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Abstract

This article presents a numerical study to investigate tmetined role of partial well penetration
(PWP) and non-Darcyfiects concerning the performance of groundwater productielts. A
finite difference model is developed in MATLAB to solve the two-dimensai mixed-type bound-
ary value problem associated with flow to a partially pengtgavell within a cylindrical confined
aquifer. Non-Darcy ffects are incorporated using the Forchheimer equation. Tddehs veri-
fied by comparison to results from existing semi-analytsgdilitions concerning the same problem
but assuming Darcy’s law. A sensitivity analysis is presdrib explore the problem of concern.
For constant pressure production, Non-Daréige@s lead to a reduction in production rate, as
compared to an equivalent problem solved using Darcy’s |Bar. fully penetrating wells, this
reduction in production rate becomes less significant witle t However, for partially penetrating
wells, the reduction in production rate persists for mualyda times. For constant production
rate scenarios, the combineiext of PWP and non-Darcy flow takes the form of a constant addi-
tional drawdown term. An approximate solution for this ltesn is obtained by performing linear

regression on the modeling results.
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s 1. Introduction

° Energy losses associated with fluid production wells arenofbnsidered to comprise of three
1 components: (1) energy losses within the aquifer as predlicy Darcy’s law; (2) energy losses
u that occur adjacent to and within the borehole and wellestrsometimes referred to as skin
1 effects); and (3) non-linear energy losses associated withiahandor turbulent &ects near the
13 well (Konikow et al., 2009). These latter non-linear lossas be represented within numerical
1 groundwater models using the Forchheimer equation (Maydwal., 2014). The Forchheimer
15 equation is also often used to understand processes assowith oil and gas production (Huang
s and Ayoub, 2008; Zeng and Zhao, 2008; Wu et al., 2011) andgedtion (Mathias et al., 2009,
v 2014; Mijic et al., 2014).

18 In a recent study, Mathias and Todman (2010) demonstratedhetransient development of
19 non-linear energy losses, associated with step drawdosts it@ groundwater production wells,
2 can be explained by invoking non-Darcifexts associated with the Forchheimer equation, using
2 the numerical model developed by Mathias et al. (2008). Hewe significant shortcoming of
» the Mathias et al. (2008) model is the assumption of a fullggbating well. In many cases,
s production wells only partially penetrate the aquifer ohcern.

24 Given that non-Darcyféects are localized around areas of high flow velocities, ttergially

s large vertical fluxes above and below a partially penetgatiell are likely to generate significant
s additional Non-Darcian energy losses. Wen et al. (20134p6&ught to explore theséfects by

2z developing a semi-analytical solution for flow to a partigdenetrating well using the so-called

*Corresponding author. Tel.: +44 (0)1913343491, Fax: +44 (0)1913342301, E-mail address:
s.a.mathias@durham.ac.uk
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Izbash equation. The Izbash equation assumes that flonsrpteportional to some power law of
the hydraulic gradient, as opposed to Darcy’s law, whiclhiaes that flow is linearly proportional
to the hydraulic gradient.

Whilst the study gave some interesting insights concertiiadpehavior of the Izbash equation
in the presence of a partially penetrating well, their matagcal development involves imposing
a number of restrictive assumptions. Firstly, it assumasitarcy’s law applies for vertical fluxes
(the 1zbash equation is only used for radial flow). Seconitilg, Izbash equation is used as op-
posed to the Forchheimer equation. The Forchheimer equiatraore appropriate in this context,
because it is capable of recognizing that flow becomes Dafaraaway from the production well.
Finally, it is assumed that the water flux across the wekkagris uniform. In fact, the flux distri-
bution across the well-screen is non-uniform, with thedatdgluxes occurring at the ends of the
well-screen (Mathias and Butler, 2007).

Consider production from a vertically orientated well-paevith a well-screen that is exposed
to a limited thickness within a given aquifer system. Therary condition at the well-screen is
best represented as a fixed pressure condition, based onitherééssure within the well-bore. At
the well-bore, above and below the well-screen, the boynclamdition takes the form of a zero
flux. Therefore there are two boundary types along the sidleeoivell as it intersects the aquifer.
Consequently, this problem is often referred to as a miypd-boundary value problem (Cassiani
et al., 1999; Chang and Chen, 2003).

Much attention has been focused on the derivation of amalygblutions for estimating draw-
down in partially penetrating wells. Generally, these hased some form of integral transform

in the vertical direction. Unfortunately, such a technigiees not allow for the possibility of ap-
3
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plying a mixed-type boundary condition. Therefore, thermtary at the well-screen is generally
approximated using a uniform flux condition, based on th&aadty averaged radial pressure gra-
dient at the well-screen (e.g. Dougherty and Babu, 1984;ndioe 1997; Mishra and Neuman,
2011).

Perina and Lee (2006) conducted a series of studies to igagsthe implications of imposing
a uniform flux across the well-screen. They observed thatitfilerm flux assumption can lead
to as much as 18% error in the estimated drawdown. The reasbatithe mixed-type boundary
condition gives rise to very large fluxes at the top and botbdiine well-screen. Indeed, for the
extreme case of a circular plate of raised potential in a sefimite medium, these edge fluxes
are infinite (Mathias and van Reeuwijk, 2009; Sneddon, 198®krefore, to better understand
the nature of non-Darcy flow around a partially penetratirglwt is important to adequately
incorporate this mixed-type boundary in full.

Some semi-analytical solutions have been derived for Rarffow problems in the presence
of mixed-type boundaries. These have either used duaratequations (Cassiani et al., 1999)
or imposed a discrete non-uniform well-screen flux distitiy defined using an inverse matrix
method (Chang and Chen, 2003; Perina and Lee, 2006; MatidaBuler, 2007; Klammler et al.,
2011). Such approaches are cumbersome to evaluate andyeeifbler numerical integration
methods or discretisation methods. Furthermore, they likely to be amenable to non-linear
problems such as those associated with the Forchheimeti@gyudherefore, in this article, the
relevant governing equations for Forchheimer flow to a pHytipenetrating well in a confined
aquifer, are solved using a method of lines approach basadioite diference spatial discretisa-

tion, similar to that used by Mathias et al. (2008).
4
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The objective of this article is to evaluate the importantaan-Darcy energy losses during
fluid production from a partially penetrating well (inclugj for a mixed-type boundary condition
representation of the well-bore boundary) in a cylindricahfined aquifer. The outline of the
article is as follows: The relevant governing equationsglwith initial and boundary conditions
are presented. These are converted to a dimensionless iimifardo that previously used by
Chang and Chen (2003). The numerical methods are deschibpdrticular the grid refinement
around the well-screen. The developed model is then beracked by comparison with the semi-
analytical solutions of Cassiani et al. (1999) and ChangGimeh (2003). Non-Darcyfkects are

then explored in the context of constant pressure produetiol constant rate production.

2. Governing equations

The governing equations for fluid pressure for radially syetmm flow of water to a partially
penetrating production well in a homogenous, verticalligaimopic, confined, cylindrical aquifer
of radial extentye [L], and thicknessH [L], can be written as follows:
19(rqr)  dq,

( +C)6—P———
S R ™

(1)

whereg [-] is porosity,c, [M~1LT?] andc, [M~1LT?] are the compressibilities of water and rock,
respectivelyP [ML ~1T-?] is fluid pressuret [T] is time, r [L] is radial distance from the produc-
tion well, z[L] is elevation from the base of the aquifer and the volumadtuxes,q, [LT ] and

0. [LT 1], are found from the Forchheimer (1901) equations (see ApipeA and Knupp & Lage

(1995))



90

91

92

93

94

95

Fk, P

S Sl 2
Or Ly OF (2)
Fk, 0P
d: = _/vl_WE 3)
whereF [-] is a non-Darcy factor found from
-1

W 1/3 /. _ 1/2

F = |1 2 ) (7 + ') @
W

andu,, [ML ~1T1] is the dynamic viscosity of wateg,, [ML ~°] is the density of water ank} [L 2],
k; [L?], cer [-] and ¢, [-] are the permeabilities and the Forchheimer inertiaffocients in ther
andzdirection, respectively. Note that for isotropic media Forchheimer inertia céiécient,cr,
can be estimated using the Geertsma (1974) correlation,0.005p°°.

The relevant initial and boundary conditions are as foltows
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P=Py, rn<r<r,, 0<z<H, t=0

0:=0, ry<r<re, z=0, t>0
0;=0, ry<r<re, z=H, t>0
0 =0, r=re 0<z<H, t>0 (5)
g =0, r=ry, 0<z<z, t>0
P=Py, r=ry, Zy<z<zy+L, t>0
=0, r=ry, Zw+L<z<H, t>0

wherePq [ML ~1T-?] is the initial pressure of the aquifer prior to pumping apdL], zy[L], L [L]
andP,, [ML ~1T~?] are the radius, elevation of base, length and fluid pressitiee well-screen
associated with the production well, respectively.

The well pressureR,, is related to the production rat®,[L3T-1], via the conservation equa-

tion (Papadopulos and Cooper, 1967):

2 Zyw+L
ﬂ—rC@+Q+2nrwf o(r =rw,zt)dz=0 (6)
pwg dt 2y
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. Wherer, [L] is the radius of the well casing argi[LT ~?] is gravitational acceleration. It is further

102 assumed that

Pu(t = 0) = Po (7)
03 3. Dimensionlesstransformation
104 Introducing the following dimensionless transformations
I Zy
fep = , Zwp= — 8
® 7 le(cw + c)pugl] 2, P T L (8)
_ 2rLk(Po - P) _ 2nLk(Po — Pw)
Po=——————, Puw= (9)
pwQ pwQ

=l %=Z tD:W (11)
W=t = (g)% (12)
b = ﬁ (2 ceadie) (13)



s the set of equations in the previous section reduce to therfirlg dimensionless problem:

OPo 1 (roGo) 1 3o

atD B ' arD A2 GZD (14)
0Pp
o=-F20 15
Oro oy (15)
. -0Pp
qu =-F 3ZD (16)
2 2 2 \2]t
F = [1 + b (P + 420 ] (17)



Pp =0, 1<rp<frep, 0<7zp<w™, tp =0

0o =0, 1<rp<trtep, zp=0, tp >0
Jon =0, 1<rp<rtep, Zp=w?, tp >0
dp=0, Ip="re, 0<zp<w?, tp > 0 (18)
p=0, rp=1, 0< 7y < Zyp, tp >0
Po=Puwp, Ip=1, Zw<Zp<Zp+1l tp,>0
gp =0, o =1, Zmw+l<zp<w™ tp>0
%d(IjD—WD -1+ fZWD+l Oro(ro = rwp)dzp =0 (19
o Zup
Pup(to =0)=0 (20)

ws 4. Writing the non-Darcy factor in terms of pressure gradients

107 It is useful to write the expression for the non-Darcy fagjoren in Eq. (17) in terms of

108 pressure gradients as opposed to fluxes. Note that sulmgitegs. (15) and (16) into Eq. (17)
10
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1
P13 bpFJ (21)
where
1/2
oPp\* 1 (9Pp)
J=|[— == 22
l(arD) +/12(82D) (22)
Given thatJ is always positive, the positive root of Eq. (21) can be &ritas
1+4bpJ)Y2 -1
= :( + bDJ) (23)

2bpJ

A disadvantage of the above equation is that it becomfult to evaluate for the small
pressure gradients (i.e. smajlthat are expected far away from the well. However, if we mpiyt

the top and bottom of Eq. (23) by [(@4bpJ)¥? + 1], it can be seen that (Mathias et al., 2014)

2
F =
1+ (1+4bpJd)Y2

(24)

which is much more convenient in this context.

5. Numerical solution

Following Mathias et al. (2008), numerical solution of tH®wee set of equations is achieved
by discretising in space, using finitefidirence approximations, and solving the resulting set of

coupled ordinary dferential equations using MATLAB’s ode solver, ODE15s. OBg&lses

11
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adaptive time-stepping to ensure numerical error remagimiba pre-defined tolerance, therefore
time-steps are not specified a priori.

Pressure gradients are highest around the production mettheen decrease ultimately to zero
at the far-field boundaries. Therefore, the location of idigsation points in the radial direction
are logarithmically spaced such that finer resolution isled around the production well.

Special care must be taken to ensure adequate verticalegodution is provided around the
locations of boundary-type changes, as these have a tgndeyielding exceptionally high gradi-
ents in their near vicinity (Mathias and Butler, 2007; Maghand van Reeuwijk, 2009). Following
Chang and Chen (20033,p is set to zero. Therefore, a high level of vertical discegit is
only required immediately above and immediately belw= 1. Locations of the discretisation
points in the vertical direction are chosen such that they@garithmically spaced above and be-
low zp = 1, with the finer spaced points clustered aroapd= 1. For illustrative purposes, the
locations of the finite dference nodes, in both thhg andzy directions, used for a simulation with
reo = 10’ andw = 0.01, are shown in Fig. 1.

The integration associated with the integral term in Eq.) ($3valuated using trapezoidal

integration.

6. Simulations assuming a constant well pressure

Before using the numerical model to investigate tifeats of Non-Darcy flow around a par-
tially penetrating well, it is important to verify that theadel predicts the same results as the
semi-analytical solution of Chang and Chen (2003) whbgris set to zero. Chang and Chen

(2003) considered an identical scenario as described abmept that they only looked at when
12



w bp = 0 and also fixedP,p = 1. They then used their semi-analytical solution to cateuthe

12 dimensionless production rate at the well-scré@, which can be found from

Zyp+1
Quwp = f dro(rp = rwo)dzp (25)
ZyD
143 The semi-analytical solution of Chang and Chen (2003) wewlLaplace transforming the

14 time dimension and then Fourier cosine transforming thecadimension. The resulting set of
us ordinary diferential equations were then solved to obtain analytidatiems in terms of modified
us Bessel functions. The non-uniform well flux was imposed bycbtising the well-screen and
w7 superimposing a sequence of discrete production rateginelot using an inverse matrix method.
us The resulting set of equations were inverted back to the-tioreain using a numerical inverse
1o Laplace transform algorithm.

150 Chang and Chen (2003) reports the time-serie®@f for a range of dierent combinations
1 0f A andw. The results from Chang and Chen (2003) are shown as gresitirFig. 2. Results
12 from our finite diference model witlh, = O are shown as red dashed lines. It can be seen that
155 the correspondence between the two models is excellentet#mywnote that just befotg = 10,

s Qup from the finite diference model starts to drop a little below the trajectorgioted by Chang
155 and Chen (2003). This is due to the pressure perturbatidiyfimting the impermeable boundary
15 atrp = rep. Note that for all the simulations reported in this articlg, was set to 10

157 Also shown in circular blue markers, are equivalent redtts the semi-analytical solution of
155 Cassiani etal. (1999). The conceptual model adopted byi&@ass al. (1999) is identical to that of

159 Chang and Chen (2003) except that they considered a semiterdiquifer such thab — 0. The

13
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solution procedure involved the so-called dual-integredgration method, and did not involve the
need to discretise the well-screen. Again, it can be saietlse/ery good correspondence between
the Cassiani et al. (1999) work and the response from the filifference model whew = 0.01.

The black solid lines shown in Fig. 2 are from the finitéfelience model with exactly the
same setup except thag was set to 10. Therefore, this model represents a non-Dedeiaation
from the work of Chang and Chen (2003). It can be seen thahgwarly timestp < 10), the
production rate is less than half of the rate generated bypdreian models, for all values of.
At later times {p > 10'?), for the case of a (close to) fully penetrating well (i®.= 0.99), the
non-Darcian and Darcian models converge. Similar findingsevalso reported from the one-
dimensional flow (as opposed to radial flow) simulationsy alsdertaken using the Forchheimer
equation, previously presented by Moutsopoulos and Titis (2005). However, Fig. 2 shows
that as the production well becomes smaller, relative tddhmation thickness, the non-Darcian
model produces progressively less fluid than the correspgridarcian system wherg, = 0,
regardless of the time considered.

To explore theseftects further, the simulations presented in Fig. 2 were rtepear a range
of differentbp values. Fig. 3 shows plots of the ratio @&,p from the Darcian model (i.e.,
with bp = 0), denotedQup pacy, 10 the Qup calculated from the non-Darcian models against
dimensionless time. This ratio represents the transiesdymtion rate reduction factor due to
non-Darcy éects.

In Fig. 3a, it can be seen that whép = 3, for dimensionless times greater tharf,1lhe
non-Darcy &ects represent less than a factor of 1.3, regardless of thesvafw and A assigned.

However, theseféects become much larger with increashig Fig. 3d shows the results when
14
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bp = 100. Here it can be seen that non-Darffgets become more significant with reducingnd
A. Reducingw implies that the well-screen is becoming smaller relatvine formation thickness.
Reducingt implies that the well-screen is becoming smaller relativehe well radius an@r the
radial permeability is becoming less relative to the vaitgermeability.

As hypothesized in the introduction, the large fluxes thaet at the top and bottom of
the well-screen are found to enhance non-Daffgots on production rates, associated with the
use of the Forchheimer equation. Figs. 4a and b show theaspiatribution, attp = 10*, of
dimensionless pressurBp, and the non-Darcy factoF, (as defined in Egs. (24)), respectively,
for the case whem = 0.01,1 = 10 andbp = 10. Note from Fig. 4a that the highest pressure
gradients are around the top of the well-screempat= 1. In Fig. 4b it can be seen thé&tis
significantly reduced (indicating enhanced reductionsaw filue to non-Darcyféects) across the

entire well-screen and, in particular, around the top ofwle#-screen aip = 1.

7. Simulations assuming a constant production rate

To better understand the role of partial penetratifiacts on step drawdown tests, it is more
useful to consider a constant production rate by imposing @®). Note that., was set to
200 for all simulations, which is a realistic value (considiable 1) and also small enough not to
significantly dfect the results during the times of interest. As with the joev simulationstep
was set to 10for all the simulations. Fig. 5 shows the plots of dimenséssiwell pressurd®,p,
against dimensionless timg, for the range ofv andA adopted by Chang and Chen (2003) when
studying the constant well pressure scenario. The red ddisies are due to simulations assuming

bp = O (i.e., Darcian flow). The black solid lines are due to simsianulations but withop set to
15
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All the finite difference simulations are found to share a similar early tirmparse (fotp <
10%). In this region, the system is mostly controlled by the dyits of the well-bore equation
(Eg. (19)). Fortp > 10°, the simulated responses for the various combinations, of andbp
values, diverge. Nevertheless, the late time pressur@emssp, for all the scenarios studied, are
straight-lines on a linear-log axes. The rate of dimensisspressure increase with dimensionless
time can be seen to reduce with reducingReducingo corresponds to the well-screen becoming
smaller as compared to the formation thickness. For thelestalell-screens{ = 0.01), the well
pressure quickly approaches a quasi-steady-state.

Raisingbp from zero to 10 leads to an increase in well pressures forcaharios. However,
the slopes of the later time pressure responses on the-logaxes are the same as those of their
Darcian counterparts. It is also apparent that the pressarease, due to the non-Darcffexts,
decreases with reducingand reducingl.

For a fully penetrating well, the late time well pressurgu@sse can be found from (Mathias

et al., 2008)

Pup = % [In(4tp) — 0.5772]+ bp (26)

which, whenbp = 0, reduces to the Cooper and Jacob (1946) late time respéribe dheis
(1935) solution. The response of Eg. (26) is shown in Fig.rbfo= 0 andbp = 10 as green and
cyan solid lines, respectively. It can be seen there is &dosespondence between Eq. (26) and

the finite diference models assuming= 0.99.
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To better understand how partial well penetration (PWPuerftes non-Darcian losses in the
well pressure, a large sensitivity analysis was performétereby the simulations presented in

Fig. 2 were repeated for all combinations of the followinggraeter values:

[ 099 09 08 07 05 03 02 01 005 002 001 ]

€
I

P
Il

[ 500 200 100 50 20 10 ]

bb = [ 0 1 3 10 30 100 ]

For reference, Table 1 shows how these parameters varyréa tliterent practical scenarios.
By studying the well pressures generated by the simuladodsconsidering Eq. (26) of this
article along with Eq. (44) of Chang and Chen (2003), it cardetermined that the late-time

response of the well-pressure takes the form

Pup ~ % [In(4tp) — 0.5772]+ a + bp (27)

wherea = f(w, 1) andg = f(w, 4, bp).
Considering Eqg. (26), a value for the bulk temrs a + 8bp can be determined for each of the

simulations from

K = Pyp(tp = 101%) — % |In@4*%) - 05777 (28)

Note thatk = « for the simulations wherbp, is set to zero. Once values @fare obtainedd can

17
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be calculated by considering that (x — a)/bp.

As an illustrative example, Fig. 6 shows a plot Bf,f —«)/w (from the finite ditference results)
against dimensionless timg, for the same scenarios presented in Fig. 5. Solid linessaé for
the Darcian simulations (withp = 0) and dashed lines are used for the non-Darcian simulations
(with bp = 10). Values ok were obtained using Eq. (28). It can be seen that for latestialethe
finite difference simulations converge onto the Cooper and Jacob)(2g4étion (i.e., Eq. (26)
with bp = 0), which is plotted as a dashed green line.

Fig. 7 shows plots of againsti for all the values otv studied. It can be seen thaincreases
linearly with InA. The rate of increase decreases with increasingror w = 0.99, « is close to
zero, which is indicative of this scenario being close to Iy fpenetrating well. The fact that
increases with increasingfor a givenw suggests that energy losses associated with PWP increase
with decreasing well-radii.

Considering the logarithmic responseaoivith A seen in Fig. 7, it is interesting to observe the
plot of &/ In A againstw, for all A values studied, shown in Fig. 8. Here it can be seen thatall th
results follow a very similar curve. A power law, fitted to thiata using linear regression, is also
shown for comparison as a green line. The results suggdst tieasonable approximation fer

can be obtained from

a~ 1.06(1- w)*38InA (29)

Plots of g against1 are presented in Fig. 9 for a rangewfandbp values. The first thing

of note is that for all the simulationg,increases with increasingup to maximum value of 1.0.
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Furthermore, it is apparent that~ 1.0 whena > 10 for all the scenarios studied. The reason
is that ast becomes dficiently large, the vertical gradient term in the consenagquation, Eq.
(14), becomes negligibly small compared to the radial gnatdierm.

A second point of interest is that, far < 0.7, the relationship betweghandA converges to a
single curve for all values ab (wherew < 0.7) andbp. The reason for thg results converging
on to a single curve fow < 0.7 is that, for these simulations, the non-Darfieets are unable to
propagate out to the upper boundary of the maziek: w1, and hence are uffacted byw (also
consider again Fig 4b).

Applying linear regression to all values whete< 0.7 andbp > 10, it was found that a

reasonable approximation fBrandA can be obtained from

B~1-2050%% <07 (30)

Note that this approximation is also reasonablep 10. However, the results from the simu-
lations undertaken witbp < 10 were excluded from the regression analysis because atjme
issues associated with the fact that the Non-Darcian |essssciated with these simulations were
smaller.

A common approach to interpreting step-drawdown testsamédyze the resulting data using

the so-called Jacob (1946) equation

sv = AQ + BQ? (31)

wheres, [L] is the drawdown of the water level in the production weibsA [L ~2T] and B [L ~°T?]
19
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are referred to as the formation-loss and well-losgtooents, respectively.

The drawdowns,, is related to the dimensionless well pressig,, by

_ HwQPuwp

= 2nlkpud (32)
and therefore, from Eq. (27), it can be said that
21 VY2 2
HaQ 20/] B(cZ,crakPk;) - Q
Sy ¥ ——— [In(4tp) — 0.5772+ — | + 33
4rH krpwg[ (o) w (27L)2k¥?r g (33)

Comparing this with Eq. (31), it can be seen that the wek-losdticient can be calculated

from
:8 (C;Z:r CFZkfsz)l/3

° T e g o

from which it can be seen that the non-Darcian well-losdttment, B, is inversely proportional

to the square of the well-screen length,

8. Summary and conclusions

The objective of this study was to investigate the role ofipkawell penetration (PWP) on non-
Darcian well losses associated with groundwater prodaatiells. A numerical finite dference
model, for solving the problem of Forchheimer flow to a pditipenetrating well, was developed
in MATLAB for this purpose. Special attention was made tovide suficient grid-resolution
around the top of the well-screen, so as to adequately eapiter large fluxes that develop as

a consequence of the mixed type boundary condition at thebeet. The model was verified
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by comparison with the semi-analytical solutions of Chang €hen (2003) and Cassiani et al.
(21999), which solve for the problem of Darcian flow to a pdigipenetrating well.

Normalizing the governing equations to a set of dimensgmlariables revealed that there
were just three parameter groups of interest: (1) the rdtreetl-screen length to formation thick-
nessw; (2) the ratio of well-screen length to well radius,and (3) a normalized parameter group
containing the product of the Forchheimer parameter angrb@uction ratebp.

The model was first implemented to explore the combined roR/dP and non-Darcyfeects
on the decline in production rate associated with consteeggure boundary conditions at the
well-screen. Non-Darcyfkects lead to a reduction in production rate in this contextanpared
to an equivalent problem solved using Darcy’s law. For fyglgnetrating wells, this reduction in
production rate becomes less significant with time. Howeweerpartially penetrating wells, the
reduction in production rate persists for much larger tifnesall Fig. 3).

To better understand how PWP mighteat performance during a step-drawdown test, the
model was implemented using a constant rate of producti@ensitivity analysis was then under-
taken to explore the combined role of PWP and non-Dafigces on well pressure development.
For large times, the combinedfect of PWP and non-Darcy flow takes the form of a constant ad-
ditional drawdown term (recall Eq. (27)). An approximaté&sion for this loss term was obtained

by performing linear regression on the modeling resultsalid=gs. (29) and (30)).
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370
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374

Table 1: An example of howp, w, 4 andbp vary with L for a practical scenario wherg = r. = 0.1 m, p,, = 1000
kg/m?®, uy = 103 Pa.sk = 1011 m?, k, = 102 m?, ¢ = 0.1,¢cy = 3x 109Pa?l, ¢ =45x 109 Pal, g =981
m/s?, H = 100 m andQ = 0.03 n¥/s. Note that this assumes that = c-, = ¢ wherecr is obtained from the
Geertsma (1974) correlation = 0.005)55).

L(m) 10 20 30
o () 369 261 213
w() 01 02 03
A(-) 316 632 949
bo () 11.08 5.54 3.69

Appendix A. Anisotropic Forchheimer equation

From Eq. (6.3) of Knupp & Lage (1995), the Forchheimer eaqurafor an anisotropic porous
media is found to take the form
-1

(—) VP = vy |1+ myoulk(q - k10)?| kg (A.1)
Pw

wherel’ = (dety)® with y = cr/(v2pw) (see paragraph preceding Eq. (6.1) in Knupp & Lage,
1995),« = (detk)'® (see paragraph preceding Eqg. (5.3) in Knupp & Lage, 1993).T Y] is
a vector of volumetric fluxes anc- [-] and k [L?] are the tensors for the Forchheimer inertia
codfticient and permeability, respectively.
Noting thaty,, is the kinematic viscosity, found from, = u/ow, EQ. (A.1) can be rearranged
to obtain
Fk

q=-—VP (A.2)

where

25



375

300

200

Node number

100

Node number

Figure 1: lllustration of the spatial discretisation used the scenario withrgp

= 10’ andw = 0.01. a) Plot of

dimensionless radial distanag), against node number. b) Plot of dimensionless verticahdé®,zp, against node

number.

F = |1+ 2" (detcr detk)™/?

Hw

—

-1

(A.3)

When the principle axes of anisotropy are aligned with thengetrical axes under considera-

s tion, the tensors simplify such that
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\ — — — FD model with bD =
Q\ FD model with b_ = 10
10° |\ Chang and Chen (2003)|
\ O Cassiani et al. (1999)

| w=0.01(A=10)
«=0.01(A=20)
«=0.01(A=50)
«=0.05(A=50)
0=0.20(A=50)

«=0.50(A=50)

0=0.99(A=50)

Figure 2: Plot of dimensionless production raf®,p, against dimensionless timi, for the range of constant well
pressure scenarios previously studied by Chang and Che8)2@alues ofv and1 assumed are displayed in the text-
labels to the right-hand-side of the figure. The red dashms$ vere obtained using the finiteéfdrence (FD) model
with bp set to zero. The black solid lines were obtained using theefulifference model withhp = 10. The green
solid lines were obtained using the semi-analytical sofuttf Chang and Chen (2003). The blue circular markers
were obtained using the semi-analytical solution of Casgbal. (1999), which assumes that 0.

ke O O
k=10 Kk 0 (A.5)
0 0 Kk
s and consequently, Eq. (A.3) reduces to
F= 1+%(cpxcpycpzkxkykz)” (ke + k'R + I 'R) ]_1 (A.6)

s WherecCeyx, Cry, Crz Ky, Ky, Kz, Ox, 0y and g, are the Forchheimer inertia déieients, permeabilities
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s0 and volumetric fluxes in thg, y andz direction, respectively.
381 For the axially symmetric problem of interest in this agidry = Cry = Cgr, kx = ky = k. and
= Of = Of + g, wherecy, andk; are the Forchheimer inertia dfieient and permeability in the

s direction. Consequently, Eq. (A.6) reduces further to

3

o]

-1
F = |1 2 i) (7 + k') (A7)

w
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Figure 3: Plot of non-Darcy production rate reduction fasgainst dimensionless time for the constant well pressur
scenarios presented in Fig. 2 for a range dfedlentbp values. The values of andw are indicated in the legends.

b) b, = 10

37 w=0.99 (A = 50) |
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o

The values obp adopted are as shown in the subplot titles.
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a) Dimensionless pressure, PD

Figure 4: Spatial distributions around the production veeth, = 10 for the constant well pressure scenario with
w =0.01,4 = 10 andbp = 10. a) Dimensionless pressuRy,. b) Non-Darcy factorf, as calculated from Eq. (24).
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— — — FD model with bD =0

FD model with bD =10 w=0.99(A=50)
20t [In(4tD) -0.5772]/2 /

[In(4t,) - 0.5772] / 2 + 10

w=0.50(A=50)

1 w=0.20(\=50)
w=0.01(A=50)
w=0.01(A=20)
w=0.01(A=10)

10

Figure 5: Plot of dimensionless well pressupgp, against dimensionless time,, assuming a constant production
rate, as described in Eq. (19), for theandA scenarios used in the constant pressure study of Chang amd(2003)
(as indicated in the text labels to the right-hand-side efitot). The red dashed lines are due to the finifeedénce
(FD) model withbp = 0. The black solid lines are for a similar set of simulation$\with b, = 10. The green line
is due to the (Cooper and Jacob, 1946) equation (Eq. (26)bwite 0). The cyan line is the Jacob equation with
incorporation of the Forchheimeffects, as derived by Mathias et al. (2008) (Eqg. (26)).
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Figure 6: Plot of Pup — «)/w against dimensionless time,, for the scenarios presented in Fig. 5. Values afere
obtained using Eqg. (28). Solid and dashed lines are usedhfioiaions withbp = 0 andbp = 10, respectively. The
different colors are used for theffdirentw and2 combinations, as indicated in the legend. The Cooper ammbJac
(1946) equation is also plotted, for comparison purposea,dashed green line.
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Figure 7: Plot ofx (refer to Eq. (27)) against for all values ofw studied. Note that is independent dfp.
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Figure 8: Plot ofz/ In A (refer to Eq. (27)) against for all values ofi studied. Note that is independent dfy .
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Figure 9: Plot of3 (refer to Eq. (27)) against for thew values as indicated in the legend. The valuelspadopted
are as shown in the subplot titles.
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