantities and their effect upon 

crystal habit observed. Probabilities for growth relative to dissolution were calculated according to the 

protocol of Boerrigter et al.
11

 using an approach similar to that described by Brent et al.
10

 recently for 

zeolite L. Considering a specific site for growth (Tn where T is α, β or D4R and n the number of Q3 sites 
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in the cage to be grown or dissolved) then the relative probability for growth, �
�

�� , and dissolution, �
�

�� , 
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The terms 0.5 in the above equation arise from a symmetry between growth and dissolution.  This 

may not be strictly correct but we have no experimental evidence to suggest the contrary.  Indeed all 

measurements that we have made on nanoporous systems previously by in situ AFM where it is possible 

to adust conditions repeatedly above and below saturation suggest that growth and dissolution is, more-

or-less, symmetric. 

3 RESULTS  

3.1 Effect of temperature and alcohol Figure 1 shows a series of SEM micrographs of the zeo-

lite A crystals obtained from the first batch of experiments, performed in the presence of TEA and DEA 

(images of the crystals from synthesis containing DEA-TEA mixtures are shown on Figure S1 in the 

supplementary information). It can be seen in the images that there is a clear change in morphology de-

pending on the type of organic additive. Those crystals synthesised in the presence of DEA are bound by 

{100} and {110} faces, whereas those synthesised with TEA only and with the DEA-TEA mixture are 

bound by {100} facets only.  Figure 1a show the presence of amorphous gel particles indicating that af-

ter 10 days the crystal growth is not completed for those experiments performed with TEA. The same 

situation is repeated for the DEA-TEA experiments (Figure S1a). This situation is more clearly illustrat-
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ed in Figure 2 which shows a graph of the maximum crystal size as a function of synthesis time for all 

experiments of batch 1.  

It can also be seen that the crystals synthesised in the presence of DEA have reached their maxi-

mum size by 10 days, indicating that the reaction proceeds faster in the presence of DEA. Additionally, 

the crystal size increases with the content of DEA as well as with an increase in temperature. These re-

sults confirm some of the findings from Petranovskii.
7
 The presence of DEA also had an effect on the 

type of phases precipitating by completely inhibiting the formation of zeolite X which was always pre-

sent in those syntheses containing TEA. The formation of LOSOD was observed in all experiments in 

various proportions (never more than 10%). 

Another significant observation for this batch of samples was the presence of a new face. This can 

be seen clearly in Figure 1f showing a zeolite A crystal grown in the presence of DEA at 90 °C for 10 

days. The additional facets along the edges of the crystal are parallel to the {211} planes.  This kind of 

facets have not been reported previously for this system, but are significant as they represent a lessening 

of the sharpness of the edges of the crystals.  This is a preferred property for applications as detergent 

builders.  

In addition to studying the effects on morphology by means of SEM, the surface topography of the 

various samples was studied by AFM. Figure 3 shows results from these observations for most of the 

samples of the batch 1 synthesised in the presence of TEA and DEA (images from the experiments per-

formed with DEA-TEA mixtures are shown in Figure S1d-g). Figures 3a and 1Sd show the presence of 

multiple 2-D nuclei on the {100} surface of zeolite A crystals extracted after 10 days and grown in the 

presence of pure TEA and the 50-50 mixture (at 75°C). This corroborates the fact that the crystals were 

still under at least medium-supersaturation conditions, i.e. the crystal growth had not reached equilibri-

um. In comparison the image taken at 10 days on the pure DEA synthesis (Figure 3e) shows a birth-and-

spread growth mechanism with much lower nucleation density, indicative of close-to-equilibrium condi-
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tions,
8
 as expected from trends seen in Figure 2. Images taken at 20 days in samples synthesised at 75 

°C show invariably the operation of a low density birth-and-spread growth mechanism indicating, as 

expected at this point of the synthesis, close-to-equilibrium conditions. It can also be observed that the 

corners of the terraces are, in all cases, rounded, to the point of producing almost circular terraces for 

those of small sizes. Finally, AFM observations on crystals synthesised at 90 °C for 10 days reveal a 

more contrasting surface topography. For those crystals synthesised in the presence of pure TEA terrace 

corners become more rounded (Figures 3c and d), but in the crystals grown with the DEA/TEA mixture 

and DEA terraces adopt a quasi-diamond shape, with edges running approximately parallel to the <110> 

directions (Figures 3g and 1Sf).  This topography is also observed on terraces on the {110} face of crys-

tals synthesised with DEA only (Figure 3h).  

3.2 Effect of time and temperature on DEA-only synthesis. In light of results from the batch 1 

experiments a new series of syntheses were conducted with pure DEA to study the effect of temperature 

and time (Table 2).  Results from these experiments show that the crystal growth rate increases as a 

function of temperature, as expected. Crystal size analysis also reveals that the reaction is complete, i.e. 

that no further increase in crystal size is taking place, after 8, 4 and 2 days for experiments performed at 

60, 75 and 90 °C, respectively.  All crystals produced in these syntheses show {100} and {110} faces, 

see Figure 4. The relative size of these faces change as a function of temperature, with crystals synthe-

sised at higher temperatures (90 °C) exhibiting relatively smaller {110} faces. Interestingly, the relative 

size of the {110} faces also depends on the crystal size, as can be seen in all three images, where the 

smaller crystals show the smaller {110} facets.  

AFM images of crystals from the second batch of experiments are shown in Figure 5. Figures 5a 

and 5b show images of the {100} face of crystals at the end of their synthesis (14 and 10 days), and 

grown at 60 and 75 °C, respectively. In both cases, it can be seen that the prevailing growth mechanism 

at those times was of birth and spread, indicating close-to-equilibrium conditions. Additionally the ter-
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race corners are sharp. In contrast images taken on crystals grown at 90 °C show rounded terraces (Fig-

ures 5c and 5d) after 2 and 10 days of synthesis. Analysis of the radius of curvature of these rounded 

corners reveals an increase with the time of the reaction, as can be seen by comparing Figures 5c and 

5d. 

High-resolution SEM observations near the apex of crystals synthesised at 90 °C show the appear-

ance of {211} facets after 2 days of synthesis (Figure S2 in supplementary information). The size of the 

facet increases with time, as can be seen by comparing Figures S2a and S2b which show images of crys-

tals after 2 and 7 days of synthesis respectively. Figure S2c shows an AFM image of these {211} facets 

that do not exhibit any clear steps or terraces. 

4. DISCUSSION 

The formation of the {110} face on zeolite A crystals has been observed in syntheses in both the 

absence and in the presence of organic molecules.
6-8

,
12-14

 In syntheses performed in the absence of or-

ganic compounds, its appearance has been related to a decrease in the Si/Al ratio,
12

 although it has been 

shown recently that a more complex relationship to the overall gel/solution composition dictates its for-

mation.
13, 14

 

In synthesis where organic molecules are present additional organic-surface interactions may in-

fluence the formation of a particular face, but in the case of TEA, it has been found that the molecule is 

not included in the pore space of the final zeolite A products, indicating a lack of strong interaction be-

tween organic and framework. In the case of DEA there is no data available in the literature regarding its 

inclusion in the zeolite A pore space
4
, for that reason we performed C-NMR on some of the synthesised 

crystals. Results from these analyses indicated the absence of DEA molecules within the zeolite A pores. 

Therefore, the influence of DEA vs. TEA on the presence of {110} face can be explained according to 

the differences in the binding of Al by the two molecules and its effect on the Si/Al ratio in the growing 

solution.. 
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Results from Petranovskii et al.
7
 show that, in the presence of TEA, Al binds completely to the or-

ganic, resulting in the formation of a chelate.  This has the effect of decreasing substantially the amount 

of Al(OH)3 available for nucleation and crystal growth of the zeolite. In fact, Al concentration will be 

completely controlled by the rate of release from the TEA-chelate. On the contrary, DEA was found to 

bind less well to Al, decreasing the Al(OH)3 concentration only marginally.
77

 In light of these results it 

can be argued that, in the case of the experiments performed with DEA only, the amount of “free” Al 

available for crystal growth would be much higher than in the case of those performed with TEA, i.e., 

TEA experiments will have a higher Si/Al ratio and therefore a more cubic morphology could be ex-

pected.  The stronger Al-binding strength and slower release rate of the TEA molecules also explain why 

the synthesis proceeds faster in the presence of DEA. 

With the goal of further understanding the role of organic molecules on controlling the LTA mor-

phology we performed tens of thousands of simulations of micron-sized crystals varying the three ener-

gy penalties for D4R, BETA and ALPHA cages and from these we noted a number of trends.  The first, 

important trend was that the absolute value of the energy penalty did not have much influence on the 

crystal habit.  The habit was controlled more by the relative ratio of the energy penalties of the different 

cages.  The absolute value has a strong influence on the terrace density at a given driving force.  There-

fore, in terms of crystal habit alone we are able to formulate a triangular plot of crystal habit versus rela-

tive concentration of the three energy penalties for the three cage types and this is shown in Figure 6.  

The phase space is dominated by cubic morphology and indeed that shape prevails at the centre of sta-

bility where the energy penalty for the three cage types is identical.  Other substantial regions present 

predominantly either spherical or rhombic dodecahedral morphology, but is important to highlight their 

relative smaller size in terms of the total area of the triangle, which is in agreement with experimental 

observations in multiple zeolie A synthesis routes, where the {100} is always present
6, 7, 12, 15, 16

. Fur-

thermore, the shape of the transition zone indicates that small variations in the stability of the ALPHA 
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cage can have a potential large effect in the morphology of the crystals.  In the transition zones the crys-

tals show more than one facet, including the {111} face, in some cases. Therefore, the morphology pro-

duced by the classic inorganic synthesis route will fall in this area 8. In addition, crystals from our exper-

iments with DEA lie in the transition zone between cubes and rhombic dodecahedra exhibiting primarily 

{100} and {110} facets. 

It is also reasonable to assume that the energy penalties for the three cage types will not be too far 

removed from the centre of stability, i.e. we would expect the stability of each type of cage to be similar.  

On this basis the simulations performed at positions 1 and 2 on Figure 6 are presented in Figure 7. The 

relative energy penalties D4R:BETA:ALPHA for the three cage types in this simulation at points 1 and 

2 were 0.36:0.36:0.28 and 0.42:0.42:0.16 respecuively.  Absolute values of the energy penalties at point 

2 that resulted in correct simulation of the terrace nucleation density were 2.5 kcal/mol, 2.5 kcal/mol 

and 1.5 kcal/mol.  The equilibrium morphologies obtained from the simulation (Figures 7b and 7e) 

show a considerable agreement with the shapes of the crystals synthesised in this study. This fact leads 

to a few important additional observations.  The first is that, the simulations corroborate the experi-

mental result that shows that small changes in solution chemistry, from 100 % DEA to 50-50 TEA-

DEA, can lead to dramatic changes in crystal morphology. On the other hand if we compare the mor-

phologies from crystals grown in 100% DEA to those grown in inorganic solutions, both are contained 

within the relative “thin” transition zone, which may indicate a “smaller” effect by the DEA on the rela-

tive cage stabilisation energies. This could be explained in terms of the smaller Al-binding “potential” of 

the DEA, when compared to TEA.  

The simulations in Figure 7 show the power of this methodology for predicting crystal morpholo-

gy in non-equilibrium situations, both super-saturated and under-saturated.  This is not readily achieved 

by more conventional determinations of crystal morphology based on attachment energies or surface 

energy alone that normally determine the thermodynamic equilibrium structure alone.
17, 18

  At supersatu-
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rated conditions the crystals show a high surface nucleation density.  At equilibrium the density of sur-

face nucleation is diminished and the terraces coalesce and form geometric shapes consistent with the 

crystal symmetry. These results follow the same trends observed on our synthesis, for crystals extracted 

whilst still at supersaturation conditions (Figures 3a and S1d), as well as equilibrium (Figures 3b, 3e and 

1Se).   At undersaturated conditions both the crystal edges are dissolved revealing higher index facets 

and the surface terraces reform to reveal higher index edges.  This later phenomenon directly aligns with 

the results for the synthesis with DEA under higher temperature conditions (90 °C) where {211} facets 

are created and the surface terraces on the {100} change from square to diamond shape and on {110} 

from rectangular to truncated rectangular. Therefore, the observed {211} facets are in fact pseudofacets 

created by very slow dissolution and not by a net growth progress. In fact, careful review of the HRSEM 

images for crystals synthesised at 90 °C shows the presence of dissolution features, in the shape of small 

triangular etch pits and corroded twin boundaries (Figures 8). These features become more obvious 

when compared to twin boundaries of crystals synthesized at lower temperatures, where no {211} are 

present, i.e. no dissolution has taken place (Figure 8b).  The creation of conditions of under-saturation is 

probably the result of consecutive crystal transformations whereby the metastable LTA crystals are start-

ing a process of re-dissolution and transformation into a lower energy phase such as hydroxysodalite.
19

 

A further consequence of undersaturation is also shown in Figure 9 whereby crystal imperfections 

act to prevent crystal dissolution.  This has the effect of pinning terrace retreat and the creation of pro-

trusions at the crystal surface with edges parallel to [100].  This experiment in fact reveals the present of 

these point defects which are only exposed upon dissolution and represent a new type of defect in the 

zeolite A system. 

 Another consequence of our calculations is that the simulation also determines the nature of the 

surface structure for a given ratio of cage stabilities and saturation condition, see Figure 10.  Experimen-

tally it is very difficult to determine the surface structure of a zeolite and the only method available is 
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high-resolution transmission electron microscopy.  This has only been used in a limited number of in-

stances owing to the extreme difficulty in the experimental protocol and the need for beam stable sam-

ples.  Even then the technique only reveals a projection of the sample surface and further interpretation 

is still required. 

In terms of closed-cage structures there are a small, finite number of surface terminations at equi-

librium conditions, and these are shown in Figure 11.  On the {100} facet there are four possible struc-

tures which are terminated by the BETA cage, the ALPHA cage and two by the double-four ring.  With-

in the transition zone, shown by position 2 in Figure 6, the crystal develops both {100} and {110} fac-

ets, each showing a mixture of surface terminations.  This is a result of a competition between two sur-

face structures shown by a tick on Figure 11.  For the {100} face the predominant surface structure is 

the double-four ring on top of the sodalite cage that is three times more abundant than the structure ter-

minated by the BETA cage.  It is not surprising that these two structures are in dynamic equilibrium at 

the surface of the crystal when the supersaturation is very low because the two surface structures present 

exactly the same surface density of Q3 groups.  On the {110} surface there is a similar result in that 

there is a competition between two surface structures and the predominant termination is, again, the one 

displaying the larger amount of double four rings (Figure 11).  This surface structure is three times more 

favourable than the same surface without the vertical double-four ring, which is terminated by a combi-

nation of ALPHA-cages and inclined double four rings (so only one of the 8 T sites at the ring is a Q3 

site).  As with the {100} surface this competition on the {110} surface is between two structures with 

exactly the same surface density of Q3 groups.  It remains a challenge for experimental chemists to con-

firm which of these surface structural arrangements is actually displayed, or if indeed both are dis-

played.  The results are, however consistent with previous in situ dissolution studies using AFM that 

showed that terraces on the (100) surface dissolved in a two-step process: first the double-four rings and 

then the BETA cages
9, 20

.
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5. CONCLUSIONS 

Synthesis of zeolite A in the presence of TEA and DEA and a 50-50 mixture of TEA-DEA 

showed the formation of relatively large crystals (15-20 µm) with two distinct morphologies. Those 

crystals synthesised with pure TEA and the TEA-DEA mixture showed a perfect cubic morphology, 

whereas those grown in the presence of pure DEA were bound by {100} and large {110} facets. These 

results can be explained by looking at the Al-binding efficiency of the two different molecules. TEA is 

more effective in binding to Al, therefore limiting the amount of “free” Al in solution, on the contrary 

DEA has been found to be less effective. Therefore, those synthesis performed in DEA will have a 

smaller Si/Al which has been found to lead to the appearance of {110} facets in inorganic syntheses.  In 

addition crystals synthesised at 90 °C in the presence of pure DEA showed the formation of {211} fac-

ets, which have not been described in the literature before. These facets are in fact pseudo-facets and the 

product of net-dissolution of the crystals due to the metastability of the zeolite A crystals at the end of 

the standard synthesis. Controlled formation of these facets could be potentially very useful for the de-

tergent industry as it decreases the presence of sharp edges and corners in the crystals. 

In addition, we performed Monte Carlo simulations to further understand the results. Thousands of 

simulations were performed by varying the degree of stability of the three closed-cage structures that 

compose the zeolite A structure (ALPHA, BETA and D4R). Simulations indicate that the final mor-

phology is dictated by relative differences in the stabilities of the three cage-structures, and not on the 

absolute penalty energies. Results were displayed in a triangular diagram and show 4 distinct stability 

fields regarding final morphology: spherical, cubic, dodecahedral and a transition zone were the crystals 

display two ({100} and {110}) and three ({100}, {110} and {111}) facets. Assuming that, in the real 

world, the cage stabilities will be similar we showed how small variations in the stability of the ALPHA 
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cage can lead to drastic differences in morphology. Therefore, potentially small variations in synthesis 

chemistry could result in large morphological variations, as our own results indicate and as the pres-

ence/absence of the {111} face in inorganic synthesis also indicate.  

The power of our Monte Carlo method was illustrated by simulating zeolite A crystals under su-

persaturation and undersaturation conditions. Especially relevant where the simulations of crystals 

bound by {100} and {110} at undersaturated conditions, which showed the formation of circular terrac-

es and {211} facets, confirming the experimental observations on the formation of the {211} 

pseudofacets. Finally simulations also provide a clue on the nature of the surface termination of the 

{100} and {110}, which tends to be dominated, by the least amount of Q3 groups exposed.  

ASSOCIATED CONTENT  

 Supporting Information: Figure S1 containing SEM and AFM images of experiments performed with 

TEA-DEA mixture. Figure S2, containing HRSEM and AFM images of {211} evolution of size with 

experimental time. This material is available free of charge via the Internet at  http://pubs.acs.org. 

Author Contributions 

The manuscript was written through contributions of all authors. / All authors have given approval to the 

final version of the manuscript. / †‡ These authors contributed equally. 

Funding Sources 

The work was supported by the EPSRC and ExxonMobil Research and Engineering. 

ACKNOWLEDGMENTS  

The Authors would like to thank both EPSRC and ExxonMobil Research and Engineering for financial 

support. 

REFERENCES 



17 

 

1. Morris, M.; Dixon, A. G.; Sacco, A.; Thompson, R. W. Investigations on the Relative 

Effectiveness of Some Tertiary Alkanolamines in the Synthesis of Large-Crystal Zeolite Naa. Zeolites 

1993, 13 (2), 113-121. 

2. Morris, M.; Sacco Jr, A.; Dixon, A. G.; Thompson, R. W. The Role of an Aluminum-Tertiary 

Alkanolamine Chelate in the Synthesis of Large Crystal Zeolite NaA. Zeolites 1991, 11 (2), 178-183. 

3. Schmitz, W.; Kornatowski, J.; Finger, G. Growth of NaA Zeolites in the Presence of 

Triethanolamine (Tea). The Influence of Water, TEA and Al Contents. Cryst. Res. Technol. 1987, 22 (1), 

35-41. 

4. Scott, G.; Thompson, R. W.; Dixon, A. G.; Sacco, A. The Role of Triethanolamine in Zeolite 

Crystallization. Zeolites 1990, 10 (1), 44-50. 

5. Charnell, J. F. Gel Growth of Large Crystals of Sodium A and Sodium X Zeolites. J. Cryst. 

Growth 1971, 8 (3), 291-294. 

6. Yang, X. B.; Albrecht, D.; Caro, E. Revision of Charnell's Procedure towards the Synthesis of 

Large and Uniform Crystals of Zeolites A and X. Microporous Mesoporous Mater. 2006, 90 (1-3), 53-

61. 

7. Petranovskii, V.; Kiyozumi, Y.; Kikuchi, N.; Hayamisu, H.; Sugi, Y.; Mizukami, F. The Influence 

of Mixed Organic Additives on the Zeolites A and X Crystal Growth. Stud. Surf. Sci. Catal. 1997, 105A 

(Progress in Zeolite and Microporous Materials, pt. A), 149-156. 

8. Cubillas, P.; Stevens, S. M.; Blake, N.; Umemura, A.; Chong, C. B.; Terasaki, O.; Anderson, M. 

W. AFM and HRSEM Invesitigation of Zeolite A Crystal Growth. Part 1: In the Absence of Organic 

Additives. J. Phys. Chem. C 2011, 115 (25), 12567-12574. 

9. Meza, L. I.; Anderson, M. W.; Slater, B.; Agger, J. R. In Situ Atomic Force Microscopy of 

Zeolite A Dissolution. PCCP 2008, 10 (33), 5066-5076. 



18 

 

10. Brent, R.; Cubillas, P.; Stevens, S. M.; Jelfs, K. E.; Umemura, A.; Gebbie, J. T.; Slater, B.; 

Terasaki, O.; Holden, M. A.; Anderson, M. W. Unstitching the Nanoscopic Mystery of Zeolite Crystal 

Formation. J. Am. Chem. Soc. 2010, 132 (39), 13858-13868. 

11. Boerrigter, S. X. M.; Josten, G. P. H.; de Streek, J. v.; Hollander, F. F. A.; Los, J.; Cuppen, H. M.; 

Bennema, P.; Meekes, H. Monty: Monte Carlo Crystal Growth on any Crystal Structure in any 

Crystallographic Orientation; Application to Fats. J. Phys. Chem. A 2004, 108 (27), 5894-5902. 

12. Thompson, R. W.; Huber, M. J. Analysis of the Growth of Molecular Sieve Zeolite NaA in a 

Batch Precipitation System. J. Cryst. Growth 1982, 56 (3), 711-722. 

13. Kosanovic, C.; Jelic, T. A.; Bronic, J.; Kralj, D.; Subotic, B. Chemically Controlled Particulate 

Properties of Zeolites: Towards the Face-Less Particles of Zeolite A. Part 1. Influence of the Batch 

Molar Ratio [SiO2/Al2O3]b on the Size and Shape of Zeolite A Crystals. Microporous Mesoporous 

Mater. 2011, 137 (1-3), 72-82. 

14. Bosnar, S.; Bronic, J.; Brlek, Ð.; Subotic, B. Chemically Controlled Particulate Properties of 

Zeolites: Towards the Face-Less Particles of Zeolite A. 2. Influence of Aluminosilicate Batch 

Concentration and Alkalinity of the Reaction Mixture (Hydrogel) on the Size and Shape of Zeolite A 

Crystals. Microporous Mesoporous Mater. 2011, 142 (1), 389-397. 

15. Grizzetti, R.; Artioli, G. Kinetics of Nucleation and Growth of Zeolite LTA from Clear Solution 

by in Situ and Ex Situ XRPD. Microporous Mesoporous Mater. 2002, 54 (1-2), 105-112. 

16. Zhu, G.; Qiu, S.; Yu, J.; Gao, F.; Xiao, F.; Xu, R.; Sakamoto, Y.; Terasaki, O.  Synthesis of 

Zeolite LTA Single Crystals of Macro- to Nanometer Size,  In: Proceedings of the 12th International 

Zeolite Conference, Baltimore, Maryland, U.S.A., Treacy, M. M. J.; Marcus, B. K.; Bisher, M. E.; 

Higgings, J. B., Eds. Materials Research Society, 1999; pp 1863-1870. 

17. Hartman, P.; Bennema, P. The Attachment Energy as a Habit Controlling Factor: I. Theoretical 

Considerations. J. Cryst. Growth 1980, 49 (1), 145-156. 



19 

 

18. Aquilano, D.; Rubbo, M.; Catti, M.; Pavese, A. Theoretical Equilibrium and Growth 

Morphology of CaCO3 Polymorphs. I. Aragonite. J. Cryst. Growth 1997, 182 (1–2), 168-184. 

19. Tassopoulos, M.; Thompson, R. W. Transformation Behavior of Zeolite-A to Hydroxysodalite in 

Batch and Semibatch Crystallizers. Zeolites 1987, 7 (3), 243-248. 

20. Meza, L. I.; Anderson, M. W.; Agger, J. R. Differentiating Fundamental Structural Units During 

the Dissolution of Zeolite A. Chem. Commun. 2007,  (24), 2473-2475. 

 

  

 

 

 

  



 

 

20

 
 

Figure 1. SEM micrographs from the first batch of experiments. a-c) Experiments performed with TEA 

at 75 °C-10 days (a), 75 °C- 20 days (b) and 90 °C – 10 days (c). d-f)  Experiments performed with 

DEA at 75 °C-10 days (d), 75 °C- 20 days (e) and 90 °C – 10 days (f). Scale bars: a, b, c, d, e = 10 µm; f 

= 5 µm. 
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Figure 2. Evolution of size as a function of time for all experiments in batch 1. 
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Figure 3. AFM height and deflection images from Batch 1 experiments. a-d) Experiments performed 

with TEA at 75 °C-10 days (a), 75 °C- 20 days (b) and 90 °C – 10 days (c - d). e- h) Experiments per-

formed with DEA at 75 °C-10 days (e), 75 °C- 20 days (f) and 90 °C – 10 days, {100} face (g) {110} 

(h). Scale bars: a, e, f, g = 0.5 µm; b, c, h = 1 µm; d, 2 µm. 
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Figure 4. SEM micrographs from selected experiments from batch 2. a) 60 °C – 12 days, b) 75 °C – 7 

days and c) 90 °C – 4 days. Scale bars: a = 2 µm; b, c = 5 µm. 
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Figure 5. AFM height and deflection images from selected experiments from Batch 2. a) 60 °C – 14 

days, b) 75 °C – 10 days, c) 90 °C – 2 days, 90 °C – 10 days. Scale bars: 5 µm. 
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Figure 6. Triangular plot showing the basic crystal habit of LTA crystals depending on the relative ener-

gy penalties of the three cage types: D4R; BETA; ALPHA.  For example, at the apex labelled D4R the 

relative energy penalties would be D4R:BETA:ALPHA = 1:0:0.  At the Centre of Stablity the relative 

energy penalties would be D4R:BETA:ALPHA = 0.33:0.33:0.33.   
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Figure 7. Simulations of crystal morphology and surface topology of LTA crystals grown with the ener-

gy penalties of cages  at positions 1 (a, b and c) and 2 (d, e and f) on Figure 6.  Supersaturated (a and d), 

equilibrium (b and e), undersdaturated (c and f). 
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Figure 8. High-resolution SEM images showing triangular etch pits (a) along the twin boundary of crys-

tals grown at 90 °C as a result of undersaturation caused by successive crystal transformation.  The phe-

nomenon is not present at the lower temperature (75 °C) (b). Scale bars: a = 1 µm; b = 200 nm. 
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Figure 9. High-resolution SEM images of zeolite A undergoing successive crystal transformation at un-

dersaturated conditions.  Terrace retreat exposes point defects which serve to pin the retreat and result in 

rectilinear surface protursions. Scale bars: a, b, f = 500 nm; c, d, e = 200 nm. 
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Figure 10. Simulated surface structures for simulation corresponding to position 2 in Figure 6 deter-

mined at equilibrium for the (100) and (110) faces of LTA.  The cages are colour coded: green for D4R; 

blue for BETA cage; red for ALPHA cage. 
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Figure 11. Possible surface termination structures for the LTA structure based upon closed cages.  The 

cages are colour coded: green for D4R; blue for BETA cage; red for ALPHA cage.  The structures found 

are indicated with a tick along with the relative concentration of the structures for equilibrium simula-

tions based upon position 2 in Figure 6. 
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