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Abstract

The evolution of an advancing fluid front formed by a gravity-driven thin film flowing down a planar substrate is con-

sidered, with particular reference to the presence of Marangoni stresses and/or surface topography. The system is mod-

elled using lubrication theory and solved via an efficient, adaptive multigrid method that incorporates automatic, error-

controlled grid refinement/derefinement and time stepping. The detailed three dimensional numerical results obtained

reveal that, for the problems investigated, while both of the above features affect the merger of rivulets by either delaying

or promoting the same, topography influences the direction of growth.
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1. Introduction

Thin film flows over substrate containing heterogeneities in the form of micro-scale topographical irregularities arise in

many naturally occuring biological, medical and industrial processes [1]. The resulting complex and interesting fluid

dynamics involved, as well as the stability of the advancing front formed by a spreading film, make the topic of rivulet

formation in particular both important and fascinating. The observed formation of rivulets on an inclined homogeneous

substrate was first reported by Huppert [2], who recorded that the advancing front became unstable leading to the devel-

opment of periodic rivulets that grew in time. There have been many subsequent investigations, mainly numerical, of the

phenomenon; for example Diez and Kondic [3] explored gravity-driven flow on inclined planar and patterned substrates,

discovering that the inclination angle affects the shape and length of the rivulet patterns formed. Cazabat et al. [4] inves-

tigated experimentally the case of a film driven, in opposition to gravity, by thermal gradients and found that, in a similar

way to gravity-driven films, rivulets form at the advancing front - the surface tension gradients present having a large

influence on the associated dynamics. Eres et al.[5] developed a model to replicate their experimental set up and predicted

the break up of the associated rivulets at low velocities.

Kondic and Diez [6] investigated the affect of small perturbations in the substrate on a stable front; the resulting rivulet

formation was found to be very similar to that observed when contact line perturbations are applied to the advancing

front. The use of striped substrates in the control of rivulet spacing has also been investigated, Kondic and Diez [7]. Zhao

and Marshall [8] modelled the chemical heterogeneity of a substrate by varying the contact angle the fluid makes with it;

striped surfaces are reported to provide a means of controlling the wavelength of the emerging rivulets, either widening

or decreasing the spacing between them.



The focus of the present work is that of a fully wetting, three dimensional, gravity-driven thin film, encompassing flow

on planar substrates and ones containing microscale topographies. Also considered are Marangoni effects, which can

arise when thermal gradients are present. The flow behaviour is modelled via lubrication theory; the associated equation

set governing the evolving flow is solved accurately using an efficient multigrid methodology, incorporating both error

controlled, automatic space and time adaptivity - the first time such flows have been solved in this manner.

2. Problem formulation
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Figure 1: Schematic diagram of rivulet flow down an inclined planar substrate containing rectangular topography (height/depth S0, width, Wt, and

length, Lt).

The problem of interest is shown schematically in Figure 1. It consists of a thin fluid film of thickness H , flowing down a

substrate (width, Wp, length, Lp) inclined at angle θ to the horizontal; the volumetric flow rate is Q0 per unit width. The

fluid is considered to be incompressible with constant density, ρ, and viscosity, µ, and variable surface tension, σ, given by

σ = σ0σ̃ = σ0 + τX with σ0 the value of surface tension at X = 0 and τ (= ∂σ/∂X) a constant surface tension gradient

[4]. The film is considered to be fully wetting; a precursor film of thickness, H∗, located ahead of the advancing front,

alleviates the singularity associated with the attendant contact line [6, 8, 9]. The long-wave approximation is invoked on

the assumption that the asymptotic film thickness, H0, is small compared to the capillary length, L0 = H0/(6Ca)
1
3 , where

Ca = µU0/σ0 ∼ O
(
ε3
)
� 1 is the capillary number, that is H0/L0 = ε � 1; the characteristic velocity U0 = 3Q0/2H0.

In which case, together with the introduction of the following scalings [10]:
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the Navier-Stokes and continuity equations, for no slip at the substrate together with the usual free-surface stress and

kinematic boundary conditions [11], reduce to the following coupled equation set:
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p = − ε3

Ca
σ̂∇2 (h + s) + 2ε (h + s− z) cot θ, (2)

where h, p, τ̃ (= H0τ / µU0) and s are the dimensionless film height, pressure, constant surface tension gradient and

topography height/depth, respectively. The topography, s(x, y), with height (depth) s0 = S0/H0 > 0 (s0 < 0), length



lt = Lt/L0 and width wt = Wt/L0, defined using arctangent functions [12], takes the form:
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with the centre of the topography at (xt, yt). The steepness of the topography is controlled by γ with:

b0 = 4
[
tan−1

(
1
2γ

)]2
. (4)

When topographies are present, they are restricted to simple square peak and trench features with γ = 0.01.

At the upstream boundary a fully developed film thickness is prescribed (h = 1) while the downstream boundary is set

such that h(lp, y) = h∗ with zero flux conditions defined for h and p at the other boundaries, namely:
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where lp = Lp/L0 and wp = Wp/L0. The initial film profile consists of a front perturbed with a superposition of N

modes with random length, lj ∈ [−0.2, 0.2], and differing wavelength, λ0,j , as in [6] via:

h(x, y) = 0.5
{

1 + h∗ − (1− h∗) tanh
[
(x− xf (y))

δ

]}
, (5)

xf (y) = xu −
N∑

j=1

lj cos (2πy/λ0,j), (6)

where xu is the position of the slope of the unperturbed front, δ is the steepness of the profile (taken here to be 0.01) and

λ0,j = 2wp/j for j = 1, ..., N . The results are independent of the initial condition provided N is sufficiently large; a

value of N = 50 is found to be adequate.

3. Method of solution

3.1. Difference equations

Discretising equations (1) and (2) using second order central-differencing [10], remembering that τ̃ is constant, leads to

the following corresponding finite-difference analogues:
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defined at all points (i, j) of the computational domain, (0, lp)× (0, wp); the prefactors are obtained using linear interpo-

lation between neighbouring grid points and are given by, for example,
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3
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,

and similarly for the other prefactors. The mesh size is denoted by ∆ and is taken to be the same in both the x and y

directions. The time derivatives are discretised via the implicit, second-order Crank Nicolson method.

3.2. Adaptive multigrid solver

Equations (7) and (8) are solved using an efficient multigrid method employing a combined full approximation storage

(FAS) algorithm and full multigrid (FMG) strategy, on successively finer grids G0, ..., GK , where G0 is the coarsest grid

and GK the finest one, by performing a number of FAS W-cycles on each level. The number of nodes, nk, on mesh

level, k, is given by nk = Ax2k + 1 in the x-direction and mk = Ay2k + 1 in the y-direction, where Ax and Ay are

constant multiplication factors. The main concept of multigridding is to exploit the coarser grid levels in the reduction

of errors, thus reducing the work done on the finer grids to maximise efficiency; relaxation is performed via a red-black

Gauss-Seidel Newton method. Ghost nodes are assigned to implement Neumann boundary conditions; exact values are

assigned at the appropriate boundary points in the case of Dirichlet boundary conditions.

The solution strategy incorporates error-controlled, automatic spatial and temporal adaptivity as described in [10]. Vari-

able time-stepping is implemented by estimating the local truncation error (LTE) at each time step, controlled by a user

defined tolerance. The grids automatically refine/de-refine locally so that the resolution is finest in the vicinity of the

advancing front and devolves in areas where the solution is smooth and away from any free-surface disturbances. Areas

where grid devolution is active are determined by the gradient of the solution; should the gradient be close to zero at a

particular node then this node will be removed from subsequent calculations in the current multigrid cycle. These features

allow for the efficient and accurate calculation of long time solutions of rivulet growth.

4. Results

The results presented below are for the case of the flow of a 100µm water film (density ρ = 1000 kg m−3, viscosity 0.001

Pa s and surface tension σ0 = 0.07 N m−1) on a substrate inclined at 65◦ to the horizontal, this gives Ca = 6.35× 10−4

and ε = 0.16. The precursor film thickness is taken to be h∗ = 0.01 (1 µm); a value chosen to be consistent with the one

used by Diez and Kondic [3]. The initial profile was defined using equation (5) and the front perturbed as per equation

(6); to facilitate comparison between the results generated, lj and λ0,j were kept the same.



4.1. Marangoni effects

Figure 2: Colour maps of the free surface height, h + s, for gravity-driven flow over a planar substrate, s0 = 0, and θ = 65◦: the flow pattern at t = 50

(top), t = 100 (middle) and t = 150 (bottom) when τ̃ = 0.0 (left), τ̃ = −0.25 (centre) and τ̃ = 0.25 (right), respectively, in the streamwise direction.

The results shown in Figure 2 were obtained on a computational domain with (lp, wp) = (200, 100); the adaptive multigrid

method utilised five grid refinement levels, 0 ≤ k ≤ 4, with the number of nodes on each level being nk = 278× 2k + 1

and mk = 139 × 2k + 1 which equates to a finest mesh resolution of ∆ = 0.045. The value of τ̃ is prescribed as



indicated; surface tension gradients of similar magnitude have been achieved in an experimental setting using heated

substrates [4]. Comparing the top and middle set of colour maps reveals the effect of the surface tension gradient, τ̃ , see

equation (1), acting in the streamwise direction. The main difference is seen in the length of the rivulets formed: a value

of τ̃ > 0 accelerates the growth rate of the rivulets with the spreading rate characterised by an increase in the maximum

film height at the capillary ridge at their tips; for τ̃ < 0, the opposite effect is observed and there is a flattening/decrease

in the capillary ridge at the tips suppressing the growth rate. At even later times, see the bottom set of colour maps, the

difference in position and length is even more pronounced.

The merging of neighbouring rivulets can also be observed in Figure 2 and is similarly affected by the presence of a surface

tension gradient. In Figure 2(e), where τ̃ < 0, the merger of two rivulets has just occured with their tips coalescing to

form a new, single rivulet; the reduced growth rate of these rivulets mean they interact at an earlier stage and coalesce.

The same rivulets in Figure 2 (d) and (f), τ̃ ≥ 0, have yet to merge fully but have begun to do so from their common base;

they will eventually merge but at a later time. This is seen to have happened in Figure 2(g), for τ̃ = 0; however, with

τ̃ = 0.25, Figure 2(i), the rivulet tips remain distinct. The rivulet formed by the merging process, see Figure 2(h), has

accelerated ahead of its neighbours due to the increase in capillary ridge height which accompanies a merging and which

in turn leads to accelerated growth. A negative surface tension gradient promotes earlier merger of neighbouring rivulets,

whereas a positive one delays the time at which merger occurs.

4.2. Topography

Considered next is the effect of the presence of topographical features, located ahead of the advancing front and encoun-

tered by the same, where the spacing and topography type influences the resulting flow. An example of this is shown

in Figure 3 for the case of an advancing front moving down a smooth planar substrate and one encountering two iden-

tical trenches, two identical peaks and equal but opposite trench and peak topographies. All topographies have height

s0 = |0.2| and length and width lt = wt = 10. The domain size for these solutions is (lp, wp) = (250, 50) with, in this

case, the number of nodes on level k given by nk = 348× 2k + 1 and mk = 70× 2k + 1.

The upper set of plots in Figure 3 shows the rivulet structures at t = 100; the different combinations of topographical

features clearly affect the position and growth of the rivulets. When twin trenches are present, as shown in Figure 3(b),

the two inner most rivulets formed are slightly longer in length and slightly more advanced of the corresponding rivulets

in the planar flow case, Figure 3(a). Figure 3(c), for the case of twin peaks, shows a very different pattern emerging;

the inner most rivulets have already merged after being directed towards one another. The merging of the two rivulets is

accompanied by a sharp increase in the height of the capillary ridge at the tip of the newly formed single rivulet which

leads to an acceleration in growth of the structure.

At later times, see the bottom set of colour maps at t = 258, the influence of topography persists. The inner most rivulets

have merged in all cases apart from that in which the front encounters twin trenches; this suggests that the increased

growth rate experienced in the latter case prevents these rivulets from merging. The middle rivulet in Figure 3 (h) is

skewed to the left compared to the ones in Figures 3 (e) and (g) due to the predominant deflection effect of the peak.

The centre rivulet in the twin peak topography case, Figure 3 (g), results from the merging that occured at much earlier

times so has the usual, elongated shape. The other newly formed, single, centre rivulet, Figure 3 (e) and (h), has a wider,



V-shaped base due to it being fed from the two combined sources of the now merged rivulets. As time progresses, the

increase in ridge height at the tip leads to an acceleration of the rivulet front which elongates the structure.

Figure 3: Colour maps of the free surface, h + s, showing rivulet formation for flow over substrate containing different topographical heterogeneities,

|s0| = 0.2 and θ = 65◦, shown at t = 100 (top) and t = 258 (bottom): the substrate contains (from left to right) no topography; two square trench

topographies; two peak topographies (dashed outline); and a square trench and a square peak topography. τ̃ = −0.25 in all cases.



5. Conclusion

Gradients in the surface tension offers a useful tool for controlling the development of gravity-driven rivulets in terms

of length and growth rate. The application of a surface tension gradient at the advancing front can be used to suppress

or promote rivulet growth. The possibility of applying localised surface tension gradients at strategic points along the

advancing front offers the prospect of suppressing rivulet growth almost completely. Topographical features present on

the substrate directly affect the symmetry and merger of rivulets; they influence the direction of growth and merging

patterns. Peak topographies may deflect the path of a rivulet and can promote merging with one of its neighbours. For

flow over trench topographies, rivulet growth is promoted due to the surge experienced [12]. These features point to the

possibility of strategic control over the direction and speed of spreading rivulets. It can similarly be shown that if a surface

tension gradient is applied perpendicular to the principal direction of flow, the rivulets grow but in a preferential diagonal

manner in the direction of the Marangoni stress and that if alternating surface tension gradients are applied at different

positions down the length of the substrate, the rivulets can be made to bend.
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