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1 Introduction

The holographic gauge/gravity correspondence posits a relation between quantum field

theories and a class of gravitational theories. In the well understood cases the gravitational

dynamics arises in a certain strongly coupled, large central charge limit of the field theory,

and typically is given by the familiar Einstein gravity (perhaps coupled to matter) in
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asymptotically AdS spacetimes. However we now appreciate that there are more exotic

examples wherein the gravitational dynamics is part of a higher spin theory, cf., [1, 2].

Given a quantum field theory one would like to write down the conditions required

for it to admit a holographic dual. Ideally, this condition would delineate the class of two

derivative gravity theories from their more exotic cousins, for in the former we have a much

cleaner understanding of spacetime geometry. At a heuristic level familiar gravitational

dynamics arises when the field theories in question have ‘matrix-like’ degrees of freedom,

while higher-spin dynamics is associated with ‘vector-like’ degrees of freedom. A-priori,

while one can only argue that theories with matrix-like degrees of freedom are associated

typically with stringy duals, in a suitable strong coupling, large central charge (planar)

limit, this string dynamics truncates to classical gravitational dynamics.

This statement was made precise by [3] who argued that in order for the bulk gravita-

tional theory to be local on length scales smaller than the bulk AdS scale, it must not only

have a large number of degrees of freedom, but also have a sparse low lying spectrum of ex-

citations. One can understand this from familiar examples: in the planar N →∞, strongly

coupled limit of N = 4 SYM (with gauge group SU(N)) the stringy excitations with spin

s > 2 get infinitely heavy [4]. Similar conclusions were also reached in the context of low

dimensional CFTs by [5] where, using intuition from the AdS3/CFT2 correspondence, it

was argued that the sparse low lying spectrum of (super)graviton type excitations should

be complemented by a large degeneracy of states above a gap (corresponding to black hole

microstates).

However, it can be argued that in general the two criteria (i) large central charge

and (ii) sparse low-lying spectrum are by themselves insufficient to distinguish classical

gravity duals from classical string duals. A simple case in point is the symmetric product

orbifold in two dimensions. The familiar D1-D5 brane system in the decoupling limit gives

rise to string theory on AdS3 ×S3 ×K3 with the world-volume dynamics reducing to the

two dimensional CFT with target space (K3)Q1 Q5/SQ1Q5 . However, the CFT at the free

orbifold point is singular and presumably only corresponds to the tensionless limit of the

dual string theory. The supergravity limit arises by deforming away from the free point by

a marginal operator.

Despite this important distinction, one can make a case for generic symmetric prod-

uct orbifold CFTs (even without supersymmetry) to display properties which one can

understand from the dual classical gravitational description [6]. In particular, once the

aforementioned criteria are satisfied, it is possible to show that the canonical free energy

of the CFT (which encodes the spectral density of states) undergoes a sharp phase transi-

tion at an O(1) temperature, in fact at Tc = 1
2π . In gravity this is a manifestation of the

Hawking-Page transition between the thermal AdS3 and BTZ geometries. On the CFT

side the result is a consequence of modular invariance of two dimensional CFTs, as it re-

lates the low and high energy density of states, and thus can be used to give a very precise

characterization of the sparseness. This analysis was carried out recently in the beautiful

work [7] who gave precise bounds on the growth rate of the density of states.1

1Constraints from modular invariance on the spectrum of two dimensional CFTs has been much explored

since the original work of [8]; see [9, 10] for other salient results in this vein.
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So how does one understand the lack of distinction between classical (tensionless)

string and gravity descriptions based on the spectral information? We believe the situation

is analogous to the thermal behaviour of gauge theories on compact spaces. Consider a

four dimensional N = 4 SYM on S3 × R which undergoes a finite temperature first order

phase transition (akin to a Hagedorn transition) at vanishing coupling (λ = 0) [11, 12].

While this is qualitatively similar to the Hawking-Page transition, one expects that the free

theory phase transition resolves at non-vanishing coupling to two distinct transitions.2 The

lower first order transition has been conjectured to interpolate toward the Hawking-Page

transition in the strong coupling limit, while the higher third order transition is thought to

interpolate toward the stringy Hagedorn transition (which is hierarchically separated from

the gravitational transition). The former occurs at T ∼ O(1) while the latter occurs at

T ∼ O(λ
1
4 ) in the λ� 1 limit.

While this conflation of the two transitions in the weak coupling limit is unfortunate,

it should be borne in mind that it still provides a clear distinction between the vectorial

and matrix-like theories. In the former, even in the large central charge limit, there is an

abundance of states at low energies which tends to wash out the finite temperature phase

transition (more precisely it pushes into a highly quantum regime). This was established

for vector models in 2+1 dimensions in [14] (see also [15]) and one expects something

similar the context of two dimensional minimal models [16, 17].

With these caveats in mind, let us turn to the main question that drove this investi-

gation. In the space of two dimensional CFTs is there a natural characterization of the

class of matrix like theories which have a hope of giving rise to stringy holographic duals

(which furthermore, in particular corners of moduli space, might reduce to gravitational

dynamics on an asymptotically AdS3 spacetime)? Let us call this family of theories stringy

holographic CFTs; they will be distinguished by satisfying the two criteria set out above.

In the present paper we undertake the exercise of constructing a large class of string

holographic CFTs in two dimensions. The basic tool we will use is the fact that large central

charge theories can be naturally constructed by taking tensor product of some (small central

charge) CFT and using orbifold technology to ensure sparseness in the spectrum. Let us

state the precise problem we wish to tackle. Consider a CFT C with central charge c. We

will assume that this theory has a gap with the lowest primaryO∆ having ∆ > 0. Construct

the tensor product theory C⊗N and quotient it by a permutation group ΩN ≤ SN . There is

a wide choice of such permutation groups; the class of permutation orbifold theories CN,Ω
ranges from the cyclic orbifold theory CN,Z to the symmetric orbifold theory CN,S . The

latter is supposed to give a to a stringy holographic dual in the N � 1 limit, while the

former interpolates into a vector like classical higher spin theory. See figure 1 for a plot of

the free energies where a sharp phase transition is clearly visible in case of the symmetric

orbifold theory at large N , but not in the cyclic orbifold theory.

The question we pose is: for what choices of ΩN are we guaranteed to have a stringy

holographic CFT in the N � 1 limit? This is really a group theoretic question, to answer

2This is indeed what happens in the non-supersymmetric pure glue theory [13]; the precise behaviour

for N = 4 SYM remains an open question.
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Figure 1. Plot of the vacuum subtracted rescaled free energies defined in (3.3) of orbifold CFTs

CN,Ω with respect to a cyclic group ZN (blue line) and a symmetric group SN (red line) for N = 103.

C is taken to be the free boson CFT at unit radius. The dashed (orange) line shows the limit of

the symmetric orbifold as N →∞. Any other CFT with a holographic dual has the same universal

large central charge asymptotics. The vertical line is T = 1
2π , drawn to guide the eye for the critical

temperature, and corresponds to a square torus.

which, we formulate simple sufficiency condition building upon the result of [7]. The

heuristic logic behind our analysis may be phrased as follows. In the N -fold tensor product

one has N times more states than in the seed theory C. These need to be projected out

to get a sparse low-lying spectrum. For simplicity consider the state obtained by acting

with the lightest primary on ` out of the N copies to get a state with dimension `∆ (we

take ` � N). The number of such states depends on the number of orbits of ΩN on `-

element subsets of CN ; as long as it does not scale with N for `� N we have a sparse low

lying spectrum. More specifically, we want the number of orbits of the permutation group

ΩN on `-element subsets of an N -element set to remain finite as N → ∞. In the strict

limit, permutation groups exhibiting this property are called oligomorphic permutation

groups [18] (see also [19] for some a more modern survey).3 We will denote the strict

N →∞ limit of a permutation group ΩN as Ω∞.

While oligomorphic permutation groups allow for the existence of a sensible large N

limit, we still need to impose a further condition, to ensure that the spectrum is sparse

enough. This turns out to be possible to do, once we bound the number of orbits of the

group on (arbitrary) finite element subsets: we want the number of orbits on ` element

subsets to grow at most exponentially in ` (with specific dependence set by the gap ∆).

Without getting into too many technicalities at this point a succinct statement we may

make is that Oligomorphic permutation orbifolds are (sometimes) holographic.4

3The terminology is apposite: oligomorphy refers to the fact that the group has ‘few’ orbits.
4An oligomorphic permutation orbifold by itself leads to a sensible large N limit, as the degeneracy of

excited states remains bounded. However, should the low-lying degeneracy grow faster than an exponential
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The structure of this paper is as follows. In section 2 we review the construction

of orbifold CFT partition functions and the group theory underlying it. The orbifold

partition function is given by a sum over seed theory partition functions evaluated on

unbranched covers of the torus (respecting the permutation action). We demonstrate this

construction explicitly for cyclic and symmetric product theories, using them to build some

intuition. In section 3 we extract a precise statement about covering space geometries which

dominate the partition function of orbifold CFTs in the limit of large degree permutation

actions. Using these results, in section 4 we finally derive group theoretic conditions on

the permutation group such that the orbifold has a sparse spectrum. A key tool we use

in the process involves rewriting the orbifold partition sum in terms of the cycle index of

the group in question. Wreath product groups can be used to exemplify the construction

of a large class of holographic CFTs which we describe in section 6. We end end with a

discussion in section 7.

Note added: reference [20] which appeared on the arxiv shortly after our work, discusses

similar issues regarding permutation obrifold CFTs. We thank the authors for alerting us

to their work.

2 A review of permutation orbifolds

Consider a CFT C characterized by its central charge c ∼ O(1) and a discrete spectrum

with a non-vanishing gap; the lowest primary associated with vertex operator O∆ having

a conformal dimension ∆ > 0. The N -fold tensor product theory C⊗N admits a natural

action of permutation groups ΩN that act on N -element sets. Quotienting the tensor

product theory by one such group ΩN results in a permutation orbifold theory

CN,Ω ≡ C⊗N/ΩN (2.1)

which will form the main focus of our investigation. We will be interested in the N → ∞
limit of these theories since this limit ensures that the central charge (which is independent

of the choice of ΩN )

c = N c� 1 (2.2)

satisfy the first of our criteria. The question we want to address is for what choice of ΩN

is the second of our conditions, viz., sparseness of the low-lying spectrum satisfied.

It is useful to record some basic facts about permutation groups at this stage. Recall

that the degree of a permutation group ΩN refers to the number of elements of the set the

permutations act on. We will be interested in fixing the degree to N � 1 in what follows

(and henceforth index our permutation group by its degree). On the other hand the order

refers to the number of elements of the group (its cardinality as a set) and we will denote

this by |ΩN |. Intuitively, we may imagine that groups with more elements (larger order)

lead to sparse spectra but the situation as we will see in a while is a bit more nuanced.

then the Hawking-Page like phase transition is likely to be washed out. It would however be interesting to

examine whether these orbifolds give rise to interesting models of the vector-type.
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Since we are interested in the spectra of the orbifold theories, the simplest thing we

can do is to examine the torus partition function. Let the partition function of the seed

theory C be Z(τ, τ̄) where τ = τ1 + i τ2 is the modular parameter of torus. We will also use

the parameterization

τ2 =
β

2π
, x = e−β (2.3)

when necessary to write simple expressions. The partition function of the orbifold theory

CN,Ω, denoted ZN,ΩN (τ, τ̄), can be obtained from that of the seed theory Z(τ, τ̄) by a nice

group theoretic construction [21], which builds on the seminal work of [22].

Before we explain the actual result, let us intuit physically what we should expect

following the original construction of [23]. Firstly, choose a canonical homology basis of a

and b cycles for the torus on which we wish to compute ZN,Ω(τ, τ̄). We further recall that

CN,Ω is obtained by gluing together N -copies of C with non-trivial elements of ΩN giving

rise to twisted boundary conditions. Rather than considering N fields related by (twisted)

boundary conditions on a single torus, we can by a linear transformation pass to a basis

where we consider a diagonal action of an element of ΩN on a twisted field. The twist

is now simply prescribed by the monodromy picked up by the field as we take it around

the a or b cycle of the torus. The twisted field naturally lives on the N -fold cover of the

original torus. Furthermore, the covering space is unramified, i.e., there are no branch

points for the monodromy action. This fact greatly simplifies the analysis of the torus

partition function, since unramified covers of tori are again tori (by Riemann-Hurwitz). As

a result, knowledge of Z(τ, τ̄) is sufficient to determine ZN,Ω(τ, τ̄).

Let us now review the result of [21] which formalizes the above intuition. Consider

homomorphisms from the fundamental group of the torus Γ1 = Z⊕ Z into the group ΩN ,

φ : Γ1 → ΩN . (2.4)

Of interest to us are the orbits of φ on the N -element set XN ≡ {1, 2, . . . , N} which can

be denoted as

O(φ) = {φ(Γ1) · k | k = 1, . . . , N} . (2.5)

The main result may now be stated as follows: consider all maps φ, and for a given

map focus on its orbits, i.e., the elements of O(φ). Each orbit can be associated with a new

torus whose modular parameter τξ is determined by the stabilizer subgroup of an element

ξ∗ in the given orbit. This can be summarized in equations as5

ZN,Ω(τ, τ̄) =
1

|ΩN |
∑

φ: Γ1→ΩN

∏
ξ∈O(φ)

Z(τξ, τ̄ξ) , (2.6)

where the modular parameters of the tori depend on the group theory data, viz.,

τξ ≡ τ [Sξ] , Sξ ≡ {x ∈ Γ1 |φ(x)ξ∗ = ξ∗ } for any ξ∗ ∈ ξ . (2.7)

5In fact, the result stated here is quite general and can be applied directly to computing higher genus

partition functions of permutation orbifolds [24] as we review in appendix B.
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Now for the torus a homomorphism φ : Γ1 → ΩN is defined by its action on the

generators a and b of Γ1. Denote their images as za = φ(a), zb = φ(b); any arbitrary

assignment of this form gives a homomorphism as long as za and zb are commuting elements

in ΩN . Therefore,

ZN,Ω(τ, τ̄) =
1

|ΩN |
∑

za,zb∈ΩN
zazb=zbza

∏
ξ∈O(za,zb)

Z(τξ, τ̄ξ) . (2.8)

As described above, a homomorphism φ of the above type determines an unramified

covering of the torus Σ1(τ). In fact, the elements za, zb ∈ ΩN determine how to move

between sheets of the covering space as one moves around the a and b-cycles of Σ1(τ).

If O(za, zb) contains a number of disjoint orbits, then the covering space consists of the

same number of connected components. Thus the product over ξ ∈ O(za, zb) is actually a

product over the different connected components of the covering space. One such connected

component covers again a torus but with modular parameter

τξ =
µξ τ + κξ

λξ
, (2.9)

where µξ is the number of za orbits contained in ξ, λξ is their common length, and κξ is

the smallest non-negative integer for which z
µξ
b = z

κξ
a .

To get a feeling for why we wish to focus on the sparse spectra, let us first construct

and examine two simple (and very familiar) orbifolds; the cyclic and symmetric orbifolds,

for ΩN = ZN and ΩN = SN respectively:

CN,Z ≡ C⊗N/ZN , CN,S ≡ C⊗N/SN . (2.10)

Recall that |ZN | = N and |SN | = N !. Intuitively, this makes these groups the smallest

and largest permutation groups with a transitive degree N action. We will subsequently

return to general ΩN for which we will need some further specification of the properties of

the permutations involved.

2.1 Cyclic orbifolds

For ΩN = ZN , the above considerations can easily be made explicit. We take ZN to be

generated by a single element z: ZN = {zi , zN = e}. The action of the group on an

element k of the N -set XN = {1, 2 . . . , N} will be taken to be zi · k = (k + i) mod N .

The cyclic orbifold partition function has been explored in [25, 26]. For simplicity let

us first consider N to be a prime integer and record the basic result from these analysis

ZN,Z(τ, τ̄) =
1

N

[
Z(τ, τ̄)N + (N − 1)

{
Z(N τ,N τ̄) +

N−1∑
κ=0

Z

(
τ + κ

N
,
τ̄ + κ

N

)}]

=
1

N
(T1Z(τ, τ̄))N + (N − 1)TNZ1(τ, τ̄) , (2.11)

where in the second line we have simplified the answer by introducing the Hecke operator.

For k ∈ Z+ the Hecke operator maps modular forms into themselves. For our purposes the
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torus partition functions being modular invariant, the action of the M th-Hecke operator

can be defined in terms of the divisors of M :

TMZ(τ, τ̄) =
1

M

∑
d|M

d−1∑
κ=0

Z

(
M τ + κd

d2
,
M τ̄ + κd

d2

)
. (2.12)

It is useful to see how this arises from the general formula given above in (2.8). Consider

homomorphisms φ : Γ1 ≡ Z ⊕ Z → ZN which are determined by their action on the

generators a and b of Γ1: φ(a) = za, φ(b) = zb. Here za and zb are arbitrary elements of

ZN because the only condition (commutativity) is automatically fulfilled in ZN . We can

easily classify all possible choices of za and zb:

• za = zb = e: in this case an element of the joint orbit O(za, zb) leaves each element

of XN fixed. As a result any ξ ∈ O(za, zb) contains exactly one za orbit and has

µξ = λξ = 1, κξ = 0. The corresponding contribution in the sum (2.8) is Z(τ, τ̄)N ,

where the power of N comes from N possible choices of ξ.

• za = e, zb 6= e: now O(za, zb) = XN , but za orbits are still of length 1. Therefore

the only ξ ∈ O(za, zb) has µξ = N , λξ = 1, κξ = 0. Accounting for N − 1 different

choices for zb, we get a contribution to (2.8) of the form (N − 1)Z(Nτ,Nτ̄).

• za 6= e, zb = e: in this case O(za, zb) = XN with za orbits now having length

N , i.e., µξ = 1, λξ = N , κξ = 0. The contribution to the partition function is

(N − 1)Z1( τN ,
τ̄
N ).

• za, zb 6= e: again we have O(za, zb) = XN with the za orbits still being of length

1. However, now κξ now runs from 1 to N − 1, depending on the choice of zb ∈
{za, z2

a, . . . , z
N−1
a }, where we used that ZN for N prime can be written as generated

by za). The contribution to the partition function is therefore

(N − 1)

N−1∑
κ=1

Z

(
τ + κ

N
,
τ̄ + κ

N

)
, (2.13)

where the factor (N − 1) comes from the different but equivalent choices for za.
6

If we sum up the enumerated contributions, the expression (2.8) reduces to the answer

quoted above in (2.11).

The generalization of the above discussion to non-prime N looks as follows:7

ZN,Z(τ) =
1

N
Z(τ)N +

1

N

N−1∑
r=1

[
Z

(
(N, r)

N
τ

)(N,r)

+ Z

(
N

(N, r)
τ

)(N,r) ]

+
1

N

N−1∑
r=1

N−1∑
s=1

Z

(
(N, r)

N

(
(N, r)

(N, r, s)
τ + κ(r, s)

))(N,r,s)

6Note that we can include into this sum the contribution (N − 1)Z( τ
N
, τ̄
N

) corresponding to the choice

zb = e by letting the summation index κ start from 0 instead.
7This can be simplified a bit in terms of the Euler totient function; this is also more natural from the

cycle index of ZN which we will have more to say about in section 4.
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s = 1 s = 2 s = 3 s = 4

r = 1
O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}}
(µ, λ, κ) = (1, 4, 1) (µ, λ, κ) = (1, 4, 2) (µ, λ, κ) = (1, 4, 3) (µ, λ, κ) = (1, 4, 0)

r = 2
O = {{1, 2, 3, 4}} O = {{1, 3}, {2, 4}} O = {{1, 2, 3, 4}} O = {{1, 3}, {2, 4}}
(µ, λ, κ) = (2, 2, 1) (µ, λ, κ) = (1, 2, 1) (µ, λ, κ) = (2, 2, 1) (µ, λ, κ) = (1, 2, 0)

r = 3
O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}} O = {{1, 2, 3, 4}}
(µ, λ, κ) = (1, 4, 3) (µ, λ, κ) = (1, 4, 2) (µ, λ, κ) = (1, 4, 1) (µ, λ, κ) = (1, 4, 0)

r = 4
O = {{1, 2, 3, 4}} O = {{1, 3}, {2, 4}} O = {{1, 2, 3, 4}} O = {{1}, {2}, {3}, {4}}
(µ, λ, κ) = (4, 1, 0) (µ, λ, κ) = (2, 1, 0) (µ, λ, κ) = (4, 1, 0) (µ, λ, κ) = (1, 1, 0)

Table 1. Combinatorics for the computation of Z4,Z(τ, τ̄). The integers r, s are elements of Z4

which we now take to be the additive group with elements {1, 2, 3, 4} and an obvious action on an

integer k via r · k = (k + r) mod 4. The set of orbits of r and s is denoted by O and the torus

modular parameter in each case is given by µτ+κ
λ .

=
1

N

N∑
r=1

N∑
s=1

Z

(
(N, r)

N

(
(N, r)

(N, r, s)
τ + κ(r, s)

))(N,r,s)

, (2.14)

where (p, . . . , q) ≡ gcd(p, . . . , q) and κ(r, s) is defined as the smallest integer in

{0, 1, . . . , N
(N,r) − 1} such that

(
κ(r, s) r − (N,r) s

(N,r,s)

)
= 0 modN . The first two lines in (2.14)

resemble the structure of the result (2.11) and one can easily check that for N prime the

two formulae are the same (the minimization parameter in the definition of κ(r, s) vanishes

for prime N). The general result as far as we are aware doesn’t admit a nice rewriting in

terms of Hecke operators.

Example: as the simplest non-trivial illustration of the result (2.14), consider the case

N = 4. Table 1 lists all terms that appear in the partition function Z4,Z and the data

(µ, λ, κ) which give their corresponding modular parameters. For instance, the bottom

right corner of the table corresponds to the term Z1(τ)4, i.e., the case where both x and y

are trivial. The resulting partition function reads

Z4,Z =
1

4

[
Z1 (τ)4 + Z1 (2τ)2 + Z1

(
τ

2

)2

+ Z1

(
τ + 1

2

)2

+ 2Z1

(
2τ + 1

2

)
+ 2Z1(4τ) + 2Z1

(
τ

4

)
+ 2Z1

(
τ + 1

4

)
+ 2Z1

(
τ + 2

4

)
+ 2Z1

(
τ + 3

4

)]
.

(2.15)

Note that the first term by itself is obviously modular invariant. Furthermore, the

following three terms together are modular invariant; and thus all the remaining terms

taken together are modular invariant. An illustration of the various contributions can be

found in figure 2. This simply illustrates the earlier observation that the relevant geometries

are just all unbranched 4-sheeted covers of the torus that have an automorphism group of

sheet permutations which is generated by a set of Z4 elements.

As an aside, let us note that cyclic orbifolds can easily be treated in this formalism

at higher genus, as well. The logic is very similar to what we have demonstrated for the

torus: the orbifold partition function is given by a sum of products of the parent CFT’s
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2

2

244

Z(τ)4 Z(2τ)2 Z
(
τ
2

)2
Z
(
τ+1

2

)2 Z
(

2τ+1
2

)

Z (4τ) Z
(
τ+1

4

)
Z
(
τ+3

4

)
Z
(
τ
4

)
Z
(
τ+2

4

)

Figure 2. Illustration of the content of (2.15). Every graph consists of 4 boxes each representing

one sheet of a 4-fold cover of the torus with modular parameter τ . Depending on how the sheets

are sewn together, we obtain different covering spaces which are all tori with different modular

parameters (edges without arrows are glued to the opposite edge). The partition function Z(τ, τ̄)

of a given parent CFT C has to be evaluated on all these covers in order to get the partition

function of the orbifold theory C⊗4/Z4. This can be seen from the fact that each of the covers has

an automorphism group of sheet permutations that is generated by a set of elements of Z4.

partition function evaluated on unbranched covers of the given Riemann surface. However,

since unbranched covers of a genus g Riemann surface can have genus higher than g, some

qualitatively new complications appear. We review the basic formalism of how this works

in appendix B.2 and postpone a more detailed analysis for later [27].

2.2 Symmetric orbifolds

For the case of ΩN being the full symmetric group SN , the orbifold partition function was

derived originally in a beautiful analysis by [22]. In this case it is actually easier to give a

generating function for the SN orbifold (for the same reason that it is simpler to present

the grand canonical partition function for particles obeying Bose statistics). This is given

succinctly in terms of Hecke operators as

∞∑
N=0

tN ZN,S(τ, τ̄) = exp

( ∞∑
M=1

tM TMZ(τ, τ̄)

)
(2.16)

where t (the fugacity) is an auxiliary variable introduced to write the generating function.

This expression may also be obtained from the general result quoted in (2.8) using

the following logic. First we use the fact that the sum over connected covers of the torus

can be equivalently understood in terms of a sum over the finite index subgroups of the

fundamental group [28]. On the torus, the sum over finite index subgroups is just the Hecke

operator, i.e., we can write8

ZN,S(τ, τ̄) =
1

N !

∑
z∈SN

∏
ξ∈O(z)

|ξ|T|ξ|(τ, τ̄) . (2.17)

8This argument also extends straightforwardly to higher genus orbifolds (see appendix B.3).
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Now observe that only the length of ξ matters in this expression. Therefore the relevant

information contained in z ∈ SN is the number of cycles of a given length. Denote a generic

element z ∈ SN which contains mk cycles of length k by

z = (1)m1(2)m2 · · · (N)mN ,

N∑
k=1

kmk = N . (2.18)

We shall refer to such an element z as being of cycle type {mk}N ≡ {m1, . . . ,mN}. The

number of different elements in SN which are of cycle type {mk}N is

d{mk}N = N !

N∏
k=1

1

kmk mk!
. (2.19)

We can therefore write the genus one symmetric orbifold partition function (2.17) as9

ZN,S(τ, τ̄) =
1

N !

∑
{mk}N

d{mk}N

N∏
k=1

[k TkZ(τ, τ̄)]mk

=
∑
{mk}N

N∏
k=1

1

mk!
[TkZ(τ, τ̄)]mk , (2.20)

where the sum runs over all possible cycle types, i.e., over all sets of integers {m1, . . . ,mN}
which satisfy

∑
k kmk = N .

It is rather immediate to check from here that the expression for the generating function

obtained by multiplying the two sides by tN and summing over N ∈ Z+ leads to the

beautiful expression (2.16).

Example: as an example consider again N = 4. In section 2.1 we gave an explicit

construction of the cyclic product orbifold partition function Z4,Z(τ, τ̄). We saw that

the latter is essentially given by the sum over products of Z(τ, τ̄) evaluated on 4-sheeted

unbranched covers of the torus which are, of course, again tori but at different points in

moduli space. In figure 2 we demonstrated that all these covers had an automorphism group

of sheet permutations that are generated by elements of Z4. We are now however interested

in the S4 orbifold theory. Thus we would naturally expect that its partition function

is given in terms of (products of) seed partition functions evaluated on all unbranched

covers of the torus which have an automorphism group that is consistent with S4 instead.

Indeed, directly applying (2.20) for N = 4, yields a somewhat long expression which,

however, contains exactly the expected products of torus partition functions. The relevant

geometries now exhaust the set of all unbranched 4-sheeted covers of the torus, i.e., both

cyclic ones as in figure 2 and non-cyclic ones which we list in figure 3 for completeness.

3 Spectral properties of cyclic and symmetric orbifolds

We described in section 2 the general formalism for dealing with permutation orbifolds.

More specifically we explained how to obtain the partition functions for the cyclic and

9Once again this rewriting is a lot more natural in terms of the cycle index of SN , cf., section 4.
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2

Z1(τ)2

Z1(2τ)
Z1

(
τ
2

)
Z1

(
τ+1

2

)
Z1

(
2τ
2

)
= Z1(τ)

Z1(τ)

Z1(3τ)

Z1

(
τ
3

)
Z1

(
τ+1

3

)
Z1

(
τ+2

3

)

Z1(2τ)
Z1

(
τ
2

)
Z1(2τ)

Z1

(
τ+1

2

)
Z1

(
τ
2

)
Z1

(
τ+1

2

)
Figure 3. Box diagrams of all eleven 4-sheeted unbranched covers of a torus whose automorphism

groups of sheet permutations are not generated by elements of Z4. Together with the geometries

of figure 2 these form the complete set of all 4-sheeted unbranched covers of the torus. All of the

these 21 covers are relevant for computing the symmetric orbifold partition function.

symmetric groups for some fixed degree N . We now turn to examining the behaviour as a

function of N . Of specific concern to us will be the asymptotics in the N →∞ limit when

we attain large central charge (c ≡ Nc→∞).

3.1 Example: the free boson orbifold

To gain some intuition let us first look at a simple example. Consider as our seed theory,

the c = 1 free boson compactified on a (spatial) circle of radius R = 1 (where it is dual to

a Dirac fermion). The partition function of this theory is well known and is given as

Zb(τ, τ̄) = (qq̄)−
1
24 |η2(τ)|

∑
e,m∈Z

q
1
2(e+m

2 )
2

q̄
1
2(e−m2 )

2

, (3.1)

where we have an unconventional definition of the infinite product

ηM (q) =

∞∏
k=1

1

(1− qk)M
. (3.2)

It will be useful for our purposes to focus on a rectangular torus with τ = i β
2π where

β = T−1 is the inverse temperature.

Using this seed partition function it is easy to numerically examine the behaviour of

the rescaled vacuum subtracted free energy

∆F (T ) =
1

N

(
− T logZ(β) +

c

12

)
(3.3)
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in the asymptotic limit. The result of this exercise is shown in figure 1 for the cyclic and

symmetric orbifolds respectively. From this plot it is rather easy to infer that

∆FN,S(T ) =


O(N−1) , T <

1

2π

O(1)T 2 , T ≥ 1

2π

(3.4)

for the symmetric orbifold indicating a sharp large N phase transition at T = 1
2π as

expected from earlier analysis [6]. Indeed this is the behaviour we expect to see from two-

derivative gravity theories in an asymptotically AdS3 spacetime with the low temperature

phase being governed by the thermal AdS geometry and the high temperature phase by the

BTZ black hole. Of particular note in this case is the fact that the vacuum contribution

dominates all the way to T = 1
2π illustrating the sparseness of the spectrum. The high

temperature T 2 growth is of course understood to be a consequence of Cardy scaling (due

to modular invariance).

On the other hand the cyclic orbifold exhibits a free energy which shows no sharp fea-

ture as N � 1 and smoothly interpolates between the low temperature vacuum dominated

phase to the high temperature phase where ∆F (T ) ∼ T 2. This is in accord with our earlier

intuition that these theories do not give rise to local gravitational duals [5].

It is in fact illustrative to examine the partition function itself as a function of tem-

perature in some detail. Expanding out (3.1) in Fourier series in the variable x = e−β

we have

Zb(x) = x−
1
12

(
1 + 2x

1
4 + 6x+ · · ·

)
. (3.5)

One finds by straightforward computation the symmetric orbifold partition function

ZbN,S(x) = x−
N
12
[
1 + x

1
8 + x

2
9 + 5x

1
4 + 2x

11
36 + x

5
16 + x

25
72 + 7x

3
8 + x

2
5

+ 2x
31
72 + x

7
16 + x

4
9 + 2x

9
20 + 5x

17
36 + +x

35
72 + 17x

1
2 + O(x

1
2

+ε)
]
. (3.6)

These are all terms up to O(x1/2) and their coefficients are independent of N for all

N ≥ 8.10 For smaller values of N , we see some mild dependence in the coefficients on N ,

but as N grows states with increasingly high conformal weight freeze out and therefore

become insignificant as N → ∞. This behaviour of the density of states is one of the

characteristic features of the symmetric orbifold and is responsible for the sparseness of

the low-lying spectrum.

On the other hand there is no such freeze-out in the cyclic orbifold. While it is not

trivial to write down a universal result (owing to the number theoretic dependence on the

degeneracy of states), it is once again instructive to examine the behaviour of the partition

function for prime N . In this case it is easy to show that the cyclic orbifold partition

function behaves as

ZbN,Z(x) = x−
N
12

[
1 + 2x

1
4 + 2 (N − 1)x

1
2 + . . .

]
, (3.7)

10The states associated with operator dimensions 1
8
, 2

9
, etc., arise from the twisted sectors of the orbifold.
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The linear growth of the degeneracy of the state with dimension 1
2 with N is in fact

responsible for the non-sparseness in the spectrum. It is easy to argue that this behaviour

arises from acting with two copies of the lightest primary vertex operator (each with weight
1
4) on two distinct copies of C in the N -fold tensor product. Given the two-fold degeneracy

of the operator from (3.5), counting the number of ways to act with it on two distinct

copies consistent with ZN , one arrives at the correct degeneracy. This can equivalently be

attributed to the fact that there are 1
2(N − 1) orbits of ZN on two-element subsets of XN ,

and (N − 1) orbits on ordered two element subsets of XN , which we will make extensive

use of later.

3.2 Asymptotic behaviour of cyclic and symmetric orbifolds

While it is instructive to have some intuition from explicit analysis of a simple seed theory,

it is useful for the generalizations we have in mind to consider abstracting this result. Let

us therefore extract the essential features of the two cases. We find it convenient to break

up the discussion into two distinct parts: (a) estimating the dominant contributions at low

and high temperatures and (b) delineating the contribution from excited states.

The salient features of the partition function can be encapsulated in three basic results

which we can summarize in the following three theorems. We start with a claim about

the geometries relevant for the computation of the high and low temperature behavior of

torus partition function. Subsequently we consider the large N asymptotics at intermediate

temperatures for the two orbifolds of interest separately.

Theorem 1. At large large N , the geometries which are dominant in the torus partition

function of ZN and SN orbifold CFTs are obtained as follows. Take N numbered copies of

the torus with modular parameter τ and arrange them in any order in any number of groups

which is consistent with cycle structure of the symmetry group ZN or SN , respectively.

Within each group either leave all tori disconnected, or sew together all of them, either

along a-cycles or along b-cycles, without twisting the sewn tori with respect to each other.

Theorem 2. Given a conformal dimension ∆max there exists N∗(∆max, c) such that the

partition function ZN,Z(x) is universal for N > N∗ up to the order O
(
x∆max

)
. The stable

form for the partition function is given by

ZN,Z(x) =
1

N

[
Z(x)N +

N−1∑
r=1

Z

(
N

(N, r)
x

)(N,r)
]

+ x−
c
12 O

(
x∆max

)
, (3.8)

with the value of N∗ determined as

N∗ =
16 ∆max

c
(3.9)

If we restrict attention to prime N then we have some simplifications for we only get

contributions from untwisted sector states

ZN,Z(x) =
1

N

[
Z(x)N + (N − 1)Z(N x)

]
+ x−

c
12 O

(
x∆max

)
, (3.10)
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though we pay a price as N∗ depends in more detail on the spectrum of the seed theory:

N∗ = max

∆max

hmin
,

6∆max

c
+

√(
6∆max

c

)2

+ 1

 , (3.11)

where hmin is the minimum eigenvalue of either L0 or L̄0, i.e., hmin = min{h, h̄}.

Theorem 3. Given a conformal dimension ∆max there exists N∗ such that the (rescaled)

partition function ZN,S(x) is universal for N > N∗ up to the order O
(
x∆max

)
, i.e.,

x
Nc
12 ZN,S(x)− x

(N−1)c
12 Z(N−1),S(x) = O

(
x∆max

)
, (3.12)

with

N∗ = max

{
16

c
∆max,

∆max

hmin

}
(3.13)

The proofs of these statements are straightforward once we estimate the contribution

of the individual Hecke operators. We relegate the technicalities to appendix A and focus

here on some general lessons we can learn.

To get a feeling for the above results, consider truncating the partition function Z(x)

at the first non-trivial state with smallest dimension ∆1, i.e.,

Z(τ, τ̄) = (qq̄)−
c
24

[
1 + d1q

1
2

∆1 q̄
1
2

∆1 + . . .
]
. (3.14)

Here d1 ∈ Z+ is the degeneracy of the state in the seed theory.

Using the result of Theorem 2 we then learn that for sufficiently large (prime) N the

cyclic orbifold partition function reduces to

ZN,Z(x) = x−
cN
12

[
1 + d1 x

∆1 +
(N − 1)

2!
d2

1 x
2∆1 +

(N − 1)(N − 2)

3!
d3

1 x
3∆1 + . . .

]
. (3.15)

We see here that the low-lying states whose dimension is independent of N have a degen-

eracy which grows polynomially in N . This is the reason why the cyclic orbifold partition

function has no sharp phase transition. In fact, the degeneracies are related to the number

of orbits of ZN on k ≤ N -element subsets of XN ; we will rephrase the orbifold computation

to make this manifest below. Note that (3.14) only captures the contributions from x∆1 .

Higher weight states may interfere with this result if we have states with energies below

k∆1 for some k.

We can compare this to the low-lying spectrum of the SN -orbifold theory. Theorem 3

guarantees that for a given CFT the low-lying sector of ZN,S(x) is independent of N � 1.

However, we should bear in mind that there are still low-lying states; only their degeneracy

freezes out and is fixed beyond a certain N (leading to their insignificance asymptotically

at large N). Another way of saying this is that all but a finite number of low-lying states

get projected out from the tensor product theory C⊗N after orbifolding. A closed form

analogous to (3.15) cannot easily be given because the coefficients depend very much on
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the underlying CFT.11 Physically, given a cutoff order ∆max, one only needs to keep track

of a finite number of (well-defined) twisted sectors of Hecke sums TkZ(x) with small k.

For k sufficiently large, one may truncate the Hecke sum at its leading untwisted sector

contribution, cf., (4.7). In this sense the symmetric orbifold theories are essentially only

sensitive to untwisted sectors in the limit N →∞.

4 Oligomorphy and holography

Having reviewed the basic features of cyclic and symmetric orbifolds, we now turn to the

central question of interest: “Can we delineate the subgroups ΩN < SN which give rise to

sparse low-lying spectra in the large N limit?”. It turns to be useful to split the discussion

into two parts. First in section 4.1 we argue for a necessary and sufficient condition on

the group ΩN to allow for a sensible large N limit. Then in section 4.2 we examine the

constraints from modular invariance [7] and use it to give a sufficient condition for ensuring

the sparseness of the low lying spectrum.

In order to motivate our conjecture, let us start by first examining the truncated

partition function (3.14) where we have essentially kept the vacuum and the lowest primary

state of weight ∆1. Let us ask how the untwisted spectrum of the orbifold theory looks

like based on this data.12 First, given a unique seed vacuum, the orbifold CN,Ω has again

a unique vacuum, clearly obtained by acting with the identity on all the N -copies and

projecting out by ΩN . For the first excited state, we can act with O∆1 on any of the

N -copies to construct a state. But requiring that the resulting state be ΩN invariant, we

are meant to consider the orbits of ΩN on the set XN . If ΩN is transitive, i.e. for every

j, k ∈ XN there exists a z ∈ ΩN such that z · j = k, then there is a single orbit under the

ΩN action, as we can cover all the N copies of C by acting with a symmetry generator. If

ΩN acts intransitively, then we may have more invariant states measured by the number

of orbits of ΩN . Letting the number of orbits of ΩN be f
(N)
1 we have the degeneracy of the

first excited state to be d1 f
(N)
1 . We will get similar contributions from other primaries.

Next let us estimate the degeneracy of the state with weight 2∆1 which is obtained by

acting twice with O∆1 . To excite the seed theory state with weight ∆1 twice, O∆1 has to

act on two different copies. The resulting state then has to be superposed with all other

states in the same orbit of ΩN such that an ΩN -invariant orbifold state is obtained. Let

us now account for non-trivial degeneracy d1: every action of O∆1 excites one out of d1

possible modes. Assume first both excitations are excitations of the same mode. Then,

after summing over images of these excitations under ΩN , the number of different orbifold

states of this type is given by the number f
(N)
2 of orbits of ΩN on unordered pairs of

2 elements of XN . This number has to be multiplied by d1 to account for the different

possible modes of the excitations: d1f
(N)
2 . Next, consider orbifold states where O∆1 excites

11The situation is well exemplified by our result for the free boson (3.6) where we have the terms up to

O(x1/2) — the degeneracies are independent of N for all N ≥ N∗ = 8 as predicted.
12One can run a similar argument for the lightest twisted sector primary. However, if the seed central

charge c is sufficiently large (we need c > 8 ∆1), it is clear that the leading contribution comes from the

untwisted primary.

– 16 –



J
H
E
P
0
3
(
2
0
1
5
)
1
6
3

seed theory degeneracy: d1 = 1 orbit counting

O(x∆1) |•, ◦, ◦〉+ |◦, •, ◦〉+ |◦, ◦, •〉 f
(3)
1 = 1

O(x2∆1) |•, •, ◦〉+ |◦, •, •〉+ |•, ◦, •〉 f
(3)
2 = 1

O(x3∆1) |•, •, •〉 f
(3)
3 = 1

seed theory degeneracy: d1 = 2 orbit counting

O(x∆1) | ↑, ◦, ◦〉+ |◦, ↑, ◦〉+ |◦, ◦, ↑〉 d1f
(3)
1 = 2 · 1 = 2

| ↓, ◦, ◦〉+ |◦, ↓, ◦〉+ |◦, ◦, ↓〉
O(x2∆1) | ↑, ↑, ◦〉+ |◦, ↑, ↑〉+ | ↑, ◦, ↑〉 d1f

(3)
2 +

(
d1

2

)
F

(3)
2 = 2 · 1 + 1 · 2 = 4

| ↓, ↓, ◦〉+ |◦, ↓, ↓〉+ | ↓, ◦, ↓〉
| ↑, ↓, ◦〉+ |◦, ↑, ↓〉+ | ↓, ◦, ↑〉
| ↓, ↑, ◦〉+ |◦, ↓, ↑〉+ | ↑, ◦, ↓〉

Table 2. Illustration of excited states in the Ω3 = Z3 orbifold of the seed theory with partition

function Z(x) = x−
c
12 (1 +d1x

∆1 + . . .). We show multiple excitations of the same seed theory state

with weight ∆1 in the untwisted sector; first for the case where the lowest lying state of the seed

theory is non-degenerate and then for the case of it having degeneracy 2. In the first case, the

excitation is denoted by • , in the second case the two modes of excitations are ↑ and ↓. Every

state of the orbifold theory is a linear combinations of states in which a definite choice of seed

theory copies are excited, such that the linear combination is invariant under the Z3 action. The

right column shows how the number of orbifold states can be obtained from counting orbits f
(3)
`

and F
(3)
` .

two different modes. Since the two excitations are now distinguishable, the number of such

states is given by F
(N)
2 , i.e., the number of orbits of ΩN on ordered 2-tuples of distinct

elements of XN .13 Again, the result has to be multiplied by a factor
(
d1

2

)
to account for

the different combinations of modes that could be excited this way:
(
d1

2

)
F

(N)
2 . See table 2

for an example of this counting.

This can nicely be formalized in terms of properties of the group ΩN . For a degree

N permutation group acting on a set XN , we see that there is a natural action on `-

element subsets which is induced in addition to an action on `-tuples of distinct elements

(corresponding to the two situations described above). Let

• f (N)
` be number of orbits of ΩN on (unordered) `-element subsets of XN ,

• F (N)
` be the number of orbits of ΩN on (ordered) `-tuples of distinct elements

from XN .

In general, the number of O(x`∆1) states obtained from acting ` times with O∆1 is a

polynomial function of f
(N)
` , F

(N)
` which depends also on d1.

In the following we will sometimes be concerned with properties (such as existence)

of the limits limN→∞ f
(N)
` and limN→∞ F

(N)
` . In such contexts we will always work under

the following assumptions.14 The limits above will be assumed to refer to a family of

13The elements need to be distinct because O∆1 cannot excite the same state twice on the same copy.
14We thank an anonymous referee for pointing out to us the necessity of these assumptions.
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permutation groups {ΩN}N∈I where I ⊂ Z+ is some infinite set of integers to index

the groups. Further the groups ΩN of such a family shall be such that if the numbers

f
(N)
` and F

(N)
` are bounded as N → ∞, then they do converge to definite limiting values

denoted as f` ≡ limN→∞ f
(N)
` and F` ≡ limN→∞ F

(N)
` , respectively. This requirement is

just formalizing the fact that we want the members of a family of permutation groups to

define CFTs in an operationally equivalent way, but at increasing values of central charge

(e.g., the groups {SN}N∈Z+ are comparable because their action is always defined in the

same way for any N , just on a different number of copies of the CFT).

We are now in a position to state the criterion for CN,Ω to have a universal low lying

spectrum and to admit a stringy holographic dual. Clearly a primary requirement is the

finiteness of the degeneracies of low lying states in the orbifold CFT partition function

as N → ∞. We will show that this is equivalent to the requirement that f
(N)
` for ` �

N remain finite. In case a limiting permutation group Ω∞ ≡ limN→∞ΩN exists, this

criterion is precisely what defines oligomorphic permutation groups [18]. The following

subsection is devoted to making this statement more precise. However, finiteness by itself

doesn’t guarantee that we will have a spectrum that conforms to holographic expectations.

Therefore section 4.2 we will turn to stating an additional criterion about the precise growth

rate of f` with `. According to [7] the growth should be at most exponential in order to

get a theory with holographic dual. This ends up carving out a subspace of permutation

groups with bounded f`, which we argue is sufficient.

4.1 Pólya counting for the partition sum

To formalize the statements, we now need some information about the structure of per-

mutation groups. As we saw above, the crucial piece of data we require is the number of

orbits of ΩN on `-element subsets of XN . This can as always be formalized into a gener-

ating function, but first we need some essential information from Pólya counting theory

about the structure of the permutation group ΩN .15

Recall that every element y ∈ ΩN being a permutation can be viewed as an element of

SN and thus admits a cycle decomposition. As before we will refer to {mk}N as the cycle

type of y. We define the cycle index of ΩN as the group averaged representation of the

cycle types of its elements. More specifically, given a set of variables γi, with i ∈ XN ,

y = (1)m1 (2)m2 · · · (N)mN 7→ γm1
1 γm2

2 · · · γmNN . (4.1)

The cycle index for y ∈ ΩN is a monomial in the γi encoding its cycle type and averaging

this over all elements we get the cycle index Z of ΩN . To wit,

Z(ΩN ; γ1, γ2, · · · , γN ) =
1

|ΩN |
∑
y∈ΩN

N∏
i=1

γ
mi(y)
i (4.2)

where we have retained the explicit y-dependence in the mi(y) for clarity of notation.

Given the cycle index for a group it is easy to work out the numbers f
(N)
k and F

(N)
k .

These are given by what are sometimes called the ordinary generating function and the

15We would like to thank Alex Maloney for a discussion on this issue.
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exponential generating function respectively and are defined by choosing specific values of

γi in terms of the generating parameter:

N∑
`=0

f
(N)
` t` = Z

(
ΩN ; 1 + t, 1 + t2, · · · , 1 + tN

)
, γ` = 1 + t`

N∑
`=0

1

`!
F

(N)
` t` = Z (ΩN ; 1 + t, 1, · · · , 1) , γ` = 1 + t`δ`1 (4.3)

Armed with this group theoretic information let us revisit the orbifold partition func-

tion (2.8). We recognize a similar structure there, which is of course no coincidence. In

constructing the orbifold partition sum we sum over commuting elements za, zb ∈ ΩN .

We can decompose this sum by first restricting attention to za = e whence all values of zb
are allowed, and then estimating the contribution from non-trivial elements za. In the first

instance the joint orbits O(za, zb) are determined by the cycle type of zb. In fact, from (2.8)

we see immediately the connection between cycle index and the untwisted sector of orbifold

CFT partition functions:

ZN,Ω(τ, τ̄) =
1

|ΩN |
∑

za,zb∈ΩN
zazb=zbza

∏
ξ∈O(za,zb)

Z(τξ, τ̄ξ)

= Z (ΩN ;Z(τ, τ̄), Z(2 τ, 2 τ̄), · · · , Z(Nτ,Nτ̄))

+
1

|ΩN |
∑

za,zb∈ΩN
za 6=e

zazb=zbza

∏
ξ∈O(za,zb)

Z(τξ, τ̄ξ) . (4.4)

The first line of the final expression includes contributions from za = e, zb ∈ ΩN for which

the product over orbits O(za, zb) = O(zb) becomes a product of the form as it appears in

the definition of the cycle index. As we will show shortly, this captures the entire untwisted

sector and thus the large N spectrum of the orbifold theory in the low temperature regime.

In the high temperature regime a similar expression would dominate where the insertions

Z(kτ, kτ̄) in the cycle index would be replaced by Z
(
τ
k ,

τ̄
k

)
, corresponding to a modular

transformation of the expression in (4.4).16

In the following we want to argue that if we can control the cycle index expression

in (4.4), then the essential properties of the full ZN,Ω(τ, τ̄) follow. In particular, once

we are able to argue that the first line has holographic properties, then so does the full

ZN,Ω(τ, τ̄). Let us first argue this for the example of cyclic and symmetric orbifold theories

by showing that the first line of (4.4) is enough to reproduce the results of Theorems 2

and 3. Afterwards we will turn to a derivation for generic ΩN .

Cycle index for ZN orbifolds: in the case of cyclic orbifolds it is easy to see that the

cycle index evaluated on the seed partition function captures the large-N dominant part.

16Note in particular that if instead we isolate the zb = e contribution to ZN,Ω(τ, τ̄) we would get the

cycle index Z
(
ΩN ;Z(τ, τ̄), Z( τ

2
, τ̄

2
), · · · , Z( τ

N
, τ̄
N

)
)
.
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To this end observe that for any y ∈ ΩN = ZN it holds mi(y) = (N, y) for i = N
(N, y) and

mi(y) = 0 for all other indices i. From this it follows that

Z (ZN ;Z(τ, τ̄), Z(2 τ, 2 τ̄), · · · , Z(Nτ,Nτ̄))

=
1

N

∑
y∈ZN

N∏
k=1

Z(kτ, kτ̄)mk(y)

=
1

N

[
Z(τ, τ̄)N +

N−1∑
y=1

Z

(
N

(N, y)
τ,

N

(N, y)
τ̄

)(N,y)
]
, (4.5)

which is precisely the part of the full ZN -orbifold partition function which is relevant at

large N according to Theorem 2.

Cycle index for SN orbifolds: as we have seen in section 3.1 and section 3.2, the

large-N partition function ZN,S(x) has a finite low lying spectrum which depends on the

seed theory. By restricting just to the untwisted sector described by the cycle index in

the first line of (4.4) we will certainly be unable to capture all of these low lying states.

However, because their degeneracy is finite as N →∞, they become irrelevant at large N .

In order to determine the large N asymptotics of ZN,S(x) it is thus sufficient to reproduce

the highly degenerate spectrum of heavy operators. This is indeed captured by the cycle

index as one can argue by looking at

Z (SN ;Z(τ, τ̄), Z(2 τ, 2 τ̄), · · · , Z(Nτ,Nτ̄))

=
1

N !

∑
y∈SN

N∏
k=1

Z(kτ, kτ̄)mk(y)

=
∑
{mk}N

N∏
k=1

1

mk!

[
T

(trc)
k Z(τ, τ̄)

]mk
, (4.6)

which is just the expression (2.20) for the SN orbifold partition function with truncated

Hecke operators

T
(trc)
k Z(τ, τ̄) ≡ 1

k

[∑
d|k

d−1∑
κ=0

Z

(
kτ + κd

d2
,
kτ̄ + κd

d2

)]
d=1

=
1

k
Z(kτ, kτ̄) . (4.7)

This means that the cycle index (4.6) captures precisely the part of the SN orbifold partition

function which arises from replacing every Hecke operator by its large-N dominant contri-

bution as in (4.7). According to Theorem 1 (or more quantitatively as in appendix A.2), at

large N the relevant contributions from a Hecke operator are given by its truncated piece

up to irrelevant corrections:

TNZ(x) = T
(trc)
N Z(x) + x−

c
12 O

(
x≥

c
16

)
. (4.8)

Therefore, (4.6) is the only relevant piece at large N and captures all the properties of

ZN,S(τ, τ̄) which give it the holographic universality.
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Cycle index for general orbifolds: let us now consider the case of arbitrary permu-

tation group ΩN . By the same reasoning as before, the cycle index in the first line of (4.4)

captures the large-N behavior of ZN,Ω(τ, τ̄). We should therefore be able to find a criterion

for whether or not a given ΩN leads to an orbifold theory with stringy holographic dual

by simply examining the cycle index. Indeed this has all the necessary ingredients to tell

us whether or not the counting of low-lying states is commensurate with our expectations.

We therefore claim the following:

Theorem 4. The orbifold theory CN,Ω has degeneracies of low lying states which remain

finite as N →∞ if and only if f
(N)
` stays finite for all ` in this limit. In situations where

a limiting group Ω∞ exists, this statement is equivalent to Ω∞ being oligomorphic.

A simple argument shows that finiteness of f` is a sufficient condition for having a

universal low lying spectrum. Consider the large N leading contribution of the seed theory

Z(x) = x−
c
12
∑

k dk x
∆k to the full permutation orbifold partition function:

ZN,Ω(τ, τ̄) ' Z (ΩN ;Z(τ, τ̄), Z(2 τ, 2 τ̄), · · · , Z(Nτ,Nτ̄))

= x−
c
12

[
1

|ΩN |
∑
y∈ΩN

N∏
k=1

(
1 + d1 x

k∆1 + d2 x
k∆2 + . . .

)mk(y)
]

≥ x−
c
12

[
1

|ΩN |
∑
y∈ΩN

N∏
k=1

(
1 + xk∆1

)mk(y)
]

= x−
c
12

N∑
`=0

f
(N)
` x`∆1 , (4.9)

which means that if ZN,Ω(τ, τ̄) has degeneracies of low lying states which areN -independent

for `� N , then f
(N)
` must not grow with N either (for `� N).

On the other hand, in order to show the necessity of the criterion about finiteness of

f`, it is, of course, enough if we restrict to contributions from the low-lying states of the

seed theory, i.e.,

Z(x) = x−
c
12

(
1 +

K∑
k=1

dk x
∆k + . . .

)
, (4.10)

where K ≡ K(N) is chosen such that d̃K ≡
∑K

k=1 dk � N and ∆K � N∆1; in this sense

ellipses denote higher order terms that we can discard for an analysis of the low lying

spectrum. The leading contribution to ZN,Ω(x) at large N is then

ZN,Ω(x) ' x−
c
12

[
1

|ΩN |
∑
y∈ΩN

N∏
j=1

(
1 +

K∑
k=1

dk x
j∆k + . . .

)mj(y) ]

≤ x−
c
12

[
1

|ΩN |
∑
y∈ΩN

N∏
j=1

(
1 + d̃K x

j∆1 + . . .
)mj(y)

]
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≤ x−
c
12

[
1

|ΩN |
∑
y∈ΩN

N∏
j=1

(
1 + (d̃K x

∆1)j + . . .
)mj(y)

]

= x−
c
12

N∑
`=0

(d̃K)` f
(N)
` x`∆1 + . . . , (4.11)

where we used (4.3). For `� N the interesting behavior of the degeneracy factor (d̃K)` f
(N)
`

is determined by f
(N)
` since (d̃K)` are finite by definition. From this we can now explicitly

see that a necessary condition for a freeze-out of low lying states is N -independence of f
(N)
`

for `� N , i.e., finiteness of f`.

Groups Ω∞ of unbounded degree acting as permutations on the infinite set X∞ ' Z+,

such that for every natural number `, Ω∞ has only finitely many orbits on (X∞)` are said

to be oligomorphic [18, 19]. Therefore finiteness of the low-lying states is tantamount to

the requirement that the group ΩN limits to an oligomorphic permutation group.

4.2 Bound on growth rate of holographic CFT spectra

We have seen that a necessary and sufficient condition for an N -independent low lying

spectrum of CN,Ω is the N -independence of f
(N)
` for ` � N . However, this by itself does

not guarantee that the resulting orbifold CFT has a string holographic dual in the sense

described in section 1. The precise criterion we need has recently been derived in [7],

exploiting the constraints from modular invariance. Using the upper bound presented

there for density of states of the low lying primaries we can further constrain to a subset

of oligomorphic permutation groups Ω∞, by bounding the growth rates of f`.

To wit, consider a CFT with parametrically large central charge c = Nc and parti-

tion function

ZN,Ω(x) =
∑

E≥− c
12

ρ(E)xE = x−
c
12

∑
E≥0

ρ

(
E − c

12

)
xE . (4.12)

According to [7] this CFT has a (stringy) holographic dual provided that

ρ

(
E − c

12

)
. e2πE . (4.13)

From the upper bound on orbifold state degeneracies that we derived in (4.11), we can

immediately infer that for our class of theories, we have

x−
c
12

N∑
`=0

f
(N)
` x`∆1 ≤ x−

c
12

∑
E≥0

ρ

(
E − c

12

)
xE , (4.14)

From this we can give a necessary criterion on ΩN for it to give rise to a holographic

orbifold theory:

Theorem 5. In order for the permutation orbifold CN,Ω to have a holographic dual in

classical string theory it is a necessary that not only f
(N)
` be independent of N for ` �
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N (i.e., Ω∞ if well-defined is oligomorphic) but in addition the growth in ` is at most

exponential:

f
(N)
` . e2π `∆1 , for `� N , (4.15)

where ∆1 is the energy gap in the seed theory C.

This completes our analysis of the criteria required for the permutation orbifold to

behave ‘matrix-like’ in the large N limit. While the situation is well exemplified by the

symmetric orbifolds as we have reviewed earlier, for the reminder we focus on outlining

other examples that satisfy the criteria of Theorem 5.

5 Oligomorphic permutation groups: examples and growth rates

Oligomorphic permutation groups have been studied extensively in the literature. We

will just mention some of the salient features, to be found in [18], which are relevant to

our discussion.

First of all it is important to distinguish between finite permutation groups ΩN acting

on XN and their limit Ω∞ acting on X∞ = Z+. Finite groups are trivially oligomorphic, so

the interesting oligomorphic groups are permutation groups of the second kind for which

the number of orbits on `-element sets of positive integers stays finite for all `. Note that the

number of infinite order permutation groups is vast, e.g., S∞ (the group of permutations

on positive integers) has an uncountably infinite order. It is therefore important to know

that even for uncountable permutation groups acting on Z+ there is always a subgroup

of countable order which has the same F` characteristics.17 For our analysis we can thus

always restrict ourselves to permutation groups of countable order.

Oligomorphic permutation groups are typically exemplified by the following:

• S∞: the symmetric group of infinite order acting on X∞

• A∞: the group of order preserving permutations of rationals Q

The former of course naturally arises as the large N limit of the regular symmetric groups

SN acting on finite sets, but the latter appears to make sense only as an oligomorphic

group with no finite N analog.

These two groups are highly homogeneous but only S∞ is highly transitive, where one

defines these concepts based on the ` dependence of f` and F` respectively, viz.,

• highly homogeneous ⇐⇒ f` = f`+1 ∀ `

• highly set-transitive ⇐⇒ f` = 1 ∀ `

• highly transitive ⇐⇒ F` = 1 ∀ `
17A proof of this rather remarkable statement can be found in [18] where it is stated to be a consequence

of a mapping between permutation groups and model theory and relies on a theorem by Löwenheim and

Skolem in the latter.
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For the group A∞, F` = `!. The highly homogeneous property of A∞ leads us to suspect

that there might be a stringy holographic dual in the strict limit. However, we would like

to argue that the absence of a family of finite N (thus finite central charge) theories which

limit to the formally C⊗∞/A∞ theory, makes this an uninteresting example for physical

purposes. We will shortly argue for a more interesting class of theories based on a simple

group theoretic construction.18

While having a highly homogeneous oligomorphic permutation group would do the job,

the number of these with countable degree is quite restrictive; [18] argues for such groups

being a simply a dense subgroup of S∞, A∞, the group C∞ (permutations of roots of unity

preserving cyclic order) and two others groups B∞ and D∞ (which allow order reversal in

A∞ and C∞ respectively), cf., [18, 31]. By the logic above none of these are interesting

from a holographic perspective. Fortunately for us, we need not impose a condition as

strong as highly homogeneous; theorem 5 only requires that the growth of f` be not too

fast. This does allow the presence of other oligomorphic groups some of which occur in

families admitting finite N analogs.

Before we discuss explicit examples however, let us record one interesting fact about

the growth rate of the f` for oligomorphic permutation groups. To do so, we need one

extra notion of primitivity. A permutation group Ω∞ is said to be primitive if its action on

X∞ has only the trivial equivalence relation (elements being equivalent to themselves) and

the universal equivalence relation (the set being equivalent to itself). Given this notion,

Theorem 4.1 of [19] asserts that for primitive, but not highly set-transitive Ω∞, f` ≥ n`/p(`)
for some constant n and polynomial p(x). In particular, it is argued that there is a gap in

the growth of f` between a constant and exponential. The former would be desirable for us

given (4.15). When the f`(s) grow exponentially we would have to examine the situation

more closely, since our tolerance on the rate of growth depends on the details of the seed

theory C through ∆1. We note in passing that there is no upper bound on the growth rate

of f` among the oligomorphic groups, so clearly not all oligomorphic groups will satisfy our

criteria and give rise to stringy holographic duals.

As mentioned above, for the physical application to large central charge CFTs, we

are interested in oligomorphic groups which smoothly connect to finite degree permutation

groups ΩN . Demanding at most exponential growth of f
(N)
` as a function of ` for `� N ,

we believe still leaves a large class of examples to explore. For instance, from the list

of examples and explicit growth rates for various oligomorphic groups that can be found

in [32], one can see that oligomorphic groups with growth rates of f` faster than exponential

are typically somewhat exotic. It is tempting to speculate that using the physical criterion

of Theorem 5 one can demarcate the class of oligomorphic permutation groups further (e.g,

the gap in the growth rate mentioned above is suggestive).

While the examples we have described above are quite exotic, it is possible using stan-

dard group theoretic constructions to conjure a wide class of interesting physical examples.

18It is amusing to note that if we focus on permutation groups of finite order and degree N and require

that the action of the group be highly set-transitive (i.e., it act transitively on all Xk ⊂ XN for k ≤ N),

then the only such groups for N ≥ 6 are the symmetric and alternating groups [29, 30], which can be argued

from the classification theorem of finite simple groups. The Mathieu group M24 is the only other group

which is 5-set transitive.
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For instance we can, of course, take direct product groups, but it is more interesting to

exploit the wreath product construction which leads to a plethora of permutation orbifolds

as we describe below in section 6.

6 Wreath product orbifolds

We now turn to interesting examples of permutation orbifolds which we obtain using the

wreath product construction in group theory. The theories thus obtained which we will

call wreath product orbifold CFTs are interesting for several reasons. First of all, they

provide a way to construct a rich class of holographic permutation orbifolds where the

order of ΩN is between that of ZN and SN . In addition, they are actually rather natural

constructs in computation of entanglement entropy for CFTs. To see this, consider the

computation of Rényi entropies for permutation orbifold CFTs in two dimensions. The

replica method which is used as a technical tool to achieve this, involves considering a

further cyclic orbifold by, say, Zq (to compute the qth Rényi entropy). This secondary cyclic

orbifolding can be combined with the permutation action we had in theory via the wreath

product. More precisely, the qth Rényi entropy of the p-fold symmetric product orbifold

C⊗p/Sp is determined by certain correlation functions in the wreath product orbifold CFT

C⊗pq/(Sp o Zq). The group Sp o Zq has degree pq and order q(p!)q and is obtained by the

wreath product construction.19

6.1 Wreath products of permutation groups

Let us start by reviewing the wreath product construction. Consider two permutation

groups, Gp and Hq, acting on Xp and Xq respectively. For definiteness, we will define

N = pq such that wreath products of Gp and Hq are subgroups of SN . Using the wreath

product we can construct all groups that act on X = (Xp)
q and preserve the partitioning

of X into factors of Xp (clearly the cardinality of X is N). We are particularly interested

in the unrestricted wreath product of Gp and Hq themselves:

Gp oHq = Gqp oHq ≡ {(g1, . . . , gq, σ) : gi ∈ Gp, σ ∈ Hq} , (6.1)

with (g1, . . . , gq, σ) ◦ (ḡ1, . . . , ḡq, σ̄) = (g1ḡσ−1(1), . . . , gq ḡσ−1(q), σσ̄) ,

(g1, . . . , gq, σ)−1 = (g−1
σ(1), . . . , g

−1
σ(q), σ

−1) , (6.2)

where the last two lines define the group action and the inverse. There is a simple pictorial

interpretation of the wreath product: the set X that Gp o Hq acts on can be visualized

as an p × q matrix M where each column contains the numbers 1, . . . , p. An element

(g1, . . . , gq, σ) ∈ Gp o Hq acts on this matrix by first permuting the numbers within each

column as prescribed by the gi, i.e., Mi,j 7→Mgj(i), j . Then the columns are permuted by σ,

i.e., Mgj(i), j 7→Mgσ(j)(i), σ(j). From this picture we can easily see that the action of Gp oHq

on Ω is transitive and imprimitive, i.e., it preserves the decomposition of the matrix into

columns that contain the numbers 1, . . . , p. Using language adapted to partition functions

(and covers of tori), a simple way of saying this is that we have a set of q replica copies which

19We adopt the standard notation o for the wreath product.
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Figure 4. Illustration of the Sp o Zq wreath product action on pq-sheeted covers of a torus. The

cyclic symmetry Zq acts on a set of q base sheets of the parent torus. This set of q tori is fibred where

each fiber consists of a p-sheeted unbranched cover. The symmetric group Sp acts independently

on each fiber. The imprimitive wreath product action preserves the fibration, i.e., it preserves the

presence in each column of one copy of each orbifold sheet.

are fibred. Each fiber contains another p copies of the torus and Sp acts independently on

each fiber. See figure 4 for an illustration.

Since the order of the group is the first intuitive indicator for whether or not the

corresponding orbifold CFTs have a universal holographic spectrum, let us briefly note the

order of wreath product groups, which can be quite large, for

|Gp oHq| = |Gp|q |Hq| . (6.3)

Armed with this information let us flesh out the connection between entanglement and

wreath product constructions, which we have alluded to earlier. If we want to understand

the qth Rényi entropy in the Sp symmetric product orbifold theory, we are instructed to

compute certain correlation functions in a replica geometry which has an additional Zq
symmetry. The geometric picture that we described above resembles exactly the structure

of a q-fold replica cover of the p-fold cover that is used to describe the permutation orbifold.

The wreath product action implements a cyclic symmetry on the replica surface base space.

At the same time, it gives a fibration of this base, with each fiber being a tower of p orbifold

sheets on which an independent Sp acts. The CFT whose partition function encodes the

qth Rényi entropy of the Sp symmetric product orbifold theory C⊗p/Sp is therefore just

C⊗pq/(Sp o Zq) with central charge c ≡ Nc = pqc.20

6.2 Partition functions

The primary motivation for us to study wreath products is the rich landscape of tractable

orbifold models that they give rise to. This is due to the fact that it is very easy to generate

20We are simply giving an illustrative picture here to draw attention to the connection to Rényi entropies.

To actually compute entanglement entropy, we need to specify a region etc., which will involve introducing

branching points (where twist operators) are inserted etc. . .
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partition functions of wreath product orbifold CFTs: start with some CFT C with central

charge c. From the remarks in the previous subsection it is not hard to verify that the

(Gp o Hq)-orbifold of C has central charge c = Npq and it is obtained by performing two

subsequent orbifold projections, first with respect to Gp, then with respect to Hq, i.e.,

C⊗pq/(Gp oHq) =
(
C⊗p/Gp

)⊗q
/Hq . (6.4)

This identity has a profound manifestation at the level of the cycle index of wreath product

groups [18]:

Z(Gp oHq; γ1, γ2, · · · , γN ) = Z(Hq; η1, η2, · · · , ηq) , (6.5)

where ηk = Z(Gp; γk, γ2k, · · · , γpk). Let us now mention two of the most straightforward

examples of wreath product orbifolds.

Sp o Zq orbifolds: consider an orbifold CFT for Ωpq = Sp o Zq. For simplicity we will

assume q is prime. For the purpose of illustration, let us use (6.4) to write down explicitly

the partition function of an Sp oZq orbifold theory (for prime q) whose connection to Rényi

entropies we alluded to previously:

Zpq, SpoZq(τ) =
1

q
[Zq,S(τ)]q + (q − 1)Tq (Zq,S(τ)) , (6.6)

where we used (2.11) for cyclic product orbifold CFTs. In appendix A.2.3 we carry out a

detailed analysis of the spectrum of these partition functions. We find that (as one might

expect) such orbifold theories have a universal holographic spectrum provided that p is

large enough:

Theorem 6. Given a conformal dimension ∆max there exists p∗ such that the partition

function ZSpoZq(x) is universal for p > p∗ up to the order O
(
x∆max

)
, i.e.,

x
pqc
12 ZSpoZq(x)− x

(p−1)qc
12 ZSp−1oZq(x) = O

(
x∆max

)
, (6.7)

with

p∗ = max

{
16

c
∆max,

∆max

hmin

}
. (6.8)

Zp oSq orbifolds: another obvious example of wreath product theories is C⊗pq/(Zp oSq).
Such theories are holographic at large q for reasons which follow almost trivially from

Theorem 3. The proof of the theorem never referred to any explicit properties of the

seed theory for the symmetric product orbifold theory apart from a gap in the low-lying

spectrum. Thanks to the associativity property of the wreath product, (6.4), we conclude

that the arguments in the proof of Theorem 3 hold with the only modification that the

input theory has central charge pc. Therefore, the Zp o Sq theories have a spectrum that is

independent of q up to O
(
x∆max

)
if q ≥ max

{
16
pc∆max,

∆max
hmin

}
. Strictly speaking hmin is

determined here by the lowest lying states in the Zp cyclic orbifold theory instead of the

parent theory C. However, as we have exemplified in section 3.1, this is the same hmin as

the one determined by the parent theory.
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7 Conclusion

We have studied spectral properties of central charge c = Nc orbifold CFTs CN,Ω =

C⊗N/ΩN for permutation groups ΩN in the large N limit. In general the torus partition

function of such a theory is given by a weighted sum over the seed theory partition function

evaluated on all unbranched N -sheeted covers of the torus consistent with the symmetry

group ΩN . We have shown that at large N this computation drastically simplifies because

only the restricted set of untwisted covers dominates. Our primary results are the Theo-

rems 1, 2, 3 and 5 which give the bounds on the spectral density and the constraints on the

group ΩN such that the resulting theory potentially has a classical string holographic dual.

Generally speaking, such orbifold theories are expected to have a (perhaps stringy)

holographic dual if their low lying spectrum is sufficiently sparse. In particular, if the

density of low lying states is finite as N →∞, then the orbifold CFT has a chance of being

holographic. We argued that at the level of group theory this criterion is equivalent to

the limiting permutation group Ω∞ (if it exists) being oligomorphic. This implies having

a finite number of orbits on `-element sets of natural numbers. For the orbifold CFT

to be actually holographic a slightly stronger criterion needs to be satisfied, as has been

pointed out in [7]: the density of low lying states must not grow faster than exponential

in the energy. While this is the case for many permutation groups with oligomorphic

N → ∞ limit, there exist examples for which the growth rate is faster than exponential.

See [32] for a number of examples. Theorem 5 posits that for oligomorphic Ω∞, whose

number of orbits on `-element sets of natural numbers grows no faster than exponential

in `, one satisfies the criteria guaranteeing a stringy holographic dual. In particular, we

have a bounded growth of low lying states and F ∼ O(1) at low temperatures. However,

at T ≥ 1
2π the orbifold CFT free energy is dominated at large N by the heavy states that

correspond in holography to black hole-like microstates. This construction gives rise to a

large number of permutation orbifold CFTs which should have some dual description in

classical string theory.

We studied two types of permutation orbifolds (and wreath products of them) in greater

detail to give an illustration of the connection between the group theoretic constructs and

the physical data of the spectral density. On the one hand, for cyclic orbifolds (ΩN = ZN )

the number of low lying states grows with N and accordingly the free energy does not

display features familiar from holography. On the other hand, for symmetric product

orbifold theories (ΩN = SN ) we demonstrated explicitly that the low lying spectrum is

non-trivial and dependent on the seed CFT, but also that it is always very sparse (in

particular independent of N) and therefore washed out in the large N limit (see also [6]).

These two results are made precise in Theorems 2 and 3. While these examples are well

known, we have found them quite valuable in exemplifying the key features of the abstract

group theoretic construction.

Our analysis was restricted to the case of CFTs on the torus. This led us to study genus

one partition functions which encode spectral properties of the CFT. Information about

the spectral properties can be used as a diagnostic for whether or not there exists a dual

description in classical string theory. However, the spectrum does not encode exhaustive
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information about the CFT. To make more precise statements about the string theory

counterparts, a more detailed knowledge about marginal deformations and higher point

correlation functions would provide valuable clues to unearth the dual string theory itself.

While it is clear that our general analysis allows for a wide class of holographic orbifold

theories, many of them we emphasize should be have very stringy dual descriptions on

highly curved AdS3. It is even plausible that most states of this theory will never admit a

classical supergravity description.21 We take this as an indication that further constraints

beyond genus one spectral data need to be formulated in order to demarcate general features

of large central charge CFTs with a counterpart in semiclassical gravity.

For example, the primary (and only) diagnostic we used in our discussion was the

sparseness of the low-lying spectrum. To a large extent our results use the general results

derived in [7] and employ them to provide constraints on the permutation groups. All this

guarantees us is that the CFTs correspond to a classical string theory, perhaps in a string

sized AdS3 spacetime `AdS ∼ `s, with classicality being assured by the large central charge

c in the N →∞ limit. One might however wonder if some of these theories could also admit

a classical gravitational dual, wherein the stringy degrees of freedom decouple. To attain

such a situation, one would have to move away from the free orbifold point which was the

focus of our discussion and attain the gravitational corner of string moduli space. Whether

or not this can be done depends on the spectrum of marginal operators of the permutation

orbifold CN,Ω. As far as we are aware, it has never been clearly established, whether even

the symmetric orbifold CN,S (without supersymmetry) can be smoothly deformed to attain

a classical gravity question.

A secondary question which does not involve studying deformations away from the

free orbifold point, is whether there are other universal features in large central charge

CFTs. Apart from the spectral properties, it is known that there are interesting universal

properties in the entanglement entropy, such as the vanishing of mutual information for

widely separated regions, cf., [33–35] for investigations of this issue. The computation of

entanglement entropy of course can be mapped to the computation of correlation functions

of certain twist operators of the cyclic replica symmetry, or equivalently to the higher genus

partition function of the CFT (on branched Riemann surfaces). In fact, the wreath product

technology can be employed to the study of Rényi entropies (and entanglement entropy)

in generic orbifold theories. For orbifold theories that admit a holographic description,

it should be possible to verify various phase transitions discovered in the CFT analyses

mentioned above (and perhaps used as guide to the string duals by comparing to the

gravitational analysis [36, 37]).

It would thus be very interesting to study the large N behavior of the partition func-

tions of permutation orbifold CFTs CN,Ω on higher genus surfaces. In general this is a

formidable problem; one is required to have the information about the seed CFT partition

function on Riemann surfaces of arbitrary genera, even to compute the genus-two parti-

tion function of CN,Ω for arbitrary N. The general group theoretic framework developed

by Bantay and described in section 2 can easily be adapted to higher genus [24, 38] (we

21We thank E. Martinec for illuminating discussions on this point.
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outline the basic constructs in appendix B). In the language of maps from the fundamental

group to the permutation group, the main complication is immediately apparent: while

unbranched covers of the torus are always (disjoint unions of) tori, covers of a genus g

surface generically have even higher genus (by Riemann-Hurwitz). Understanding these

surfaces at various points in moduli space makes the analysis quite involved. However,

one might hope that at large N such partition functions can be controlled. The reason

to hope for this would be, of course, the fact that at genus one we demonstrated how a

very restricted set of unbranched covers of the torus dominates the spectrum: most of the

complicated twisted sector geometries in the orbifold partition function become irrelevant

at large N . If true, this would be a fascinating statement about universality of the large

central charge permutation orbifolds.22
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A Orbifold asymptotics and excited state contributions

In this appendix we provide proofs of the statements made in section 3.2 and section 6.2.

The analysis is rather simple and we believe that some of these results are well known by

experts. Some of the results in the symmetric orbifold follow from the analysis of [6], but

our analysis directly deals with the Hecke operators and uses them to extract the relevant

asymptotic properties.

A.1 Dominant contributions at high and low temperatures

Let us start by examining the behaviour of ZN,Z and ZN,S which are given in (2.11)

and (2.20) respectively,23 as a function of temperature and estimate where the dominant

contribution comes form. More specifically, since we have the result for the orbifold par-

tition function in terms of connected covers of tori, we would like to know what covers

dominate at a given point in the moduli space (i.e., for fixed τ in the orbifold theory).

This is easy to do in the low and high temperature phases by examining the properties of

22We thank Tom Hartman for very useful discussions on this point.
23For the ZN orbifold we focus on prime N for simplicity; the generalization to non-prime N is analogous

but more tedious to write out explicitly.
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the Hecke operators’ action on the seed partition function TMZ(τ). Let us therefore study

which terms of the form Z
(
Mτ+κ d

d2

)
in each Hecke sum dominate in various regimes.24

• Low temperatures β � 1: at low temperatures, the vacuum dominates and the

torus partition function behaves as

Z(τ, τ̄) ∼ q−cL/24q̄−cR/24 = exp

[
c

12
2π τ2

]
, (A.1)

where here as always we are assuming cL = cR ≡ c (note that under this assumption

the real part of τ drops out). This implies that a term in the Hecke sum behaves as

Z

(
Mτ + κ d

d2

)
∼ exp

[
c

12

Mβ

d2

]
. (A.2)

Since the value of κ doesn’t enter in this asymptotic expression, every allowed value

of κ gives an equal contribution and the Hecke sum can be approximated as follows:

TMZ(τ) =
1

M

∑
d|M

d−1∑
κ=0

Z

(
Mτ + κ d

d2

)

∼ 1

M

∑
d|M

d exp

[
c

12

Mβ

d2

]
∼ 1

M
exp

[
c

12
Mβ

]
, (A.3)

where the last step takes account of the fact that d = 1 dominates the divisor sum.

• High temperatures β � 1: in the high temperature regime, consider first the

κ = 0 term:

Z

(
Mτ + 0 · d

d2

)
= Z

(
− d2

Mτ

)
∼ exp

[
c

12

4π2d2

Mβ

]
, (A.4)

where we used a modular S-transformation in the first step and the low temperature

expansion in the second step. We claim that all contributions with κ > 0 are sub-

leading in this regime. It suffices to show this for κ = 1; so consider

Z1

(
Mτ + 1 · d

d2

)
= Z1

(
− d2

Mτ + d

)
= Z1

(
τ d2/M

|τ |2 + (d/M)2
− d3/M2

|τ |2 + (d/M)2

)
' Z1(Mτ + real) = Z1

(
− 2πi

Mβ

)
∼ exp

[
c

12

4π2

Mβ

]
, (A.5)

where we used modular invariance (S- and T -transformations) twice and |τ | � d
M in

the third step. Furthermore, “real” denotes a real part (τ is purely imaginary) which

is irrelevant in the low temperature regime, cf., (A.1). The resulting asymptotics

in (A.5) is clearly suppressed compared to the contribution of the κ = 0 term in (A.4).

24We focus on the thermal contribution alone and work with a rectangular torus: τ = i β
2π

for simplicity,

though the generalization to including angular chemical potential with τ1 6= 0 is straightforward.
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We conclude that the Hecke sum is dominated at high temperatures by the κ =

0 terms:

TMZ1(τ) ∼ 1

M

∑
d|M

exp

[
c

12

4π2d2

Mβ

]
∼ 1

M
exp

[
c

12

4π2M

β

]
, (A.6)

where the sum over divisors is dominated by the d = M term.

We are now in the position to investigate the low and high temperature behavior of

ZN and SN orbifold partition functions. Let us start with the ZN orbifold (with N prime).

According to the above analysis, the partition function is approximated in the respective

regimes as follows:

ZN,Z(τ, τ̄) =
1

N
(T1Z(τ, τ̄))N + (N − 1)TNZ(τ, τ̄)

∼


1

N
exp

[
c

12
β

]N
+

(N − 1)

N
exp

[
c

12
Nβ

]
= exp

[
c

12
Nβ

]
(β � 1)

1

N
exp

[
c

12

4π2

β

]N
+

(N − 1)

N
exp

[
c

12

4π2N

β

]
= exp

[
c

12

4π2N

β

]
(β � 1)

This, of course, agrees with the universal behavior for large central charge CFTs in the

low and high temperature regimes. The key point here is that the vacuum dominates in

either case and we have basically rederived the central result of Cardy in this special case,

thereby providing a consistency check of our approximations.

Let us now do the same for SN orbifold theories. In that case, the asymptotics are

determined by asymptotic Hecke operators as follows:

ZN,S(τ, τ̄) =
∑
{mk}N

N∏
k=1

(TkZ(τ, τ̄))mk

mk!

∼



∑
{mk}N

N∏
k=1

exp
[
c

12kmkβ
]

kmkmk!
= exp

[
c

12
Nβ

]
(β � 1)

∑
{mk}N

n∏
k=1

exp
[
c

12
4π2kmk

β

]
kmkmk!

= exp

[
c

12

4π2N

β

]
(β � 1)

where we used
∑

k kmk = N and also the combinatorial fact that
∑
{mk}N

∏N
k=1

1
kmkmk! =

1. Again, we obtain the correct asymptotics as expected on general grounds.

A.2 Contribution of excited states

Having understood the asymptotic behaviour of the partition function at high and low

temperatures let us turn to examining the detailed behaviour of the partition function.

The goal is to examine ZN,Z(τ, τ̄) and ZN,S(τ, τ̄) as a function of N and make statements

about the limiting behaviour in the N →∞ limit. We first gather some necessary details
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to extract the contribution of the excited states to the partition sums and then proceed to

prove Theorems 2, 3 and 6.

Let us begin with the character expansion of the seed partition function:

Z(τ, τ̄) = q−
c
24 q̄−

c̄
24

[
χI(q) χ̄I(q̄) +

∑
(h,h̄)∈HC

χh(q) χ̄h̄(q̄)

]
, (A.7)

where we have isolated the vacuum character for convenience. In terms of the modified eta

product (3.2) we have

χI(q) =
∞∏
k=2

1

1− qk
= (1− q) η1(q) , χh(q) = η1(q) qh (A.8)

Assuming that the states with conformal weights (h, h̄) (L0 and L̄0 eigenvalues) appear

with a degeneracy factor Dh,h̄ and using the infinite sum representation of the vacuum

character in terms of the integer partitions pn of n ∈ Z we can write

Z(τ, τ̄) = q−
c
24 q̄−

c̄
24 |η1(q)|2

[
(1− q)(1− q̄) +

∑
(h,h̄)∈HC

Dh,h̄ q
h q̄h̄

]

= q−
c
24 q̄−

c̄
24

( ∞∑
n,n̄=0

pn pn̄ q
n q̄n̄

)[ ∑
(∆,s)∈H̃C

D̃∆,s q
1
2

(∆+s) q̄
1
2

(∆−s)

]
, (A.9)

where ∆ and s take values (∆, s) ∈ H̃C = {(0, 0), (1, 1), (1,−1), (2, 0)}∪{h+h̄, h−h̄}(h,h̄)∈HC
to account for the vacuum block and all higher excited states:

D̃0,0 = D̃2,0 = 1 , D̃1,1 = D̃1,−1 = −1 , D̃h+h̄, h−h̄ = Dh,h̄ . (A.10)

Now we can try to estimate various contributions to the partition function of the

permutation orbifold theories. For simplicity, let us work with c = c̄; generalizations are

straightforward. A basic ingredient that we need for this is the Hecke map. Acting on (A.9)

it reads

TpZ(τ, τ̄) =
1

p

∑
d|p

d−1∑
κ=0

Z

(
pτ + κd

d2
,
pτ̄ + κd

d2

)

=
1

p

∑
d|p

d−1∑
κ=0

[
(qq̄)−

c
24

p

d2

∑
n,n̄,∆,s

pn pn̄ D̃∆,s

· q
p

d2
(n+ 1

2
(∆+s)) q̄

p

d2
(n̄+ 1

2
(∆−s)) e2πiκ

d
(n−n̄+s)

]

=
1

p

∑
d|p

[
(qq̄)−

c
24

p

d2

∑
n,n̄,∆,s

pn pn̄ D̃∆,s q
p

d2
(n+ 1

2
(∆+s)) q̄

p

d2
(n̄+ 1

2
(∆−s)) d δd|n−n̄+s

]
,

=
1

p

∑
d|p

d x−
c
12

p

d2

[ ∑
n,n̄,∆,s

pn pn̄ D̃∆,s x
p

d2
(n+n̄+∆) δd|n−n̄+s

]
. (A.11)
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where δd|n−n̄+s comes from summing over κ; it takes the value 1 if d|n−n̄+s and 0 otherwise.

In the last line we have further restricted to purely imaginary τ after accounting for the

phases in the Hecke sum.

We can now simplify the action of the δ-function; it gives non-zero contribution in

three distinct cases: n− n̄+ s = md with m < 0, m > 0 or m = 0. We want to rewrite the

sums over n and n̄ in these three cases. In the first case (m < 0), replace n̄ = n+ s+ |m|d
and sum over (n, |m|). In the second case (m > 0), replace n = n̄− s+md and sum over

(n̄,m). In the third case, replace n̄ = n+ s and only sum over n. Altogether this yields:

TpZ(x) =
1

p

∑
d|p

d x−
c
12

p

d2

∑
∆,s

D̃∆,s

[ ∞∑
m,n=0

(
pn pn+md+s x

p

d2
(2n+md+∆+s)

+ pn pn+md−s x
p

d2
(2n+md+∆−s)

)
+ pn pn+s x

p

d2
(2n+∆+s)

]
= x−

cp
12

∑
d|p

x
cp
12

(
1− 1

d2

)∑
∆,s

d

p
D̃∆,s

[ ∞∑
m,n=0

(
pn pn+md+s x

p

d2
(2n+md+∆+s)

+ pn pn+md−s x
p

d2
(2n+md+∆−s)

)
+ pn pn+s x

p

d2
(2n+∆+s)

]
,

(A.12)

where we factored out an overall x−
cp
12 which corresponds to the leading vacuum contribu-

tion of the orbifold theory with central charge cp. In the following two subsections we will

use the result (A.12) to make precise statements about the low-lying spectrum of ZN - and

SN -orbifold theories at large N .

As an illustration of the degeneracies above, consider the free boson at R = 1 whose

partition function is given in (3.1). In this case the degeneracies can be explicitly computed

(D1i)i = (2, . . .) , (α1
i )i =

(
1
4 , . . .

)
,

(D2i)i = (2, 4, 2, . . .) , (α2
i )i =

(
1
8 ,

1
4 ,

1
2 , . . .

)
,

(D3i)i = (3, 6, . . .) , (α3
i )i =

(
2
9 ,

11
36 , . . .

)
,

(D4i)i = (2, 4, 8, 4, . . .) , (α4
i )i =

(
1
4 ,

15
48 ,

3
8 ,

1
2 , . . .

)
,

(D5i)i = (5, 10, . . .) , (α5
i )i =

(
2
5 ,

9
20 , . . .

)
,

(D6i)i = (2, 3, 6, . . .) , (α6
i )i =

(
3
8 ,

4
9 ,

35
72 , . . .

)
,

(D7i)i = (. . .) , (α7
i )i = (. . .) ,

(D8i)i = (2, . . .) , (α8
i )i =

(
1
2 , . . .

)
,

for j ≥ 9 : (Dji)i = (. . .) , (αji )i = (. . .) ,

where we chose the a cutoff ∆max = 1
2 + ε, i.e., we only keep track of those terms in the

Hecke operators which have powers ≤ 1
2 . Hecke operators Tj≥9Z(x) are approximated

as 1
j x
− cj

12 .
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A.2.1 Excited states in the cyclic orbifold (proof of theorem 2)

As we have seen earlier the small-x expansion of ZN,Z(x), is dominated by the vacuum term.

We want explicitly find the leading corrections from the excited states and to derive (3.8).

We start the proof by considering the case of N being prime first. In that case we get

from eqs. (2.11) and (A.12):

ZN,Z(x) =
1

N
Z(x)N + (N − 1)x−

Nc
12

{[
1

N
+ O

(
xNhmin

)]
+x

Nc
12

(
1− 1

N2

) [
1 + O

(
x

1
N
hmin

)]}
, (A.13)

where the two square brackets come from the divisors d = 1 and d = N in the Hecke

sum TNZ(x), respectively and hmin is the smallest conformal dimension as defined in the

statement of Theorem 2. The terms in the curly braces include contributions from both

the untwisted (through hmin) and the twisted sector (note the twist operator dimension
Nc
12

(
1− 1

N2

)
determining the contribution of the last term). Clearly, all corrections to 1 in

the first square bracket become irrelevant if N is very large. So requiring the corrections

to be at least O(x∆max) if N ≥ ∆max
hmin

for the untwisted sector or

Nc

12

(
1− 1

N2

)
≥ ∆max ⇔ N ≥ 6∆max

c
+

√(
6∆max

c

)2

+ 1 . (A.14)

for the twisted sector. Putting these together results in the conditions stated in Theorem 2

for prime N .

Let us now consider the case where is N non-prime. The cyclic orbifold partition

function is then given by (2.14). The structure of leading contributions in that expression is

ZN,Z(x) =
1

N
Z(x)N +

1

N
x−

Nd
12

[
N−1∑
x=1

x
cN
12

(
1− (N,x)2

N2

) (
1 + O

(
x

(N,x)
N

hmin

))
+

N−1∑
x=1

(
1 + O

(
x

N
(N,x)

hmin

))
+

N−1∑
x,y=1

x
Nc
12

(
1− (N,x)2

N2

)(
1 + O

(
x

(N,x)2

N(N,x,y)

))]
(A.15)

The first and the third sum become of order O
(
x∆max

)
provided that we have

Nc

12

(
1− (N, x)2

N2

)
≥ ∆max ∀x = 1, . . . , N − 1 . (A.16)

The minimum bound on N for which this is satisfied depends, of course, on the number

theoretic properties of N . However, the worst case that can happen is N being divisible by

2 whence maxx{(N, x)} = N
2 . In that case the above inequality is satisfied for N ≥ 16∆max

c .

The second sum in (A.15) is more involved. For instance, i f N is divisible by 2, then

there will be some sub-leading terms of order O(x2hmin). However, such a term would

come with a pre-factor that is independent of N . Taking into account the overall factor

of 1
N in (A.15), we can thus conclude that such twisted sector states become irrelevant as

N � 1. For completeness of the finite-N result, we can, however, still include this sum in

the final result. This leads to the stated result (3.8).
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A.2.2 Excited states in the symmetric orbifold (proof of theorem 3)

Let us now examine the symmetric orbifold theory and see the stabilization of the partition

function at large N as stated in (3.12). This establishes the universality of the symmetric

orbifold partition sum at large N .

To construct the symmetric orbifold partition function we need to estimate the con-

tribution from the Hecke operators Tk acting on the seed partition sum, for k = 1, . . . , N .

Let us abbreviate their expansion as determined in (A.12) to (this defines Dki and expo-

nents αki )

TkZ(x) =
1

k
x−

ck
12

(
1 +

∑
i

Dki x
c
12
αki

)
, (A.17)

Using (2.20), we obtain

ZN,S(x) = x−
cN
12

∑
{mk}N

N∏
k=1

1

kmk mk!

(
1 +

∑
i

Dki x
c
12
αki

)mk

' x−
cN
12

∑
{mk}N

(
N∏
k=1

1

kmk mk!

)
×

×

 ∑
[s1I ]m1

· · ·
∑

[sNI ]mN

N∏
j=1

(
mj

sj0, · · · , s
j
N

) µj∏
i=1

(Dji)s
j
i x

c
12
αji s

j
i

 (A.18)

where [sjI ]mj denotes a partition of mj , i.e., a set of integers sj0, . . . , s
j
µj ∈ {0, . . . ,mj} such

that
∑µn

I=0 s
j
I = mj . So sj0 counts how many copies of the leading 1 in the j-th Hecke oper-

ator (A.17) are being taken in the multinomial term and similarly sji counts the number of

non-trivial terms Dji x
c
12
αji with a degeneracy factor given by the multinomial coefficient25(

mj

sj0, . . . , s
j
N

)
≡ mj !

sj0! · · · sjN !
. (A.19)

For the jth Hecke operator there is a maximum value for the index, µj , such that all higher

order terms start at O
(
x∆max

)
. This is indicated by the ' symbol for in going from the

first to the second line of (A.18) we have dropped the higher order terms. This expression

can be simplified further by isolating the sums over the parameters sj0 which count the

leading order contributions of Hecke operators that are present in each term and removing

them from the partitions {mk}N :

ZN,S(x) ' x−
cN
12

∑
{mk}N

m1∑
s10=0

· · ·
mN∑
sN0 =0

(
N∏
k=1

1

ks
k
0 sk0!

)(
N∏
k=1

1

kmk−s
k
0

)

×

 ∑
[s1i ]m1−s10

· · ·
∑

[sNi ]
mN−s

N
0

N∏
j=1

µj∏
i=1

(Dji)s
j
i

sji !
x
c
12
αji s

j
i

 , (A.20)

25Note that we use the uppercase letter I to denote indices including 0, whereas lower case indices i, j do

not include 0.
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where [sji ]mj−sj0
denotes a partition (sj1, . . . , s

j
µj ) of mj−sj0. Written in the form (A.20), all

terms only depend on mj − sj0, so the sum over {mk}N is really a sum over {mk}N ′ with

N ′ ≡ N −
∑

k ks
k
0 in the following sense:

ZN,S(x) ' x−
cN
12

N∑
s10,...,s

N
0 =0∑

k ks
k
0≤N

(
N∏
k=1

1

ks
k
0 sk0!

) ∑
{mk}N
mk≥sk0

(
N∏
k=1

1

kmk−s
k
0

)

×

 ∑
[s1i ]m1−s10

· · ·
∑

[sNi ]
mN−s

N
0

N∏
j=1

µj∏
i=1

(Dji)s
j
i

sji !
x
c
12
αji s

j
i


= x−

cN
12

N∑
s10,...,s

N
0 =0∑

k ks
k
0≤N

(
N ′∏
k=1

1

ks
k
0 sk0!

) ∑
{mk}N′

N ′≡N−
∑
k ks

k
0

(
N ′∏
k=1

1

kmk

)

×

 ∑
[s1i ]m1

· · ·
∑

[sN
′

i ]m′
N

N ′∏
j=1

µj∏
i=1

(Dji)s
j
i

sji !
x
c
12
αji s

j
i


= x−

cN
12

N∑
σ=0

∑
{sk0}σ

(
σ∏
k=1

1

ks
k
0 sk0!

) ∑
{mk}N−σ

(
N−σ∏
k=1

1

kmk

)

×

 ∑
[s1i ]m1

· · ·
∑

[sN−σi ]mN−σ

N−σ∏
j=1

µj∏
i=1

(Dji)s
j
i

sji !
x
c
12
αji s

j
i

 , (A.21)

where, as before, {sk0}σ denotes the set of all integer σ-tuples (s1
0, . . . , s

σ
0 ) such that∑

k k s
k
0 = σ. By definition, the terms in the second and third line with σ = N (i.e.,

N ′ = 0) are just 1. The last equation of (A.21) has the advantage that all the terms which

depend on the specifics of the underlying CFT do not depend on sk0 any more. Using∑
{sk0}σ

(∏σ
k=1

1

ks
k
0 sk0 !

)
= 1, we can therefore factor out every dependence on {sk0}σ:

ZN,S(x) ' x−
cN
12

N∑
σ=0

∑
{mk}N−σ

∑
[s1i ]m1

· · ·
∑

[sN−σi ]mN−σ

N−σ∏
j=1

1

jmj

µj∏
i=1

(Dji)s
j
i

sji !
x
c
12
αji s

j
i


= x−

cN
12

N∑
σ=0

∑
{sji}∑

i,j j s
j
i=N−σ

N−σ∏
j=1

µj∏
i=1

(Dji)s
j
i

js
j
i sji !

x
c
12
αji s

j
i

 , (A.22)

where the last sum runs over all integers sji for j = 1, . . . , σ and i = 1, . . . , µj such that∑
i,j j s

j
i = N − σ.

We are now in the position to see the universality of the expression (A.22). To this

end, compare (A.22) for N and N − 1: one can easily see that the term with index σ 6= 0
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in xcN/12ZN,S(x) is the same as the term with index σ− 1 in xc(N−1)/12Z(N−1),S(x). Thus

in the difference of these two partition functions only the σ = 0 term survives:

x
cN
12 ZN,S(x)− x

c(N−1)
12 Z(N−1),S(x) =

∑
{sji}∑

i,j j s
j
i=N

 N∏
j=1

µj∏
i=1

(Dji)s
j
i

js
j
i sji !

x
c
12
αji s

j
i

+ O
(
x∆max

)
.

(A.23)

We are now only left with the task to estimate a minimum value of N such that the right

hand side of this equation is entirely O
(
x∆max

)
. In order to do this, we need the specific

form of αji which can be obtained from (A.12) and (A.17). Clearly it is sufficient to consider

the smallest exponents in each Hecke sum since

αji ≥ α
j
1 = j · min

16=d|j

{
12

c
hmin ,

(
1− 1

d2

)}
≥ 12

c
j ·min

{
hmin ,

c

16

}
≡ 12

c
j · h̃min (A.24)

with hmin defined in Theorem 2 and h̃min defined through the above equation. We can thus

estimate the smallest exponent of x in (A.23) as follows:

c

12

N∑
j=1

µj∑
i=1

αji s
j
i ≥ h̃min

N∑
j=1

µj∑
i=1

j sji = N h̃min . (A.25)

We can therefore guarantee that the smallest exponent occurring on the right hand side

of (A.23) is at least O
(
x∆max

)
if

B h̃min ≥ ∆max ⇔ N ≥ ∆max

h̃min

= max

{
∆max

hmin
,

16

c
∆max

}
. (A.26)

as stated in Theorem 3.

A.2.3 Excited states in wreath product orbifolds (proof of Theorem 6)

This subsection contains a proof of Theorem 6 based on the results of section A.2.2. Re-

call that

Z
SpoZq
1 (τ) =

1

q
[Zp,S(τ)]q + (q − 1)Tq (Zp,S(τ))

=
1

q
[Zp,S(τ)]q +

q − 1

q

[
Zp,S(qτ) +

q−1∑
κ=0

Zp,S

(
τ + κ

q

)]
. (A.27)

Let us consider the three kinds of terms in this expression separately:

• [Zp,S(τ)]q: we can easily understand the spectrum of this term using Theorem 3. The

latter says that, given a cutoff ∆max, for n ≥ max
{

16
c ∆max,

∆max
hmin

}
we have

x
cpq
12 [Zp,S(x)]q − x

c(p−1)q
12 [Zp−1,S(x)]q

=
[
x
c(p−1)

12 Zp−1,S(x) + O
(
x∆max

)]q
−
[
x
c(p−1)

12 Zp−1,S(x)
]q

= O
(
x∆max

)
. (A.28)

This proves the universality of the spectrum arising from the first term in (A.27).
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• Zp,S(qτ): the universality of the spectrum of this term can be proven using exactly

the same logic as in the proof of Theorem 3. The only difference between Zp,S(qτ)

and Zp,S(τ) is a rescaling of the exponents of x by q. The analysis of section A.2.2 is

therefore still valid with (A.23) being replaced by

x
cpq
12 Zp,S(qτ)−x

c(p−1)q
12 Z(p−1),S(qτ) =

∑
{sji}∑
i,j j s

j
i=p

 p∏
j=1

µj∏
i=1

(Dji)s
j
i

js
j
i sji !

x
cq
12
αji s

j
i

+O
(
x∆max

)
.

(A.29)

By the same reasoning as in section A.2.2 the previous equation implies that the spec-

trum of x
cpq
12 Zp,S(qτ) is independent of p up to some order O

(
x∆max

)
provided that

p ≥ ∆max

qh̃min

= max

{
∆max

qhmin
,

16

qc
∆max

}
. (A.30)

Clearly, the bigger q is, the smaller p needs to be in order to get a universal spec-

trum up to O
(
x∆max

)
. In fact, if q is large enough, the Sp-orbifolding is not even

necessary because the corresponding string state is already that of a very long string

to begin with.

• Zp,S
(
τ+κ
q

)
: this term can be dealt with in a very similar way as the previous one.

The additional phase factor only changes the coefficients in the expansion of the

Hecke operators TkZ1

(
τ+κ
q

)
in terms of which Zp,S

(
τ+κ
q

)
is defined. So if we want

to reproduce the argument of section A.2.2, we need to change the coefficients Dki
in the Hecke operator expansion (A.17) and also rescale exponents of x by 1

q . The

analogue of (A.12) is

TkZ1

(
τ + κ

q

)
= x−

ckq
12

∑
d|k

x
ckq
12

(
1− 1

(qd)2

)∑
∆,s

d

k
D̃∆,s

[ ∞∑
m,n=0

(
pn pn+md+s e

2πimκk
qd x

k
qd2

(2n+md+∆+s)

+ pn pn+md−s e
−2πimκk

qd x
k
qd2

(2n+md+∆−s)
)

+ pn pn+s x
k
qd2

(2n+∆+s)

]

=
1

k
x−

ckq
12

(
x
ckq
12

(
1− 1

q2

)
+ . . .

)
. (A.31)

We can clearly see that this expression behaves like that of a central charge c = k
q

theory, i.e., after expanding it as appropriate for a c = kq theory, the leading term in

the bracket is not 1, but in fact exponentially suppressed. Plugging this expansion of

the Hecke operators into the symmetric product orbifold partition function, we find

that the leading behavior is

x
cpq
12 Zp,S

(
τ + κ

q

)
= x

cpq
12

(
1− 1

q2

)
+ . . . . (A.32)
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Assuming q ≥ 2, this expression is zero (and thus n-independent) up to O
(
x∆max

)
provided

cpq

12

(
1− 1

q2

)
≥ cpq

16
≥ ∆max ⇔ p ≥ 16∆max

cq
. (A.33)

This is consistent with the bounds we found in the previous bullet points.

B Orbifold CFTs on higher genus Riemann surfaces

B.1 General formalism

The paper [24] derives the formal answer to the following question: given the partition

functions Zg(τ) for a RCFT C on genus g Riemann surfaces, what is the partition function

ZN,Ωg (τ) of the permutation orbifold theory CN,Ω = CN/ΩN , where ΩN is a permutation

group of order N? The partition function on a closed genus g Riemann surface Σg is

parameterized in terms of embeddings τ of the genus g fundamental group Γg into the

automorphism group of the upper half-plane H,

τ : Γg −→ SL(2, R) , (B.1)

such that Σg = H/τ(Γg). The fundamental group of a genus g Riemann surface is here un-

derstood as the free group generated by 2g letters modulo a specific commutation relation:

Γg =

〈
a1, b1, . . . , ag, bg

∣∣∣∣ g∏
i=1

[ai, bi] = 1

〉
, (B.2)

where [a, b] = a−1 b−1 a b is the commutator.

The main result of [24] reads as follows:

ZN,Ωg (τ) =
1

|ΩN |
∑

φ: Γg→ΩN

∏
ξ∈O(φ)

Zgξ(τξ) . (B.3)

The sum runs over all homomorphisms from the fundamental group Γg into the subgroup

of permutations, ΩN . The orbits on XN = {1, . . . , N} under the action of φ are denoted by

O(φ) = {φ(Γg) · k | k = 1, . . . , N} . (B.4)

Furthermore, gξ = |ξ|(g − 1) + 1 are the genera of the seed theory partition functions and

τξ defines a genus gξ Riemann surface via restriction of the original coordinate τ to the

stabilizer subgroup of any element ξ∗ ∈ ξ of the orbit ξ:

τξ ≡ τ|Sξ : Sξ ≡ {x ∈ Γgξ |φ(x)ξ∗ = ξ∗ } −→ SL(2, R) . (B.5)

This defines an embedding Γgξ → SL(2, R) because of the existence of an isomorphism

Sξ ∼= Γgξ . So Σgξ = H/τ(Sξ).

The result (B.3) is extremely general. For genus g = 1, we automatically have gξ = 1

independent of ξ. The fundamental group in this case is Γ1 = Z ⊕ Z and we recover the

results of section 2. Without further specification of the properties of Ω, the formula (2.8)

cannot be further simplified. Therefore, in the following subsections we will make these

ideas more explicit by restricting to ΩN = ZN and ΩN = SN .
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B.2 Cyclic orbifolds on genus g Riemann surfaces

Let us consider the general formula (B.3) for a higher genus fundamental group Γg. In

order to restrict (B.3) to the subgroup ΩN = ZN , we need to understand all possible

homomorphisms φ : Γg → ZN , where Γg is the fundamental group (B.2). Since elements

in ZN always commute, any such homomorphism is characterized by an arbitrary mapping

of the generators of Γg to elements of ZN . Define the homomorphism associated with

elements x1, . . . , x2g by its action on the generators:

φ{x1,..., x2g}(ai) = xi, φ{x1,..., x2g}(bi) = xg+i (i = 1, . . . , g) . (B.6)

Summing over all such homomorphisms is therefore the same as summing over 2g

elements arbitrarily chosen from ZN :

ZN,Zg (τ) =
1

N

∑
x1,..., x2g∈ZN

∏
ξ∈O(x1,..., x2g)

Zgξ(τξ) . (B.7)

Let us consider first the case of prime N . As in the genus 1 case there are only two pos-

sible sets of orbits: if all xi are trivial, i.e. xi = N , then the orbits are O(x1, . . . , x2g) =

{{k}}k=1,...,N , whereas if even one of the xi 6= N , the only orbit is ξ = {1, . . . , N}. Accord-

ingly, we can write the partition function as

ZN,Zg (τ) =
1

N
Zg(τ)N +

1

N

∑
x1,..., x2g∈ZN ,

not all =N

ZN(g−1)+1

(
τ
∣∣
S(x1,..., x2g)

)
, (B.8)

where the stabilizer is the one corresponding to the homomorphism associated with the

elements x1, . . . , x2g:

S(x1, . . . , x2g) = {a ∈ Γg | φ{x1,..., x2g}(a) = e} . (B.9)

Now consider arbitrary N (possibly non-prime). Again, if all xi are trivial, xi =

N , then the set of orbits is O(x1, . . . , x2g) = {{k}}k=1,..., N and the contribution to the

partition function from this term is just Zg(τ)N . More generally, one can easily see that

for a term that corresponds to elements x1, . . . , x2g ∈ ZN , the orbits are

O(x1, . . . , x2g) = {{g(N,x1,..., x2g) · k}}k=1,..., N , (B.10)

where (N, x1, . . . , x2g) denotes the greatest common divisor. The genus of such a term in

the full partition function (B.7) is therefore gξ = N
(N,x1,..., x2g)(g−1)+1. The cyclic orbifold

partition function (B.7) for arbitrary N can thus be written as

ZN,Zg (τ) =
1

N
Zg(τ)N +

1

N

∑
x1,..., x2g∈ZN ,

not all =N

Z N
(N,x1,..., x2g)

(g−1)+1

(
τ
∣∣
S(x1,..., x2g)

)(N,x1,..., x2g)
.

(B.11)

Note that the contributing partition functions are evaluated on Riemann surfaces with

genera d(g− 1) + 1 with d being divisors of g. The knowledge of the contributing genera is

already quite useful. However, for a full understanding of these theories we would need a

useful parametrization of the moduli space of Riemann surfaces. This requires more work

and will be left to a future publication.
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B.3 Symmetric orbifolds on genus g Riemann surfaces

Also for ΩN = SN one can find some general formulae which resemble the form of the genus

1 derivation in section 2.2. First we use the fact that the sum over connected covers of the

torus can be equivalently understood in terms of a sum over the finite index subgroups of

the fundamental group [28]. Equation (B.3) implies

ZN,Sg (τ) =
1

N !

∑
z∈SN

∏
ξ∈O(z)

Z|ξ|g (τ) , (B.12)

where we defined

Z(|ξ|)
g (τ) =

∑
[Γg :H]=|ξ|

Zgξ (τ|H) . (B.13)

This sum runs over all subgroups H of Γ1 with finite index |ξ| (up to conjugation) and the

argument of the partition function inside this sum is the original embedding of Γg restricted

to the subgroup H. (B.13) should be thought of as the higher genus generalization of the

Hecke operators. Geometrically, it is just a sum over all inequivalent connected covers of

the Riemann surface Σg.

Starting from (B.12), one can follow precisely the same logic as in section 2.2 to arrive

at the following expression:

ZN,Sg (τ) =
∑
{mk}N

N∏
k=1

1

kmk mk!

[
Z(k)
g (τ)

]mk
. (B.14)

As for the higher genus cyclic orbifolds, the data required to compute this expression is

given by the seed theory partition function evaluated unbranched covers of Σg, i.e., on

Riemann surfaces with genus gξ ∈ {g, . . . , N(g− 1) + 1} at various points in moduli space.

A detailed understanding of this will be left for future work.
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