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Abstract

Famously, a d-dimensional, spatially homogeneous random walk whose incre-
ments are non-degenerate, have finite second moments, and have zero mean
is recurrent if d ∈ {1, 2} but transient if d ≥ 3. Once spatial homogeneity is
relaxed, this is no longer true. We study a family of zero-drift spatially non-
homogeneous random walks (Markov processes) whose increment covariance
matrix is asymptotically constant along rays from the origin, and which, in any
ambient dimension d ≥ 2, can be adjusted so that the walk is either transient or
recurrent. Natural examples are provided by random walks whose increments
are supported on ellipsoids that are symmetric about the ray from the origin
through the walk’s current position; these elliptic random walks generalize the
classical homogeneous Pearson–Rayleigh walk (the spherical case). Our proof
of the recurrence classification is based on fundamental work of Lamperti.
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1. Introduction

A d-dimensional random walk that proceeds via a sequence of unit-length steps, each
in an independent and uniformly random direction, is sometimes called a Pearson–
Rayleigh random walk (PRRW), after the exchange in the letters pages of Nature
between Karl Pearson and Lord Rayleigh in 1905 [17]. Pearson was interested in two
dimensions and questions of migration of species (such as mosquitoes) [16], although
Carazza has speculated that Pearson was a golfer [3, p. 419]; Rayleigh had earlier
considered the acoustic ‘random walks’ in phase space produced by combinations of
sound waves of the same amplitude and random phases.
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The PRRW can be represented via partial sums of sequences of i.i.d. (independent,
identically distributed) random vectors that are uniformly distributed on the unit
sphere S

d−1 in R
d. Clearly the increments have mean zero, i.e., the PRRW has zero

drift. The PRRW has received some renewed interest recently as a model for microbe
locomotion [1, 14, 15]. Chapter 2 of [8] gives a general discussion of these walks, which
have been well understood for many years. In particular, it is well known that the
PRRW is recurrent for d ∈ {1, 2} and transient if d ≥ 3.

Suppose that we replace the spherically symmetric increments of the PRRW by
increments that instead have some elliptical structure, while retaining the zero drift.
For example, one could take the increments to be uniformly distributed on the surface
of an ellipsoid of fixed shape and orientation, as represented by the picture on the right
of Figure 1. More generally, one should view the ellipses in Figure 1 as representing
the covariance structure of the increments of the walk (we will give a concrete example
later; the uniform distribution on the ellipse is actually not the most convenient for
calculations).

Figure 1: Pictorial representation of spatially homogeneous random walks with increments
distributed on a fixed circle (left) and a fixed ellipse (right).

A little thought shows that the walk represented by the picture on the right of
Figure 1 is essentially no different to the PRRW: an affine transformation of Rd will
map the walk back to a walk whose increments have the same covariance structure as
the PRRW. To obtain genuinely different behaviour, it is necessary to abandon spatial
homogeneity.

In this paper we consider a family of spatially non-homogeneous random walks with
zero drift. These include generalizations of the PRRW in which the increments are
not i.i.d. but have a distribution supported on an ellipsoid of fixed size and shape
but whose orientation depends upon the current position of the walk. Figure 2 gives
representations of two important types of example, in which the ellipsoid is aligned so
that its principal axes are parallel or perpendicular to the vector of the current position
of the walk, which sits at the centre of the ellipse.

The random walks represented by Figure 2 are no longer sums of i.i.d. variables.
These modified walks can behave very differently to the PRRW. For instance, one of
the two-dimensional random walks represented in Figure 2 is transient while the other
(as in the classical case) is recurrent. The reader who has not seen this kind of example
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Figure 2: Pictorial representation of spatially non-homogeneous random walks with
increments distributed on a radially-aligned ellipse with major axis aligned in the radial sense
(left) and in the transverse sense (right).

before may take a moment to identify which is which. It is this anomalous recurrence
behaviour that is the main subject of the present paper. In the next section, we give
a formal description of our model and state our main results.

We end this introduction with a brief comment on motivation. In biology, the PRRW
is more natural than a lattice-based walk for modelling the motion of microscopic
organisms, such as certain bacteria, on a surface. Experiment suggests that the
locomotion of several kinds of cells consists of roughly straight-line segments linked
by discrete changes in direction: see, e.g., [14, 15]. The generalization to elliptically
distributed increments studied here represents movement on a surface on which either
radial or transverse motion is inhibited. In chemistry and physics, the trajectory of a
finite-step PRRW (also called a ‘random chain’) is an idealized model of the growth of
weakly interacting polymer molecules: see, e.g., Section 2.6 of [8]. The modification to
ellipsoid-supported jumps represents polymer growth in a biased medium.

2. Model and main results

We work in R
d, where d ≥ 1. Our main interest is in d ≥ 2, as we shall explain

shortly. Write e1, . . . , ed for the standard orthonormal basis vectors in R
d. Write 0

for the origin in R
d, and let ‖ · ‖ denote the Euclidean norm and 〈·, ·〉 the Euclidean

inner product on R
d. Write S

d−1 := {u ∈ R
d : ‖u‖ = 1} for the unit sphere in R

d.
For x ∈ R

d \ {0}, set x̂ := x/‖x‖; also set 0̂ := e1, for convenience. For definiteness,
vectors x ∈ R

d are viewed as column vectors throughout.
We now define X = (Xn, n ∈ Z+), a discrete-time, time-homogeneous Markov

process on a (non-empty, unbounded) subset X of Rd. Formally, (X,BX) is a measurable
space, X is a Borel subset of Rd, and BX is the σ-algebra of all B ∩X for B a Borel set
in R

d. Suppose X0 is some fixed (i.e., non-random) point in X. Write

∆n := Xn+1 −Xn (n ∈ Z+)

for the increments of X. By assumption, given X0, . . . , Xn, the law of ∆n depends
only on Xn (and not on n); so often we ease notation by taking n = 0 and writing just
∆ for ∆0. We also use the shorthand Px[ · ] = P[ · | X0 = x] for probabilities when the
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walk is started from x ∈ X; similarly we use Ex for the corresponding expectations.
We make the following moments assumption:

(A0) There exists p > 2 such that sup
x∈X Ex[‖∆‖p] < ∞.

The assumption (A0) ensures that ∆ has a well-defined mean vector µ(x) := Ex[∆],
and we suppose that the random walk has zero drift :

(A1) µ(x) = 0 for all x ∈ X.

The assumption (A0) also ensures that ∆ has a well-defined covariance matrix, which
we denote by M(x) := Ex[∆∆⊤], where ∆ is viewed as a column vector. To rule out
pathological cases, we assume that ∆ is uniformly non-degenerate, in the following
sense.

(A2) There exists v > 0 such that tr(M(x)) = Ex[‖∆‖2] ≥ v for all x ∈ X.

Note that assumption (A2) is weaker than uniform ellipticity, which in this context
usually means, for some ε > 0, Px[〈∆,u〉 ≥ ε] ≥ ε for all u ∈ S

d−1 and all x ∈ X.
Our main interest is in a recurrence classification. First, we state the following basic

‘non-confinement’ result.

Proposition 2.1. Suppose that X satisfies assumptions (A0), (A1) and (A2). Then

lim sup
n→∞

‖Xn‖ = +∞, a.s. (almost surely). (2.1)

We give the proof of Proposition 2.1 in Section 4; we actually prove more, namely
that the hypotheses of Proposition 2.1 ensure that a version of Kolmogorov’s ‘other’
inequality holds. The fact (2.1) ensures that questions of the escape of trajectories to
infinity are non-trivial. Indeed, we will give conditions under which one or other of the
following two behaviours (which are not a priori exhaustive) occurs:

• limn→∞‖Xn‖ = +∞, a.s., in which case we say that X is transient ;

• lim infn→∞‖Xn‖ ≤ r0, a.s., for some constant r0 ∈ R+, when we say X is
recurrent.

If X is an irreducible time-homogeneous Markov chain on a locally finite state-space,
these definitions reduce to the usual notions of transience and recurrence; in general
state-spaces, our approach allows us to avoid unnecessary technicalities concerning
irreducibility.

In dimension d = 1, it is a consequence of the classical Chung–Fuchs theorem (see
[4] or Chapter 9 of [9]) that a spatially homogeneous random walk with zero drift
is necessarily recurrent. However, this is not true for a spatially non-homogeneous
random walk: as observed by Rogozin and Foss [19], a counterexample is provided by
a version of the ‘oscillating random walk’ of Kemperman [10] in which the increment
law is one of two distributions (with mean zero but infinite second moment) depending
on the walk’s present sign. Our conditions exclude these heavy-tailed phenomena, so
that in d = 1 recurrence is assured in our setting.

Theorem 2.1. Suppose that d = 1. Suppose that X satisfies assumptions (A0), (A1)
and (A2). Then X is recurrent.
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Theorem 2.1 is essentially contained in a result of Lamperti [12, Theorem 3.2]; we
give a self-contained proof below. Theorem 2.1 shows that in d = 1, under mild
conditions, the classical Chung–Fuchs recurrence classification for homogeneous zero-
drift random walks extends to zero-drift non-homogeneous random walks. The purpose
of the present paper is to demonstrate a natural family of examples in dimension d ≥ 2
where this extension fails, and hence exhibit the following.

Fact. There exist spatially non-homogeneous random walks whose increments are non-
degenerate, have uniformly bounded second moments, and have zero mean, which are

• transient in d = 2;

• recurrent in d ≥ 3.

Although certainly appreciated by experts, this fact is perhaps not as widely known
as it might be. Zeitouni (pp. 91–92 of [20]) describes an example of a transient zero-
drift random walk on Z

2, and states that the idea “goes back to Krylov (in the context
of diffusions)”. Peres, Popov and Sousi [18] investigate the minimal number of different
increment distributions required for anomalous recurrence behaviour.

We now introduce our family of non-homogeneous random walks. Write ‖ · ‖op
for the matrix (operator) norm given by ‖M‖op = sup

u∈Sd−1‖Mu‖. The following
assumption on the asymptotic stability of the covariance structure of the process along
rays is central.

(A3) Suppose that there exists a positive-definite matrix-valued function σ2 with
domain S

d−1 such that, as r → ∞,

ε(r) := sup
x∈X:‖x‖≥r

‖M(x)− σ2(x̂)‖op → 0.

A little informally, (A3) says that M(x) → σ2(x̂) as ‖x‖ → ∞; in what follows, we
will often make similar statements, formal versions of which may be cast as in (A3).

Note that (A2) and (A3) together imply that tr(σ2(u)) ≥ v > 0; next we impose a
key assumption on the form of σ2 that is considerably stronger. To describe this, it is
convenient to introduce the notation 〈·, ·〉u that defines, for each u ∈ S

d−1, an inner
product on R

d via

〈y, z〉u := y⊤ · σ2(u) · z = 〈y, σ2(u) · z〉, for y, z ∈ R
d.

(A4) Suppose that there exist constants U and V with 0 < U < V < ∞ such that,
for all u ∈ S

d−1, 〈u,u〉u = U and tr(σ2(u)) = V .

Informally, V quantifies the total variance of the increments, while U quantifies the
variance in the radial direction; necessarily U ≤ V . The assumption that 0 6= U 6= V
excludes some degenerate cases. As we will see, one possible way to satisfy condition
(A4) is to suppose that the eigenvectors of σ2(u) are all parallel or perpendicular to
the vector u, and that the corresponding eigenvalues are all constant as u varies; the
level sets of the corresponding quadratic forms qu(x) := 〈x,x〉u for u ∈ S

d−1 are then
ellipsoids like those depicted in Figure 2.

Our main result is the following, which shows that both transience and recurrence
are possible for any d ≥ 2, depending on parameter choices; as seen in Theorem
2.1, this possibility of anomalous recurrence behaviour is a genuinely multidimensional
phenomenon under our regularity conditions.
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Theorem 2.2. Suppose that X satisfies (A0)–(A4), with constants 0 < U < V as
defined in (A4). The following recurrence classification is valid.

(i) If 2U < V , then X is transient.

(ii) If 2U > V , then X is recurrent.

(iii) If 2U = V and (A3) holds with ε(r) = O(r−δ0) for some δ0 > 0, then X is
recurrent.

Moreover, we show that in any of the above cases, X is null in the following sense.

Theorem 2.3. Suppose that X satisfies (A0)–(A4), with constants 0 < U < V as
defined in (A4). Then in any of the cases (i)–(iii) in Theorem 2.2, for any bounded
A ⊂ R

d,

lim
n→∞

1

n

n−1∑

k=0

1{Xk ∈ A} = 0, a.s. and in Lq for any q ≥ 1. (2.2)

Remark 2.1. Theorems 2.2 and 2.3 both remain valid if we permit V = U > 0 in
(A4); indeed, the condition U < V is not used in the proof of Theorem 2.2 given
below, so this case is recurrent, by Theorem 2.2(ii). The condition U < V is used at
one point to simplify the proof of Theorem 2.3 given below, but a small modification
of the argument also works in the case U = V . (See Remark 6.1 for more details.)

The remainder of the paper is organised as follows. In Section 3 we describe a specific
family of examples called elliptic random walk models that satisfy assumptions (A0)–
(A4) and exhibit both transient and recurrent behaviour dependent on the parameters
of the model. We also present some simulated data that depict the random walks in
both cases. In Section 4 we prove a d-dimensional martingale version of Kolmogorov’s
other inequality and use that to prove the non-confinement result (Proposition 2.1).
In Section 5 we prove the recurrence classification (Theorem 2.2), and in Section 6 we
prove Theorem 2.3. In the appendix we prove recurrence in the one-dimensional case
(Theorem 2.1).

Finally, we remark that in work in progress we investigate diffusive scaling limits for
random walks of the type described in the present paper; the diffusions that appear
as scaling limits possess certain pathologies from the point of view of diffusion theory
that make them interesting in their own right.

3. Example: Elliptic random walk model

Let d ≥ 2. We describe a specific model on X = R
d where the jump distribution

at x ∈ R
d is supported on an ellipsoid having one distinguished axis aligned with the

vector x. The model is specified by two constants a, b > 0. Construct ∆ as follows.
Given X0 = x, take ζ uniform on S

d−1 and set

∆ = Qx̂Dζ (3.1)

for Qx̂ an orthogonal matrix representing a transformation of Rd mapping e1 to x̂, and
D =

√
d diag (a, b, . . . , b). See Figure 3. (Recall that 0̂ = e1, so for X0 = 0 we can take

Qx̂ = I and ∆ = Dζ.)
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ζ

Dζ
∆

x

0

Figure 3: Definition of ∆ = Qx̂Dζ.

Thus ∆ is a random point on an ellipsoid that has one distinguished semi-axis, of
length a

√
d, aligned in the x̂ direction, and all other semi-axes of length b

√
d. Note

that the law of ∆ is well defined owing to the spherical symmetry of the uniform
distribution on S

d−1 and the fact that only one axis of the ellipsoid is distinguished
(for this reason it is enough to take any Qx̂ satisfying Qx̂e1 = x̂ in order to define ∆;
see also Remark 3.1 below).

Note also that ∆ is not chosen to be uniformly distributed on the surface of the
ellipsoid; this does not affect the range of asymptotic behaviour exhibited by the family
of walks as a and b vary, but it does simplify the calculation of M(x). Indeed, we have

M(x) = Ex[∆∆⊤] = E[Qx̂Dζζ⊤DQ⊤
x̂
] = Qx̂DE[ζζ⊤]DQ⊤

x̂
=

1

d
Qx̂D

2Q⊤
x̂
,

by linearity of expectation, and using the fact that E[ζζ⊤] = d−1I for ζ uniformly
distributed on S

d−1. Also, a calculation similar to the above confirms that µ(x) = 0
for all x ∈ R

d, since E[ζ] = 0.
Since ‖∆‖ is bounded above by

√
dmax{a, b}, assumption (A0) holds. Clearly (A1)

and (A3) hold, with σ2(u) = d−1QuD
2Q⊤

u
for u ∈ S

d−1. It is also a simple matter to
check that (A2) and (A4) hold: the matrix σ2(u) represented in coordinates for the
orthonormal basis {Que1 = u, Que2, . . . , Qued} is diagonal with entries a2, b2, . . . , b2.
Indeed,

σ2(u) =
1

d
QuD

2Q⊤
u
= Qu[b

2I + (a2 − b2)e1e
⊤
1 ]Q

⊤
u
= a2uu⊤ + b2(I − uu⊤),

and therefore 〈u,u〉u = 〈u, σ2(u) · u 〉 = a2 > 0 for all u ∈ S
d−1, and tr (M(x)) =

tr (σ2(x̂)) = a2 + (d− 1)b2 > 0 for all x ∈ R
d.

Remark 3.1. The seeming ambiguity in the definition of ∆ due to the choice of Qx̂

can be resolved by noting that ∆ can be rewritten as

∆ = Qx̂DQ⊤
x̂
Qx̂ζ = Qx̂DQ⊤

x̂
ζ̃,

where ζ̃ = Qx̂ζ is also uniform on S
d−1 (this follows from the spherical symmetry of

the uniform distribution on S
d−1). Moreover, the symmetric matrix Hx̂ := Qx̂DQ⊤

x̂
is

determined explicitly in terms of x̂:

Hx̂ = Qx̂DQ⊤
x̂
= Qx̂(b

√
dI + (a− b)

√
de1e

⊤
1 )Q

⊤
x̂
= b

√
dI + (a− b)

√
dx̂x̂⊤.
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Consequently, we could choose to specify ∆ explicitly as

∆ = Hx̂ζ̃ = b
√
dζ̃ + (a− b)

√
dx̂〈x̂, ζ̃〉,

with ζ̃ taken to be uniform on S
d−1. As before, we find that Ex[∆] = Hx̂ E[ζ̃] = 0 and

Ex[∆∆⊤] = Hx̂ E
[
ζ̃ζ̃

⊤]
Hx̂ =

1

d
H2

x̂
= a2x̂x̂⊤ + b2(I − x̂x̂⊤).

Recall that we assume our random walk to be time-homogeneous, so that equation
(3.1) in fact determines the distribution of ∆n for all n ≥ 0. Formally, we define
ζ0, ζ1, . . . , a sequence of independent random variables uniformly distributed on S

d−1,
and for each n ≥ 0 we define ∆n conditional on {Xn = x} via

∆n = Qx̂Dζn. (3.2)

We call X = (Xn, n ∈ Z+) defined in this way an elliptic random walk.
As a corollary to Theorems 2.2 and 2.3, we get the following recurrence classification

for the elliptic random-walk model. For this model the ε(r) in (A3) is identically zero
so we get a complete classification that includes the boundary case.

Corollary 3.1. Let d ≥ 2 and a, b ∈ (0,∞). Let X be an elliptic random walk on R
d.

Then X is transient if a2 < (d− 1)b2 and null-recurrent if a2 ≥ (d− 1)b2.

In two dimensions we can explicitly describe the random walk as follows. For x ∈
R

2, x 6= 0 with x = (x1, x2) in Cartesian components, set x⊥ := (−x2, x1). Fix
a, b ∈ (0,∞). Let Ex(a, b) denote the ellipse with centre x and principal axes aligned
in the x, x⊥ directions, with lengths 2

√
2a, 2

√
2b respectively, given in parametrized

form by

Ex(a, b) :=

{
x+

√
2a

x

‖x‖ cosφ+
√
2b

x⊥

‖x‖ sinφ : φ ∈ (−π, π]

}
, (3.3)

and for x = 0 set E0(a, b) :=
{√

2a e1 cosφ +
√
2b e2 sinφ : φ ∈ (−π, π]

}
. The

parameter φ in the parametrization (3.3) should be interpreted with caution: it is
not, in general, the central angle of the parametrized point on the ellipse.

Given Xn = x ∈ R
2, Xn+1 is taken to be distributed on Ex(a, b), ‘uniformly’

with respect to the parametrization (3.3). Precisely, let φ0, φ1, . . . be a sequence of
independent random variables uniformly distributed on (−π, π]. Then, on {Xn 6= 0},

Xn+1 = Xn +
√
2a

Xn

‖Xn‖
cosφn +

√
2b

X⊥
n

‖Xn‖
sinφn, (3.4)

while on {Xn = 0}, Xn+1 =
(√

2a cosφn,
√
2b sinφn

)
.

Figure 4 shows two sample paths of a simulation of the elliptic random walk in R
2

in the two cases of recurrence and transience. In each picture the walk starts at the
origin at the centre of the picture; time is represented by the variation in colour (from
red to yellow, or from dark to light if viewed in grey-scale).

Remarks 3.2. (a) The process X reduces to the classical PRRW when a = b: in that
case it is spatially homogeneous, i.e., the distribution of the increment Xn+1 −Xn

does not depend on Xn. For a 6= b the random walk is not spatially homogeneous,
and the jump distribution depends upon the projection onto the unit sphere of the
walk’s current position.
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Figure 4: Simulation of the elliptic random walk in R
2 for the recurrent case a > b (left) and

the transient case a < b (right).

(b) As mentioned earlier, we choose to take increments as defined at (3.4), rather
than increments that are uniform on the ellipse with respect to one-dimensional
Lebesgue measure on Ex(a, b), purely for computational reasons. In fact, in two
dimensions, since the Lebesgue measure on Ex(a, b) coincides with the measure
induced by taking φ uniformly distributed on (−π, π] when a = b, and the case
a = b is critically recurrent, the qualitative behaviour will be the same in either
case: the walk will be transient for a < b and recurrent for a ≥ b. For higher
dimensions, taking increments that are uniform with respect to the Lebesgue
measure on Ed

x
(a, b) := {Qx̂Du : u ∈ S

d−1} will still specify a family of models
that exhibit a phase transition, from transience (for a/b small) to recurrence (for
a/b large) but the exact shape of the ellipsoid in the critical case (i.e., the smallest
ratio a/b for which the walk is recurrent) may be different.

(c) It follows from (3.2) that

‖Xn+1‖2 = ‖Xn‖2 + 2‖Xn‖〈X̂n,∆n〉+ ‖∆n‖2

= ‖Xn‖2 + 2‖Xn‖〈e1, Dζn〉+ 〈ζn, D
2ζn〉

= ‖Xn‖2 + 2a
√
d‖Xn‖〈e1, ζn〉+ (a2 − b2)d〈e1, ζn〉2 + b2d. (3.5)

In particular, for this family of models (‖Xn‖, n ∈ Z+) is itself a Markov process,
since the distribution of ‖Xn+1‖ depends only on ‖Xn‖ and not Xn; however, in
the general setting of Section 2, this need not be the case.

One-dimensional processes with evolutions reminiscent to that given by (3.5) have
been studied previously by Kingman [11] and Bingham [2]. Those processes can
be viewed, respectively, as the distance from its start point of a random walk in
Euclidean space, and the geodesic distance from its start point of a random walk
on the surface of a sphere, but in both cases the increments of the random walk
have the property that the distribution of the jump vector is a product of the
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independent marginal distributions of the length and direction of the jump vector.
In contrast, for the elliptic random walk the laws of ‖∆n‖ and 〈X̂n, ∆̂n〉 are not
independent (except when a = b).

(d) The theory equally applies to the case where the ellipsoid specifying the jump
distribution is oriented with some fixed angle α ∈ [0, π) with respect to the radial
direction. If we define ∆ = Qα

x̂
Dζ, where Qα

x̂
is an orthogonal matrix that maps

eα := e1 cosα + e2 sinα to x̂, then we find that transience of X is equivalent to
(a2 − b2) cos 2α < (d− 2)b2.

Note that for d = 2, Qα
x̂
and therefore ∆ are well defined, but this is not so for

higher dimensions. Nevertheless, for any collection of matrices (Qα
u
; u ∈ S

d−1)
satisfying Qα

u
eα = u for all u ∈ S

d−1 we get the same recurrence classification.
This is because the distribution of ‖Xn+1‖ given Xn is determined through the
angle α, since ‖Xn+1‖2 is equal to

‖Xn‖2 + 2
√
d‖Xn‖(a〈e1, ζn〉 cosα+ b〈e2, ζn〉 sinα) + (a2 − b2)d〈e1, ζn〉2 + b2d,

and therefore assumption (A4) holds with U = a2 cos2 α + b2 sin2 α and V =
a2 + (d− 1)b2.

4. Non-confinement

In this section we prove that the assumptions (A0), (A1), and (A2) imply that
lim supn→∞‖Xn‖ = +∞, a.s. We first present a general result for martingales on R

d

satisfying a “uniform dispersion” condition; the result can be viewed as a d-dimensional
martingale version of Kolmogorov’s other inequality (see e.g. [5, pp. 123, 502]).

Lemma 4.1. Let d ∈ N. Suppose that (Yn, n ∈ Z+) is an R
d-valued process adapted

to a filtration (Gn, n ∈ Z+), with P[Y0 = 0 | G0] = 1. Suppose that there exist p > 2,
v > 0, B < ∞ such that for all n ∈ Z+, a.s.,

E[‖Yn+1 − Yn‖p | Gn] ≤ B; (4.1)

E[‖Yn+1 − Yn‖2 | Gn] ≥ v; (4.2)

E[Yn+1 − Yn | Gn] = 0. (4.3)

Then there exists D < ∞, depending only on B, p, and v, such that for all n ∈ Z+

and all x ∈ R+,

P

[
max
0≤ℓ≤n

‖Yℓ‖ ≥ x
∣∣∣ G0

]
≥ 1− D(1 + x)2

n
, a.s.

Proof. Let x > 0 and set τ = min{n ≥ 0 : ‖Yn‖ ≥ x}; throughout the paper we
adopt the usual convention min ∅ := ∞. In analogy with previous notation, write
∆n = Yn+1 − Yn for the jump distribution, set ∆̂n = ∆n/‖∆n‖, and let

Wn =

{
Yn if ‖Yn‖ ≤ A(1 + x),

Yn−1 + ∆̂n−1(A− 1)(1 + x) if ‖Yn‖ > A(1 + x),

where A > 1 is a constant to be specified later. Note that Wn is Gn-measurable.
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Now, on {‖Yn‖ ≤ x}, Wn = Yn and

E[Wn+1 −Wn | Gn]

= E[∆n | Gn] + E
[
∆̂n ((A− 1)(1 + x)− ‖∆n‖)1{‖Yn+1‖ > A(1 + x)}

∣∣ Gn

]
.

But {‖Yn+1‖ > A(1 + x)} ∩ {‖Yn‖ ≤ x} implies that ‖∆n‖ > (A − 1)(1 + x), and
by (4.3), E[∆n | Gn] = 0. Hence, on {‖Yn‖ ≤ x},

‖E[Wn+1 −Wn | Gn]‖ ≤ E[‖∆n‖1{‖∆n‖ > (A− 1)(1 + x)} | Gn]

≤ E[‖∆n‖2 | Gn]

(A− 1)(1 + x)
≤ B′

(A− 1)(1 + x)
, a.s.,

where, by (4.1) and Lyapunov’s inequality, B′ < ∞ depends only on B and p. Hence
we can choose A ≥ A0 for some A0 = A0(B, p, v) large enough so that

‖E[Wn+1 −Wn | Gn]‖ ≤ v

8(1 + x)
, on {‖Yn‖ ≤ x}. (4.4)

Also, on {‖Yn‖ ≤ x}, by a similar argument, E[‖Wn+1 −Wn‖2 | Gn] is equal to

E[‖∆n‖2 | Gn] + E
[(
(A− 1)2(1 + x)2 − ‖∆n‖2

)
1{‖Yn+1‖ > A(1 + x)}

∣∣ Gn

]

≥ E[‖∆n‖2 | Gn]− E[‖∆n‖21{‖∆n‖ > (A− 1)(1 + x)} | Gn]

≥ v − (A− 1)2−p(1 + x)2−p
E[‖∆n‖p | Gn]

≥ v/2, (4.5)

for all x ≥ 0 and A ≥ A1 for sufficiently large A1 = A1(B, p, v), using (4.1) and (4.2).
Now, set Zn = ‖Wn∧τ‖2. Then, on {n < τ}, by (4.4) and (4.5),

E[Zn+1 − Zn | Gn] = E[‖Wn+1‖2 − ‖Wn‖2 | Gn]

= E[‖Wn+1 −Wn‖2 | Gn] + 2
〈
Wn,E[Wn+1 −Wn | Gn]

〉

≥ v

2
− 2‖Wn‖v

8(1 + x)
≥ v

2
− vx

4(1 + x)
≥ v

4
.

Hence Zn −∑n−1
k=0 vk is a Gn-adapted submartingale, where

vk =
v

4
1{k < τ} ≥ v

4
1{n < τ}, for 0 ≤ k < n.

By construction, 0 ≤ Zn ≤ A2(1 + x)2, so

0 = E[Z0 | G0] ≤ E[Zn | G0]−
n−1∑

k=0

E[vk | G0] ≤ A2(1 + x)2 −
n−1∑

k=0

v

4
P[n < τ | G0],

which implies 1
4nvP[n < τ | G0] ≤ A2(1 + x)2. In other words,

P

[
max
0≤ℓ≤n

‖Yℓ‖ < x
∣∣∣ G0

]
≤ 4A2(1 + x)2

vn
, a.s.

�
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Proof of Proposition 2.1. It suffices to show that for all x ∈ R+ the event {‖Xn‖ ≥
x} occurs infinitely often. For a given x, we will apply Lemma 4.1 to Yn = Xm+n−Xm

with Gn = σ(X0, . . . , Xm+n); that result is applicable, since (A0), (A1) and (A2) imply
(4.1), (4.3) and (4.2), respectively. Thus Lemma 4.1 shows that, for some finite t = t(x),

P

[
max

0≤ℓ≤t−1
‖Xm+ℓ −Xm‖ ≥ 2x

∣∣∣ X0, . . . , Xm

]
≥ 1

2
, a.s., (4.6)

for all m ≥ 0. For k = 1, 2, . . . , define the event

Ak =
{

max
0≤ℓ≤t−1

‖X(k−1)t+ℓ −X(k−1)t‖ ≥ 2x
}
,

and filtration G′
k−1 = σ(X0, . . . , X(k−1)t). Then Ak ∈ G′

k, and, by (4.6), P[Ak | G′
k−1] ≥

1
2 , a.s., for all k. An application of Lévy’s extension of the Borel–Cantelli lemma (see,
e.g., [9, Corollary 7.20]) shows that Ak occurs infinitely often, a.s. For each k such
that Ak occurs, either

• ‖X(k−1)t‖ ≥ x, or

• ‖X(k−1)t‖ ≤ x and ‖Xn‖ ≥ x for some (k − 1)t < n < kt.

Since one of these cases must occur for infinitely many k, we have that {‖Xn‖ ≥ x}
occurs infinitely often, as required. �

5. Recurrence classification

In this section we study the random walk Xn and give the proof of the recurrence
classification, Theorem 2.2. The method of proof is based on applying classical results
of Lamperti [12] to the R+-valued radial process given by Rn := ‖Xn‖. The method
rests on an analysis of the increments Rn+1 −Rn given Xn = x ∈ X; in general, Rn is
not itself a Markov process.

First we state a general result on the increments of Rn for a Markov process Xn on
X. Recall that we write ∆ = X1 −X0, and given x 6= 0, we set

∆x :=
〈∆,x〉
‖x‖ = 〈∆, x̂〉,

so that ∆x is the length of the projection of ∆ in the x̂ direction. In other words, ∆x

is the radial (scalar) component of ∆ at X0 = x; no confusion should arise with our
notation ∆n = Xn+1 −Xn introduced previously.

We make an important comment on notation. When we write O(‖x‖−1−δ), and
similar expressions, these are understood to be uniform in x. That is, if f : Rd → R

and g : R+ → R+, we write f(x) = O(g(‖x‖)) to mean that there exist C ∈ R+ and
r ∈ R+ such that

|f(x)| ≤ Cg(‖x‖) for all x ∈ X with ‖x‖ ≥ r. (5.1)

Lemma 5.1. Suppose that X is a discrete-time, time-homogeneous Markov process on
X ⊆ R

d satisfying (A0) for some p > 2. Then for Rn := ‖Xn‖ we have

sup
x∈X

E[|Rn+1 −Rn|p | Xn = x] < ∞, (5.2)
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and the radial increment moment functions satisfy

µ1(x) := E[Rn+1 −Rn | Xn = x] = Ex[∆x] +
Ex[‖∆‖2 −∆2

x
]

2‖x‖ +O(‖x‖−1−δ), (5.3)

µ2(x) := E[(Rn+1 −Rn)
2 | Xn = x] = Ex[∆

2
x
] + O(‖x‖−δ), (5.4)

as ‖x‖ → ∞, for some δ = δ(p) > 0.

Proof. By time-homogeneity, it suffices to consider the case n = 0. By the triangle
inequality, |R1 −R0| =

∣∣‖X0 +∆‖ − ‖X0‖
∣∣ ≤ ‖∆‖, so that (5.2) follows from (A0).

We prove (5.3) and (5.4) by approximating

‖x+∆‖ − ‖x‖ =
√
〈x+∆,x+∆〉 − ‖x‖

= ‖x‖
[(

1 +
2∆x

‖x‖ +
‖∆‖2
‖x‖2

)1/2

− 1

]
(5.5)

for large x. Let Ax = {‖∆‖ ≤ ‖x‖β} for some β ∈ (0, 1) to be determined later. On
the event Ax we approximate (5.5) using Taylor’s formula for (1 + y)1/2, and on the
event Ac

x
we bound (5.5) using (A0).

Indeed, for all y > −1, Taylor’s theorem with Lagrange remainder shows that

(1 + y)1/2 = 1 +
1

2
y − 1

8
y2(1 + γy)−3/2,

for some γ = γ(y) ∈ [0, 1], so on the event Ax,

‖x+∆‖ − ‖x‖ = ‖x‖
(

∆x

‖x‖ +
‖∆‖2
2‖x‖2 − 1

8

(
2∆x

‖x‖ +
‖∆‖2
‖x‖2

)2 (
1 + O(‖x‖β−1)

)
)

= ∆x +
‖∆‖2
2‖x‖ − ‖x‖

8

(
4∆2

x

‖x‖2 +
‖∆‖2
‖x‖2

(
4∆x

‖x‖ +
‖∆‖2
‖x‖2

))(
1 + O(‖x‖β−1)

)

= ∆x +
‖∆‖2
2‖x‖ − ∆2

x

2‖x‖
(
1 + O(‖x‖β−1)

)
+

‖∆‖2
‖x‖ O(‖x‖β−1)

= ∆x +
‖∆‖2 −∆2

x

2‖x‖
(
1 + O(‖x‖β−1)

)
, (5.6)

where the error terms follow from the fact that |∆x| ≤ ‖∆‖ ≤ ‖x‖β for β < 1.

On the other hand,

∣∣‖x+∆‖ − ‖x‖
∣∣1(Ac

x
) ≤ ‖∆‖1(Ac

x
) = ‖∆‖p‖∆‖1−p1(Ac

x
) ≤ ‖∆‖p‖x‖β(1−p), (5.7)

by the triangle inequality and the fact that ‖∆‖ > ‖x‖β on Ac
x
. Since

‖x+∆‖ − ‖x‖ = (‖x+∆‖ − ‖x‖)1(Ax) + (‖x+∆‖ − ‖x‖)1(Ac
x
),
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we can combine (5.6) and (5.7) to give

∣∣∣∣‖x+∆‖ − ‖x‖ −
[
∆x +

‖∆‖2 −∆2
x

2‖x‖
(
1 + O(‖x‖β−1)

)]∣∣∣∣

=

∣∣∣∣‖x+∆‖ − ‖x‖ −
[
∆x +

‖∆‖2 −∆2
x

2‖x‖
(
1 + O(‖x‖β−1)

)]∣∣∣∣1(A
c
x
)

≤ ‖∆‖p‖x‖β(1−p) +

∣∣∣∣∆x + 2

(‖∆‖2 −∆2
x

2‖x‖

)∣∣∣∣1(A
c
x
)

≤ 2‖∆‖p‖x‖β(1−p) + ‖∆‖p‖x‖β(2−p)−1.

Therefore, taking expectations and using (A0), we obtain

µ1(x) = Ex[∆x] +
Ex[‖∆‖2 −∆2

x
]

2‖x‖ +O(‖x‖β−2) + O(‖x‖β(1−p)) + O(‖x‖β(2−p)−1).

Taking β = 2/p makes all the error terms of size O(‖x‖−1−δ) for some δ = δ(p) > 0,
namely for δ = (p− 2)/p.

For the second moment, we use the identity

(‖x+∆‖ − ‖x‖)2 = ‖x+∆‖2 − ‖x‖2 − 2‖x‖(‖x+∆‖ − ‖x‖)
= 2‖x‖∆x + ‖∆‖2 − 2‖x‖(‖x+∆‖ − ‖x‖),

so that

µ2(x) = 2‖x‖Ex[∆x] + Ex[‖∆‖2]− 2‖x‖µ1(x) = Ex[∆
2
x
] + O(‖x‖−δ),

as required. �

With the additional assumptions (A1), (A3), and (A4), we can use Lemma 5.1 to
prove the following result.

Lemma 5.2. Suppose that X is a discrete-time, time-homogeneous Markov process
on X ⊆ R

d satisfying (A0), (A1), (A3) and (A4). Then, with µ1, µ2 defined at (5.3),
(5.4), and ε(r) defined at (A3), there exists δ > 0 such that, as ‖x‖ → ∞,

2‖x‖µ1(x) = V − U +O(ε(‖x‖)) + O(‖x‖−δ);

µ2(x) = U +O(ε(‖x‖)) + O(‖x‖−δ).
(5.8)

Proof. By definition of ε(r) at (A3) we have ‖M(x) − σ2(x̂)‖op = O(ε(‖x‖)) as
‖x‖ → ∞. Then (A4) implies that

Ex[‖∆‖2] = tr (M(x)) = tr (σ2(x̂)) + O(ε(‖x‖)) = V +O(ε(‖x‖)),

and

Ex[∆
2
x
] = 〈x̂,M(x) · x̂〉 = 〈x̂, σ2(x̂) · x̂〉+O(ε(‖x‖)) = U +O(ε(‖x‖)),

and (A1) implies that Ex[∆x] = Ex[〈∆, x̂〉] = 〈µ(x), x̂〉 = 0. Using these expressions
in Lemma 5.1 yields (5.8). �
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Proof of Theorem 2.2. We apply Lamperti’s [12] recurrence classification to Rn =
‖Xn‖, the radial process. Proposition 2.1 shows that lim supn→∞ Rn = +∞, and
Lemma 5.1 tells us that (5.2) is satisfied.

Because the error terms in (5.8) are uniform in x, Lemma 5.2 shows that for all η > 0
there exists C < ∞ such that 2‖x‖µ1(x) − µ2(x) ∈ [V − 2U − η, V − 2U + η] for all
x ∈ X with ‖x‖ ≥ C. Therefore, it follows from Theorem 3.2 of [12] that X is transient
if V − 2U > 0 and recurrent if V − 2U < 0. For the boundary case, when V − 2U = 0,
if ε(r) = O(r−δ0) then 2‖x‖µ1(x) − µ2(x) = O(‖x‖−δ1) for δ1 = min{δ, δ0}, which
implies that X is recurrent, again by Theorem 3.2 of [12]. �

6. Nullity

In this section we give the proof of Theorem 2.3. In the transient case, this is
straightforward.

Lemma 6.1. In case (i) of Theorem 2.2, for any bounded A ⊂ R
d, as n → ∞, the

null property (2.2) holds.

Proof. It is sufficient to prove (2.2) in the case where A = Br := {x ∈ X : ‖x‖ ≤ r}.
In case (i), X is transient, meaning that ‖Xn‖ → ∞ a.s., so that 1{Xn ∈ Br} → 0, a.s.,
for any r ∈ R+. Hence the Cesàro limit in (2.2) is also 0, a.s., and the Lq convergence
follows from the bounded convergence theorem. �

It remains to consider cases (ii) and (iii), when X is recurrent. Thus there exists
r0 ∈ R+ such that lim infn→∞‖Xn‖ ≤ r0, a.s. Let τr := min{n ∈ Z+ : Xn ∈ Br}.
It suffices to take A = Br where r > r0, so Xn ∈ Br infinitely often. We make the
following claim, whose proof is deferred until the end of this section, which says that
if the walk has not yet entered a ball of radius R (for any R > r big enough), the time
until it reaches the ball of radius r has tail bounded below as displayed.

Lemma 6.2. In cases (ii) and (iii) of Theorem 2.2, there exists a finite r1 ≥ r0 such
that for any r > r1 and R > r there exists a finite positive c such that

P[τr ≥ n+m | X0, . . . , Xn] ≥ cm−1/2, on {n < τR}, (6.1)

for all sufficiently large m.

Proof of Theorem 2.3. In case (i), the result is contained in Lemma 6.1. So consider
cases (ii) and (iii). Fix r and R with R > r > r1, with r1 as in Lemma 6.2. Note that
lim infn→∞‖Xn‖ ≤ r0 ≤ r1, a.s.

Set γ1 := 0 and then define recursively, for ℓ ∈ N, the stopping times

ηℓ := min{n ≥ γℓ : Xn /∈ BR}, γℓ+1 := min{n ≥ ηℓ : Xn ∈ Br},

with the convention that min ∅ := ∞. Since r > r0 and lim supn→∞‖Xn‖ = ∞ (by
Proposition 2.1), for all ℓ ∈ N we have ηℓ < ∞ and γℓ < ∞, a.s., and

0 = γ1 < η1 < γ2 < η2 < · · · .

In particular, limℓ→∞ γℓ = limℓ→∞ ηℓ = ∞, a.s.
We now write Fn := σ(X0, . . . , Xn). We use Lemma 4.1 to show that the process

must exit from BR rapidly enough. Indeed, if κ is any finite stopping time, set Yn =



16 N. GEORGIOU, M. V. MENSHIKOV, A. MIJATOVIĆ AND A. R. WADE

Xκ+n − Xκ and Gn = Fκ+n. Then the assumptions (A0), (A1) and (A2) show that
the hypotheses of Lemma 4.1 are satisfied, since, for example,

E[‖Yn+1 − Yn‖p | Gn] = E[‖Xκ+n+1 −Xκ+n‖p | Fκ+n] = EXκ+n
[‖∆‖p],

by the strong Markov property for X at the finite stopping time κ+ n. In particular,
another application of Lemma 4.1, similarly to (4.6), shows that we may choose n =
n(R) ∈ N sufficiently large so that

P

[
max

0≤ℓ≤n(R)
‖Xκ+ℓ −Xκ‖ ≥ 2R

∣∣∣ Fκ

]
≥ 1

2
, a.s., (6.2)

an event whose occurrence ensures that if Xκ ∈ BR, then X exits BR before time
κ + n(R). Fix k ∈ N. Then, an application of (6.2) at stopping time κ = γk shows
that

P[ηk − γk > n(R) | Fγk
] ≤ P

[
max

0≤ℓ≤n(R)
‖Xγk+ℓ −Xγk

‖ < 2R
∣∣∣ Fγk

]
≤ 1

2
, a.s.

Similarly,

P[ηk − γk > 2n(R) | Fγk
]

= E
[
1{ηk − γk > n(R)}E[1{ηk − γk > 2n(R)} | Fγk+n(R)]

∣∣ Fγk

]

≤ 1

2
P[ηk − γk > n(R) | Fγk

] ≤ 1

4
,

this time applying (6.2) at stopping time κ = γk+n(R) as well. Iterating this argument,
it follows that P[ηk − γk > m · n(R) | Fγk

] ≤ 2−m, a.s., for all m ∈ N. From here, it is
straightforward to deduce that, for some constant C < ∞, for any k ∈ N,

E[ηk − γk | Fγk
] ≤ C, a.s. (6.3)

On the other hand, the tail estimate (6.1) implies that

P[γk+1 − ηk ≥ m | Fηk
] ≥ cm−1/2, a.s., (6.4)

for c > 0 and all sufficiently large m.
For any n ∈ N, set k(n) := min{k ≥ 2 : γk > n}, so that γk(n)−1 ≤ n < γk(n) for

k(n) ∈ {2, 3, . . .}. Note k(n) < ∞ and limn→∞ k(n) = ∞, a.s. Then we claim

1

n

n−1∑

k=0

1{Xk ∈ Br} ≤
∑k(n)−1

k=1 (ηk − γk)∑k(n)−2
k=1 (γk+1 − ηk)

. (6.5)

This is easiest to see by considering two separate cases. First, if ηk(n)−1 < n < γk(n),

1

n

n−1∑

k=0

1{Xk ∈ Br} ≤ 1

ηk(n)−1

ηk(n)−1∑

k=0

1{Xk ∈ Br},

which implies (6.5), since the set of k less than n for which Xk ∈ Br is contained in the

set
⋃k(n)−1

k=1 [γk, ηk). On the other hand, if γk(n)−1 ≤ n ≤ ηk(n)−1, using the elementary
inequality

a

b
≤ a+ c

b+ c
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for non-negative a, b, c with a/b ≤ 1, we have

1

n

n−1∑

k=0

1{Xk ∈ Br} ≤ 1

ηk(n)−1

(
n−1∑

k=0

1{Xk ∈ Br}+ ηk(n)−1 − n

)
,

which again gives (6.5).
To estimate the growth rates of the numerator and denominator of the right-hand

side of (6.5), we apply some results from [6]. First, writing Zm =
∑m−1

k=1 (ηk − γk) and
Gm = Fγm

, by (6.3) we can apply Theorem 2.4 of [6] to the Gm-adapted process Zm to

obtain that for any ε > 0, a.s., for all but finitely many m,
∑m−1

k=1 (ηk − γk) ≤ m1+ε.

On the other hand, writing Zm =
∑m−1

k=1 (γk+1 − ηk) and Gm = Fηm
, by (6.4) we can

apply Theorem 2.6 of [6] to the Gm-adapted process Zm to obtain that for any ε > 0,

for all m sufficiently large,
∑m−1

k=1 (γk+1 − ηk) ≥ m2−ε. Now (6.5) gives the almost-
sure version of the result (2.2). The Lq version follows from the bounded convergence
theorem. �

It remains to complete the proof of Lemma 6.2. A more general, two-sided version
of the inequality in Lemma 6.2 is proved in [7, Theorem 2.4] but under slightly different
assumptions. Because of this, we cannot apply that result directly; nevertheless, the
proof techniques naturally transfer to our setting. In doing so, the arguments become
simpler to apply, so we reproduce them here.

Proof of Lemma 6.2. By the Markov property for X it is enough to prove the
statement for n = 0, namely that there exists finite r1 ≥ r0 such that for any r > r1
and R > r there exists a finite positive constant c such that, if X0 6∈ BR then

P[τr > m | X0] ≥ cm−1/2,

for sufficiently large m.
We outline the two intuitive steps in the proof. First we show that the probability

that max0≤k≤τr‖Xk‖ exceeds some large x is bounded below by a constant times 1/x.
Second, we show that if the latter event does occur, with probability at least 1

2 it
takes the process time at least a constant times x2 to reach Br. Combining these
two estimates will show that with probability of order 1/x the walk takes time of
order x2 to reach Br, which gives the desired tail bound. Roughly speaking, the
first estimate (reaching distance x) is provided by the optional stopping theorem and
the fact that ‖Xk‖ is a submartingale (cf. [7, Theorem 2.3]), and the second (taking
quadratic time to return) is provided by a maximal inequality applied to an appropriate
quadratic displacement functional (cf. [7, Lemma 4.11]). A technicality required for
the first estimate is that to apply optional stopping, we need uniform integrability; so
we actually work with a truncated version of ‖Xk‖.

We now give the details. Recall that Rk = ‖Xk‖ and let Fk = σ(X0, . . . , Xk).
Lemmas 5.1 and 5.2, with the fact that V > U by (A4), imply that

E[Rk+1 −Rk | Fk] ≥
2ε

Rk
+ o(R−1

k ) ≥ ε

Rk
, (6.6)

for allRk > r1, for sufficiently large r1 ≥ r0 and some positive constant ε. Now, suppose
that r and R satisfy R > r > r1 and fix x with x ≫ R. Set Rx

k := min{2x,Rk} and
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σx := min{k ≥ 0 : Rk > x}. Since Xk is a martingale, Rk is a submartingale, as is the
stopped process Yk := Rk∧τr∧σx

. In order to achieve uniform integrability, we consider
the truncated process Y x

k := Rx
k∧τr∧σx

and show that this is a submartingale.
For k ≥ τr ∧ σx, we have Y x

k+1 − Y x
k = 0 so E[Y x

k+1 − Y x
k | Fk] = 0. For k < τr ∧ σx,

Y x
k+1 − Y x

k = Rk+1 −Rk + (2x−Rk+1)1{Rk+1 > 2x},

and the last term can be bounded in absolute value:

|(2x−Rk+1)1{Rk+1 > 2x}| ≤ |Rk+1 −Rk|1{Rk+1 > 2x}
≤ |Rk+1 −Rk|1{|Rk+1 −Rk| > x}
≤ |Rk+1 −Rk|px1−p,

for p > 2 as appearing in (A0), since on {k < σx} we have Rk < x and therefore
Rk+1 > 2x implies that |Rk+1 −Rk| > x. Applying (5.2) from Lemma 5.1 we obtain

E[|(Y x
k+1 − Y x

k )− (Rk+1 −Rk)| | Fk] ≤ Bx1−p,

for some B < ∞ not depending on x. Combining this with (6.6) and again the fact
that Rk < x on {k < σx}, we have that

E[Y x
k+1 − Y x

k | Fk] ≥
ε

Rk
−Bx1−p ≥ ε

x
−Bx1−p ≥ 0,

for sufficiently large x.
Hence, for sufficiently large x, Y x

k is a uniformly integrable submartingale and
therefore, given X0 6∈ BR, by optional stopping,

R < R0 = Y x
0 ≤ E[Y x

σx∧τr | X0] = E[Y x
σx
1{σx < τr} | X0] + E[Y x

τr1{τr < σx} | X0]

≤ 2xP[σx < τr | X0] + r.

In other words, given X0 6∈ BR,

P

[
max

0≤k≤τr
Rk > x

∣∣∣ X0

]
≥ R− r

2x
, (6.7)

for all sufficiently large x.
Now, consider Wk := Rσx+k −Rσx

, adapted to Gk := Fσx+k. We have

W 2
k+1 −W 2

k = R2
σx+k+1 −R2

σx+k − 2Rσx
(Rσx+k+1 −Rσx+k).

Using the fact that Rk is a submartingale together with the strong Markov property for
X at the stopping time σx+k yields E[Rσx+k+1−Rσx+k | Fσx+k] ≥ 0 a.s., and Lemmas
5.1 and 5.2 again with the strong Markov property imply that E[R2

σx+k+1 − R2
σx+k |

Fσx+k] ≤ C a.s., for some constant C < ∞; hence E[W 2
k+1 − W 2

k | Gk] ≤ C a.s., for
some constant C < ∞. Then a maximal inequality [13, Lemma 3.1] similar to Doob’s
submartingale inequality implies that, on {σx < ∞},

P

[
max

0≤k≤n
W 2

k ≥ y
∣∣∣ G0

]
≤ Cn

y
, for any y > 0.
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In particular, we may choose ε > 0 small enough so that

P

[
max

0≤k≤εx2
|Rσx+k −Rσx

| ≥ x

2

∣∣∣ Fσx

]
≤ 1

2
, on {σx < ∞}. (6.8)

Combining the inequalities (6.7) and (6.8), we find that given X0 6∈ BR,

P

[{
max

0≤k≤τr
Rk > x

}
∩
{

max
0≤k≤εx2

|Rσx+k −Rσx
| < x

2

} ∣∣∣ X0

]

= E

[
1{σx < τr}P

[
max

0≤k≤εx2
|Rσx+k −Rσx

| < x

2

∣∣∣ Fσx

] ∣∣∣ X0

]

≥ 1

2
P

[
max

0≤k≤τr
Rk > x

∣∣∣ X0

]
≥ R− r

4x
,

for sufficiently large x, where the equality here uses the fact that {σx < τr} ∈ Fσx
.

If both of the events {max0≤k≤τr Rk > x} and {max0≤k≤εx2 |Rσx+k − Rσx
| < x/2}

occur, then the process Xk leaves the ball Bx before time τr and takes more than εx2

steps to return to the ball Bx/2 ⊂ Br, and therefore τr > εx2. Setting m = εx2 and
c = (R− r)

√
ε/4 yields the claimed inequality. �

Remark 6.1. It is only in the proof of Lemma 6.2 that we use the condition U < V
from (A4). In the case U = V , inequality (6.6) holds only for (any) ε < 0, and not
ε > 0; thus to obtain a submartingale one should look at (Y x

k )γ for γ > 1. The modified
argument yields a weaker version of (6.1), with m−1/2 replaced by m−(1/2)−δ for any
δ > 0, but, as stated in Remark 2.1, this is still comfortably enough to give Theorem
2.3 (any exponent greater than −1 in the tail bound will do). We omit these additional
technical details, as the case U = V is outside our main interest.

Appendix A. Recurrence in one dimension

We use a Lyapunov-function method with function f(x) = log(1 + |x|).
Lemma A.1. Suppose that X is a discrete-time, time-homogeneous Markov process
on X ⊆ R. Suppose that for some p > 2 and v > 0,

sup
x∈X

E[(Xn+1 −Xn)
p | Xn = x] < ∞; inf

x∈X

E[(Xn+1 −Xn)
2 | Xn = x] ≥ v.

Suppose also that for some bounded set A ⊂ R, E[Xn+1 − Xn | Xn = x] = 0, for all
x ∈ X \ A. Then there exists a bounded set A′ ⊂ R for which E[f(Xn+1) − f(Xn) |
Xn = x] ≤ 0, for all x ∈ X \A′.

Proof. Write ∆ = X1 −X0 and Ex = {|∆| < |x|}. We compute

E[f(Xn+1)−f(Xn) | Xn = x] = Ex[(f(x+∆)−f(x))1(Ex)]+Ex[(f(x+∆)−f(x))1(Ec
x)].

On {|∆| < |x|}, x and x+∆ have the same sign, so

Ex[(f(x+∆)− f(x))1(Ex)] = Ex

[
log

(
1 + |x+∆|

1 + |x|

)
1(Ex)

]

= Ex

[
log

(
1 +

∆sgn(x)

1 + |x|

)
1(Ex)

]

≤ sgn(x)

1 + |x| Ex[∆1(Ex)]−
1

6

Ex[∆
21(Ex)]

(1 + |x|)2 ,
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using the inequality log(1+ y) ≤ y− 1
6y

2 for all −1 < y ≤ 1. Here, since Ex[∆] = 0 for
x 6∈ A,

|Ex[∆1(Ex)]| ≤ Ex[|∆|1(Ec
x)] ≤ Ex[|∆|p|x|1−p] = o(|x|−1).

Similarly,

Ex[∆
21(Ex)] ≥ v − Ex[∆

21(Ec
x)] ≥ v − o(1).

(Note that here, and in what follows, our notation follows the convention as described
by (5.1); consequently, in one dimension the error terms are understood to be uniform
as either x → +∞, or x → −∞.) Finally we estimate the term

|Ex[(f(x+∆)− f(x))1(Ec
x)]| ≤ Ex [(log(1 + |∆|) + log(1 + 2|∆|))1(Ec

x)] .

Here,

log(1 + 2|∆|)1(Ec
x) = log(1 + 2|∆|)|∆|p|∆|−p1(Ec

x) ≤ |x|−p log(1 + 2|x|)|∆|p,

for all x with |x| greater than some x0 sufficiently large, using the fact that y 7→
y−p log(1 + 2y) is eventually decreasing. It follows that

|Ex[(f(x+∆)− f(x))1(Ec
x)]| ≤ 2|x|−p log(1 + 2|x|)Ex[|∆|p] = o(|x|−2).

Combining these calculations we obtain

E[f(Xn+1)− f(Xn) | Xn = x] ≤ sgn(x)

1 + |x|o(|x|
−1)− 1

6

v − o(1)

(1 + |x|)2 + o(|x|−2)

≤ − v

6(1 + |x|)2 + o(|x|−2),

which is negative for all x with |x| sufficiently large. �

Proof of Theorem 2.1. Under assumptions (A0), (A1) and (A2), the hypotheses of
Lemma A.1 are satisfied, so that for some x0 ∈ R+, E[f(Xn+1)−f(Xn) | Xn = x] ≤ 0,
for all x ∈ X with |x| ≥ x0.

We note that assumption (A0) implies that E[|Xn|] < ∞ for all n, and therefore
E[f(Xn)] < ∞ for all n. Let n0 ∈ N and set τ = min{n ≥ n0 : |Xn| ≤ x0}. Let Yn =
f(Xn∧τ ). Then (Yn, n ≥ n0) is a non-negative supermartingale, and hence there exists
a random variable Y∞ ∈ R+ with limn→∞ Yn = Y∞, a.s. In particular, this means that
lim supn→∞ f(Xn) ≤ Y∞ on {τ = ∞}. Setting ζ = sup{|x| : x ∈ X, f(x) ≤ Y∞}, which
satisfies ζ < ∞, a.s., since f(x) → ∞ as |x| → ∞, it follows that lim supn→∞|Xn| ≤ ζ
on {τ = ∞}. However, under assumptions (A0), (A1) and (A2), Proposition 2.1 implies
that lim supn→∞|Xn| = +∞, a.s., so to avoid contradiction, we must have τ < ∞, a.s.
In other words, P[infn≥n0

|Xn| ≤ x0] = 1, and since n0 was arbitrary, it follows that

P

[
⋂

n0∈N

{
inf

n≥n0

|Xn| ≤ x0

}]
= 1,

which gives the result. �
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