Elsevier Editorial System(tm) for Journal of Algebra Manuscript Draft

Manuscript Number: JALGEBRA-D-14-00660R1

Title: Ramification estimate for Fontaine-Laffaille Galois modules

Article Type: Research Paper

Section/Category: General

Keywords: local field; Galois group; etale cohomology; ramification filtration

Corresponding Author: Prof. Victor Abrashkin,

Corresponding Author's Institution: Durham University

First Author: Victor Abrashkin

Order of Authors: Victor Abrashkin

RAMIFICATION ESTIMATE FOR FONTAINE-LAFFAILLE GALOIS MODULES

VICTOR ABRASHKIN

ABSTRACT. Suppose K is unramified over \mathbb{Q}_p and $\Gamma_K = \operatorname{Gal}(\bar{K}/K)$. Let H be a torsion Γ_K -equivariant subquotient of crystalline $\mathbb{Q}_p[\Gamma_K]$ -module with HT weights from [0,p-2]. We give a new proof of Fontaine's conjecture about the triviality of action of some ramification subgroups $\Gamma_K^{(v)}$ on H. The earlier author's proof from [1] contains a gap and proves this conjecture only for some subgroups of index p in $\Gamma_K^{(v)}$.

Introduction

Let W(k) be the ring of Witt vectors with coefficients in a perfect field k of characteristic p. Consider the field K = W(k)[1/p], choose its algebraic closure \bar{K} and set $\Gamma_K = \operatorname{Gal}(\bar{K}/K)$. Denote by \mathbb{C}_p the completion of \bar{K} and use the notation $O_{\mathbb{C}_p}$ for its valuation ring.

For $a \in \mathbb{Z}_{\geqslant 0}$, let $\mathrm{M}\Gamma^{cr}_{\mathbb{Q}_p}(a)$ be the category of crystalline $\mathbb{Q}_p[\Gamma_K]$ -modules with Hodge-Tate weights from [0,a]. Define the full subcategory $\mathrm{M}\Gamma^{cr}_N(a)$ of the category of Γ_K -modules consisting of $H = H_1/H_2$, where H_1, H_2 are Γ_K -invariant lattices in $V \in \mathrm{M}\Gamma^{cr}_{\mathbb{Q}_p}(a)$ and $p^N H_1 \subset H_2 \subset H_1$. J.-M. Fontaine conjectured in [5] that the ramification subgroups $\Gamma^{(v)}_K$ act on $H \in \mathrm{M}\Gamma^{cr}_N(a)$ trivially if v > N - 1 + a/(p-1). The author suggested in [1] a proof of this conjecture under the assumption $0 \leqslant a \leqslant p-2$.

It was pointed recently by Sh. Hattori to the author that the proof in [1] has a gap. More precisely, consider Fontaine's ring $R = \varprojlim_n (O_{\mathbb{C}_p}/p)_n$ where the projective limit is taken with respect to the maps induced by the p-power map in \mathbb{C}_p . Let W_N be the functor of Witt vectors of length N. For $r = (o_n \mod p)_{n \geq 0} \in R$ and $m \in \mathbb{Z}$, set $r^{(m)} = \lim_{n \to \infty} o_n^{p^{n+m}} \in O_{\mathbb{C}_p}$ and consider Fontaine's map $\gamma : W_N(R) \longrightarrow O_{\mathbb{C}_p}/p^N$, where $(r_0, \ldots, r_{N-1}) \mapsto \sum_{0 \leq i < N} p^i r_i^{(i)} \mod p^N$. Consider the projection $(\bar{o}_0, \ldots, \bar{o}_N, \ldots) \mapsto \bar{o}_N$ from R to $O_{\mathbb{C}_p}/p$ and denote the image of Ker γ in $W_N(O_{\mathbb{C}_p}/p)$ by $W_N^1(O_{\mathbb{C}_p}/p)$. This is principal ideal and in order to apply Fontaine's criterion about the triviality of the action of ramification subgroups from [5], we needed an element of $W_N(L)$, where L

 $^{2010\} Mathematics\ Subject\ Classification.\ 11S15,\ 11S20.$

Key words and phrases. local field, Galois group, ramification filtration.

is a finite extension of K with "small" ramification, which generates $W_N^1(O_{\mathbb{C}_p}/p)$. Our "truncation" argument in [1] does not actually work: the resulting element does not belong to $W_N^1(O_{\mathbb{C}_p}/p)$. In the moment the author is inclined to believe that such an element does not exist if N > 1. Nevertheless, our proof in [1] gives the Fontaine conjecture up to index p: the groups $\Gamma_K^{(v)}$ just should be replaced by the groups $\Gamma_K^{(v)} \cap \Gamma_{K(\zeta_{N+1})}$, where ζ_{N+1} is a primitive p^{N+1} -th root of unity.

The above difficulty appears in many other situations when we try to escape from "R-constructions" (e.g. W(R), A_{cr} , etc) to p-adic constructions inside \mathbb{C}_p . In this paper we prove Fontaine's conjecture by applying methods from [2]. These methods were used earlier by the author to study ramification properties in the characteristic p case only. As a matter of fact, this is the first time when we applied them in the mixed characteristic situation.

Note also that if X is a smooth proper scheme over W(k) then our result gives the ramification estimates for the Galois equivariant subquotients of the etale cohomology groups $H^a(X_{\bar{K}}, \mathbb{Q}_p)$. Since the appearance of paper [1] there was a considerable progress in the study of the appropriate ramification estimates in the case of schemes X with semi-stable reduction modulo p [7, 3] but in our case (i.e. the case of schemes with good reduction modulo p) the situation remained unchanged.

The author expresses deep gratitude to Sh. Hattori for fruitful discussions.

1. Construction of torsion crystalline representations

The ring R is perfect of characteristic p, it is provided with the valution v_R such that $v_R(r) := \lim_{n \to \infty} p^n v_p(o_n)$, where $r = (o_n \mod p)_{n \geqslant 0}$. With respect to v_R , R is complete and the field $R_0 := \operatorname{Frac} R$ is algebraically closed. Note that R and R_0 are provided with natural Γ_K -action. Denote by σ the Frobenius endomorphism of R and W(R) and by m_R the maximal ideal of R.

1.1. Let $\mathcal{G} = \operatorname{Spf} W(k)[[X]]$ be the Lubin-Tate 1-dimensional formal group over W(k) such that $\operatorname{pid}_{\mathcal{G}}(X) = pX + X^p$. Then $\operatorname{End}_{W(k)}\mathcal{G} = \mathbb{Z}_p$ and for any $l \in \mathbb{Z}_p$, $(\operatorname{lid}_{\mathcal{G}})(X) \equiv lX \operatorname{mod} X^p$.

Fix $N \in \mathbb{N}$.

For $i \geq 0$, choose $o_i \in O_{\mathbb{C}_p}$ such that $o_0 = 0$, $o_1 \neq 0$ and $pid_{\mathcal{G}}(o_{i+1}) = o_i$. Set $\tilde{u} = (o_{N+i} \mod p)_{i \geq 0} \in R$. Then $\mathcal{K} := k((\tilde{u}))$ is a complete discrete valuation closed subfield in R_0 . If \mathcal{K}_{sep} is the separable closure of \mathcal{K} in R_0 then \mathcal{K}_{sep} is separably closed and its completion coincides with R_0 . The theory of the field-of-norms functor [9] identifies $\Gamma_{\mathcal{K}}$ with a closed subgroup in Γ_K . The quotient Γ_K/Γ_K acts strictly on \mathcal{K} . More precisely, there is a group epimorphism $\kappa: \Gamma_K \longrightarrow \operatorname{Aut}_{W(k)} \mathcal{G} \simeq \mathbb{Z}_p^*$ such

that if $g \in \Gamma_K$ then $\kappa(g) \in \mathbb{Z}_p[[X]]$ and $\kappa(g)(X) \equiv \chi(g)X \mod X^p$ with $\chi(g) \in \mathbb{Z}_p^*$. (Actually, $g \mapsto \chi(g)$ is the cyclotomic character.) With this notation we have $g(\tilde{u}) = \kappa(g)(\tilde{u})$.

Use the p-basis $\{\tilde{u}\}$ for separable extensions \mathcal{E} of \mathcal{K} in \mathcal{K}_{sep} to construct the system of lifts $O_N(\mathcal{E})$ of \mathcal{E} modulo p^N . Recall that $O_N(\mathcal{E}) = W_N(\sigma^{N-1}\mathcal{E})[u_N] \subset W_N(\mathcal{E})$ and $O_N(\mathcal{K}) = W_N(k)((u_N))$, where u_N is the Teichmuller representative of \tilde{u} in $W_N(\mathcal{K})$. This construction essentially depends on a choice of p-basis in \mathcal{K} . If, say, $\{u'\}$ is another p-basis for \mathcal{K} and $O'_N(\mathcal{E})$ are the appropriate lifts then $O_N(\mathcal{E})$ and $O'_N(\mathcal{E})$ are not very much different one from another: they can be related by the natural embeddings $\sigma^{N-1}O_N(\mathcal{E}) \subset W(\sigma^{N-1}\mathcal{E}) \subset O'_N(\mathcal{E})$. The lifts $O_N(\mathcal{E})$ are provided with the endomorphism σ such that $\sigma u_N = u_N^p$, and $O_N(\mathcal{K}_{sep})$ is provided with continuous $\Gamma_{\mathcal{K}}$ -action.

If τ is a continuous automorphism of \mathcal{E} then generally τ can't be lifted to an automorphism of $O_N(\mathcal{E})$ (but it can always be lifted to $W_N(\mathcal{E})$). In many cases it is sufficient to use "the lift" $\hat{\tau}: \sigma^{N-1}O_N(\mathcal{E}) \longrightarrow O_N(\mathcal{E})$ induced by $W_N(\tau): W_N(\mathcal{E}) \longrightarrow W_N(\mathcal{E})$. In other words, $\hat{\tau}$ is defined only on a part of $O_N(\mathcal{E})$, but $\hat{\tau} \mod p = \sigma^{N-1} \circ \tau: \sigma^{N-1} \mathcal{E} \longrightarrow \sigma^{N-1} \mathcal{E}$ and, therefore, τ can be uniquely recovered from the "lift" $\hat{\tau}$.

On the other hand, any continuous automorphism τ of $\mathcal{K}=k((\tilde{u}))$ can be lifted to an automorphism $\tau^{(N)}$ of $O_N(\mathcal{K})=W_N(k)((u_N))$ (use that $u_N \mod p=\tilde{u}$). Taking into account the existence of a lift τ_{sep} of τ to \mathcal{K}_{sep} we obtain a lift $\tau_{sep}^{(N)}$ of τ to $O_N(\mathcal{K}_{sep})=W_N(\sigma^{N-1}\mathcal{K}_{sep})[u_N]$. Set $O_N^0:=O_N(\mathcal{K}_{sep})\cap W_N(O_{sep})$ and $O_N^+:=O_N(\mathcal{K}_{sep})\cap W_N(m_{sep})$, where m_{sep} is the maximal ideal of the valuation ring O_{sep} of \mathcal{K}_{sep} . Then $\sigma(O_N^0)\subset O_N^0$, $\sigma(O_N^+)\subset O_N^+$ and $\bigcap_{n\geqslant 0}\sigma^n(O_N^+)=0$. Note that $O_N^0(\mathcal{K}):=O_N^0\cap O_N(\mathcal{K})=W_N(k)[[u_N]]$, $O_N^+(\mathcal{K}):=O_N^+\cap O_N(\mathcal{K})=u_NW_N(k)[[u_N]]$ and $O_N(\mathcal{K})=O_N^0(\mathcal{K})[u_N^{-1}]=W_N(k)((u_N))$.

$$u_m = (p^{N-m} \mathrm{id}_{\mathcal{G}})(u_N) \in O_N^0(\mathcal{K})$$

Then $u_0 = \sigma u_1 = pu_1 + u_1^p$, $t = u_0/u_1 = p + u_1^{p-1} \in O_N^0(\mathcal{K})$ and $u_0^{p-1} = t^p - pt^{p-1}$. As a matter of fact, u_0, u_1, t depend only on \tilde{u} . Indeed, if $u' \in W_N(R)$ and $u' \mod pW_N(R) = \tilde{u}$ then in $O_N(\mathcal{K})$ we have $u_1 = (p^{N-1} \mathrm{id}_{\mathcal{G}})(u')$.

Lemma 1.1. Suppose $g \in \Gamma_K$. Then

For $0 \le m \le N$, introduce

- a) $g(u_0) \equiv \chi(g)u_0 \mod u_0^p O_N^0(\mathcal{K});$
- b) $\sigma(g(t)/t) \equiv 1 \mod u_0^{p-1} O_N^0(\mathcal{K}).$

Proof. $g(u_1) = (p^{N-1} \mathrm{id}_{\mathcal{G}})(g(u_N)) = \kappa(g)(u_1) \equiv \chi(g)u_1 \bmod u_1^p O_N^0(\mathcal{K})$ implies a) because $\sigma(u_1) = u_0$. Then $g(t)/t \equiv 1 \bmod u_1^{p-1} O_N^0(\mathcal{K})$ and applying σ we obtain b).

1.2. Let \mathcal{MF} be the category of W(k)-modules M provided with decreasing filtration by W(k)-submodules $M = M^0 \supset \cdots \supset M^{p-1} \supset M^p = 0$ and σ -linear morphisms $\varphi_i : M^i \longrightarrow M$ such that for all i, $\varphi_i|_{M^{i+1}} = p\varphi_{i+1}$.

For $0 \leq a \leq p-2$, introduce the filtered module S_a such that

- $--\mathcal{S}_a = O_N^0 / u_0^a O_N^+;$
- for $0 \leqslant i \leqslant a$, $\operatorname{Fil}^i \mathcal{S}_a = t^i \mathcal{S}_a$;
- $-\varphi_i: \operatorname{Fil}^i \mathcal{S}_a \longrightarrow \mathcal{S}_a$ is σ -linear morphism such that $\varphi_i(t^i) = 1$.

Clearly, $S_a \in \mathcal{MF}$ (use that $\sigma t \equiv p \mod u_0^{p-1}$). In addition, Lemma 1.1 implies also that the action of Γ_K preserves the structure of an object of the category \mathcal{MF} on S_a .

For $0 \leqslant a < p$, define the category of filtered Fontaine-Laffaille modules $\mathrm{MF}_N(a)$ as the full subcategory in \mathcal{MF} consisting of modules M of finite length over $W_N(k)$ such that $M^{a+1}=0$ and $\sum \mathrm{Im} \varphi_i = M$. We can assume that M is given together with a functorial splitting of its filtration, i.e. there are submodules N_i in M such that for all i, $M^i=N_i\oplus M^{i+1}$.

Let $M \in \mathrm{MF}_N(a)$ and $\widetilde{U}_a(M) = \mathrm{Hom}_{\mathcal{MF}}(M, \mathcal{S}_a)$. Then the correspondence $M \mapsto \widetilde{U}_a(M)$ determines the functor \widetilde{U}_a from $\mathrm{MF}_N(a)$ to the category of Γ_K -modules.

Proposition 1.2. If $0 \le a \le p-2$ and $H \in \mathrm{M}\Gamma_N^{cr}(a)$ then there is $M \in \mathrm{MF}_N(a)$ such that $\widetilde{U}_a(M) = H$.

Proof. Recall briefly the main ingredients of the Fontaine-Laffaille theory [6]. The p^N -torsion crystalline ring $A_{cr,N} := A_{cr}/p^N$ appears as the divided power envelope of $W_N(R)$ with respect to Ker γ . We need the following construction of a generator of Ker γ . (Note that we have a natural inclusion of W(k)-modules $O_N^0 \subset W_N(R)$.)

Lemma 1.3. Ker $\gamma = tW_N(R)$.

Proof. We have $\gamma(u_N) \equiv o_N \mod pO_{\mathbb{C}_p}$, therefore, $\gamma(u_0) \equiv 0 \mod p^N O_{\mathbb{C}_p}$ and $t \in \operatorname{Ker}\gamma$. On the other hand, $t \equiv u_1^{p-1} \equiv [r] \mod pW(R)$, where $r \in R$ is such that $r^{(0)} \equiv o_1^{p-1} \equiv -p \mod p^{p/(p-1)}O_{\mathbb{C}_p}$. Therefore, $v_p(r^{(0)}) = 1$ and t generates $\operatorname{Ker}\gamma$, cf. [6].

By above Lemma, $A_{cr,N} = W_N(R)[\{\gamma_i(t) \mid i \geqslant 1\}]$, where $\gamma_i(t)$ are the *i*-th divided powers of *t*. Then the identity $\gamma_p(t) = t^{p-1} + u_0^{p-1}/p$ implies that $A_{cr,N} = W_N(R)[\{\gamma_i(u_0^{p-1}/p) \mid i \geqslant 1\}]$.

Recall that $A_{cr,N} \in \mathcal{MF}$ with:

— the filtration $\operatorname{Fil}^{i} A_{cr,N}$, $0 \leq i < p$, generated as ideal by t^{i} and all $\gamma_{j}(u_{0}^{p-1}/p)$, $j \geq 1$;

— the σ -linear morphisms φ_i : $\operatorname{Fil}^i A_{cr,N} \longrightarrow A_{cr,N}$ (which come from σ/p^i on A_{cr}) such that $\varphi_i(t^i) = (1 + u_0^{p-1}/p)^i$ and $\varphi_i(u_0^{p-1}/p) = p^{p-1-i}(u_0^{p-1}/p)(1 + u_0^{p-1}/p)^{p-1}$.

Then the Fontaine-Laffaille functor U_a attaches to $M \in \mathrm{MF}_N(a)$ the Γ_K -module $\mathrm{Hom}_{\mathcal{MF}}(M,A_{cr,N})$. This functor is fully-faithful (we assume that $a \leq p-2$) and, therefore, there is $M \in \mathrm{MF}_N(a)$ such that $U_a(M) = H$.

Consider the W(k)-module $\mathcal{W}_N^a = W_N(R)/u_0^a W_N(\mathbf{m}_R)$ with the filtration induced by the filtration $W_N^i(R) = t^i W_N(R)$ and σ -linear morphisms φ_i such that $\varphi_i(t^i) = 1$. Prove that we have an identification of Γ_K -modules $H = \operatorname{Hom}_{\mathcal{MF}}(M, \mathcal{W}_N^a)$.

Indeed, let T_a be the maximal element in the family of all ideals I of $A_{cr,N}$ such that φ_a induces a nilpotent endomorphism of I. Then for any $M \in \mathrm{MF}_N(a)$, $U_a(M) = \mathrm{Hom}_{\mathcal{MF}}(M, A_{cr,N}/T_a)$. By straightforward calculations we can see that T_a is generated by the elements of $u_0^a W_N(\mathbf{m}_R)$ and all $\gamma_j(u_0^{p-1}/p)$, $j \geq 1$. It remains to note that we have a natural identification $A_{cr,N}/T_a = \mathcal{W}_N^a$ in the category \mathcal{MF} .

Consider the natural embedding $O_N^0 \longrightarrow W_N(R)$ and the induced natural map $\iota_a : \mathcal{S}_a \longrightarrow \mathcal{W}_N^a$ in \mathcal{MF} . Prove that $\iota_{a*} : \widetilde{U}_a(M) \to H$ is isomorphism of Γ_K -modules.

Choose W(k)-submodules N_i in M^i such that $M^i = N_i \oplus M^{i+1}$ and choose vectors \bar{n}_i whose coordinates give a minimal system of generators of N_i . Then the structure of M can be given by the matrix relation $(\varphi_a(\bar{n}_a), \ldots, \varphi_0(\bar{n}_0)) = (\bar{n}_a, \ldots, \bar{n}_0)C$, where C is an invertible matrix with coefficients in W(k). The elements of H are identified with the residues $(\bar{u}_a, \ldots, \bar{u}_0) \mod u_0^a W_N(m_{\text{sep}})$ where the vectors $(\bar{u}_a, \ldots, \bar{u}_0)$ have coefficients in $W_N(\mathcal{K}_{sep})$ and satisfy the following system of equations (use that φ_a is topologically nilpotent on $u_N^a W_N(m_{\text{sep}})$)

$$\left(\frac{\sigma \bar{u}_a}{\sigma t^a}, \dots, \frac{\sigma \bar{u}_i}{\sigma t^i}, \dots, \sigma(\bar{u}_0)\right) = (\bar{u}_a, \dots, \bar{u}_0)C$$

In particular, if $\bar{u} = (\bar{u}_a, \dots, \bar{u}_0)$ then there is an invertible matrix D with coefficients in $O_N(\mathcal{K})$ such that

(1.1)
$$\sigma(\bar{u})D = \bar{u}.$$

We know that all coordinates of $\sigma^{N-1}\bar{u}$ belong to $\sigma^{N-1}W_N(\mathcal{K}_{sep}) \subset O_N(\mathcal{K}_{sep})$. Then (1.1) implies step-by-step that the vectors $\sigma^{N-2}\bar{u}, \ldots, \bar{u}$ have coordinates in $O_N(\mathcal{K}_{sep})$. It remains to note that $O_N^0 = O_N(\mathcal{K}_{sep}) \cap W_N(O_{sep})$ and $O_N^+ = O_N(\mathcal{K}_{sep}) \cap W_N(m_{sep})$. The proposition is proved.

2. Reformulation of the Fontaine conjecture

2.1. Review of ramification theory. Let $\mathcal{I}_{\mathcal{K}}$ be the group of all continuous automorphisms of \mathcal{K}_{sep} which keep invariant the residue field of \mathcal{K}_{sep} and preserve the extension of the normalised valuation $v_{\mathcal{K}}$

of K to K_{sep} . This group has a decreasing filtration by its ramification subgroups $\mathcal{I}_{K}^{(v)}$ in upper numbering $v \geq 0$. Recall basic ingredients of the definition of this filtration following the papers [4, 9, 10].

For any field extension \mathcal{E} of \mathcal{K} in \mathcal{K}_{sep} , set $\mathcal{E}_{sep} = \mathcal{K}_{sep}$, in particular, $\mathcal{I}_{\mathcal{E}} = \mathcal{I}_{\mathcal{K}}$. All elements of $\mathcal{I}_{\mathcal{K}}$ preserve the extension $v_{\mathcal{E}}$ of the normalised valuation on \mathcal{E} to \mathcal{K}_{sep} .

For $x \geqslant 0$, set $\mathcal{I}_{\mathcal{E},x} = \{ \iota \in \mathcal{I}_{\mathcal{E}} \mid v_{\mathcal{E}}(\iota(a) - a) \geqslant 1 + x \ \forall a \in m_{\mathcal{E}} \}$, where $m_{\mathcal{E}}$ is the maximal ideal in $O_{\mathcal{E}}$.

Denote by $\mathcal{I}_{\mathcal{E}/\mathcal{K}}$ the set of all continuous embeddings of \mathcal{E} into \mathcal{K}_{sep} which induce the identity map on \mathcal{K} and the residue field $k_{\mathcal{E}}$ of \mathcal{E} . For $x \geq 0$, set $\mathcal{I}_{\mathcal{E}/\mathcal{K},x} = \mathcal{I}_{\mathcal{E},x} \cap \mathcal{I}_{\mathcal{E}/\mathcal{K}}$.

If $\iota_1, \iota_2 \in \mathcal{I}_{\mathcal{E}/\mathcal{K}}$ and $x \geqslant 0$ then ι_1 and ι_2 are x-equivalent iff for any $a \in \mathrm{m}_{\mathcal{E}}, v_{\mathcal{E}}(\iota_1(a) - \iota_2(a)) \geqslant 1 + x$. Denote by $(\mathcal{I}_{\mathcal{E}/\mathcal{K}} : \mathcal{I}_{\mathcal{E}/\mathcal{K},x})$ the number of x-equivalent classes in $\mathcal{I}_{\mathcal{E}/\mathcal{K}}$. Then the Herbrand function $\varphi_{\mathcal{E}/\mathcal{K}}$ can be defined for all $x \geqslant 0$, as

$$\varphi_{\mathcal{E}/\mathcal{K}}(x) = \int_0^x (\mathcal{I}_{\mathcal{E}/\mathcal{K}} : \mathcal{I}_{\mathcal{E}/\mathcal{K},x})^{-1} dx$$
.

This function has the following properties:

- $\varphi_{\mathcal{E}/\mathcal{K}}$ is a piece-wise linear function with finitely many edges;
- if $\mathcal{K} \subset \mathcal{E} \subset \mathcal{H}$ is a tower of finite field extensions in \mathcal{K}_{sep} then for any $x \geq 0$, $\varphi_{\mathcal{H}/\mathcal{K}}(x) = \varphi_{\mathcal{E}/\mathcal{K}}(\varphi_{\mathcal{H}/\mathcal{E}}(x))$.

The ramification filtration $\{\mathcal{I}_{\mathcal{K}}^{(v)}\}_{v\geqslant 0}$ appears now as a decreasing sequence of the subgroups $\mathcal{I}_{\mathcal{K}}^{(v)}$ of $\mathcal{I}_{\mathcal{K}}$, where $\mathcal{I}_{\mathcal{K}}^{(v)}$ consists of $\iota\in\mathcal{I}_{\mathcal{K}}$ such that for any finite extension \mathcal{E} of \mathcal{K} , $\iota\in\mathcal{I}_{\mathcal{E},v_{\mathcal{E}}}$ with $\varphi_{\mathcal{E}/\mathcal{K}}(v_{\mathcal{E}})=v$.

If we replace the lower indices \mathcal{K} to \mathcal{E} , the ramification filtration $\{\mathcal{I}_{\mathcal{K}}^{(v)}\}_{v\geqslant 0}$ is not changed as a whole, just only individual subgroups change their upper indices, that is $\mathcal{I}_{\mathcal{K}}^{(v)} = \mathcal{I}_{\mathcal{E}}^{(v_{\mathcal{E}})}$. Note that the inertia subgroup $\Gamma_{\mathcal{E}}^{0}$ of $\Gamma_{\mathcal{E}} = \operatorname{Gal}(\mathcal{K}_{sep}/\mathcal{E})$ is a subgroup

Note that the inertia subgroup $\Gamma_{\mathcal{E}}^0$ of $\Gamma_{\mathcal{E}} = \operatorname{Gal}(\mathcal{K}_{sep}/\mathcal{E})$ is a subgroup in $\mathcal{I}_{\mathcal{E}}$ and for any $v \geq 0$, the appropriate subgroup $\Gamma_{\mathcal{E}}^{(v)} = \Gamma_{\mathcal{E}} \cap \mathcal{I}_{\mathcal{E}}^{(v)}$ is just the ramification subgroup of $\Gamma_{\mathcal{E}}$ with the upper number v from [8].

2.2. Statement of the main theorem. The main idea of our approach to the Γ_K -modules $\tilde{U}_a(M)$ is related to the following fact. The filtered module S_a depends only on the field K and its uniformizer \tilde{u} . Therefore, S_a can be identified with its analogue S'_a constructed for any ramified extension K' of K together with its uniformizer \tilde{u}' . The whole group \mathcal{I}_K does not preserve the structure of S_a but the ramification subgroups $\mathcal{I}_K^{(v)}$, where $a > a_N^* := (a+1)p^{N-1} - 1$ do preserve this structure because of the following proposition.

Proposition 2.1. If $v > a_N^*$ and $M \in \mathrm{MF}_N(a)$ then a natural action of \mathcal{I}_K on $W_N(\mathcal{K}_{sep})$ induces the $\mathcal{I}_K^{(v)}$ -module structure on $\widetilde{U}_a(M)$.

Proof. All we need is just the following lemma.

Lemma 2.2. If $\tau \in \mathcal{I}_{\mathcal{K}}^{(v)}$ with $v > a_N^*$ then

- a) $\tau(u_0)/u_0 \in O_N^*(\mathcal{K}_{sep});$
- b) for $0 \leqslant i \leqslant a$, $\varphi_i(\tau t^i) = 1$.

Proof of Lemma. For $\tau \in \mathcal{I}_{\mathcal{K}}^{(v)}$, we have $\tau(u_N) = u_N + \eta_N + pw$, where $\eta_N \in u_1^{a+1}O_N^+$ and $w \in W_N(\mathcal{K}_{sep})$. For $1 \leqslant i \leqslant N$, this implies

$$\tau(u_i) = u_i + \eta_i + p^{N-i+1}w_i \,,$$

where $\eta_i \in u_1^{a+1}O_N^+$ and $w_i \in W_N(\mathcal{K}_{sep})$. Therefore,

$$\tau(u_1) \equiv u_1 \operatorname{mod} u_1^{a+1} O_N^+.$$

This implies part a) because $\tau(u_0) \equiv u_0 \mod u_0^{a+1} O_N^+$ and part b) because $\sigma(\tau t)/\sigma(t) \equiv 1 \mod u_0^a O_N^+$.

With the relation to the original problem of estimating the upper ramification numbers of the Γ_K -module H notice now that $\mathcal{K} = k((\tilde{u}))$ coincides with $\sigma^{-N}\mathcal{K}_0$, where \mathcal{K}_0 is the field-of-norms of the p-cyclotomic extension \widetilde{K} of K. Then for any $v \geq 0$, $\Gamma_K^{(v)} = \Gamma_K \cap \mathcal{I}_K^{(v^*)}$, where $\varphi_{\widetilde{K}/K}(v^*) = v$. In particular, v > N - 1 + a/(p-1) if and only if $v^* > a_N^*$.

So, the proof of Fontaine's conjecture is reduced to the proof of the following theorem stated exclusively in terms of the field \mathcal{K} of characteristic p.

Theorem 2.3. For any $v > a_N^*$, the group $\mathcal{I}_K^{(v)}$ acts trivially on $\widetilde{U}_a(M)$.

3. Proof of Theorem 2.3

3.1. Auxiliary field \mathcal{K}' . Let $N^* \in \mathbb{N}$ and $r^* \in \mathbb{Q}$ be such that for $q := p^{N^*}$, $r^*(q-1) := b^* \in \mathbb{N}$ and $v_p(b^*) = 0$.

Consider the field $\mathcal{K}' = \mathcal{K}(N^*, r^*)$ from [2]. Remind that

- $--\left[\mathcal{K}^{\prime}:\mathcal{K}\right] =q;$
- $\mathcal{K}' = k((\tilde{u}'))$, where $\tilde{u} = \tilde{u}'^q E(\tilde{u}'^{b^*})^{-1}$ (here E is the Artin-Hasse exponential);
- the Herbrand function $\varphi_{\mathcal{K}'/\mathcal{K}}$ has only one edge point (r^*, r^*) . (In particular, $\varphi_{\mathcal{K}'/\mathcal{K}}(x) < x$ for all $x > r^*$.)

For \mathcal{K}' and its above uniformiser \tilde{u}' proceed as earlier to construct the lifts $O'_N(\mathcal{K}')$ and $O'_N(\mathcal{K}_{sep})$ obtained with respect to the p-basis \tilde{u}' . Introduce similarly the modules O'^0_N , O'^+_N , the elements u'_0 , $t' \in O_N(\mathcal{K}')$ and the filtered module \mathcal{S}'_a .

3.2. Compare the old and the new lifts using their canonical embeddings into $W_N(\mathcal{K}_{sep})$. Note that u_N is not generally an element of $O'_N(\mathcal{K}')$ because the Teichmuller representative $u_N = [\tilde{u}]$ can't be written as a power series in $u'_N = [\tilde{u}']$ if N > 1. However, we can easily see that for $1 \leq i < N$, $u_{N-i} \in O'_N(\mathcal{K}') \mod p^{i+1}W_N(\mathcal{K}')$. In particular, $u_1, u_0, t \in O'_N(\mathcal{K}')$.

Proposition 3.1. If $\xi \in \widetilde{U}_a(M)$ then for any $m \in M$, $\xi(m) \in O'_N(\mathcal{K}_{sep})$.

Proof. Proceed as we proceeded at the end of Section 1. Then the vectors $(\xi(\bar{n}_a), \ldots, \xi(\bar{n}_0))$ appear in the form $\bar{\xi} \mod u_0^a O_N^+$, where $\bar{\xi}$ is a vector with coefficients in $O_N(\mathcal{K}_{sep})$ such that

(3.1)
$$\sigma(\bar{\xi})D = \bar{\xi},$$

and the matrix D has coefficients in $O'_N(\mathcal{K}')$ (use that $t \in O'_N(\mathcal{K}')$). We know that all coordinates of $\sigma^{N-1}\bar{\xi}$ belong to $\sigma^{N-1}O_N(\mathcal{K}_{sep}) \subset O'_N(\mathcal{K}_{sep})$. Then (3.1) implies step-by-step that the vectors $\sigma^{N-2}\bar{\xi}, \ldots, \bar{\xi}$ have coordinates in $O'_N(\mathcal{K}_{sep})$.

3.3. Now suppose $v^* \geqslant a_N^*$, $\mathcal{I}_K^{(v)}$ acts trivially on $\widetilde{U}_a(M)$ for all $v > v^*$ and v^* is the minimal with this property. The existence of v^* follows from the left-continuity of the ramification filtration with respect to the upper numbering.

If $v^* = a_N^*$ then our theorem is proved.

Suppose that $v^* > a_N^*$. Choose the parameters r^* and N^* from Subsection 3.1 such that $a_N^*q/(q-1) < r^* < v^*$.

For any $\alpha \in O'_N(\mathcal{K}_{sep})$, set $\alpha^{(q)} = \sigma^{N^*} \alpha$.

Lemma 3.2. $u_1/u_1'^{(q)} \equiv 1 \mod u_1'^{(q)a} O_N'^{+}(\mathcal{K}')$.

Proof. Consider $b^* = r^*(q-1) \in \mathbb{N}$ from Subsection 3.1. Then $b^* + q > q(a_N^* + 1) = q(a+1)p^{N-1}$ and

$$u_N \equiv u_N^{\prime(q)} \bmod \left(u_1^{\prime(q) a+1} O_N^+(\mathcal{K}') + p O_N(\mathcal{K}') \right)$$

This implies $u_1 \equiv u_1^{\prime(q)} \mod u_1^{\prime(q)\,a+1} O_N^{\prime+}(\mathcal{K}')$ and the lemma is proved.

Corollary 3.3. a) $u_0/u_0^{\prime(q)}$ is invertible in $O_N^{\prime 0}(\mathcal{K}')$;

b)
$$\sigma(t/t'^{(q)}) \equiv 1 \mod u_0'^{(q) a} O_N'^{+}(\mathcal{K}').$$

3.4. $\mathcal{I}_{\mathcal{K}'}^{(v^*)}$ -action. Introduce the filtered module $\mathcal{S}_a^{\prime\,(q)}$ as follows.

$$- S_a^{\prime (q)} = O_N^{\prime 0} / u_0^{\prime (q) a} O_N^{\prime +};$$

— for
$$0 \leqslant i \leqslant a$$
, $\operatorname{Fil}^{i} \mathcal{S}_{a}^{\prime(q)} = t^{\prime(q)i} \mathcal{S}_{a}^{\prime(q)}$;

$$--\varphi_i^{\,\prime(q)}: \mathrm{Fil}^i\mathcal{S}_a^{\,\prime(q)} \longrightarrow \mathcal{S}_a^{\,\prime(q)} \text{ is σ-linear such that } \varphi_i^{\,\prime(q)}(t^{\,\prime(q)\,i}) = 1.$$

Suppose $M' \in \mathrm{MF}_N(a)$ is given similarly to M by the relation

$$(\varphi_a(\bar{n}_a), \dots, \varphi_0(\bar{n}_0)) = (\bar{n}_a, \dots, \bar{n}_0)\sigma^{-N^*}C$$

Then we can use σ^{N^*} to identify the modules $\widetilde{U}'_a(M') := \operatorname{Hom}_{\mathcal{MF}}(M', \mathcal{S}'_a)$ and $\widetilde{U}_a^{\prime(q)}(M) := \operatorname{Hom}_{\mathcal{MF}}(M, \mathcal{S}_a^{\prime(q)})$. This identification is compatible with the action of the subgroups $\mathcal{I}_{\mathcal{K}'}^{(v)}$, where $v > a_N^*$.

Note that the fields \mathcal{K} and \mathcal{K}' are isomorphic (as any two fields of formal power series with the same residue field). Choose an isomorphism $\kappa: \mathcal{K} \longrightarrow \mathcal{K}'$ such that $\kappa(\tilde{u}) = \tilde{u}'$ and $\kappa|_{k} = \sigma^{-N^*}$. We can extend κ to an isomorphism of separable closures of \mathcal{K} and \mathcal{K}' . This allows us to identify the groups $\mathcal{I}_{\mathcal{K}}$ and $\mathcal{I}_{\mathcal{K}'}$ and this identification is compatible with the appropriate ramification filtrations. Even more, we obtain an identification of $\widetilde{U}_a(M)$ with $\widetilde{U}'_a(M')$ and this identification respects the action of $\mathcal{I}_{\mathcal{K}}^{(v)}$ on $\widetilde{U}_a(M)$ and the action of $\mathcal{I}_{\mathcal{K}'}^{(v)}$ on $\widetilde{U}_a'(M')$ for any $v > a_N^*$. Therefore, v^* is the maximal number such that $\mathcal{I}_{K'}^{(v^*)}$ acts non-trivially on $\widetilde{U}'_{a}(M')$ and

- v^* is the maximal such that $\mathcal{I}_{\kappa'}^{(v^*)}$ acts non-trivially on $\widetilde{U}_a^{\prime(q)}(M)$.
- **3.5.** $\mathcal{I}_{\mathcal{K}}^{(v^*)}$ -action. Introduce the filtered module \mathcal{S}_a^{\star} as follows:
 - $--\mathcal{S}_a^{\star} = O_N^0 \cap O_N'(\mathcal{K}_{sep})/u_0^a O_N^+ \cap O_N'(\mathcal{K}_{sep});$
 - $\operatorname{Fil}^{i}\mathcal{S}_{a}^{\star} = t^{i}\mathcal{S}_{a} \cap \mathcal{S}_{a}^{\star};$
 - $-\varphi_i^{\star} = \varphi_i|_{\mathrm{Fil}^i \mathcal{S}^{\star}} : \mathrm{Fil}^i \mathcal{S}^{\star}_a \longrightarrow \mathcal{S}^{\star}_a.$

The results from Subsection 3.2 allow us to identify $\widetilde{U}_a(M)$ with $U_a^{\star}(M) = \operatorname{Hom}_{\mathcal{MF}}(M, \mathcal{S}_a^{\star})$. By the results from Subsection 3.3, there is a natural embedding of filtered modules $\mathcal{S}_a^{\star} \longrightarrow \mathcal{S}_a^{\prime\,(q)}$ and, therefore, we can identify $\widetilde{U}_a(M)$ with $\widetilde{U}_a'^{(q)}(M')$. This identification is compatible with the action of ramification subgroups $\mathcal{I}_{\mathcal{K}}^{(v)}$ for all $v > a_N^*$. So,

- v^* is the maximal such that $\mathcal{I}_{\mathcal{K}}^{(v^*)}$ acts non-trivially on $\widetilde{U}_a^{\prime(q)}(M)$.
- 3.6. The end of proof of Theorem. It remains to notice that $\mathcal{I}_{\mathcal{K}'}^{(v^*)} = \mathcal{I}_{\mathcal{K}}^{(v_0^*)}$, where $v_0^* = \varphi_{\mathcal{K}'/\mathcal{K}}(v^*) < v^*$. The contradiction.

References

- [1] V. Abrashkin, Ramification in etale cohomology, Invent. math. (1990) 101,
- [2] V.ABRASHKIN, Ramification filtration of the Galois group of a local field. III, Izvestiya RAN: Ser. Mat., 62, no.5 (1998), 3-48; English transl. Izvestiya: Mathematics **62**, no.5, 857–900
- [3] X. Caruso, T. Liu, Some bounds for ramification of p-torsion semi-stable representations, J. Algebra 325 (2011), 70-96

- [4] P.Deligne Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0, Representations of reductive groups over a local field, Travaux en cours, Hermann, Paris, 1973, 119-157
- [5] J.-M. FONTAINE, Il n'y a pas de variété abelienne sur Z, Invent. math. (1990)
 101, 631-640
- [6] J.-M. FONTAINE, G. LAFFAILLE, Construction de représentations p-adiques, Ann. Sci. École Norm. Sup., 4 Ser. 15 (1982), 547–608
- [7] Sh. Hattori, On a ramification bound of torsion semi-stable representations over a local field, J. Number Theory 129 (2009), no. 10, 2474-2503
- [8] J.-P.Serre, Local Fields Berlin, New York: Springer-Verlag, 1980
- [9] J.-P. WINTENBERGER, Le corps des normes de certaines extensions infinies des corps locaux; application Ann. Sci. Ec. Norm. Super., IV. Ser, 16 (1983), 59–89
- [10] J.-P.WINTENBERGER, Extensions de Lie et groupes d'automorphismes des corps locaux de caractéristique p. (French) C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 9, A477-A479

DEPARTMENT OF MATHEMATICAL SCIENCES, DURHAM UNIVERSITY, SCIENCE LABORATORIES, SOUTH RD, DURHAM DH1 3LE, UNITED KINGDOM & STEKLOV INSTITUTE, GUBKINA STR. 8, 119991, MOSCOW, RUSSIA

E-mail address: victor.abrashkin@durham.ac.uk