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Abstract. One of the key issues in solving contact problems is the correct choice of the contact

parameters. The contact stiffness, the penetration limit and the contact algorithm are some of the

parameters that have to be adjusted. There are no methodologies available in the literature for choos-

ing the contact parameters, relying only on the user experience for this important task. In this work

we investigate how the contact parameters behave in a commercial finite element analysis software.

We will show that while the contact stiffness has great influence on the finite element analysis, other

parameters will not affect it significantly. Some contact examples are shown to illustrate the perfor-

mance of the contact parameters during the solution of a contact problem.

Introduction

Elastic contact is a non-linear problem which presents several particularities. The main difficulty of

this class of problems is to obtain a model that expresses correctly the stress and displacements dis-

tributions, both necessary in order to determinate the boundary conditions of the problem. Moreover,

the contact region is not previously known, and it may change due to load changes during the analysis.

Most of the works in the contact field consider new algorithms or specific techniques to solve

this kind of problem. Some works have studied the influence of contact parameters in the solution

of a contact problem, usually with combinations between finite element method and mathematical

programming methods, such as the Augmented Lagrangian Method, where the Lagrange multipliers

have physical meaning of the contact pressures [1], and the Penalty Method [2], where the penalisation

parameters act as the contact stiffness.

In [3], the mortar method is introduced, which consists in a contact region discretisation method.

It is shown its improvement compared to the other contact formulations. More recently, a higher-order

contact element based on the mortar method was proposed by [4].

A formulation of the contact problem from variational methods is presented using energy methods

by [5, 6, 7]. The approach is done through potential energy minimisation with constrained optimisa-

tion methods.

Another approach to the contact problem is shown by [8], where minimal principles without an

explicit connection with variational methods are applied directly in the contact problem. The concept

of conditionally dependent constraints is used to deal with sticking or sliding situations.

A comparison of different implementations of the Augmented Lagrangian Method to the contact

problem is presented in [9]. An analysis in terms of variational inequalities of the contact problem is

done, and a dual algorithm that permits the update of the penalisation coefficient is proposed.

In [10], a semi-smooth Newton method is combined with the Augmented Lagrangian and the

path-following method to solve the contact problem in linear elasticity is discussed. A regularisation
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technique is applied, allowing an infinite-dimensional analysis, leading to an algorithm with a very

fast local converge rate.

This work was motivated by the automotive connecting rod small end contact problem. This com-

ponent is highly critic: it connects the piston to the crankshaft, transforming the engine energy into

torque. Therefore, the durability of this component is extremely important. There are few works that

treat this mechanical contact problem, like [11], where it is shown that the contact region and stick-

ing/sliding conditions for some applied loads are approximately the same than the receding contact

solution, i.e., there is no clearance nor interference between the contact bodies. In [12], some papers

concerning connecting rod small end have analysis with different results, showing that is required

more investigation in this topic. The idea of this paper is to develop a methodology to study the

connecting rod small end contact problem using the commercial software ANSYS.

Recently, the authors [13] have proposed a method for estimating the contact stiffness factor using

artificial neural networks. Some of the contact parameters within ANSYS software were analysed in

this previous work. However, in this work we present a more detailed analysis of the influence of

several contact parameters, namely the normal contact stiffness, the penetration limit, the contact

algorithms and the finite element solvers. Each one of these parameters has a default configuration,

attributed at the definition of the contact pair, that may be adequate or not. It is necessary to identify

the influence of each factor in contact analysis, contributing to reduce the use of the intuition and

trial-and-error approaches to solve the contact problem. Since the analysis of the contact parameters

can be extensive, we are not taking into account the influence of friction in the contact problem in this

work.

The remaining of this paper is organised as follows: in Section 2 a brief description of the contact

problem is presented. Next, Sections 3, 4, 5 and 6 describe the finite element solvers, the normal

contact stiffness, the penetration limit and the contact algorithms, respectively. Section 7 shows some

numerical results for 2D and 3D contact problems. The conclusions are presented in Section 8.

Contact parameters

The static contact problem can be formulated as a constrained minimisation problem, where the ob-

jective function is the potential energy of all bodies in contact, and the constraints are given by the

non-penetration condition. Hence, the contact problem can be stated as:

min Π(u) =
1

2
u
t
Ku− f

t
u

subject to gj(u) ≤ 0, j = 1, · · · , n (1)

where u is the displacement vector (optimisation variable) and gj(u) is the non-penetration constraint,

with gj(u) = 0 defining the bodies in contact.

In a problem with two elastic bodies, A and B, the total potential energy is defined as:

Π(u) = ΠA(u) + ΠB(u) =
1

2
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(2)

Fig. 1 illustrates the physical contact problem, where there is no penetration between the elastic

bodies, and contact reaction forces arises in the contact area. Fig. 2 represents the numerical contact

problem. In this case, the usual approach is to consider that the bodies are in contact when non-

penetration constraints are not satisfied. The non-penetration constraints are then redefined as g(u) ≤
TOLN , where TOLN is the acceptable penetration level for the contact analysis.

Some algorithms of constrained minimisation can be used to solve the contact problem. The most

common are: Penalty Method, Lagrange Multipliers Method and Augmented Lagrangian Method.

Some parameters in these methods may have a physical interpretation (like the Lagrange Multipliers,
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Figure 1: Physical problem.
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Figure 2: Numerical problem.

that represent contact pressure). These methods are usually implemented combined with numerical

techniques like the Finite Element Method.

Finite element solvers

ANSYS [14] has available 3 different methods to solve the finite element analysis, and they are briefly

described below:

• Sparse Direct: This method is based on factorising the system of equations into lower and supe-

rior matrices, reducing the computational cost by using specific techniques for sparse matrices.

The advantage of this method is to be less sensitive to the conditioning of the stiffness matrix

[14, 15].

• Preconditioned Conjugate Gradient - PCG: This is an iterative solver, where the minimisation

problem is based on the Conjugate Gradient Method with a preconditioner step. Overall, the

PCG requires less memory than the Spare Direct, hence being faster. It has been seen that

contact analysis using either the Penalty or Augmented Lagrangian Method work well with this

solver [15, 16].

• Frontal Direct: Here the global stiffness matrix is not assembled, so the system is solved one

element at time. The method classifies the degrees of freedom of the system in dependent or

independent, solving a triangular system for the independent degrees of freedom [17].

Normal contact stiffness

The normal contact stiffness is the most critical parameter in a contact analysis. It defines the amount

of allowable penetration between the contact bodies. A small value can lead to a non suitable result,

because of the large amount of penetration that will be present in the analysis. A high normal stiffness

value could make the problem not to converge, since it will affect considerably the conditioning of

the global stiffness matrix. It is expected to find a value large enough to have a small penetration,

without affecting significantly the behaviour of the analysis.



Penetration limit

The penetration limit defines the acceptable penetration between contact elements. This parameter

is applied to the normal direction of the contact surface and depends on the depth of the contact el-

ement. The contact element depth is stated as h in Fig. 3. The allowable penetration is the product

of penetration limit factor (specified by the user) for the depth of the contact element. If the pene-

tration is greater than this product, the solution is not considered converged, even if it satisfies other

convergence criteria.

Finite element
depth Contact element

h

Figure 3: Definition of the element contact depth - From [13].

Contact algorithms

There are three main contact algorithms in ANSYS that will be described briefly:

• Penalty Method [2, 18].

• Lagrange Multipliers Method [15, 18].

• Augmented Lagrangian Method [1, 18].

Penalty Method

This method has the advantage that the non-penetration constraints are included directly in the objec-

tive function. The basis of the method is to penalise the non-feasible constraints with high values, and

it is given by:

min Π(u)
subject to g(u) ≤ 0

⇒ min P (u) = Π(u) +
r

2
g(u)2+ (3)

where Π(u) is the potential energy function, g(u)+ = max[0, g(u)] is the non-penetration constraint

and r is the penalty coefficient. The gradient is given by:

∇P (u) = Ku− f + rg(u)+∇g(u) (4)

and the Hessian matrix is defined as:

H(u) = ∇2P (u) = K+ rg(u)+[∇g(u)t∇g(u) +∇2g(u)] (5)

It is clear that the penalty coefficient r affects the conditioning of the Hessian matrix, which cor-

responds to the stiffness matrix. For high values of r, the stiffness matrix can become ill-conditioned,

and this is the main limitation of the Penalty Method [18].



The calculation of the contact pressure P in ANSYS is given by [14]:

P =

{

0, if g(u) > 0
Kng(u), if g(u) ≤ 0

(6)

where Kn is the normal contact stiffness and g(u) is the penetration of the contact surfaces. The unit

of Kn can vary in contact force models (force/length) or contact pressure models (force/length3).

Lagrange Multipliers Method

The Lagrange Multipliers Method uses a dual formulation, where variables are added to the problem

(Lagrange multipliers) and the problem is solved for these new variables. It is assumed that, if the

Lagrange multipliers are known, the solution of the original constrained problem is easily calculated

[18]. The Lagrangian function is stated as:

L(u,λ) = Π(u) + λ
tg(u) (7)

where λ = [λ1 λ2 · · ·λn] represents the Lagrange multipliers. The optimality conditions can be

applied to the Lagrangian function allowing the solution for both displacements and Lagrange multi-

pliers as a solution of the following matricial system of equations [15, 18]:

[

K B
t

B 0
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λ

}
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f

α

}

(8)

where the constraint conditions g(u) ≤ 0 can be written as Bu−α = 0.

The implementation of this method in ANSYS consists in adding new variables to the system,

instead of adding the stiffness of the contact elements directly into the global stiffness matrix [15].

The advantage of this approach is the possibility to enforce a zero penetration condition since the

normal contact stiffness is not part of the method [19]. However, the additional Lagrange Multipliers

require more iterations for the analysis to converge compared to other contact algorithms.

The contact pressures are calculated through the changes of the contact status, using the pene-

tration limit (FTOL) and the maximum allowable tensile force (TNOP ). The tensile force is the

minimum force that acts in order to separate the contact bodies, and its default value in ANSYS is

the unbalanced force convergence tolerance (difference between internal and external forces). The

default value of the penetration limit is the displacement convergence tolerance. Table 1 shows how

these two parameters influence the contact problem. Let gmax be the allowable penetration and Fimax

the allowable tensile force, so that any value higher than these two parameters will result in a non

representative solution.

Table 1: Description of the possible choices of the parameters gmax and Fimax
.

FTOL < gmax FTOL > gmax

TNOP < Fimax
More iterations are needed to run the

analysis, due to a greater number of

changes in the contact status.

Penetration is overestimated, contact

between two nodes may not be de-

tected.

TNOP > Fimax
Tensile force is overestimated, sepa-

ration may not occur when necessary.

Both parameters are overestimated,

the algorithm does not identify cor-

rectly the contact or the separation.

There are two potential limitations of employing the Lagrange Multiplier Method:

• There are excessively chattering (change of the contact status) in some nodes during the analy-

sis, which could affect the solution precision and/or convergence;



• If the problem is overconstrained, i.e., there are additional constraints (as prescribed displace-

ments) in the contact nodes, this contact algorithm could not converge or converge to an inac-

curate result [14].

Augmented Lagrangian Method

This is a hybrid method of the Lagrange Multipliers Method and the Penalty Method. It represents

competently the contact constraints using the penalty coefficient and the Lagrange multipliers, penal-

ising the violations of the non-penetration constraints in the same manner of the Penalty Method. For

the correct value of λ, the gradient of the Augmented Lagrangian function Laug goes to zero, so the

function is penalised exactly. Hence, it is not necessary to the penalty coefficient to be very high [18].

The Augmented Lagrangian function is defined as:

Laug = Π(u) + λ
tg(u) +

1

2
rg(u)2+ (9)

In ANSYS, the contact pressure P is defined as:

P =

{

0, if g(u) > 0
Kng(u) + λi+1, if g(u) ≤ 0

(10)

The updated Lagrange multiplier λi+1 is given by:

λi+1 =

{

λi +Kng(u), if |g(u)| > TOLN
λi, if |g(u)| < TOLN

(11)

where λi is the Lagrange multiplier at iteration i.

Numerical examples

Contact between two cylinders

This example was first studied by [20] and is one of the few contact problems with analytical solution

[21]. The problem is stated in Fig. 4.

E1, ν1

E2, ν2

R1

R2

F

F

2b

δ1

δ2

Figure 4: Contact between two cylinders.

Let R1 = 20 mm and R2 = 10 mm be the radii of cylinders with length L = 1 mm, E1 = E2 =
210 GPa their Young’s moduli, ν1 = ν2 = 0.3 their Poisson ratios, and an applied force F = 1000
N. The δ parameter indicates the total approximation of the cylinders, the b parameter represents the

contact area and pmax is the maximum contact force.



The contact area b is defined as:

b = 1.13

(

F

L
(η1 + η2)

R1R2

R1 +R2

)1/2

(12)

where η1 =
1−ν2

1

E1

and η2 =
1−ν2

2

E2

.

The total approximation distance δ = δ1 + δ2 is defined by Eq. (13), where the particular case

η = η1 = η2 was assumed:

δ = 0.638
F

L
η

(

2

3
+ ln

2R1

b
+ ln

2R2

b

)

(13)

The maximum contact pressure is given by:

pmax =
2F

πbL
(14)

Finally, the relative error is given by:

Error(%) =

(

current solution − analytical solution

analytical solution

)

× 100 (15)

The ANSYS finite element mesh in the contact region used to analyse this problem is shown in

Fig. 5 and the effects of the main parameters are in the following.

Figure 5: Refinement of the contact region - Contact between two cylinders.

Contact stiffness. Table 2 shows how the results vary with the variation of the normal contact stiffness

when the other contact parameters (penetration limit, contact algorithm, solvers) remain the same.

One can verify that for this example the variation is very small even for extremely high values of the

stiffness factor. We chose kn = 5 since in this case the error for the approximation is zero.

Table 2: Comparison between different contact stiffness - Contact between two cylinders.
Analytic kn = 1 Error(%) kn = 5 Error(%) kn = 10 Error(%) kn = 100 Error(%)

δ 0.0275 0.0277 0.73 0.0275 0.0 0.0274 -0.36 0.0274 -0.36

b 0.2716 0.2618 -3.62 0.2618 -3.62 0.2618 -3.62 0.2618 -3.62

pmax 2343.8 2353.8 0.43 2488.8 6.18 2508.1 7.01 2526.1 7.78



Table 3: Comparison between different penetration limit factors - Contact between two cylinders.
FTOL Maximum penetration Maximum pressure Number of iterations

1 1.8436× 10−4 2488.8 3

0.1 1.8436× 10−4 2488.8 3

0.01 1.8437× 10−4 2488.9 5

0.001 9.4089× 10−5 2514.9 30

0.0001 1.3536× 10−5 2527.4 35

Penetration limit. The influence of the variation of the penetration limit are given in Table 3. When

the penetration limit factor FTOL decreases, there is a reduction of the penetration, and an increase

in the number of iterations used to find the solution. In this case, the best choice is FTOLN = 0.1,

since penetration is sufficiently small.

Contact algorithms. The results obtained with the Penalty Method, Lagrange Multipliers Method

and Augmented Lagrangian Method are presented in Table 4. The results of the Penalty Method and

the Augmented Lagrangian Method are the same in terms of penetration and contact pressure. One

possible reason for this is that this example is very well behaved, so that the three solution methods

work well.

Table 4: Comparison between different contact algorithms - Contact between two cylinders.
Contact Maximum Maximum Number of δ b

algorithm penetration pressure iterations

Penalty 8.7183× 10−4 2488.8 3 0.0275 0.2618

Augmented Lagrangian 8.7183× 10−4 2488.8 3 0.0275 0.2618

Lagrange Multipliers 4.1691× 10−6 2529.1 2 0.0274 0.2618

Solvers. Here the different finite element solvers are compared and the results are shown in Table

5. The results in terms of penetration level, contact pressure, approximation and contact area are the

same for every method, the only difference lying in the computational time, which is very small for

each method.

Table 5: Comparison between different solvers - Contact between two cylinders.
Contact Maximum Maximum Time δ b

algorithm penetration pressure (CPU)

Sparse 1.2252× 10−5 2526.8 7 0.0274 0.2618

PCG 1.2252× 10−5 2526.8 8 0.0274 0.2618

Frontal 1.2252× 10−5 2526.8 9 0.0274 0.2618

Automotive connecting rod

This is a classical example of contact in mechanical systems and has been extensively studied [12, 13,

22], just to cite a few references. Fig. 6 and 7 represent only a quarter of the connecting rod and pin

geometry and some of the measures of the model, respectively.

The finite element mesh has 63702 nodes and 25165 elements. In this example, two types of

elements were used: tetrahedral elements with 10 nodes for the connecting rod mesh and hexahedral

elements with 20 nodes for the pin mesh.

A clearance of 18 µm between the connecting rod and pin is assumed. The material properties

are E = 210 GPa and ν = 0.3. The loading is F = 40000 N distributed evenly across the nodes as

indicated in Fig. 7.



Figure 6: Finite element mesh - Automotive con-

necting rod - From [13].
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Figure 7: Simplified geometrical model - Auto-

motive connecting rod - From [13].

Contact stiffness. For large contact problems, the conditioning of the stiffness matrix has to be taken

into account. Fig. 8 illustrates the relation between the penetration and the condition number of the

stiffness matrix in terms of the contact stiffness factor kn.
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Figure 8: Penetration and conditioning of the stiffness matrix - Automotive connecting rod.



High values of the normal contact stiffness lead to low penetration levels but can also lead to a

high condition number. In this case, when kn = 25 the condition number is not too elevated and the

penetration level is kept low.

Table 6 shows the results for different stiffness factors in terms of the number of iterations and

computational time. As expected, high values of kn require larger number of iterations for the analysis

to converge, as well as more processing time.

Table 6: Contact stiffness factor and the condition number, iterations and computational time - Auto-

motive connecting rod.

kn Condition Number of Time

number iterations (CPU)

1 12.73 10 431

3 21.87 10 425

5 36.45 12 516

7.5 54.67 13 582

10 72.90 15 717

15 109.35 16 896

20 145.79 15 896

40 291.59 21 1589

60 437.38 20 1810

80 583.18 26 2632

100 728.97 37 4082

200 1457.95 28 4120

400 2915.90 33 5510

600 4373.85 37 7174

800 5831.80 36 7889

1000 7289.75 43 18465

Fig. 9 illustrates the maximum penetration between the contact surfaces and the maximum contact

pressure in terms of the contact stiffness factor. One can observe that Pmax increases along with the

contact stiffness until a certain threshold, when it does not vary even if we keep increasing the value

of kn. In this example this threshold is attained for kn = 10, and will be used further in this paper.

Penetration limit. Table 7 shows the relation of the maximum penetration level between contact

bodies in terms of the contact stiffness factor and the penetration limit factor.

Table 7: Penetration in terms of penetration limit and contact stiffness factors - Automotive connect-

ing rod.
FTOLN kn Max. penetration level Max. pressure Iterations

0.1 10 2.3606× 10−5 414.85 15

0.01 10 2.3606× 10−5 414.85 15

0.001 10 2.3606× 10−5 414.85 15

10−4 10 2.3606× 10−5 414.85 17

10−5 10 − − no convergence

0.1 0.1 2.0729× 10−3 364.27 7

0.01 0.1 2.0729× 10−3 364.27 7

0.001 0.1 1.2447× 10−3 398.76 7

10−4 0.1 1.2413× 10−4 409.59 23

10−4 1 8.6332× 10−5 415.53 12

First, we change the penetration limit factor but maintain fixed the contact stiffness factor in kn =
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Figure 9: Penetration and contact pressure - Automotive connecting rod.

10. The maximum penetration level remains constant for these configurations. Reducing the contact

stiffness factor to kn = 0.1, we note changes of the penetration level for different penetration limits.

The best results in terms of number of iterations and penetration level is obtained when kn = 1 and

FTOLN = 10−4. On the one hand, when the contact stiffness assumes high values, the penetration

limit may not be used, so the Lagrange multipliers are not updated and the Augmented Lagrangian

Method is reduced to the Penalty Method. On the other hand, if the contact stiffness value is too

underestimated, the combination of low contact stiffness and low penetration limits will require more

iterations so the contact analysis will converge.

Contact algorithms. Some results for different contact algorithms are shown in Table 8, where the

penetration limit factor is fixed to FTOLN = 10−4 and the contact stiffness factor is assumed to be

kn = 1 or kn = 10.

Table 8: Contact algorithms - Automotive connecting rod.
Contact Contact Maximum Maximum Maximum Number of Time

algorithm stiffness penetration pressure stress iterations (CPU)

Penalty 10 2.3606× 10−5 414.85 652.39 15 713

Augmented Lagrangian 10 2.3606× 10−5 414.85 652.39 17 803

Penalty 1 2.2387× 10−4 393.42 638.13 10 430

Augmented Lagrangian 1 8.6332× 10−5 415.53 647.79 12 505

Lagrange Multipliers − 1.7247× 10−10 494.2 769.44 11 2888

For kn = 10, the same results were obtained for both Penalty and Augmented Lagrangian Method.

As mentioned earlier, for high values of the normal contact stiffness, the Augmented Lagrangian

behaves as the Penalty Method.

For kn = 1, we observe differences between the Penalty and Augmented Lagrangian Method.

The penetration level is lower when using the Augmented Lagrangian Method due to the Lagrange

multipliers which were updated for this configuration. The difference between the contact pressures

is −4.80% of the Penalty Method assuming the reference is kn = 10. For the Augmented Lagrangian



Method, the error is 0.55%.

The Lagrange Multipliers Method presented the lowest penetration level, however it required over

the double of the computational time of the other contact algorithms. Moreover, the contact pressure

was 19% over the reference of kn = 10. The probable cause of this variation is the excessive chattering

of contact status during the analysis.

Solvers. Table 9 presents the results for different finite element solvers for kn = 10 and FTOLN =
0.1. Again, the penetration level and contact pressure are the same but with distinct computational

time for every solver.

Table 9: Comparison between different solvers - Automotive connecting rod.
Contact Maximum Maximum Number of Time

algorithm penetration pressure iterations (CPU)

Sparse 2.3606× 10−5 414.85 15 1836

PCG 2.3606× 10−5 414.85 15 718

Frontal 2.3606× 10−5 414.85 15 19145

Fig. 10 illustrates how the computational time varies with the contact stiffness factor for the 3

considered solvers. For kn ≥ 150, the Sparse solver finishes the analysis faster than the PCG. When

kn < 150, the PCG is the fastest solver. The computational time required by the Frontal solver is

very elevated even for low values of the contact stiffness factor. The reason for this behaviour is the

architecture of the solver in terms of memory allocation [14].
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Figure 10: Computational time of solvers in terms of the contact stiffness factor - Automotive con-

necting rod.

Conclusions

In this paper, the main contact parameters of the commercial finite element analysis software ANSYS

have been studied. The main contact parameters are the normal contact stiffness, the penetration limit



and the contact algorithms. There are other contact parameters, but their influence is not as criti-

cal as the aforementioned parameters. The normal stiffness and the penetration limit are responsible

for regulating the level of acceptable penetration between the bodies in contact. If the normal stiff-

ness assumes values too elevated, the penetration limit may not be considered, and the Augmented

Lagrangian Method will behave as the Penalty Method. Moreover, the stiffness matrix can become

ill-conditioned, affecting the convergence and also leading to higher amounts of computational time.

The ideal situation is to obtain a compromise between the normal contact stiffness and the penetration

limit. The Lagrange Multiplier can provide penetration levels close to zero since its formulation does

not use the contact stiffness. However, the method is more sensible to instabilities during the contact

analysis, which can point to non suitable solutions. The influence of friction in contact problems can

be investigated in future works.
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