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We investigate the evolution of field line helicity for magnetic fields that connect two boundaries

without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative)

magnetic helicity is already recognized as an important topological constraint on magnetohydrody-

namic processes. Field line helicity offers further advantages because it preserves all topological

information and can distinguish between different magnetic fields with the same total helicity.

Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the

goal of this paper is to characterize that evolution. We start by deriving the evolution equation for

field line helicity and examining its terms, also obtaining a simplified form for cases where dynam-

ics are localized within the domain. The main result, which we support using kinematic examples,

is that during localized reconnection in a complex magnetic field, the evolution of field line helicity

is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar

product of the generalized field line velocity and the vector potential. Furthermore, the flux integral

of this term over certain areas is very small compared to the integral of the unsigned quantity,

which indicates that changes of field line helicity happen in a well-organized pairwise manner. It

follows that reconnection is very efficient at redistributing helicity in complex magnetic fields

despite having little effect on the total helicity. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913489]

I. INTRODUCTION

Magnetic helicity is a valuable concept in magnetohy-

drodynamics (MHD) that quantifies the linking, twisting, and

kinking of magnetic field lines.1,2 It is highly conserved

under a broad range of circumstances and it therefore has

many applications in both laboratory and astrophysical

plasmas.3 More precisely, total magnetic helicity (the

volume integral of ~A � ~B where ~A is the vector potential and
~B ¼ r � ~A is the magnetic field) is an ideal MHD invariant

for magnetically closed domains,4 which is readily extended

to magnetically open domains either as total relative mag-

netic helicity5,6 or by an appropriate restriction of the gauge

of the vector potential.7 Ideal invariance holds because ideal

evolutions neither create nor destroy magnetic helicity and

are unable to transport helicity across the magnetic field. In

non-ideal MHD, exact conservation of magnetic helicity

breaks down but magnetic reconnection at high magnetic

Reynolds number nonetheless conserves total (relative) mag-

netic helicity very well.8,9 Reconnection does, however,

redistribute helicity between field lines as magnetic connec-

tivities change. Thus, magnetic reconnection approximately

conserves total magnetic helicity but may radically alter how

that total is composed.

An extreme example of the redistribution of magnetic

helicity is Taylor relaxation. Considering a reversed-field

pinch, Taylor8,10 hypothesized that turbulent magnetic

reconnection allows an initial magnetic field to relax to the

minimum energy state with the same total helicity, which

had previously been shown by Woltjer4 to be a linear force-

free field. This assumes that total helicity is the only helicity

constraint and requires complete redistribution of magnetic

helicity across the cross-section of the device. Taylor relaxa-

tion was successful for reversed-field pinches and has since

been investigated for other situations, e.g., for the solar co-

rona with applications to coronal heating and micro-

flares.11–13 There are also known examples where the end

state is a nonlinear force-free field;14–16 however, redistribu-

tion of helicity, although less extensive, is a major feature of

those cases as well.

Due to its conservation, magnetic helicity is of broad

astrophysical interest, especially in scenarios involving mag-

netic reconnection. For instance, the generation of magnetic

fields by dynamo action is intrinsically related to the proper-

ties of magnetic helicity.17 To give a few more examples,

helicity conservation has been invoked in magnetospheric

physics to explain generation of twisted flux tubes during

dayside reconnection and plasmoid formation in the magne-

totail.18,19 In solar physics, magnetic helicity is injected into

the corona by flux emergence and photospheric motions

including differential rotation and shearing flows in active

regions.20 Values and changes of magnetic helicity in active

regions have been linked to solar flares and coronal mass

ejections,21–23 helicity “condensation” is a candidate expla-

nation for the formation of filament channels,24 expulsion of

helicity from corona leads to the presence of twisted flux

ropes in the heliosphere25 and reconnection of flux tubes can

be a source of torsional Alfv�en waves.26,27

In this paper, we consider a refined measure of helicity:

a helicity density, which is assigned to each field line. Thisa)Email: arussell@maths.dundee.ac.uk
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“field line helicity” contains all available topological infor-

mation and can therefore distinguish between magnetic fields

with the same total helicity. The primary aim is to investi-

gate how this measure of helicity evolves in the broad re-

gime between ideal evolution (for which every field line has

its own helicity invariant) and Taylor relaxation (for which

the only helicity invariant is total helicity). The results char-

acterize changes to the composition of magnetic helicity and

are expected to advance our understanding of 3D magnetic

reconnection across a broad variety of applications including

turbulent magnetic relaxation.

This paper is organized as follows. Section II describes

the model, recaps the concept of field line helicity, and dis-

cusses gauge considerations. In Sec. III, the evolution equa-

tion for field line helicity is derived and its terms are

examined. We then focus on cases where dynamics are local-

ized within the domain (Sec. IV) and show that evolution of

field line helicity for a given field line is dominated by a

work-like term, which has a well-organized structure of pairs

of positive and negative rates of change. Kinematic exam-

ples in Sec. V confirm our analytic results. The paper ends

with a summary in Sec. VI.

II. PRELIMINARIES

A. Model

Much of what we discuss in this paper applies generally,

but for concreteness we will consider a flux tube model

sketched in Fig. 1. All field lines enter through a single sur-

face D0 and exit through a different surface D1. The remain-

der of the boundary is a magnetic surface, DS, that joins the

edge of D0 with the edge of D1. There are no magnetic null

points in the domain, hence we consider finite-B reconnec-

tion.28 This model can describe closed flux tubes (in which

case magnetic field is periodic on D0 and D1) as well as open

flux tubes. More general magnetic fields can be partitioned

into a collection of such domains, which increases the gener-

ality of this model.

For simplicity, some of our results will be presented

using a restricted version of the model. The first simplifica-

tion is to take D0 and D1 planar with outward surface nor-

mals, ~n, pointing in the 6z-direction. In these cases, we also

assume that the boundary is line-tied and ideal so that elec-

tric field ~E ¼ 0 and ~B �~n is constant in time. This restriction

is appropriate to solar physics where the restricted model

may, for example, represent the magnetic field in a coronal

loop under assumptions that the coronal magnetic field is

evolving more rapidly than the photospheric convection

timescale and that dynamics are concentrated away from the

side boundary, DS. The simplified model is therefore of

direct relevance to the relaxation of magnetic braids, mag-

netic instabilities, coronal heating, and confined solar flares.

B. Field line helicity

Field line helicity, A, assigns a helicity value to every

field line. Physically, it measures the winding of magnetic

flux with the field line of interest7 and can also be viewed as

a topological flux function.29–32 It is defined as

Að~xÞ ¼
ð

Fð~xÞ
~A � d~l; (1)

where ~x is a point on a cross-section of our flux tube (e.g.,

the lower boundary, D0), Fð~xÞ is the magnetic field line

through that point, and d~l is the line element along the field

line. Since our domain is free of null points, the integral is

always well defined.

Field-line helicity retains all topological information, in

contrast to the volume-integrated total magnetic helicity.31 It

can therefore distinguish between topologically different

magnetic fields with the same total helicity, while the total

magnetic helicity is easily recovered from A since

Hð~AÞ ¼
ð

V

~A � ~B d3x ¼
ð

D0

ABi d2x ¼
ð

D1

ABo d2x; (2)

where Bi is the magnetic field component parallel to the

inward normal on D0 and Bo is the magnetic field component

parallel to the outward normal on D1. Note that this formula

justifies the name field line helicity since total helicity is the

flux integral of A. Provided the gauge is suitably restricted,

A has the desirable property of being an ideal invariant, save

for changes of field line connectivity caused by motions on

the boundaries. The gauge condition under which this is true

is discussed in Sec. II C and the result is derived in

Sec. III B. At the same time, A is considerably easier to

work with than the helicity density, ~A � ~B, which depends on

all three coordinates and changes under ideal evolutions.

C. Gauge considerations

Magnetic helicity and field line helicity are in general

gauge-dependent for open domains, i.e., they change under

gauge transformations of the vector potential. Referring to

FIG. 1. Sketch of the flux tube model with all field lines connecting D0 to

D1. The side of the domain, DS, is a magnetic surface and the domain con-

tains no magnetic nulls.
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Eq. (1), a gauge transformation ~A
0 ¼ ~A þrv implies a new

field line helicity

A0ð~xÞ ¼
ð

Fð~xÞ
ð~A þrvÞ � d~l ¼ Að~xÞ þ ½v�~x1

~x0
; (3)

where ~x0 and ~x1 represent the start and end points of the field

line, respectively. It follows that field line helicity, although

generally gauge-dependent, is invariant for a restricted set of

gauge transformations that have vð~x0Þ ¼ vð~x1Þ. Therefore, A
may be made gauge invariant by imposing a boundary condi-

tion on the vector potential that fixes the components of ~A
tangent to the boundary.

The physical interpretation of A and the fixing of ~n � ~A
on @V can be regarded in two complementary ways. The first

approach is to consider relative magnetic helicity5,6

HRð~Bj~B
refÞ ¼

ð
V

ð~A þ ~A
refÞ � ð~B � ~B

refÞ d3x; (4)

where ~B
ref ¼ r� ~A

ref
is a reference field that satisfies

~B
ref �~nj@V ¼ ~B �~nj@V . It is common practice to choose the

potential field for ~B
ref

. Relative helicity has the advantage of

being gauge invariant but has its own disadvantage of

depending on the chosen reference field, which may need to

change in time to match ~BðtÞ on @V. If the gauge of ~A is

restricted such that

~A �~nj@V ¼ ~A
ref �~nj@V ; (5)

which is always possible given ~B
ref �~nj@V ¼ ~B �~nj@V ,

then A becomes gauge invariant as noted above. It can

also be shown that Eqs. (4) and (5) imply that

Hð~BÞ ¼ HRð~Bj~B
refÞ þ Hð~Bref Þ. Therefore, if the boundary

condition given by Eq. (5) is imposed using a reference field for

which Hð~Bref Þ ¼ 0, then H¼HR and A can be regarded as the

density per unit flux of the gauge-independent relative helicity.31

An alternative approach arises from work by Prior and

Yeates7 who considered the physical interpretation of helic-

ity in open domains as measuring the winding between pairs

of field lines. This can be viewed as a generalization of the

linking number interpretation of helicity in closed domains.1

Prior and Yeates7 concluded that each gauge measures wind-

ing with respect to a particular frame, but some gauges

include a non-physical contribution equivalent to measuring

winding in a twisted frame. It is therefore desirable to restrict

oneself to gauges that measure winding with respect to a

fixed basis, which makes A gauge invariant for a given

frame. Furthermore, it has been shown that the choice of ba-

sis used to measure winding of field lines corresponds

directly to a choice of reference field for relative helicity,7 so

there is an equivalence between the relative helicity and

winding interpretations.

The general equations derived in Secs. III and IV are

valid in any gauge of ~A. In the examples presented in Sec. V,

we consider situations where the reference field is fixed in

time (which is possible since ~B �~n is time-invariant on @V).

Furthermore, we choose a gauge such that H¼HR with a

potential reference field for HR. Since these examples have

uniform ~B �~n on the boundary, this potential field is

untwisted in the sense of Prior and Yeates,7 meaning that A
may be interpreted either as the average winding of field

lines with respect to an untwisted basis, or as a density for

the relative helicity. Since we have fixed the gauge of ~A on

the boundaries over time, any change of A in time must cor-

respond to a non-ideal process.

III. EVOLUTION EQUATION

A. Derivation

The evolution equation for field line helicity can be

derived as follows. We start from a general form of Ohm’s

law, expressed as

~E þ~v � ~B ¼ ~R; (6)

where ~R is the non-ideal contribution to the electric field.

For any ~R, the non-ideal term can be decomposed into a gra-

dient term that produces the parallel electric field, plus a

term perpendicular to ~B that sums with the gradient term to

give the correct perpendicular electric field, i.e.

~R ¼ rW�~u � ~B: (7)

In this decomposition, W and ~u may not have simple analytic

forms derivable from the local value of ~R, in fact they must

generally be defined in a non-local manner. Noting that Eqs.

(6) and (7) imply ~eB � rW ¼ Ejj, W is obtained from the

integral

Wð~xÞ ¼
ð

Fð~xÞ
~E � d~l: (8)

Here, we consider situations without null points or closed

field lines, hence W is well-defined and single-valued

throughout the domain. Having obtained W by integration of

the parallel electric field, the components of ~u perpendicular

to ~B are readily computed from Eq. (7), completing the

decomposition.

Evolution of the vector potential is governed by

@~A

@t
¼ �~E �rU; (9)

where U is the electric potential. Using Eqs. (6) and (7) to

substitute in (9)

@~A

@t
¼ ~w � ~B �r Wþ Uð Þ; (10)

where

~w ¼~v þ~u (11)

is the generalized field line velocity.

The concept of generalized field line velocity has been

discussed in detail by Hornig and Priest33 and Hornig.34

Briefly, taking the curl of Eq. (10) shows that the
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.234.21.38 On: Wed, 11 Mar 2015 08:48:57



magnetic field evolves as if advected with ~w. The slip velocity

~u ¼ ~w �~v (and hence ~w) generally depends on where one

sets W ¼ 0. This nonuniqueness represents the fact that

when magnetic connectivity is changing, the generalized ve-

locity of a field line depends on what plasma element it is

traced from. Another point worth noting is that since~u enters

Eq. (7) as ~u � ~B, the component ~eB �~u is not constrained so

one may choose a single component of~u or equivalently ~w.

We are now ready to derive an equation for dA=dt.
Starting from the time derivative of Eq. (1), we differentiate

under the integral sign using the Lie-derivative formula for

line integrals through 3D space,35–37 then simplify using

Eq. (10) to obtain the line integral of a gradient, which is

readily evaluated. Thus

dA ~x; tð Þ
dt

¼ d

dt

ð
F ~x;tð Þ

~A � d~l

¼
ð

F ~x;tð Þ

@~A

@t
� ~w �r� ~A þr ~w � ~Að Þ

� �
� d~l

¼
ð

F ~x;tð Þ
r ~w � ~A �W� Uð Þ � d~l

¼ ~w � ~A �W� U½ �~x1

~x0
; (12)

where ~x0 and ~x1 represent the start and end points of the field

line, respectively.

Thus, the evolution of field line helicity depends on the

motion of field line end points parallel to the vector potential

on the boundaries, the integral of Ejj along the field line of

interest (i.e., the voltage drop), and the difference in electric

scalar potential between the field line’s end points.

B. Interpretation of terms

The U terms in Eq. (12) correspond to a difference of

scalar potential between the endpoints of the field line and

represent helicity flux along the field line due to the gauge. It

is the only term that remains in an ideal evolution with no

motions on the boundaries. It is usually convenient to use a

gauge in which this term vanishes so that helicity flux is due

to physical terms only and A becomes an ideal invariant

save for changes of field line connectivity caused by motions

on the boundaries. As an example, in our restricted model

with ~E ¼ 0 on @V, one can impose a condition that ~A �~n on

@V is constant in time, which makes U spatially constant on

@V by Eq. (9), hence the U terms cancel for every field line.

Physically, this restriction ensures that A measures winding

with respect to a time-independent frame, eliminating non-

physical changes,7 or equivalently that A is a field line helic-

ity for relative helicity with a time-independent reference

field.31

The W terms correspond to a net voltage drop along the

field line. This quantity,
Ð

F
~E � d~l, has played prominent role

in general magnetic reconnection. Such a voltage drop across

a localized non-ideal region is necessary and sufficient for

the change in connectivities to be felt outside that region,

i.e., a net voltage drop across a localized non-ideal region

distinguishes finite-B reconnection with global effects from

finite-B reconnection with only local effects.28 Voltage drops

are also widely used to measure reconnection, with the maxi-

mum (unsigned) voltage drop quantifying the reconnection

rate.38–40

Finally, the ~w � ~A terms represent motion of field line

end points on the boundaries. Their form is analogous to

work done against a force and depends only on the compo-

nent of ~w parallel to the vector potential. This term can be

present for ideal evolutions when motions on the boundaries

change field line connectivity, in which case ~w � ~A ¼~v � ~A. It

is also present during localized reconnection when ~w is due

to field line slipping. The terms are obviously gauge depend-

ent since a change of ~A will in general change the pattern of

~w � ~A on D0 and D1 but they can be made gauge independent

by fixing ~A �~n on @V (as recommended to make the U
terms cancel for every field line) and using freedom of the

parallel component of ~u to set ~w �~n ¼ 0 on D0 and D1. It

will also be shown in Sec. IV C that the contribution inte-

grated over certain areas is independent of gauge even when

no boundary condition is imposed on ~A. Removing this term

entirely by gauge choice would require a time-dependent

gauge on the boundary, which would remove the physical

interpretation of A as measuring changes in field line con-

nectivity within the domain.

IV. LOCALIZED RECONNECTION

A. Simplifications

Several simplifications can be made when reconnection

dynamics are localized within the domain. For simplicity,

we do this here for planar and horizontal boundaries D0 and

D1. We also assume that the electric field vanishes on the do-

main boundary since dynamics are internal.

First, it is convenient to use the freedom available in the

definition of ~u to set ~w �~ez ¼ 0 throughout the domain,

which closes D0 and D1 to transport of magnetic flux with ~w.

Under this choice

~w ¼~ez � rW� ~Eð Þ
Bz

; (13)

which may be confirmed by using Eq. (7) to substitute for ~R
in Eq. (6), then taking the cross product with~ez and rearrang-

ing for ~w. Since ~E is assumed zero on @V, the field line ve-

locity on the boundaries is simply

~w ¼~ez �rW
Bz

; (14)

which implies that field line end points move along contours

of W.

Next, we can choose to set W ¼ 0 everywhere on D0,

which gives ~w ¼ 0 there by Eq. (14). We can also use a

gauge condition that ~n � ~A is time-independent to make the

U terms vanish (Sec. III B), thereby ensuring that A is con-

stant in the absence of reconnection. Doing so, Eq. (12) sim-

plifies to

dA
dt
¼ ~w ~x1ð Þ � ~A ~x1ð Þ �W ~x1ð Þ; (15)

032106-4 Russell et al. Phys. Plasmas 22, 032106 (2015)
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which contains only terms that are evaluated at a single

boundary (the one where W 6¼ 0).

Finally, using Eq. (14) and noting that r�~ez ¼ 0, on

D0 and D1

~w � ~A ¼ �
~A � r � W~ezð Þ

Bz

¼ r �
~A � W~ezð Þ
� �

Bz
�W~ez � r � ~A

Bz

¼ r � W~A �~ez

� �
Bz

�W; (16)

i.e., the work-like term can also be expressed as a divergence

term minus the voltage drop along the field line.

B. Dominance of work term

The character of the evolution of field line helicity

depends on which term dominates the right hand side of

Eq. (15). Referring to Eq. (14), the work-like term scales as

~w � ~A � L

l
W; (17)

where L is the length scale associated with the vector poten-

tial on the boundary ðBz ¼~ez � r � ~A � A=LÞ and l is the

length scale associated with W on the boundary

ðjjrWjj � W=lÞ. For the purpose of this scaling argument, A
and W are characteristic values. The nature of the evolution

equation therefore depends on the ratio of length scales L/l,
with the work-like term dominating for L=l� 1.

The property L=l� 1 is characteristic of magnetic fields

with complex field line mappings, for example, magnetic

braids. In these cases, the complexity of the field line map-

ping means that field line integrated quantities such as W
vary on a length scale much smaller than the typical gradient

length scale of quantities on the boundary that have not been

integrated through the domain, including the vector poten-

tial.41 This is because, for a sufficiently complex magnetic

field, a pair of field lines traced from nearby starting points

may take very different paths through the domain, thus

acquiring very different contributions to the integrand. For

example, when the parallel electric field is integrated along

field lines to obtain W, one field line may pass through a

non-ideal region that the other field line bypasses altogether.

In this way, l becomes much less than L. We therefore con-

clude from the scaling analysis that changes to a field line’s

value of A occur primarily through the work-like term when

magnetic reconnection occurs in a complex magnetic field.

C. Paired increases and decreases

Having considered the change of field line helicity for a

chosen field line, it is also instructive to look at changes inte-

grated over area. Integrating Eq. (16) over an area S � D1

and using the weight Bz for consistency with the total helicity

integral defined in Eq. (2), one findsð
S

Bz~w � ~A d2x ¼
ð
@S

W~A �~ez � ~m dx�
ð

S

BzW d2x; (18)

where we have used the divergence theorem and ~m is an out-

ward edge normal on @S.

There are certain choices of S for which the first term on

the right hand side of Eq. (18) vanishes to leaveð
S

Bz~w � ~A d2x ¼ �
ð

S

BzW d2x: (19)

The most obvious of these is when S¼D1, since W ¼ 0

everywhere on @D1 from the assumption that the side bound-

ary of V is ideal. Thus, although the work term dominates

changes of field line helicity for individual field lines, its net

effect over the entire domain is the same as the integrated

effect of the typically much smaller voltage drop term. We

conclude that the divergence part of the ~w � ~A term occurs as

pairs of opposite polarity, which redistribute magnetic helic-

ity and are individually typically much stronger than W but

which cancel one another in the area integral.

Area integrals of the voltage drop are also readily inter-

preted. Taking the time derivative of Eq. (2) and assuming

that D1 and BzjD1
are fixed in time, the rate of change of total

helicity is

dH

dt
¼ d

dt

ð
D1

BzA d2x ¼
ð

D1

Bz
dA
dt

d2x: (20)

Then, expanding dA=dt with Eq. (15) and using Eq. (19) to

replace the integral of Bz~w � ~A, one finds

dH

dt
¼
ð

D1

Bz ~w � ~A �Wð Þ d2x ¼ �2

ð
D1

BzW d2x; (21)

which is equivalent to the volume integral of �2~E � ~B. In

other words, �2W (half from the explicit term in Eq. (15)

and the other half implicit in the work-like term) represents

the net imbalance of helicity sinks and sources along a field

line, which contributes to changing the total helicity and is

distinct from the redistribution of helicity caused by the

divergence part of the ~w � ~A term. The condition that W is

small compared to the work-like term, ~w � ~A, therefore

ensures that total helicity is well conserved during the redis-

tribution of helicity by magnetic reconnection.

Returning to pairing of opposite polarities of dA=dt, it is

also straightforward to construct areas of integration that are

smaller than the entirety of D1 and within which the inte-

grated divergence term disappears. Inspecting Eq. (18), the

key to this is that contours where W ¼ 0 and curves perpen-

dicular to ~AC (components of ~A perpendicular to the surface

normal of D1) are generally not aligned. The boundary of a

suitable area, S, can therefore be built up by joining sections

of W ¼ 0 contours (integrand zero since W ¼ 0) with sec-

tions of curves perpendicular to ~AC (integrand zero since
~A �~ez � ~m ¼ 0). A sketch is given in Fig. 2. The spacing

between adjacent W ¼ 0 contours (or points on the same

contour) is fixed, but there is freedom to place the curves

perpendicular to ~AC arbitrarily close together. Hence, pairing

of increases and decreases of A occurs along every curve

perpendicular to ~AC that connects two W ¼ 0 contours. It is

therefore seen that redistribution of helicity occurs in a

highly organized manner between specific groups of field

lines.
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V. KINEMATIC EXAMPLES

To verify the properties identified in Sec. IV, we now

examine a kinematic model of magnetic reconnection in a

magnetic field with complex connectivity. The basis of this

model is a static magnetic braid into which a time-dependent

ring of magnetic flux is added.

For the static component of the magnetic field, we use

the E3 magnetic braid detailed by Wilmot-Smith, Hornig,

and Pontin,41 which consists of a superposition of three left-

handed and three right-handed rings of horizontal magnetic

flux with a vertical uniform magnetic field. This braid is

visualized in Fig. 3 and attention is drawn to the complex

field line mapping. It was chosen only for convenience and

any other sufficiently complex braid would serve just as

well.

Field line helicity is calculated subject to the gauge con-

straint ~A �~nj@V ¼ ~A
ref �~nj@V , where ~n is the outward nor-

mal on @V, and

~A
ref ¼ B0

2
�y~ex þ x~ey

� �
; (22)

which corresponds to a uniform vertical reference magnetic

field, ~B
ref ¼ B0~ez. This particular constraint ensures that hel-

icities are the same as for the winding gauge of Prior and

Yeates,7 which measures winding in an untwisted frame. It

also gives H¼HR, which is zero for the E3 braid.

The map of the initial field line helicity on D0 is shown

in Fig. 4. It exhibits considerable complexity, with scales

much shorter than those in the magnetic field (Fig. 3) coming

from the complexity of the field line mapping.

Since our gauge restriction fixes the components of ~A

tangent to the domain boundary and since ~E ¼ 0 on @V
when reconnection is localized within the domain, Eq. (9)

implies that ~n �rUj@V ¼ 0, i.e., U ¼ const on @V. Thus,

Uð~x0Þ ¼ Uð~x1Þ for any field line, which makes the gauge

terms cancel in Eq. (12). Calculation of ~w � ~A terms is

simplified too because defining ~w �~n ¼ 0 on D0 and D1 gives

~w � ~A ¼ ~w � ~Aref
at field line endpoints. When reconnection is

localized within the domain, this simplifies further to give

FIG. 3. Visualization of the E3 magnetic braid, used as the static part of the

kinematic model with magnetic complexity. (Left) A selection of magnetic

field lines which show the braided nature of the field. (Right) Isosurfaces

of horizontal magnetic field strength, revealing the magnetic flux rings that

are superimposed on a uniform vertical magnetic field. Flux rings centered

on x¼ 1 are right-handed and flux rings centered on x¼�1 are left-

handed.

FIG. 4. Field line helicity, A, for the E3 magnetic braid, mapped on the D0

surface, z¼�24. Small scales are evident and come from the complexity of

the field line mapping.

FIG. 2. Construction of an area inside which positive and negative polarities

of dA=dt cancel. (a) shows the curves used to construct the edge of the area:

W ¼ 0 contours (black) and lines perpendicular to the vector potential on the

boundary (red). (b) shows an enlargement of the shaded area labeled to indi-

cate which quantity is zero on each edge. It is readily seen that the line inte-

gral of W~A �~ez � ~m around this shape is zero.
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~w � ~A ¼ r

2

@W
@r

; (23)

where r is the radial distance from (x, y)¼ (0, 0).

Attention is drawn to the fact that provided the boundary

condition on ~A is satisfied, A and dA=dt do not change under

the allowable gauge transformations. This can be attributed

to A obtaining a physical meaning as a measure of winding

with reference to a fixed frame or as a density of relative hel-

icity, due to the boundary condition on ~A.

Time-dependence is imposed via a prescribed electric

field

~E ¼ �B0ak exp � x2

a2
� y� 1ð Þ2

a2
� z2

L2

� �
~ez; (24)

which corresponds to growth of a time-dependent flux ring at

the midplane with its center offset slightly from the central

axis (readily confirmed by taking the curl of Eq. (24)). The

horizontal flux added over time changes magnetic connectiv-

ities between D0 and D1, and the kinematic model acts as a

proxy for magnetic reconnection in this regard. Parameters

were set as B0¼ 1, k¼ 0.5, L¼ 2, and a ¼
ffiffiffi
2
p

=4, giving a

time-dependent flux ring spatially smaller than the static

ones; thus, the model describes reconnection that is localized

to a small region within the larger field.

Compared to other models of reconnection, kinematic

models have the limitation that the electric field is prescribed

rather than arising self-consistently from an algebraic Ohm’s

law. The model described is nonetheless sufficient to verify the

properties identified in Sec. IV, which do not rely on any spe-

cific form for Ohm’s law. We have also obtained similar

results using resistive MHD simulations, although the kine-

matic model gives a clearer illustration because it limits recon-

nection in the complex magnetic field to a single location.

The rate of change of field line helicity for the kinematic

model was computed as follows. First, we set W ¼ 0 on D0,

which also gives ~w ¼ 0 there by Eq. (14). Thus, the full

evolution Eq. (12) reduces to the simplified form given by

Eq. (15). The values of W on D1 were obtained by integrating

Ejj along the magnetic field, in keeping with its definition in

Eq. (8) and using the boundary condition WjD0
¼ 0 to fix the

constant of integration. Finally, the ~w � ~A term on D1 was

evaluated using Eq. (23). Note that the approach of evaluat-

ing W by integration of Ejj along field lines and ~w on the

boundary from rW works not only when Ohm’s law is

specified explicitly (e.g., Eq. (6)) but also when it arises im-

plicitly from a prescribed electric field as in the kinematic

model.

Figure 5 shows dA=dt, and the contributions from the

�Wð~x1Þ and ~wð~x1Þ � ~Að~x1Þ terms. All quantities are plotted

mapped to D0, where field lines are fixed to the stationary

plasma by the choice W ¼ 0 on D0, i.e., dA=dt 	 @A=@t on

D0. It is immediately apparent that dA=dt is dominated by

the ~w � ~A term, which has an extreme value (31.7) that is

57.6 times greater than the extreme value of the �W term

(0.55). This finding is in good agreement with the analytic

results of Sec. IV B, which argued that the work-like term

should be dominant given a complex magnetic field.

The importance of complexity in the field line mapping

is demonstrated if the static braid is replaced with a straight

uniform magnetic field (for which A ¼ 0 everywhere), in

which case the results shown in Fig. 6 are obtained. With the

removal of braiding, the extreme values of the ~w � ~A and �W
terms become 0.96 and 0.63, respectively, giving a ratio of

1.5, i.e., neither term dominates strongly when the field lacks

complexity.

The kinematic example with magnetic complexity

(Fig. 5) also shows pairing of opposite polarities of dA=dt,
such that field line helicity is redistributed by the work-like

FIG. 5. Evolution of field line helicity on D0 for the kinematic model with

magnetic complexity. (Top) Map of dA=dt (extreme value of 31.4).

(Middle) Map of the ~wð~x1Þ � ~Að~x1Þ term (extreme value of 31.7). (Bottom)

Map of the �Wð~x1Þ term (extreme value of 0.55). Quantities are plotted on

D0, where field lines are fixed to stationary plasma; the evolution equation

terms were evaluated at the field line’s conjugate point on D1, ~x1 ¼ Fðx; yÞ,
and mapped back to D0.
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term, while the total helicity changes much more slowly.

This too confirms our expectation from analytic results (Sec.

IV C). The analysis in Sec. IV C predicts that pairing of op-

posite polarities is well organized. In particular, when terms

are examined on D1, we expect to see pairing along lines per-

pendicular to the vector potential that connects two W ¼ 0

contours. This property is investigated in Figs. 7 and 8. For

our choice of gauge, curves on D1 perpendicular to ~A are

simply radial lines. Moreover, the kinematic example gives a

profile of W, which is very localized on D1, W 6¼ 0 being re-

stricted to a threadlike structure. The theory therefore pre-

dicts that ~w � ~A (and hence dA=dt) is organized in pairs of

opposite polarity where radial lines cross the threadlike

region where W 6¼ 0. Consulting Figs. 7 and 8, this expecta-

tion is confirmed.

Note that pairing of polarities on D1 implies pairing on

D0 via the field line mapping. This is apparent when compar-

ing Figs. 5 and 7. Bz¼ 1 on each boundary, and all quantities

shown are defined for each field line, hence the figures are

area-preserving rearrangements of one-another. However,

despite the simple structure of pairing on D1 along radial

lines, the complexity of the field line mapping means that the

corresponding structure of pairing on D0 generally does not

have an obvious analogous form.

FIG. 6. Evolution of field line helicity on D0 for the kinematic model with-

out magnetic complexity, in the same format as Fig. 5. The extreme values

are: 1.34 (dA=dt, top panel), 0.96 (~wð~x1Þ � ~Að~x1Þ, middle panel), and 0.63

(�Wð~x1Þ, bottom panel).

FIG. 7. Pairing of ~w � ~A polarities (hence polarities of dA=dt) on D1 for the

kinematic model with magnetic complexity. The horizontal black line super-

imposed on the middle and bottom panels shows the line on which quantities

are inspected in Fig. 8. Analytic theory predicts pairs of positive and nega-

tive polarities, where radial lines on D1 (which are perpendicular to the vec-

tor potential) cross the threadlike region, where W 6¼ 0. The prediction holds

very well.
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Returning to the topic of pairing of positive and negative

polarities on the top boundary, an intuitive feel for the exact

analytic result may be gained as follows. Field lines are fixed

to the fluid on D0 by our choice that W ¼ 0 there, but non-

ideal effects in the domain allow them to slip on D1. If dy-

namics are localized inside the domain, then it follows from

Eq. (14) that motion of field line endpoints on D1 at any

moment is along contours of W (clockwise around maxima

of W and counterclockwise around minima of W). Now, con-

sider a curve on D1 perpendicular to the vector potential, par-

ameterized by distance l along it, which connects two points

where W ¼ 0. In our example, the radial line considered in

Fig. 8 is one such line. Where dW=dl > 0; ~w will have one

sign and where dW=dl < 0 it will have the other sign.

Moreover, the flows in the opposite directions balance

because W is continuous and the magnitude of ~w is propor-

tional to the gradient. The final assumption to transfer this

balance of field line motions to the helicity equation is to

assume that the width of the W 6¼ 0 region is much smaller

than the length scale over which ~A
ref

changes appreciably.

Then, ~A
ref

may be treated as constant to leading order along

the curve of interest, and it is seen that the oppositely

directed field line motions correspond to opposite polarities

of ~w � ~A (for our example, also refer to Eq. (22)). This discus-

sion is less rigorous than the analytic presentation of pairing

in Sec. IV C, but it may help to develop a feeling for the

underlying physics.

Finally, it is noted that the introduction of an additional

magnetic flux ring means that the total helicity of the field is

changing. This happens self-consistently through the helicity

source �2~E � ~B. We have already suggested, however, that if

the preexisting magnetic field has a complex field line map-

ping then the field line helicity is rearranged on a timescale

shorter than that associated with changes to the total helicity.

This is confirmed by computing the flux integral of dA=dt
and the flux integral of its unsigned value. The results are

that dH=dt ¼ 0:5, while the integral of BzjdA=dtj over the

domain is 11.4. The latter integral is 22.8 times greater than

the former and is very strongly dominated by the ~w � ~A term.

Thus, it is clear that reconnection in a complex magnetic

field acts primarily to redistribute the field line helicity, and

that this occurs much more rapidly than the total helicity

changes. (When there is no preexisting pattern of A to be

redistributed, which is the case for the example shown in

Fig. 6, then the flux integrals are more similar.)

VI. SUMMARY AND CONCLUSIONS

This paper has shown how an evolution equation can be

derived for field line helicity, A, and examined its properties.

For a suitable restriction of the gauge, A changes only if the

connectivity of the field changes, either via plasma motion

on the domain boundary or magnetic reconnection within the

domain. Then, the evolution equation becomes the sum of

two terms: a work-like term, namely the scalar product of

the generalized field line velocity with the vector potential at

field line end points, and the voltage drop along the field

line.

Localized magnetic reconnection within a complex

magnetic field was given particular consideration. This is rel-

evant, for example, for magnetic relaxation of complex mag-

netic fields. Using the evolution equation for A, simple

scaling arguments show that evolution of magnetic helicity

is strongly dominated by the work-like term under these con-

ditions. Moreover, the work-like term has a property that

means changes to field line helicity occur in paired regions

of opposite polarity, which approximately cancel one another

overall. It follows that magnetic reconnection in a complex

magnetic field serves primarily to rearrange helicity, and has

a relatively small impact on the total helicity.

The idea that total helicity is approximately conserved

on the timescale during which magnetic reconnection rear-

ranges an initially complex magnetic field is longstanding.

Notably, it is the conjecture underlying Taylor relaxation8,10

and has previously been justified on the basis that a

Cauchy-Schwarz inequality implies that helicity decay

occurs on a diffusive time scale that is longer than the time

over which energies change, especially when reconnection

occurs in a small proportion of the total volume.9 For turbu-

lent situations, the inverse cascade of magnetic helicity to

large scales,42 where dissipation is inefficient, contrasts with

the direct cascade of energy to small scales, and this has also

been used to argue for approximate helicity conservation.

This paper provides an alternative and complementary justi-

fication for helicity conservation during localized magnetic

reconnection, with the advantages that it explicitly shows the

rapidity of helicity reorganization and provides new detail

about its underlying mechanics. Our results also emphasize

the importance of existing magnetic complexity, without

which the timescales of reorganization and net helicity

change are separated at most weakly.

Now that the evolution of field line helicity is better

understood, it should be possible to refine our understanding

of relaxation via magnetic reconnection. For example, it is

not fully accurate to say that approximate conservation of

total helicity is the only helicity constraint (the origin of

Taylor’s relaxation hypothesis). Rather, field line helicity is

reorganized in a manner prescribed by the dominant terms in

the evolution equation. The evolution equation may therefore

reveal new constraints on magnetic relaxation via reconnec-

tion. That possibility will be the subject of future work.
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