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We proposed theoretical model of nucleation during the VLS growth of nanowires in the 

mononuclear regime 

The model accounts for desorption from the droplet and allows one to describe the nucleation 

statistics and the nanowire length distribution.  

It was shown that the relative dispersion of nanowire length increases with the NW radius and at 

a higher desorption from the droplet. 
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Abstract 

The statistics of nucleation events in nanowires growing via the vapor-liquid-solid mechanism in 

the mononuclear regime is studied theoretically. A semi-analytical model is developed which is capable 

of describing the distributions of time intervals between the successive nucleation events and some other 

useful characteristics of nucleation statistics. Very importantly, our model accounts for desorption from 

the droplet, which was not included in the previous studies. It is shown that the relative dispersion of 

nucleation distributions increases with the nanowire radius and at a higher desorption rate from the 

droplet, leading to the corresponding broadening of the length distribution. Using the model is also shown 

to fit well experimental data available on nucleation statistics in the Au-catalyzed Si and III-V nanowires.  
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Abstract 

The statistics of nucleation events in nanowires growing via the vapor-liquid-solid mechanism 

in the mononuclear regime is studied theoretically. A semi-analytical model is developed which is 

capable of describing the distributions of time intervals between the successive nucleation events and 

some other useful characteristics of nucleation statistics. Very importantly, our model accounts for 

desorption from the droplet, which was not included in the previous studies. It is shown that the 

relative dispersion of nucleation distributions increases with the nanowire radius and at a higher 

desorption rate from the droplet, leading to the corresponding broadening of the length distribution. 

Using the model is also shown to fit well experimental data available on nucleation statistics in the 

Au-catalyzed Si and III-V nanowires.  
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I. Introduction  

Semiconductor nanowires (NWs) are one-dimensional nanocrystals with a high 

crystal quality and well-controlled properties which show a great potential for use in 

nanoelectronics [1], nano-optics [2] and nanosensing [3,4]. These NWs are usually grown via 

the vapor–liquid–solid (VLS) mechanism with a metal catalyst, where the nucleation of 
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nanowire monolayers (MLs) from a supersaturated alloy in the liquid droplet plays a crucial 

role [5-15]. The key effect underlying the VLS mechanism of NW growth is the decrease of 

the nucleation barrier on the NW top facet with respect to the case of a thin film without a 

catalyst [5, 6, 15]. The nucleation process determines the NW morphology [16-18], crystal 

structure [7, 12, 15, 19, 20], doping profiles [21, 22], and abruptness of heterointerfaces [23]. 

From a fundamental viewpoint, the VLS growth of NWs presents an interesting example of 

nucleation in nanovolumes [10, 14, 24].  

As commonly assumed, VLS NWs grow layer-by-layer [7, 11, 25, 26]. Furthermore, 

sufficiently narrow NWs form in the so-called mononuclear regime where only one two-

dimensional (2D) island nucleates in each layer and then rapidly spreads to fill the complete 

ML slice [14, 25, 27]. Most theoretical models consider VLS growth of NWs as a steady-

state process at a time-independent supersaturation [5, 6, 9, 17, 28]. In this case, 2D 

nucleation events occur randomly and independently of each other [10, 14, 29]. This should 

lead to the Poissonian distribution over the NW lengths, which broadens very rapidly with 

growth time. However, such distributions are not observed experimentally: in fact, most NW 

length distributions are remarkably uniform [14].  

To explain the observed length uniformity, one should assume a certain anti-

correlation between the successive nucleation events that result in a sub-Poissonian length 

distribution [10]. This anti-correlation behavior is explained by the depletion of 

semiconductor material in the droplet after each nucleation event [10, 14, 15]. Indeed, as one 

ML is removed from the droplet, the latter appears nearly emptied with its semiconductor 

material and should be refilled again before the next ML can nucleate. When 2D island 

growth is much faster than the waiting time between the successive nucleation events, liquid 

supersaturation exhibits a sawtooth oscillatory behavior with time [15]. While there is no way 

to directly measure the time-dependent supersaturation during growth, its oscillatory behavior 
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has been demonstrated indirectly [10, 24, 30]. Such an anti-correlation is specific only for 

significantly small droplets: the narrowing effect gradually disappears as the droplet size 

increases [29].  

This paper is devoted to a detailed theoretical description of nucleation statistics 

during the VLS growth of NWs in the mononuclear regime. We aim at a more precise 

description of individual nucleation events in the VLS NWs with accounting for the 

following kinetic processes: direct impingement, desorption and nucleation at the liquid-solid 

interface. To ascertain its validity, the model is then applied to a quantitative description of 

some relevant literature experimental data on Si [24] and III-V [10] NWs.  

  

II. Model 

Within the model, we assume that the incoming flux a impinging the droplet is 

independent of time, but equal to the product of the deposition rate J and the NW cross-

section area πR
2
, where R is the NW radius. For simplicity, the diffusion flux from the NW 

sidewalls is not considered here since it is not critical to the formulation of current model 

(although the corresponding generalization is straightforward [14]). The normalized 

evaporation flux from the droplet d equals /N , where N is the number of atoms within the 

material of interest dissolved in the droplet and τ is the effective lifetime in the liquid phase.  

Assuming that the nucleation probability is entirely determined by the number of 

“semiconductor” (Si the case of Si NWs or As in the case of GaAs NWs) feeding atoms 

dissolved in the droplet at a given time. After the nucleation event occurs, the supercritical 

nucleus spreads almost instantaneously to fill the complete ML slice, as discussed above. 

Therefore, one can assume that the time needed to fill the ML is much shorter than the refill 

time [10, 14, 29]. Let V be the average growth rate of a NW and N
* 

the mean number of 

feeding atoms in the droplet that corresponds to the growth rate V. We then introduce the 
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deviation of the actual number of atoms in the droplet from the mean value according to 

n=N-N
*
, referred to as the number of atoms in the droplet for brevity). Due to a very steep 

exponential dependence of the nucleation probability density p(n) on the number of atoms n, 

the p(n) can be put as [6, 14, 29] 

   nVnp exp .                      (1) 

Here,   is of the order of magnitude with the number of atoms in the critical nucleus divided 

to the equilibrium number of semiconductor atoms in the droplet at a given temperature and 

for a given NW radius: 
3 RNi eqc . The  value scales with 3R  because eqN is 

proportional to the droplet volume (R
3
).  

The kinetic equation describing the time dependence of the number of feeding atoms 

in the droplet can be expressed as 

dt

dl
M

n
b

dt

dn



.                      (2) 

where, *Nab   is the difference between the incoming and desorption fluxes, both 

corresponding to the mean number of feeding atoms N
*
. M is the number of atoms in one ML 

of the NW, and dtdl / is the appropriately normalized vertical growth rate. The n value 

increases steadily between the two successive nucleation events. Assuming that n equals η at  

zero time (t=0), one can write down the equation describing the time evolution of n before the 

next nucleation event: 

    tbbn  exp .                                   (3) 

Equations (1) and (3) allows us to find the conditional probability q(x,n) of forming 

the next ML at a time x if the initial number of feeding atoms (at time zero ) was n. since 

dq/dx=p(1-q), the conditional probability is given by:  

           xbnEibnEibVnxq  exp)()(expexp1, ,       (4) 



5 
 

with  
 

dy
y

y
zEi

z





exp

 as the integral exponent. By definition, the probability density s(x,n) 

of forming a ML exactly at the time x is given by     dxnxdqnxs ,,  . To obtain the 

distribution of the time intervals between the successive nucleation events over time T(x), the 

distribution over concentrations just before the nucleation event U(n) must be known. At a 

given U(n), the equation for T(x) becomes  

     




 dnMnxsnUxT , .                     (5) 

In turn, the U(n) distribution can be obtained from the probability C(n) that the number of 

feeding atoms equals n at any time during growth (the concentration distribution), and the 

p(n) distribution defined by Eq. (1): 

   nnCU

dnnpnC

npnC
nU exp)(

)()(

)()(
0






,                   (6) 

with the known U0. 

 With these considerations, the problem is reduced to finding the concentration 

distribution C(n). Here, we propose the following model equation for C(n): 

           nCnVMnCMnVnCnC
dn

dn
b 


exp)(exp

1









 .   (7) 

The left hand side of this equation corresponds to the time evolution of the concentration 

distribution in absence of any nucleation events. If no nucleation occurs, the number of atoms 

in the droplet would approach its steady state value bτ. The expression on the right hand side 

accounts for the discrete nucleation events that instantaneously remove M atoms from the 

droplet. This term has the form of a discrete rate equation, where the number of nucleation 

events per unit time is proportional to )()( nCnp  . Nucleation of a ML at nn   necessarily 

decreases the probability C(n), while removing a ML at Mnn  retains the droplet to the 
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state with n atoms. Since Eq. (7) is a difference-differential equation, the boundary conditions 

must be imposed, i.e. not in a discrete point, but within an interval having the length M [31]. 

As a result, the number of atoms in the droplet can never exceed bτ due to desorption. 

Therefore, the value of C(n) must be set to zero for any n>bτ. However, the singular point 

n=bτ allows for an additional degree of freedom, which is determined by the normalization 

condition for C(n). These conditions could be expressed as:  

0)( nC  for bn  ; 

  1


b

dnnC .                                    (8) 

Let us now consider the situation where the parameter   is large enough to suppress 

temporally independent nucleation events, i.e., 1M . In this case, the solution to Eq. (7) 

can be approximated as: 

           
























 MVV nnn

n
nC 





exp

1
exp1exp

1
exp ,              (9) 

where  


VV ln
1

 ,   


 MVM ln
1

,   







 


  n
M

n ln
1

2
ln

1
, and 

    





 bVn  ln
1

ln
1

. It can be seen that the non-vanishing part of the concentration 

distribution lies within the interval from  /ln M  to    /ln3 nV  . For very 

large values of M , the distribution is concentrated within a narrow interval [-M,0] 

corresponding to a negative n . This means that number of atoms in the droplet exhibits a 

sawtooth oscillatory behavior similar to that described elsewhere [24].  

 Figure 1 shows the profiles of )(nC distributions obtained from Eq. (9) at V 4 ML/s, 

 1 s, 
5102b s

-1
, 

5105eqN , 
4105M and different  varying from 

5105  to 

2101  , yielding the values of M from 2.5 to 500. The distributions )(nC  lays within the 
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interval [-M,0] for large 4104  . For smaller  , the concentration distribution is more 

Poissonian-like, where the probability of having more than b atoms becomes non-zero. 

To obtain the distribution over concentrations just before the nucleation event, one 

needs to consider only the right tail of the distribution C(n). Indeed, the behavior of C(n) at 

negative n is insignificant, since it is zeroed by a rapidly decreasing )(np  as given by Eq. (1). 

As a result, Eq. (6) may be re-written in the simplified form using Eq. (9): 

         







 VV nn

n
nUnU 






exp
1

expexp0 .                         (10) 

Although the essential non-zero part of the C(n) is located at the negative semi-axis, the U(n) 

function is seen in the positive semi-axis. Thus, it can be said that while the nucleation events 

usually occur at positive value of n, the value of n remains negative most of the time. Figure 

2 shows the distribution as a function of the concentrations just before the nucleation event 

occurs (obtained from Eq. (10) for the same parameters as in Fig. 1 for different values of φ). 

As expected, the dispersion of U(n) is strongly controlled by the   value and broadens very 

rapidly with decreasing  . Since   is proportional to 3R , indicating that the temporal anti-

correlation of nucleation events is more pronounced in thin NWs [10], leading to a more 

uniform length distribution [14]. 

III. Results and discussion 

Equation (10) together with Eq. (4) allow us to calculate the distribution of the time 

intervals between the successive nucleation events, T(x), using Eq. (5). This characteristic is 

the most important one, since it is directly related to the nucleation statistics as will be 

discussed shortly. Let us now consider the qualitative dependence of the T(x) shapes on some 

relevant parameters. In particular, Figures 3 show the radius dependences at V 4 ML/s, 

sRR 1)/( 0  ,  52

0 102)/(  RRb s
-1

, 
63

0 105)/(  RRNeq , 42

0 105)/(  RRM ,  
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3102eqN , with 0R 50 nm and NW radii R  varying from 12 to 500 nm. The values of

eqN and M must scale as 3R and 2R , respectively. The droplet flux should be proportional to 

the surface area ( 2R ), while the effective lifetime   scale with R to ensure that the 

desorption flux is proportional to 2R . In Fig. 3 (a), the T(x) distributions rapidly broaden 

with increasing R . Figure 3 (b) shows the relative standard deviation  xx /  as a function 

of the NW radius. Note that x  is (normalized to the mean value  x  of the time interval 

between the two successive nucleations, which equals the inversed growth rate in ML/s. Both 

graphs reveal a transition from temporally anti-correlated to a Poissonian nucleation statistics, 

as discussed earlier [14].  

While broadening of the T(x) distribution in thicker NWs is anticipated, the 

dependence on the desorption flux which was neglected in the literature [10, 14] is less 

obvious. Figures 4 show the T(x) profiles obtained at V 4 ML/s, 4105M ,
5105eqN , 

200eqN ,
5105.2 a s

-1
 and variable effective lifetimes  , i.e., for a NW of a given 

radius exposed to a given vapor flux but with different desorption rates.  The distributions 

presented in Fig. 4 (a) are shifted toward larger values for smaller , because an enhanced 

desorption leads to a lower mean growth rate of a NW. More importantly, it is seen that 

higher desorption rates correspond to broader distributions of the nucleation events, i.e. the 

desorption works against the temporal anti-correlated nucleation statistics. This new effect is 

also well illustrated by the curve in Fig. 4 (b), where the relative standard deviation 

 xx /  rapidly increases towards smaller  , starting from   0.3 s, while it is almost 

constant for  0.5 s with our model parameters. 

 Let us now consider the experimental data on Au-catalyzed Si NWs. [24], where the 

oscillatory length-time dependence was obtained by in situ monitoring of VLS growth in an 

ultrahigh vacuum transmission electron microscope. From these data, the histograms of the 
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time intervals between the successive nucleations extracted are shown in Figs. 5 for three 

samples grown at the same temperature of 480
o
C but with different Si2H6 partial pressures. 

The NW diameter was set to 15 nm based on the TEM images [24]. The growth temperature 

of 480°C corresponds to ~24% equilibrium Si concentration in the droplet [32]. This yields 

the values of Neq=43100 and M=5600 for our model parameters. The average growth rates, 

also measured from the plots given in [24], were estimated to be 0.75, 1.25 and 1.5 ML/s for 

the Si2H6 partial pressure of 2.0×10
-6

, 4.0×10
-6

 and 5.0×10
-6

 Torr, respectively.  

The effective lifetime of Si atoms is then set to a plausible value of τ=1 s. After that, 

the values of φ and b were adjusted to obtain the fits shown by lines in Figs. 5. The fitting 

values are summarized in Table 1, showing that the φ value decreases and the b value 

increases with the growth rate. Figures 5 demonstrate that, while the mean time interval 

between the successive nucleation events decreases with the partial pressure of Si2H6, the 

relative width of nucleation distributions increases towards a higher growth rate, the effect 

noticed elsewhere [14]. Overall, the fits obtained are fairly good given the scatter in the 

experimental data.   

   

Table 1. Parameter values for Si NWs grown at different partial pressures of Si precursor 

Si2H6 partial 

pressures 

Growth 

rate 

φ b 

2×10
-6 

Torr 0.75 ML/s 2.32x10
-3 

2690 s
-1 

4×10
-6 

Torr 1.25 ML/s 1.28x10
-3

 5040 s
-1

 

5×10
-6 

Torr 1.5 ML/s 1.04x10
-3

 5600 s
-1

 

 

 In Ref. [10], by post-growth measurements of Au-catalyzed InPAs NWs with 

modulated composition [11], the authors found a sub-Poissonian character of the nucleation 

statistics. This results in narrowing the experimental histogram of the numbers of nucleation 

events per composition oscillation, Fig. 6 [10]. In order to fit these data by our model, we use 

the equation      
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 
2mm

TmN


 







 ,                    (11) 

where the left hand side is the number of composition oscillations with a given duration ,  

and m  is the number of MLs per oscillation. The best fit is shown by line in Fig. 4, with the 

parameters summarized in the figure caption.  

We note that while the fits to the experimental data in Figs. 5 and 6 are very 

reasonable, which supports our model, the shapes of nucleation distributions are strongly 

influenced by the parameter φ which is hard to determine independently. Also, additional 

studies are required in order to determine the temperature-dependent desorption fluxes from 

liquid droplets, which would help to eliminate the uncertainty in τ.  

In summary, we have developed a model describing the time distribution of the 

nucleation events during the VLS growth of NWs. The model accounts for desorption from 

the droplet and allows one to describe the nucleation statistics and the NW length 

distribution. It was shown that the relative dispersion of nucleation distribution over time 

increases with the NW radius and at a higher desorption from the droplet. It was also 

demonstrated that reasonably good fits to the available experimental data on the nucleation 

statistics in both III-V and Si VLS NWs were achieved. 
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Figure Captions: 

 

Fig. 1.  Probabilities )(nC to observe nN * semiconductor atoms in the droplet at different

. 

Fig. 2.  Distributions over concentration )(nU  just before the nucleation event at different . 

Fig. 3. (a) Time dependence of the delays between the successive nucleation events )(xT in 

NWs as a function of the radius R ; (b) Radius dependence of the normalized standard 

deviation  xx / . 

Fig. 4.  (a) Time dependence of the delays between the successive nucleation events )(xT in 

NWs with different life times ; (b) Dependence of the normalized standard deviation 

 xx / on  . The solid line in (b) represents the best fit (    09.01.0/0134.0
4/3
 ). 

Fig. 5. Histograms of the time intervals between the successive nucleations, extracted from 

the data of Ref. [24] for three samples grown at Si2H6 partial pressures of  2×10
-6

 (a), 4×10
-6 

(b) and 5×10
-6 

Torr (c) (bars), fitted by theoretical curves (lines) with the parameters 

summarized in Table 1. 

Fig. 6. Experimental  histogram of the numbers of nucleation events per composition 

oscillation from Ref. [10] (bars), fitted by Eq. (11) (line) with the following parameters: 

δ=3.6 s, V=3ML/s, φ=4x10
-4

, b=2.4x10
5
 s

-1
, M=5x10

4
, τ=1 s. 
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