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Abstract 31 

In many primates, including humans, the vocalizations of males and females differ dramatically, 32 

with male vocalizations and vocal anatomy often seeming to exaggerate size. Males may evolve 33 

low-frequency vocalizations in order to intimidate rivals and/or attract females, but this 34 

hypothesis has not been systematically tested across primates, nor is it clear why competitors 35 

and potential mates should attend to vocalization frequencies. Here we show across 36 

anthropoids that sexual dimorphism in fundamental frequency (F0) increases during evolutionary 37 

transitions toward polygyny, and decreases during transitions toward monogamy. Surprisingly, 38 

humans exhibit greater F0 sexual dimorphism than any other ape. We also show that low-F0 39 

vocalizations predict perceptions of men’s dominance and attractiveness, and hormonal (cortisol 40 

and testosterone) profiles related to immune function. These results suggest that low male F0 41 

signals condition to competitors and mates, and evolves when male primates compete more 42 

intensely for mating opportunities.  43 
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Introduction 44 

Explaining why sexual dimorphisms evolve is central to understanding the evolution of primate 45 

mating systems and social organization. In many primate species, the vocalizations of males 46 

and females differ dramatically, with male vocalizations and vocal anatomy often seeming to 47 

exaggerate size (1-7). Among humans, men’s approximately 60% longer vocal folds (12-13) 48 

contribute to an average rate of vocal fold vibration during phonation (fundamental frequency, 49 

F0) that is about five standard deviations below women’s (5). To human listeners, utterances 50 

lower in F0 are perceived as being deeper in pitch and as emanating from larger individuals (14-51 

15). The evolutionary reasons for such apparent size exaggeration have been the subject of 52 

speculation since Darwin noted the pubertal enlargement of male vocal structures and their 53 

deployment during the breeding season in many mammals (16).  54 

Some have suggested that masculine vocalizations evolve to intimidate male 55 

competitors and/or attract mates (6, 17). For example, among orangutans, lower-ranking males 56 

avoid long calls given by higher-ranking males (18), indicating that acoustic cues suggest threat-57 

potential to conspecifics. Several studies in humans suggest that F0 has relevance under both 58 

inter- and intrasexual competition: experimentally lowering F0 increases perceptions of men’s 59 

dominance and attractiveness (15, 19), and raising F0 increases women’s vocal attractiveness 60 

(20-21). However, little is known about whether these effects persist in unmanipulated speech 61 

when F0 and other acoustic parameters vary naturally and simultaneously.  62 

Moreover, it is unclear why F0 should signal formidability to same-sex competitors or 63 

mate value to potential mates; F0 is only weakly associated with body size (5, 7, 22-23) and 64 

perhaps strength (5, 24) in humans, although F0 may be modulated according to relative 65 

formidability (25) and mate quality (26-27). Steroid hormones may provide a link between F0 and 66 

condition. Growing evidence indicates that glucocorticoids such as the stress hormone cortisol 67 

(C) negatively interact with testosterone (T) in affecting both immune function and the 68 

expression of secondary sex traits (28-30). Infection stimulates C production (31), which 69 
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downregulates androgen receptors and inhibits the action of T on target tissues (32-36). Hence, 70 

T should be more potent in individuals in good condition with low immune system activation. In 71 

humans, positive relationships between T and immune response to a vaccine (37), and between 72 

T and both facial attractiveness (37) and dominance (38), were stronger in males with low C. 73 

Furthermore, the interactive effect of T and C on attractiveness was mediated by immune 74 

function, supporting the stress-linked immunocompetence handicap hypothesis (SL-ICHH) that 75 

T-related traits that interact with C are linked to immunocompetence (37). At present, it is 76 

unknown whether T and C negatively interact in predicting F0, as the SL-ICHH would suggest if 77 

F0 reflects underlying condition.  78 

More generally, scant evidence exists to support a role for sexual selection in shaping F0 79 

and other vocal sexual dimorphisms across primates (6), and there are plausible alternative 80 

hypotheses: F0 dimorphism may represent a byproduct of selection for greater male size or 81 

long-distance transmission of male calls (39), or reflect selection for sex identification.  82 

 Here, we report the results of three studies designed to clarify the evolution of sexual 83 

dimorphism in F0. In Study 1, we examined the evolution of F0 dimorphism as a function of 84 

mating system across anthropoid primates. In Study 2, we tested the stimulus-response 85 

properties of F0 on intrasexual competitiveness in humans by examining the independent 86 

contributions of F0 controlling for other acoustic parameters to assessments of attractiveness 87 

and dominance. In Study 3, we explored the indexical value of F0 by testing the SL-ICHH 88 

prediction that F0 will be more strongly linked to T in individuals with low C. 89 

 90 

Study 1: F0 across anthropoid primates 91 

Methods 92 

Please refer to SI Materials and Methods for additional details. 93 

We obtained recordings of nonhuman primate calls from our own fieldwork and by 94 

contacting other primatologists. From these, we selected 1723 files such that each was without 95 
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substantial background noise and was produced by a single individual of known species, sex, 96 

and adult status. Files were measured as uncompressed .WAV or .AIFF files using the acoustic 97 

analysis software Praat version 5.3. F0 was measured from each file by identifying in the raw 98 

waveform a segment in which cycles were clearly discernible. Cycles were counted along this 99 

segment up to 20 cycles, and then divided by the duration of the interval to calculate F0. This 100 

procedure was repeated for a second segment, if possible (78% of files). Mean F0 values from 101 

each recording were averaged with all other mean F0 values per sex to arrive at separate male 102 

and female F0 averages for each species (Table S2). Between-segment reliability was high for 103 

files with two measurable segments (Cronbach’s α = 0.973). First segments of a randomly 104 

chosen 11% of files were re-measured to determine intra-measurer reliability, which was very 105 

high (Cronbach’s α = 1.000). Body size, habitat, and mating system were obtained from the 106 

literature (Table S2). We conducted phylogenetically-informed analyses using a consensus 107 

phylogeny for all species represented in our sample (40) and assessed correlated evolution 108 

among our variables with phylogenetic generalized least squares. 109 

Mating system was utilized as a proxy for the intensity of sexual selection (41-42) and 110 

was categorized as monogamous, promiscuous, or polygynous (43) rather than using an 111 

interval-level measure such as socionomic sex ratio, as such measures often vary widely within 112 

species and hold uncertain relationships to the intensity of intermale competition (41, 44-45). 113 

Habitat was categorized as arboreal, terrestrial, or arboreal/terrestrial. We conducted 114 

phylogenetically-informed analyses using a consensus phylogeny for all species represented in 115 

our sample (40; Fig. 1) and assessed correlated evolution among our variables with 116 

phylogenetic generalized least squares (46).  117 

 118 

Results 119 

Across analyses, F0 and F0 dimorphism exhibited strong phylogenetic signals (ʎ > 0.8). In 120 

general, New World primates showed little sexual dimorphism in F0, averaging a mean F0 121 
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dimorphism of 1.05 across 7 species, while male cercopithecines averaged half of the F0 of 122 

females (mean F0 dimorphism = 0.48 across 10 species). With a similar F0 dimorphism of 0.51, 123 

humans surprisingly exhibited the greatest dimorphism that we measured in any ape. 124 

We first tested whether low F0 predicts greater body size across species for each sex. 125 

Previous tests relied on published acoustic data measured using varying methodologies and 126 

either averaged male and female measurements (47) or included only males (39). In our data, 127 

body mass negatively predicted F0 (both variables natural log-transformed) in males (t27 = -3.74, 128 

p < 0.001; model F2,27 = 14.01, p < 0.0001, R2 = 0.34) and females (t26 = -2.62, p = 0.014; model 129 

F2,26 = 6.88, p < 0.001, R2 = 0.18; Table 1). These results suggest that body size constrains the 130 

evolution of primate call frequencies in both sexes (47).  131 

We then regressed F0 dimorphism (male F0/female F0) on mating system, controlling for 132 

body size dimorphism (male mass/female mass). Sexual selection tends to be more intense in 133 

polygynous than in monogamous primates, which are less dimorphic in size and weaponry (48). 134 

Although some evidence suggests intermediate levels of male contest competition in 135 

promiscuous species, the ability of males to monopolize females varies widely (49), other 136 

mechanisms of sexual selection such as sperm competition are more salient (48), and the 137 

degree of sexual dimorphism relative to monogamous or polygynous species varies widely by 138 

trait (48). Although such apparent diversity in the mechanisms and intensity of sexual selection 139 

precludes straightforward predictions regarding F0 dimorphism in promiscuous species, which 140 

were therefore excluded from this analysis, promiscuous species indeed appear intermediate in 141 

F0 dimorphism (see Fig. 2a). We found that greater F0 dimorphism evolves in transitions to 142 

polygyny than in transitions to monogamy (t13 = 3.36, p = 0.004; model F3,13 = 6.42, p = 0.007, 143 

R2 = 0.50; Table 1, Fig. 2). In this model, changes toward greater F0 dimorphism also tended to 144 

be accompanied by decreases in body size dimorphism (t13 = 2.62, p = 0.021). Humans were 145 

treated as polygynous and exhibited F0 dimorphism that was outside the range of monogamous 146 
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species (Fig. 2a); however, we obtained similar results when humans were treated as 147 

monogamous, or excluded from the analysis (Table 1). 148 

Finally, we tested the relationship between F0 dimorphism and habitat. Waves reflected 149 

from the ground produce interference that especially attenuates low frequencies, whereas 150 

greater atmospheric absorption and scattering in arboreal vocalizations particularly attenuate 151 

high frequencies (50). Thus, if male vocalizations are selected primarily to propagate over 152 

distance, then arboreal species should exhibit relatively lower male F0 than terrestrial species. 153 

We found the reverse: arboreal primates showed less F0 dimorphism than terrestrial primates 154 

(F0 dimorphism regressed on habitat and mass dimorphism: model F4,19 = 3.33, p = 0.032, R2 = 155 

0.34; arboreal vs. terrestrial t19 = -2.58, p = 0.018; arboreal/terrestrial vs. terrestrial t19 = -1.37, p 156 

= 0.118; mass dimorphism t19 = 1.30, p = 0.209; Table 1).  157 

 158 

Study 2: F0, dominance, and attractiveness in humans 159 

Methods 160 

Please refer to SI Materials and Methods for additional details. 161 

Two hundred fifty-eight female (20.0 ± 1.6 y) and 175 male (20.1 ± 1.7 y) students from 162 

Michigan State University provided written consent to participate in this study approved by the 163 

university’s Institutional Review Board. Participants were recorded reading a standard voice 164 

passage (51) in an anechoic, soundproof booth using a Shure SM58 vocal cardioid microphone. 165 

Voices were recorded in mono at a sampling rate of 44,100 Hz and 16-bit quantization, and 166 

saved as uncompressed .WAV files. Recordings were rated by 558 female (19.1 ± 2.4 y) and 167 

568 male (19.4 ± 1.8 y) students from The Pennsylvania State University. Each female 168 

recording was rated by 15 men for attractiveness for short- and long-term romantic relationships 169 

using 7-point Likert scales. Each male recording was rated by 15 men for dominance (7-point 170 

scale) and 15 women for short- and long-term attractiveness. Ratings were averaged to produce 171 
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composite ratings of short- and long-term attractiveness for each recording, and dominance for 172 

each male recording.  173 

Recordings were analyzed using Praat version 5.3 for mean F0, standard deviation in F0 174 

across the utterance (F0-SD), duration, number of voice breaks, harmonics, four measures of 175 

jitter (cycle-to-cycle variation in F0), and five measures of shimmer (cycle-to-cycle variation in 176 

amplitude) using the ‘voice report’ function in Praat (Table S3). Pitch floors were set to 75 Hz 177 

and 100 Hz, and pitch ceilings were 300 Hz and 500 Hz, for men and women, respectively. 178 

Otherwise, default settings were used. We also measured the first four formant frequencies (F1- 179 

F4, Table S3). Formants were measured at each glottal pulse, averaged across measurements, 180 

and then used to compute formant position (Pf), the average standardized formant value for the 181 

first four formants (5).  182 

 We utilized multiple regression to examine the effects of acoustic parameters on 183 

perceptual variables. 184 

 185 

Results 186 

F0 predicted men’s perceived dominance to heterosexual male listeners (β = -0.43, p < 0.0001) 187 

and attractiveness to heterosexual female listeners for both prospective short-term (β = -0.36, p 188 

< 0.001) and long-term (β = -0.32, p = 0.001) romantic relationships (Table S4). When 189 

perceived dominance and short-term attractiveness were entered into a multiple regression to 190 

predict men’s F0 (model F2,171 = 12.99, p < 0.0001, R2 = 0.13), dominance negatively predicted 191 

F0 (β = -0.30, p = 0.001), but short-term attractiveness did not (β = -0.09, p = 0.314), suggesting 192 

a stronger role for male contests than female choice in shaping men’s F0. F0 did not predict 193 

women’s attractiveness to men for either short- (β = 0.03, p = 0.695) or long-term (β = -0.03, p = 194 

0.722) relationships when other acoustic parameters were statistically controlled (Table S4). 195 

These results are thus more consistent with sexual selection (primarily intrasexual selection) on 196 
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males, rather intersexual selection on females, influencing the evolution of human F0 197 

dimorphism. 198 

 199 

Study 3: F0 and hormonal profiles in humans 200 

Methods  201 

Please refer to SI Materials and Methods for additional details.  202 

Participants from The Pennsylvania State University provided written consent to 203 

participate in this study approved by the university’s Institutional Review Board. Fifty-three 204 

normally-cycling women (19.4 ± 1.6 y) and 62 men (19.9 ± 2.0 y) were recorded in an anechoic 205 

recording booth in a quiet room (Sample 1), and 58 men (19.9 ± 1.2 y) were recorded in a quiet 206 

room (Sample 2), with a Shure SM58 vocal cardioid microphone.  207 

Participants rinsed their mouths with water before providing two saliva samples of 1-2 ml 208 

each via passive drool approximately 30 (Sample 1) or 20 (Sample 2) min apart. From each 209 

sample, 0.5 ml of saliva was aliquotted into a third tube, which was shaken and then frozen at -210 

20°C until analysis by the Johns Hopkins Center for Interdisciplinary Salivary Bioscience 211 

Research (Baltimore, MD) using Salimetrics® kits. Samples were analyzed in duplicate via 212 

enzyme immunoassay. Duplicates correlated highly for both C and T (all r ≥ 0.97, p < 0.0001), 213 

and were consequently averaged. For cortisol assays, sensitivity is <0.003 µg/dL, and average 214 

intra-assay coefficient of variation is 3.5%. For testosterone assays, sensitivity is <1.0 pg/mL, 215 

and average intra-assay coefficient of variation is 4.6%. 216 

We utilized multiple regression to examine the effects of C and T on F0 and statistically 217 

controlled for diurnal decreases in C and T (52), but results were similar without controlling for 218 

these effects (Table S5, Fig. 3). 219 

 220 

Results 221 
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In women, F0 was unrelated to C, T, and their interaction (Table S5). However, in both male 222 

samples, C and T interacted in predicting F0 (Sample 1: β = 0.36, p = 0.007; Sample 2: β = 0.28, 223 

p = 0.033; Table S5) such that T was negatively related to F0 only in low-C men (median split for 224 

C; Sample 1: partial r = -0.44, p = 0.018; Sample 2: partial r = -0.40, p = 0.034; Fig. S1). This 225 

pattern of relationships between hormones and a putative sexually selected trait has been found 226 

to indicate men’s immune function (37), as well as attractiveness (37) and dominance (38), and 227 

is consistent with the SL-ICHH (37). 228 

 229 

Discussion 230 

Our data supported the sexual selection hypothesis: F0 dimorphism increased with evolutionary 231 

changes toward polygyny and decreased with transitions toward monogamy across anthropoid 232 

primates. Moreover, the pattern of F0 dimorphism across mating systems was similar whether 233 

we examined all available calls or only those calls for which we had examples from both sexes 234 

(SI Results, Fig. S2), indicating that the observed pattern does not merely reflect sex differences 235 

in the use of particular calls types, which may differ in F0. Our data also indicate that sex 236 

differences in F0 result primarily from selection on males rather than females: We observed 237 

greater F0 dimorphism in polygynous species, where male sexual selection is stronger, and F0 238 

affected components of men’s but not women’s mating success. These results thus provide a 239 

plausible explanation for the prior finding that F0 predicted men’s but not women’s reproductive 240 

success among Hadza foragers (53). 241 

By contrast, F0 dimorphism appears unlikely to be a byproduct of greater male size: With 242 

mating system controlled, F0 dimorphism decreased with relative male size. Although F0 243 

dimorphism likely facilitates sex identification, if it evolves primarily for this function, then one 244 

might expect it to be greater in arboreal species where visibility is obscured, and in 245 

monogamous species where the sexes are otherwise less dimorphic (54), yet in both cases we 246 

found the opposite. Our finding that male F0 is relatively lower in terrestrial species than in 247 
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arboreal species also challenges the long-distance transmission hypothesis and is more 248 

consonant with elevated male-male competition in terrestrial compared with arboreal species 249 

(55-56).  250 

Inspection of Fig. 1 indicates an increase in F0 dimorphism from the last common 251 

ancestor of the apes to modern humans, culminating in humans exhibiting the greatest F0 252 

dimorphism of all apes. These results contrast sharply with moderate human body mass 253 

dimorphism and negligible canine length dimorphism, which some have suggested indicate 254 

weak sexual selection in ancestral humans (57). However, unlike other primates, in humans, 255 

female adiposity greatly exceeds that of males, and males fight with handheld weapons and 256 

fists rather than teeth in combat (56, 58). These unique features preclude conclusions about the 257 

strength of human sexual selection based on overall mass or canine size dimorphism (59-60). 258 

Yet, if mating competition also tends to decrease male F0 relative to female F0 across primates, 259 

then F0 dimorphism has the potential to elucidate human sexual selection in ways that 260 

comparisons of body mass or canine size cannot. Our results suggest that, contrary to some 261 

claims (57, 61), ancestral human mating should not be viewed as fundamentally monogamous. 262 

When phylogeny and mating system were statistically controlled, evolutionary changes 263 

toward greater F0 dimorphism were associated with changes toward less body size dimorphism 264 

and vice versa. This suggests that, where costly fights cannot be avoided, males may receive 265 

less benefit from exaggerating size acoustically and instead invest in mass that is useful in 266 

contests. Conversely, where acoustic threats and displays are more effective, perhaps when 267 

female choice is more important to male fitness, there may be lower payoff to investing in mass. 268 

In humans, male F0 was indeed important in mate attraction, yet F0 more strongly predicted 269 

perceptions of men’s dominance, consistent with previous experimental research (25, 62). 270 

Masculinity in men’s faces is similarly perceived as aggressive across human societies, 271 

whereas the influence on attractiveness is more variable in magnitude and direction (63). While 272 

such male traits appear better designed to function in male contests than in female choice (56), 273 
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it remains possible that female choice is relatively more important in humans compared to other 274 

polygynous primates, and that stronger female choice tends to favor lower male F0 and more 275 

modest size dimorphism among polygynous primates. 276 

In many species, males exaggerate size to intimidate conspecifics, but attention to these 277 

exaggerations is likely maintained by a continued association between apparent size and 278 

formidability (4). Although F0 decreased with increasing body size in both sexes across primate 279 

species, body size only weakly predicts F0 in adult humans (5, 7). However, our data show that 280 

C and T interact to predict men’s F0 in a pattern that has previously been found to predict men’s 281 

dominance (38), attractiveness (37), and immunocompetence (37), and hence that F0 is likely to 282 

reveal male condition to same-sex competitors and potential mates.  283 

Our results thus not only demonstrate a likely influence of sexual selection in the origins 284 

and maintenance of sexual dimorphism in F0 across anthropoids, but also suggest that male 285 

contests, and to a lesser degree female mate choice, favor low male F0 as a signal of condition, 286 

shedding new light on the intensity and mechanisms of sexual selection in humans and other 287 

primates. 288 
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Figure Legends: 448 

 449 

Fig. 1. Phylogenetic tree of anthropoid primates included in Study 1, for which data were 450 

available on at least 2 vocalizations from each sex (mean number of vocalizations: females = 451 

38.6, males = 22.1; max: females 181, males = 155; Table S1). Sexual dimorphism 452 

(male/female) in F0 is shown in the column to the left of species names, and inferred ancestral 453 

states are shown at nodes on the tree using squared change parsimony. 454 

 455 

Fig. 2. Sexual dimorphism in vocal F0 as a function of mating system. Sexual dimorphism in F0 456 

is most extreme in polygynous anthropoid primates and lowest in monogamous species (a). 457 

This remains true after adjusting for body mass dimorphism (b), and after adjusting for both 458 

body mass dimorphism and phylogenic non-independence (c). Least-squares regression lines 459 

with 95% CI are plotted for species with monogamous or polygynous mating systems in (b) and 460 

(c); monogamy increases from left to right. Key for independent contrasts in (c) is shown in (d). 461 

 462 

Fig. 3. Relationships of vocal fundamental frequency (F0) with cortisol (C) and testosterone (T) 463 

in men from (a) Sample 1 and (b) Sample 2. Hormone concentrations are natural log-464 

transformed, then standardized to reduce collinearity with interaction terms. In both samples, 465 

cortisol and testosterone negatively interacted, such that testosterone was significantly 466 

negatively related to F0 only in men with low cortisol levels (see also Fig. S1, Table S6). 467 
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p = .031 

C×T: β = .33,  
p = .014 
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Table 1. PGLS regression models predicting evolutionary changes in F0 1 

  F df R2 ʎ Est. t p 

Body mass Model (males) 14.01 2,27 0.32 1.00   <0.0001 

 ln(mass)     -0.74 -3.74 <0.001 

         

 Model (females) 6.88 2,26 0.21 0.98    

 ln(mass)     -.56 -2.62 0.014 

         

Mating system Model1 6.42 3,13 0.50 0.82   0.007 

 Polygyny vs. monogamy     0.55 3.51 0.004 

 Male/female mass     0.16 2.62 0.021 

         

 Model2 6.31 3,13 0.49 1.00   0.007 

 Polygyny vs. monogamy     0.58 2.89 0.013 

 Male/female mass     0.30 3.55 0.004 

         

 Model3 6.03 3,12 0.50 0.85   <0.01 

 Polygyny vs. monogamy     0.56 3.40 0.005 

 Male/female mass     0.17 2.50 0.028 

         

Habitat Model 3.33 4,19 0.34 1.00   0.032 

 Terrestrial vs. arboreal     -0.18 -2.58 0.018 

 Terrestrial vs. arb./terr.     -0.16 -1.37 0.188 

 Male/female mass     0.06 1.30 0.209 

 2 

1. Humans treated as polygynous. 2. Humans treated as monogamous. 3. Humans excluded. 3 
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