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ACTION OF R-FUCHSIAN GROUPS ON CP2∗

ANGEL CANO† , JOHN R. PARKER‡ , AND JOSÉ SEADE§

Abstract. We look at lattices in Iso+(H2
R
), the group of orientation preserving isometries of

the real hyperbolic plane. We study their geometry and dynamics when they act on CP2 via the
natural embedding of SO+(2, 1) ↪→ SU(2, 1) ⊂ SL(3,C). We use the Hermitian cross product in
C2,1 introduced by Bill Goldman, to determine the topology of the Kulkarni limit set ΛKul of these
lattices, and show that in all cases its complement ΩKul has three connected components, each being
a disc bundle over H2

R
. We get that ΩKul coincides with the equicontinuity region for the action

on CP2. Also, it is the largest set in CP2 where the action is properly discontinuous and it is a
complete Kobayashi hyperbolic space. As a byproduct we get that these lattices provide the first
known examples of discrete subgroups of SL(3,C) whose Kulkarni region of discontinuity in CP2 has
exactly three connected components, a fact that does not appear in complex dimension 1 (where it
is known that the region of discontinuity of a Kleinian group acting on CP1 has 0, 1, 2 or infinitely
many connected components).
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Introduction. The motivation for this work comes from the theory of lattices in
SO(n, 1), the group of linear automorphisms of Rn+1 that preserve the quadratic form
x2
1 + · · · + x2

n − x2
n+1. The problem we study can be expressed as follows. Consider

the natural inclusion ρ : SO(n, 1) → SU(m, 1) given by block diagonal matrices
ρ : A �→ (Im−n, A), in the special linear group of automorphisms of the Hermitian
space Cm,1, which is Cm+1 equipped with the Hermitian form

〈z,w〉 = z1w1 + · · ·+ zmwm − zm+1wm+1.

Let Ξ be the complex line spanned by the null vector ξ = (0, · · · , 0, 1, 1)t, let L be its

Hermitian orthogonal complement, a hyperplane. Let Λ̃ be the orbit of L under this
representation, that is the family of all hyperplanes ρ(A)(L) for A ∈ SO(n, 1). The
problem is to study the algebraic, geometric and dynamical properties of this set, and

of its image Λ under the projectivisation map Cm+1 \ {0}
P
→ CPm.

Our interest in this question arose from the fact that if Γ is a lattice in SO(n, 1),
and if we consider the action of Γ on the projective space CPm determined by the
representation ρ, then we know from [11, 4] that Γ acts properly discontinuously on
the complement Ω := CPm \Λ, which is the region of equicontinuity for the action of
Γ. Furthermore, by [1, 9] (and Theorem 2.7.(iii) below), Ω is a complete Kobayashi
hyperbolic space where SO(n, 1) acts by holomorphic isometries with respect to the
Kobayashi metric. Moreover, if we restrict the discussion to the case n = 2 = m, as
we do in this paper, then by [11] we know further that the set Λ is the Kulkarni limit
set ΛKul(Γ) of every lattice Γ in SO+(2, 1) ⊂ SU(2, 1). This was recently proved in
all dimensions [5].
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Our approach relies on Bill Goldman’s work [7] on linear algebra in the Hermitian
space C2,1, and more specifically, on the Hermitian cross-product� in this space. This
product � is an alternating “bilinear” map (in fact conjugate bilinear) that associates
to each pair of vectors z, w another vector z � w, which is orthogonal to both z

and w whenever these are linearly independent. See Section 2.1 for more details of
the cross-product and its properties. We also consider the complex conjugation map
z �−→ z in C2,1. We combine the complex conjugation map with the Hermitian cross-
product to define a decomposition of C2,1 \ {0} into three sets U+, U0, U− which is
closely related to, but different from, the classical decomposition of this Hermitian
space into positive, null and negative vectors, respectively V+, V0, V−. The sets U+,
U0, U− correspond to the points where the function defined by f(z) = 〈iz� z, iz� z〉
is positive, zero or negative, respectively. By definition this corresponds to the cases
when the vector iz� z is in V+, (V0 ∪ {0}) and in V−, respectively.

Let R2,1 ⊂ C2,1 be the set of real points. It is clear that such points are fixed by
the complex conjugation map. We let P� denote the projectivisation of R2,1 \ {0},
which is a copy of RP2 embedded in CP2. We show (Lemma 2.4) that if z is a non-zero
vector such that f(z) = 0, then either the projectivisation z = P(z) is a point in the
set Λ or else the projectivisation z is in the plane P�. The latter happens if and only
if iz� z = 0. This is used to show that all vectors in V− ∪ V0 whose projectivisation
P is not contained in the Lagrangian plane P� are contained in the set U+, and the
set Λ is P(U0) \ P(V−). We then arrive to the following theorem:

Theorem 1. The set Λ is a 3-dimensional semi-algebraic set that contains the
Möbius strip M := P� \H2

R
as its singular set; every point in the interior of M is

the meeting point of exactly two of the projective lines that form the set Λ. Moreover,
Λ \ M is a fibre bundle over ∂H2

R
with fibre at each ξ ∈ ∂H2

R
the corresponding

sphere Lξ –tangent to ∂H2
C
at ξ– minus the circle Cξ := Lξ ∩M. Thence Λ \M is

diffeomorphic to a disjoint union of two solid tori S1 × R2.

This is used to show:

Theorem 2. The complement Ω := CP2 \ Λ has three connected components,
Ω+,Ω

1
−,Ω

2
−, each being SO+(2, 1)-invariant and each being diffeomorphic to an open

4-ball. In particular, the ball H2
C
is contained in one of these components, namely

Ω+.

Precise descriptions of Ω+, Ω
1
− and Ω2

− are given in (9), (10) and (11). Note that
any matrix A ∈ SO(2, 1) \ SO+(2, 1) interchanges the components Ω

1
− and Ω2

− and
preserves Ω+.

Our next theorem is:

Theorem 3. Let Ω+, Ω
1
−, Ω

2
− be as in Theorem 2. Then one has a natural

projection map Π : Ω → H2
R
which turns each of these three sets into an SO+(2, 1)-

equivariant fibre bundle over H2
R
with fibre a 2-disc, and one has:

1. The fibre over o := [0 : 0 : 1] in Ω+ is the Lagrangian 2-plane

Lo =
{
[iy1 : iy2 : x3] : y1, y2, x3 ∈ R, x3 
= 0

}
.

2. The fibres over o in Ω1
− and Ω2

− are the two open hemispheres D1
o and D2

o

determined by the equator �(z1z2) = 0 in the line So :=
{
[z1 : z2 : 0] :

(z1, z2) ∈ C2 \ {(0, 0)}
}
, which is the projective dual of [0 : 0 : 1]. That is, the
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fibres are

D1
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, �(z1z2) > 0

}
,

D2
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, �(z1z2) < 0

}
.

3. These three fibres Lo, D
1
o, D

2
o have as common boundary the circle Co:

Co = ∂L+
o =

{
[iy1 : iy2 : 0] : (y1, y2) ∈ R

2 \ {(0, 0)}
}

= ∂D1
o = ∂D2

o =
{
[z1 : z2 : 0] : (z1, z2) ∈ C

2 \ {(0, 0)}, �(z1z2) = 0
}
.

To determine the fibres of these bundles over a general point inH2
R
we use the fact

that SO+(2, 1) acts transitively on H2
R
and the bundles in question are equivariant.

So we can just translate the fibres over the special point [0 : 0 : 1] to the fibres over
any other point using the group action. We remark that H2

R
is being regarded as

the projectivisation of the set of negative vectors in the totally real 3-space R3 ∈
C

3. Thence (see Section 3.3) a general point x ∈ H2
R
can be described as x =

[tanh(t) cos(θ) : tanh(t) sin(θ) : 1] for some t ≥ 0 and θ ∈ [0, 2π). We get:

Theorem 4. Let Π : Ω → H2
R
, Lo, D

1
o, D

2
o and Co be as in Theorem 3. Let x

be any point of H2
R
and let Ax ∈ SO+(2, 1) be any map sending o to x. Then

1. The fibre Lx over x in Ω+ is the Lagrangian 2-plane Lx = Ax(Lo).
2. The fibres over x in Ω1

− and Ω2
− are the two open hemispheres D1

x = Ax(D
1
o)

and D2
x = Ax(D

2
o) in the sphere Sx = Ax(So).

3. These three fibres Lx, D1
x, D2

x have as common boundary the circle Cx =
Ax(Co).

We give explicit expressions for Lx, D
1
x, D

2
x and Cx in Propositions 3.10 and 3.11.

As a corollary to Theorem 4, we have that if P is an arbitrary fundamental domain
for the action of a cofinite R-Fuchsian group on H2

R
, then the inverse image of P by

the projection Π : Ω→ H2
R
is a fundamental domain for the action of Γ on Ω. This is

in the same vein as the construction of fundamental domains constructed by Parker
and Platis in [13].

Finally, we discuss how the fibres behave as the base point in H2
R
tends to the

boundary ∂H2
R
.

Theorem 5. For x ∈ H2
R

let Lx, D1
x, D2

x and Cx be as in Theorem 4. For
ξ ∈ ∂H2

R
let Lξ and Cξ be as in Theorem 1. Then as the point x ∈ H2

R
tends to

ξ ∈ ∂H2
R
we have:

1. The circle Cx tends to the circle Cξ.
2. Lx ∪ Cx, the closure of the fibre in Ω+ over x, tends pointwise to Lξ.
3. Sx = D1

x ∪D2
x ∪ Cx, the closure of the fibre in Ω− over x, tends to Lξ.

Perhaps the most surprising feature of this result is part (2), namely that Lx∪Cx,
which is a copy of RP2, tends to Lξ, which is a copy of CP

1. The way this happens is
the following. We can view Lx∪Cx as a copy of R

2 together with a circle of directions
at infinity. As x tends to ξ this circle of directions collapses to a single point. The
limit is then a copy of R2 with a single point at infinity, which is a sphere.

Summarising, we have that duality in RP2 associates a real projective line (a
circle) Cx in the interior ofM to each point x ∈ H2

R
. Also, duality in CP2 associates
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to each such point x a complex projective line (a sphere) Sx in V+∪V0 which meets the
totally real plane P� in the circle Cx. The hemispheres D

1
x∪D

2
x = Sx \Cx lie in PU−.

The union of all these pairs of hemispheres D1,2
x fills the whole set PU−, which has

two components and fibres over H2
R
in the natural way. This gives an identification

between PU− and two components, Ω1
− and Ω2

− of Ω := CP
2 \Λ. On the other hand,

each point x ∈ H2
R
determines a unique totally real Lagrangian plane orthogonal to

H2
R
in H2

C
at x; such a plane extends naturally to a plane in CP2 that has the circle

Cx as boundary. The union of all these 2-planes is the set PU+ ∪H2
R
. This is a third

component Ω+ of Ω. Thence for each x ∈ H2
R
the three fibres Lx, D

1
x, D

2
x are 2-discs,

glued together along their boundary, which is the circle Cx. These 2-discs form a kind
of “theta surface”, i.e., a Θ rotated around its vertical axis. Yet, the horizontal bar
actually corresponds to a 2-disc, whose boundary is wrapping twice around the circle
of singular points, together with which it forms a real projective plane.

An immediate consequence of Theorem 3 is:

Corollary 6. The Kulkarni region of discontinuity ΩKul of all R-Fuchsian
lattices has three connected components, each diffeomorphic to a 4-ball.

This is interesting because if we look at Kleinian subgroups of PSL(2,C) acting on
the projective line, we know that the region of discontinuity either has infinitely many
connected components, or else it has at most two connected components. When we
look at discrete subgroups of PSL(3,C), then the number of connected components
in the Kulkarni region of discontinuity ΩKul can be:

• Zero: For instance the suspension of every discrete subgroup of PSL(2,C)
whose limit set is the whole CP1. (We refer to [4] for the suspension con-
struction.)

• One: For instance a lattice in PU(2, 1) where ΩKul is exactly a copy of H
2
C
,

that is the unit complex ball (see [4, Corollary 7.2.11 (b)]).
• Two: For instance all the C-Fuchsian lattices described in Section 1.3.
More generally, all groups constructed by suspending a Fuchsian subgroup
of PSL(2,C) of the first kind.

• Four: For instance the examples in [2] of complex Kleinian groups with exactly
four lines in general position in the Kulkarni limit set.

• Infinite: For instance all groups constructed by suspending a Kleinian sub-
group of PSL(2,C) with infinitely many connected components in its region
of discontinuity.

The R-Fuchsian lattices are the first known examples of discrete subgroups of
PSL(3,C) where the Kulkarni region of discontinuity has three connected components.
We do not know whether or not the above list exhausts all possibilities, i.e., whether
there exist subgroups of PSL(3,C) where the number of connected components in
ΩKul is 
= 0, 1, 2, 3, 4 or ∞.

This paper is arranged as follows. In Section 1, for completeness we first give
some background that we need on projective and complex hyperbolic geometry, limit
sets and R-Fuchsian groups in PU(2, 1). We define here the lambda and omega sets of
SO+(2, 1) in CP2, which we denote by Λ and Ω because they are reminiscent of the
limit set and discontinuity region of discrete groups. We also discuss in this section the
analogous problem in the much simpler case where Iso+(H

2
R
), the group of orientation

preserving isometries of the real hyperbolic plane, is represented in SU(2, 1) not via
the representation SO+(2, 1) considered above, but instead via the natural embedding
S(U(1) × U(1, 1)) ⊂ SU(2, 1). This motivates the results that we describe below for
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R-Fuchsian groups, and it also highlights an interesting point. As we know already,
the group Iso+(H

2
R
) can be embedded in SU(2, 1) in the two natural ways mentioned

above: by thinking of it as being SU(1, 1) or as being SO+(2, 1). In one case, it yields
the subgroup of holomorphic isometries that preserve a complex geodesic, a 2-discH1

C
,

which inherits from H2
C
a metric that turns it into the Poincaré disc model for the

hyperbolic plane, with constant curvature −1. In the second case it yields a totally
geodesic invariant 2-disc in H2

R
, which inherits from H2

C
a metric that turns it into

the Klein-Beltrami model of H2
R
, with constant curvature − 1

4
. So from the geometric

viewpoint there are significant differences between these two cases. The results in this
article show that there also significant topological differences between the two cases:
In the first of them, the corresponding set Λ of lines tangent to ∂H2

C
at the points in

∂H1
C
splits CP2 in two connected components, each diffeomorphic to a 4-ball; in the

second case, the corresponding set Λ splits CP2 in three connected components, each
diffeomorphic to a 4-ball.

In Section 2 we look at the set Λ and prove Theorem 1. Also, we define the
projection Ω→ H2

R
and show that this gives rise to the appropriate fibre bundles. In

Section 3 we describe the fibre bundles in more detail. First, we give equations for the
special fibre over the origin [0 : 0 : 1] of these bundles, which together with the results
of Section 2 proves Theorems 2 and 3. We go on to complete the proof of Theorem
4 by using the knowledge we gained about the special fibres over [0 : 0 : 1] and then
using the fact that the bundles in question are equivariant. Finally, we investigate the
behaviour of the fibres as the base point tends to ∂H2

R
, which completes the proof of

Theorem 5.
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1. Preliminaries on R-Fuchsian groups acting on CP2.

1.1. Real and complex hyperbolic space in CP2. The projective space CP2

is the quotient of the complex space C3 minus the origin, by the action of the non-zero
complex numbers: CP2 := (C3 \ {0})/C∗. We denote by P the projectivisation map

C3 \ {0}
P
→ CP2. Throughout this paper, points in C3 (or in C2,1, see below) will

be denoted by z, and z will denote the image in CP
2 under projectivisation. We will

think of z as a column vector in C3, as we want matrices to always act on the left.
So, if z = (z1, z2, z3)

t is a column vector in C3 then z = P(z) = [z1 : z2 : z3], using
homogeneous coordinates to denote points in CP2.

Let C2,1 denote a copy of C3 equipped with the Hermitian form:

H(z,w) := 〈z,w〉 = z1w1 + z2w2 − z3w3 ,

where z = (z1, z2, z3)
t and w = (w1, w2, w3)

t are (column) vectors in C
3. Denote by

V−, V0, V+ the sets of negative, null and positive vectors in C2,1\{0}, respectively, i.e.,
the non-zero vectors where the quadratic form Q(z) = |z1|2 + |z2|2 − |z3|2 = H(z, z)
is negative, zero or positive.

In this article we often speak of orthogonality between vectors in C2,1. This means
that the value of the Hermitian form H on these vectors is 0. Given z = [z1 : z2 : z3],
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by z⊥ = [z1 : z2 : z3]
⊥ we mean the set of all points w = [w1 : w2 : w3] in CP2 such

that z1w1 + z2w2 − z3w3 = 0.
The set V0 is often referred to as the light cone, and the set V− is the interior of

this light cone. The projectivisation P(V−) of V− plays a key role in what follows. We
observe that each complex line in V− meets the set

B :=

⎧⎨⎩
⎛⎝z1
z2
1

⎞⎠ ∈ C
3 : |z1|

2 + |z2|
2 < 1

⎫⎬⎭ ,

in a unique point and therefore P(V−) is a complex 2-dimensional open ball in CP2:

P(B) =
{
[z1 : z2 : 1] ∈ CP

2 : z1, z2 ∈ R, |z1|
2 + |z2|

2 < 1
}
= P(V−) .

The restriction of (−Q) to V− determines a positive definite quadratic form on this set,
which defines a metric on P(V−) and turns it into a model for the complex hyperbolic
space H2

C
. The subgroup of SL(3,C) of maps that preserve the quadratic form Q is

by definition SU(2, 1) and its projectivisation PU(2, 1) is the group of holomorphic

isometries of H2
C
. We set H

2

C = H2
C
∪ ∂H2

C
; this is a closed real 4-ball with boundary

the 3-sphere, which is the projectivisation of V0, the set of null-vectors.
Notice that H2

C
contains a copy of the 2-disc:

H2
R =

{
[x1 : x2 : 1] ∈ CP

2 : x1, x2 ∈ R, x2
1 + x2

2 < 1
}
= H2

C ∩ P�,

and the induced metric turns this into the Klein-Beltrami model for the real hyperbolic
plane H2

R
(see [7]). The orientation preserving isometries of H2

R
in this model form

the group SO+(2, 1), which is the connected component of SO(2, 1) containing the
identity. One has a natural embedding:

ιR : SO+(2, 1) −→ SU(2, 1) ,

which allows us to think of SO+(2, 1) as a group of automorphisms of CP2, acting
by isometries on H2

C
as well as on the real hyperbolic plane H2

R
. In particular, every

group of isometries of the real hyperbolic disc H2
R
can be regarded as a group of

isometries of H2
C
via this embedding.

Recall that a (classical) Fuchsian group is by definition a discrete subgroup of
Iso+(H

2
R
), the group of orientation preserving isometries of the real hyperbolic plane.

Given a Fuchsian group Γ, the identification of Iso+(H
2
R
) with SO+(2, 1) provides a

natural way of embedding Γ in SU(2, 1):

Definition 1.1. The image in SU(2, 1) of a discrete subgroup Γ ⊂ SO+(2, 1)
under the natural embedding SO+(2, 1) −→ SU(2, 1), is called an R-Fuchsian subgroup.

Of course there are other ways of embedding Fuchsian groups in SU(2, 1). For
instance one of these is as C-Fuchsian groups (cf. [8]), and we look at these below.

It is clear that R-Fuchsian groups act on CP2, leaving invariant the ball H2
C
as

well as the totally real Lagrangian plane P�.

1.2. The limit set and equicontinuity. A discrete subgroup Γ of Iso(Hn
R
) acts

properly discontinuously on Hn
R
. In contrast, the action of Γ on the boundary ∂Hn

R

divides this set into two subsets. First, the limit set of Γ is the set of accumulation
points of Γ-orbits. This set is obviously closed and invariant. It also has many other
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remarkable properties. Its complement is called the region of discontinuity. When
the limit set is all of ∂Hn

R
(and so the region of discontinuity is empty) then Γ is said

to be of the first kind. Otherwise it is of the second kind. In this paper we will only
consider Fuchsian groups (that is discrete groups Γ in Iso+(H

2
R
)) of the first kind.

Viewing the hyperbolic plane as the Poincaré disc (or the upper half plane) in
CP1, we can naturally identify Isom(H2

R
) with the subgroup PU(1, 1) (or PSL(2,R)

respectively) of PSL(2,C). If Γ is a Fuchsian group of the first kind then its limit
set is a circle in CP1. The region of discontinuity is a pair of discs, coincides with
the region of equicontinuity and is the largest subset of CP1 where the action of Γ is
properly discontinuous.

In higher dimensions, there are several possible notions of the concept of “limit
set” for discrete groups of projective automorphisms of CPn, and we refer to [4] for
a thorough discussion of this topic. One of these was introduced by Ravi Kulkarni
in [10] and applies in a fairly general setting that includes the one we envisage here.
This notion of limit set has the nice property of granting that its complement is an
open invariant set where the action is properly discontinuous.

Let us recall the definition of the Kulkarni limit set. For simplicity we restrict
the discussion to discrete subgroups of PSL(3,C), so we consider a discrete subgroup
Γ ⊂ PSL(3,C). Its Kulkarni limit set ΛKul(Γ) is by definition the union of three
Γ-invariant sets Λ0(Γ), Λ1(Γ) and Λ2(Γ):

• Λ0(Γ) is the closure of the set of points in CP
2 with infinite isotropy.

• Λ1(Γ) is the closure in CP2 of the set of accumulation points of orbits of
points in CP2 \ Λ0(Γ).

• Λ2(Γ) is the closure in CP2 of the set of accumulation points of orbits of
compact sets in CP2 \ (Λ0(Γ) ∪ Λ1(Γ)).

The complement ΩKul(Γ) := CP2 \ ΛKul(Γ) is the Kulkarni region of discontinuity of
(Γ).

These ideas were introduced by Kulkarni in [10] where he also proved that the
action on the set ΩKul(Γ) is properly discontinuous. For discrete groups of PSL(2,C)
this notion coincides with the usual region of discontinuity, and also with the region
of equicontinuity. But in higher dimensions these notions are different.

We recall that a (possibly non-discrete) family of transformations on a manifold
M is equicontinuous on an open invariant set U ⊂ M if all the transformations have
“equal variation”. More precisely,

Definition 1.2. A family F of continuous functions between complete metric
spaces is equicontinuous at a point x0 ∈ U if for every ε > 0, there exists a δ > 0
(which depends only on ε) such that d(g(x0), g(x)) < ε for all g ∈ F and all x such
that d(x0, x) < δ. The family is equicontinuous on U if it is equicontinuous at each
point of U .

The family F is called normal if every sequence of functions in F contains a
subsequence which converges uniformly on compact subsets to a continuous function.
Moreover, by Arzelà-Ascoli’s theorem these two notions –equicontinuity and normal
family– are equivalent whenever the domain is a compact set.

Notice also that the union Λ0(Γ) ∪ Λ1(Γ) is the usual (Poincaré) limit set, i.e.,
the set of accumulation points of all orbits of points in CP2.

Now suppose that Γ actually is a subgroup of PU(2, 1), so it acts on CP2 leaving
invariant the 4-ball of points in CP2 whose homogeneous coordinates [z1 : z2 : z3]
satisfy |z1|2 + |z2|2 < |z3|3. In this case we also have another notion of limit set
defined by Chen and Greenberg in [6], which we denote by ΛCG(Γ). This is the subset
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of ∂H2
C
where the orbits of points in H2

C
accumulate. As in the classical setting of

real hyperbolic groups, one has that if ΛCG(Γ) has finite cardinality, then it consists
of at most two points and such groups are called elementary.

So for a complex hyperbolic discrete group Γ ⊂ PU(2, 1) we have two notions of
a limit set: The Chen-Greenberg limit set, which takes into account only the action
of the group on the ball H2

C
, and the Kulkarni limit set, which looks at the action

globally on all of CP2. We also have the complement of the equicontinuity region.
For non-elementary discrete subgroups of PU(2, 1), the relation between these three
sets was established by J.-P. Navarrete in [11] (see also [4]).

To explain Navarrete’s results in [11] we recall that the boundary of H2
C
is a

3-sphere and at each point z in ∂H2
C
there is a unique complex projective line in

CP2, denoted Lz , which is tangent to the 3-sphere ∂H2
C
:= P(V0) at z. This line is

the projectivisation of the set of vectors in C
2,1 which are H-orthogonal to z. The

collection of these lines will play an important role in our construction.

The main result in [11] says:

Theorem 1.3. If Γ ⊂ PU(2, 1) is non-elementary then:

(i) The Kulkarni limit set ΛKul(Γ) is the union of all projective lines in CP2

which are tangent to ∂H2
C
∼= S3 at points in the Chen-Greenberg limit set

ΛCG(Γ).
(ii) The Kulkarni region of discontinuity ΩKul(Γ) is the largest open invariant set

in CP
2 where the action is properly discontinuous.

(iii) ΩKul(Γ) coincides with the region of equicontinuity.

Remark 1.4. We may naturally consider the generalisation of this theorem
to higher dimensions: Given a discrete subgroup Γ ⊂ PU(n, 1), we have its Chen-
Greenberg limit set ΛCG(Γ) defined in the same way. This is contained in the (2n−1)-
sphere ∂Hn

C
⊂ CPn. At each point z of this sphere there is a unique complex projective

hyperplane Lz tangent to ∂H
n
C
at z. The union Λ(Γ) of all these hyperplanes at points

in ΛCG(Γ) is a closed Γ-invariant set. It is proved in [3] that the action of Γ on the
complement CPn \Λ(Γ) is properly discontinuous and this actually is also the region
of equicontinuity. Furthermore, we know that Λ(Γ) is the Kulkarni limit set of the
action [5].

Consider a Fuchsian subgroup Γ ⊂ SO+(2, 1). The (Poincaré) limit set Λ of Γ
is contained in the boundary of H2

R
which is a circle ∂H2

R
= S1. If Γ ⊂ SO+(2, 1)

is thought of as a subgroup of SU(2, 1), then its Chen-Greenberg limit set ΛCG(Γ)
coincides with the usual limit set Λ contained in ∂H2

R
. The group is cofinite if and

only if its limit set Λ, and hence also its Chen-Greenberg limit set ΛCG, is the whole
circle ∂H2

R
; such groups are also called lattices in SO+(2, 1). We also know, from

Theorem 1.3, that in this case the Kulkarni limit set ΛKul(Γ) is the union of all
complex projective lines in CP2 which are tangent to the 3-sphere ∂H2

R
at points in

ΛCG(Γ).

Inspired by these constructions we observe that if we regard SO+(2, 1) as a sub-
group of SU(2, 1), then SO+(2, 1) itself leaves invariant the circle ∂H

2
R
= P� ∩ ∂H2

C
.

Furthermore, since the (projective) action of SU(2, 1) on CP2 is by holomorphic trans-
formations, every complex projective line which is tangent to ∂H2

C
at a given point

ξ, is carried by each A ∈ SU(2, 1) into the unique complex projective line which is
tangent to ∂H2

C
at the point A(ξ).
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Definition 1.5. We let Λ = Λ(SO+(2, 1)) be the set defined by:

Λ :=
{
Lξ : ξ ∈ ∂H

2
R and Lξ is the unique complex projective line tangent to ∂H

2
C at ξ

}
.

We denote by Ω = Ω(SO+(2, 1)) its complement Ω = CP2 \Λ.

By definition Λ is a closed SO+(2, 1)-invariant subset of CP
2. The notation is

chosen in analogy with the traditional concepts of limit set and discontinuity region,
since we know from Navarrete [11] that these sets coincide with the Kulkarni limit
set and the Kulkarni region of discontinuity of every cofinite R-Fuchsian subgroup of
PU(2, 1).

Proposition 1.6. The set Ω = Ω
(
SO+(2, 1)

)
is the equicontinuity set

Eq
(
SO+(2, 1);CP

2
)
for the action of SO+(2, 1) on CP2.

Proof. Observe first that there are infinitely many lines in general position con-
tained inΛ. Hence the theorem of Cartan-Montel for normal families (see [12, Chapter
VIII]) implies Ω ⊂ Eq

(
SO+(2, 1);CP

2
)
. Conversely, let L be a line in Λ, tangent to

∂H2
C
at a point ξ ∈ ∂H2

R
, and let A ∈ SO+(2, 1) be a parabolic element (see [7]) that

leaves ξ invariant. Then

Eq
(
SO+(2, 1);CP

2
)
⊂ Eq(〈A〉) = CP

2 \ L ,

which obviously implies

Eq
(
SO+(2, 1);CP

2
)
⊂ CP

2 \ SO+(2, 1)L ,

and the result follows because SO+(2, 1)L = Λ
(
SO+(2, 1)

)
.

We remark that the same statement and the same proof extend to the more general
setting of lattices in SO+(n, 1) ⊂ SU(m, 1) for m ≥ n considered at the beginning of
the introduction.

Remark 1.7. It is worth saying that the subset Λ̃ ⊂ C2,1 considered in the
introduction is the inverse image of Λ under the projectivisation map P : C3 \ {0} →

CP
2. Hence Λ̃ is a holomorphic line bundle over Λ, namely the restriction of the

tautological bundle over CP2.

We now observe that the circle ∂H2
R
can be parametrised as follows:

∂H2
R =

{
[cos(θ) : sin(θ) : 1] ∈ CP

2 : θ ∈ [0, 2π)
}
. (1)

To determine the corresponding lines in Λ we remark that for ξ in ∂H2
C
, if the line

Lξ passes through the point ξ = [cos(θ) : sin(θ) : 1], then it passes also through the
orthogonal point [− sin(θ) : cos(θ) : 0]. Hence the corresponding line is:

Lξ =
{
[λ cos(θ)− μ sin(θ) : λ sin(θ) + μ cos(θ) : λ] ∈ CP

2 : θ ∈ [0, 2π), [λ : μ] ∈ CP
1
}

=
{
[cos(θ) : sin(θ) : 1]⊥

}
.

We arrive to the following proposition:

Proposition 1.8. The set Λ = Λ(SO+(2, 1)) in CP2 is:

Λ =
{
[λ cos θ − μ sin θ : λ sin θ + μ cos θ : λ] ∈ CP

2 : θ ∈ [0, 2π] and [λ : μ] ∈ CP
1
}
,

the set of projective lines tangent to ∂H2
C
at points in the circle ∂H2

R
given by (1).
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1.3. C-Fuchsian groups. Recall now that the projective line CP1 can be em-
bedded in CP2 in many ways, as for instance as the set of points with homogeneous
coordinates [0 : z2 : z3]. Its group of automorphisms is PSL(2,C) and one has a group
isomorphism:

PSL(2,C) ∼= Iso+(H
3
R),

where Iso+(H
3
R
) is the group of orientation preserving isometries of real hyperbolic

3-space. Its subgroup PSL(2,R) is isomorphic to SO+(2, 1). The upper-half plane is
biholomorphic to the unit disc

{
[0 : z2 : 1] : |z2|2 < 1

}
, and we can identify PSL(2,R)

with the subgroup PU(1, 1) of PSL(2,C) consisting of maps that preserve this disc.
The group PSL(2,C) has a natural lifting to its double cover SL(2,C) and this

latter group has a canonical embedding in SL(3,C) given by(
a b
c d

)
�→

⎛⎝1 0 0
0 a b
0 c d

⎞⎠ .

The projective space CP2 can be regarded as being a compactification of C2 by attach-
ing to it a line L∞ ∼= CP1 at infinity, the “line of directions”. The action of SL(2,C)
on C2 naturally extends to an action on CP2 that leaves L∞ invariant and the action
on this line is the usual action of PSL(2,C). This yields a natural embedding,

ι : PSL(2,C) −→ PSL(3,C) .

This method of embedding subgroups of PSL(2,C) in PSL(3,C) is a special type of
the suspension groups studied in [4].

It is easy to see that we can actually choose the line L∞ to be

L∞ =
{
[0 : z2 : z3] : (z2, z3) ∈ C

2 \ {(0, 0)}
}
.

This projective line intersects the complex hyperbolic space H2
C
in a complex slice,

a copy of H1
C
, which is a 2-disc isometric to H2

R
(with the Poincaré disc-model, see

[7]). The restriction of ι to PSL(2,C) preserves the complex hyperbolic space H2
C
and

determines an embedding:

ιC : PU(1, 1) −→ PU(2, 1) .

Hence every group of isometries of the hyperbolic plane, viewed asH1
C
, can be regarded

as a group of isometries ofH2
C
via this embedding. In fact, passing to the double cover

SU(1, 1) we may consider, more generally, the natural embedding S
(
U(1)×U(1, 1)

)
⊂

SU(2, 1):

ιθ :

(
eiθ,

(
a b
c d

))
�−→

⎛⎝e2iθ 0 0
0 e−iθa e−iθb
0 e−iθc e−iθd

⎞⎠ .

Projectivising the latter group we get an embedding ιθ
C
of PU(1, 1) into PU(2, 1).

As in [8], we call the image in PU(2, 1) of a discrete subgroup Γ ⊂ PU(1, 1) under
this map a C-Fuchsian subgroup. Such a group leaves invariant the sphere ∂H2

C
and

also leaves invariant the projective line L∞ =
{
[0 : z2 : z3] : (z2, z3) ∈ C2 \ {(0, 0)}

}
.

Hence it leaves invariant the circle

∂H1
C = ∂H2

C ∩ L∞ =
{
[0 : eiφ : 1] : φ ∈ [0, 2π)

}
.
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Notice that one also has a set Λ = Λ(PU(1, 1)) defined similarly to the R-Fuchsian
case (Definition 1.5): It consists of all complex projective lines Lξ in CP2 tangent to
∂H2

C
at points ξ in ∂H1

C
. Its complement is the omega set Ω = Ω(PU(1, 1)).

Again, if Γ is a cofinite Fuchsian group in PU(1, 1) and we embed it in PU(2, 1) as
via ιθ

C
, we get a C-Fuchsian group and by Theorem 1.3 we have that the set Λ(U(1, 1))

coincides with the Kulkarni limit set of Γ; its complement Ω(U(1, 1)) is the Kulkarni
region of discontinuity of Γ and coincides with the region of equicontinuity.

At each point ξ = [0 : eiφ : 1] ∈ ∂H1
C
the corresponding line Lξ is the unique

projective line passing through ξ and the orthogonal point [1 : 0 : 0]. Thus Lξ is:

Lξ =
{
[μ : λeiφ : λ] ∈ CP

2 : φ ∈ [0, 2π) and [λ : μ] ∈ CP
1
}

=
{
[0 : eiφ : 1]⊥ ; φ ∈ [0, 2π)

}
,

where the latter term denotes the set of all points in CP2 orthogonal to ξ = [0 : eiφ : 1]
for the given (2, 1)-Hermitian form.

If z is a point in Ω
(
PU(1, 1)

)
:= CP2 \Λ

(
PU(1, 1)

)
, then the line passing through

ξ and the point [1 : 0 : 0] meets the projective line L∞ in a unique point, which
necessarily is away from the circle ∂H1

C
. This determines a projectionΩ→ L∞\∂H1

C
,

which is easily seen to be a fibre bundle with fibre C. Since L∞ \ ∂H1
C
consists of two

open hemispheres, this bundle is trivial, and we arrive to the following:

Proposition 1.9. The set Λ = Λ(PU(1, 1)) is:

Λ =
{
[μ : λeiφ : λ] ∈ CP

2 : φ ∈ [0, 2π) and [λ : μ] ∈ CP
1
}
,

tangent to ∂H2
C
∼= S3 at points in the circle ∂H1

C
= ∂H2

C
∩ L∞ and meeting at the

point [1 : 0 : 0]. Thence:
1. The set Λ is homeomorphic to the complex cone over the circle ∂H1

C
with

vertex at [1 : 0 : 0], and therefore Λ \
{
[1 : 0 : 0]

}
is diffeomorphic to a solid

torus S1 × C.
2. Its complement Ω = Ω(PU(1, 1)) is a trivial fibre bundle over the projective

line L∞ minus the equator ∂H1
C
, with fibre C. Hence this set has two con-

nected components, each diffeomorphic to a 4-ball D2 × C where D2 is an
open 2-disc.

This result motivates what we do below for SO+(2, 1).

2. The Hermitian cross-product.

2.1. The linear algebra of the Hermitian cross-product. We recall that
one has on C

2,1 the Hermitian cross-product � introduced by Bill Goldman in [7, p.
43], which is an alternating (essentially) bilinear map C2,1 ×C2,1 → C2,1 that can be
defined by (see [7, p. 45]):⎛⎝z1

z2
z3

⎞⎠�

⎛⎝w1

w2

w3

⎞⎠ =

⎛⎝z3w2 − z2w3

z1w3 − z3w1

z1w2 − z2w1

⎞⎠ .

In fact for every λ, μ ∈ C∗ and for every z, w ∈ C2,1 one has:

(λz) � (μw) = λμ (z�w) . (2)
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Thus � is bilinear, except that scalars act via their complex conjugate. It is also clear
that if the vectors z and w are linearly independent, then the Hermitian cross-product
is a vector orthogonal to both z and w, with respect to the Hermitian form H = 〈 , 〉.
This construction will play a key role in what follows, so we develop here some theory
about it, which can be of interest on its own.

Let z and w be linearly independent vectors in C2,1, so they span a 2-plane
←−→z,w and determine a projective line ←→z, w in CP2. We are interested in characterising
the 2-planes in C2,1 which give rise to projective lines which are tangent to ∂H2

C
,

particularly –but not only– at points in ∂H2
R
. Of course these are the 2-planes which

are tangent to the light cone V0 in C2,1.

Lemma 2.1. Suppose that z and w are linearly independent vectors in C2,1. Let
←−→z,w denote the complex 2-plane spanned by z and w.

(a) ←−→z,w is contained in V+ if and only if z�w is in V−.
(b) ←−→z,w ∩ V− 
= ∅ if and only if z�w is in V+.
(c) ←−→z,w is tangent to V0 if and only if z � w is in V0. Moreover, ←−→z,w ∩ V0 is

spanned by z�w.

Proof. We know from [7] that the cross-product z �w spans the 1-dimensional

space ←−→z,w
⊥
orthogonal to the 2-plane ←−→z,w.

We begin by showing that z�w ∈ ←−→z,w if and only if z�w ∈ V0. Suppose z�w ∈
←−→z,w. Since z�w is orthogonal to all points in←−→z,w we see that 〈z�w, z�w〉 = 0 and
so z �w ∈ V0. If z �w is not contained in ←−→z,w then {z, w, z �w} spans C2,1 and
so is a basis. Thus, if z�w were in V0 then it would be orthogonal to all three basis
vectors, and so to all vectors in C2,1. This is a contradiction, since the Hermitian
form is non-degenerate.

Suppose ←−→z,w is tangent to V0. Without loss of generality suppose that z ∈ V+

and w ∈ V0. We claim that 〈z,w〉 = 0. If not, then consider vτ = z−τ〈z,w〉w where
τ ∈ R+. Clearly vτ is in

←−→z,w. However,

〈vτ ,vτ 〉 = 〈z− τ〈z,w〉w, z − τ〈z,w〉w〉 = 〈z, z〉 − 2τ |〈z,w〉|2.

By taking τ sufficiently large, we can force this point to be in V−, a contradiction.
Hence w is orthogonal to z. By construction, w is in V0 and so w is orthogonal to all
points in ←−→z,w, the complex span of z and w. Thus, w is a multiple of z�w.

Conversely, suppose z �w lies in ←−→z,w, in particular z �w ∈ V0 as above. Any
two (complex) dimensional space must contain a vector in V+, so write

←−→z,w as the
span of z�w and some z ∈ V+. Then it is clear that any linear combination of z�w

and z lies in V+ ∪ V0, and lies in V0 only when it is a multiple of z�w. Hence ←−→z,w
is tangent to V0 and

←−→z,w ∩ V0 is spanned by z�w.
If ←−→z,w is contained in V+, then, {z, w, z � w} is a basis of C2,1. Since V− is

non-empty, we must have z �w ∈ V−. Conversely, if z �w ∈ V− then, as the form
has signature (2, 1), any vector orthogonal to z�w must be in V+.

If ←−→z,w ∩ V− 
= ∅ then the restriction of the Hermitian form to ←−→z,w has signature
(1, 1). Since {z, w, z �w} is a basis of C2,1 and the form has signature (2, 1), then
z�w must be in V+. Conversely, if z�w is in V+ then, since {z, w, z�w} is a basis
for C2,1 and the form has signature (2, 1) we can find a vector orthogonal to z �w

that lies in V−.

As a consequence of this lemma, given a complex 2-plane P ⊂ C2,1 passing
through the origin, the corresponding projective line in CP2 is tangent to ∂H2

C
if and
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only if for each pair of linearly independent vectors z and w in P one has that the
vector z�w is in V0; and in that case z � w ∈ CP2 is the point of tangency of P(P)
with ∂H2

C
.

Now we observe that given vectors z, w in C2,1 one has: z�w = −w� z so their
projectivisation coincides:

z � w := P(z�w) = P(w � z) = w � z .

For all z, w ∈ C
2,1 we have:

z�w = z�w.

In particular, for all z we have:

z� z = −z� z = −z� z , (3)

and therefore, iz � z = iz� z and so iz � z ∈ R
2,1 ⊂ C

2,1. Moreover, provided
z� z 
= 0, we have:

z � z = P(iz� z) = P(iz� z) = z � z .

This implies that the point z � z ∈ CP2 is invariant under complex conjugation and
therefore it is in P�. We state these facts as a lemma:

Lemma 2.2. Suppose that z ∈ C2,1 is a non-zero vector for which iz � z 
= 0.
Then we have z � z = P(iz� z), the image of this cross-product under the projectivi-
sation map, is a well defined point in the real Lagrangian plane P� of points in CP2

that can be represented by homogeneous coordinates in R.

Consider the lambda set Λ of SO+(2, 1) given in Definition 1.5. Recall that Λ is,
by definition, the set of all complex projective lines in CP2 which are tangent to ∂H2

C

at points in ∂H2
R
= ∂H2

C
∩ PR. A complex projective line in CP2 is tangent to ∂H2

C

if and only if the corresponding plane in C2,1 is tangent to V0. The point of tangency
in ∂H2

C
is in PR if the line of tangency to V0 is preserved by the complex conjugation

map. Using Lemma 2.1 (c) and Lemma 2.2 we can use this to characterise complex
projective lines in Λ.

Corollary 2.3. If z ∈ C2,1 is such that z and z are linearly independent and
their product iz� z is in V0, then the projective line

←→
z, z is in Λ and it is tangent to

∂H2
C
at the point z � z ∈ ∂H2

R
.

Recall that V0 is by definition the set of null vectors for the Hermitian form and
so if iz � z ∈ V0 then we have 〈iz � z, iz � z〉 = 0. Conversely, suppose that z is a
vector in C2,1 for which 〈iz � z, iz � z〉 = 0. Then it may be that either iz � z = 0

or iz � z 
= 0. In the latter case we must have that z and z span a complex 2-plane
orthogonal to z�z, so these vectors are linearly independent and we are in the setting
of Corollary 2.3. On the other hand, if iz � z = 0 then the two vectors z and z are
linearly dependent, which implies they represent the same point in CP2, so this point
is in P�. Thus we get:

Lemma 2.4. Suppose that z is a vector in C2,1 for which 〈iz � z, iz � z〉 = 0.
Then either:

(a) The projectivisation z of z is a point in the set Λ := Λ(SO+(2, 1)) \ P�, and
this happens if and only if iz� z 
= 0; or else
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(b) the projectivisation z of z is in the plane P�, and this happens if and only if
iz� z = 0.

One clearly has:

iz� z = i

⎛⎝z3z2 − z2z3
z1z3 − z3z1
z1z2 − z2z1

⎞⎠ = 2

⎛⎝x2y3 − x3y2
x3y1 − x1y3
x2y1 − x1y2

⎞⎠ .

Therefore f(z) = 〈iz� z, iz� z〉 can be expressed as the real-valued polynomial

f(z) = 4
(
(x3y2 − x2y3)

2 + (x1y3 − x3y1)
2 − (x1y2 − x2y1)

2
)
. (4)

Corollary 2.5. The set Λ is the semi-algebraic subset of CP
2 consisting of

points whose homogeneous coordinates [x1 + iy1 : x2 + iy2 : x3 + iy3] satisfy:

0 ≤ 〈z, z〉 = x2
1 + y21 + x2

2 + y22 − x2
3 − y23 and

0 = 〈iz� z, iz� z〉 = 4(x3y2 − x2y3)
2 + 4(x1y3 − x3y1)

2 − 4(x1y2 − x2y1)
2.

Proof. It is clear that the points z in Λ are outside the ball H2
C
and therefore the

correspond to vectors z with 〈z, z〉 ≥ 0. Furthermore, consider a line L ⊂ Λ and a
point z ∈ (L \ P�). The point z is then the projectivisation of a point z ∈ C2,1 such

that z and z are linearly independent and L is the projectivisation of the plane
←→
z, z.

Then Lemma 2.1 implies f(z) = 0.
Conversely, Lemma 2.4 ensures that if z is such that 〈iz � z, iz � z〉 = 0 then

either z is in Λ or else it is in the plane P�. So we must show that the points in
P� which are in Λ are exactly those in the Möbius strip M := P� \H2

R
. One side

is obvious: If z ∈ H2
R
then z /∈ Λ. On the other hand, by definition of the set Λ,

this contains all points in ∂H2
R
. Now consider a point x in the interior of M. This

point determines exactly two real projective lines passing through x and tangent to
∂H2

R
, and each of these lines determines a complex projective line which is in Λ and

contains the point x.

To finish this section we have:

Proposition 2.6. The function f(z) = 〈iz � z, iz � z〉 is invariant under the
standard action of SO+(2, 1) as a subgroup of SU(2, 1).

Proof. Recall that a basic property of the elements in SO+(2, 1) is that these
matrices satisfy Az = Az. Then one has

f(Az) :=
〈
i(Az)� (Az), i(Az)� (Az)

〉
= 〈i(Az)� (Az), i(Az) � (Az)

〉
=

〈
A(iz� z), A(iz� z)

〉
= 〈iz� z, iz� z〉

= f(z) .

A consequence of this result is that Λ, as defined algebraically in Corollary 2.5
is invariant under the action of SO+(2, 1). This proves the first part of Theorem 1
stated in the introduction.
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2.2. A partition of CP2 determined by the cross-product. Given the func-
tion f(z) = 〈iz� z, iz� z〉, we consider the sets:

U+ = {z ∈ C
3 : f(z) > 0} = {z ∈ C

3 : iz� z ∈ V+} , (5)

U0 = {z ∈ C
3 \ {0} : f(z) = 0}

= {z ∈ C
3 \ {0} : iz� z ∈ V0} ∪ {z ∈ C

3 \ {0} : iz� z = 0} , (6)

U− = {z ∈ C
3 : f(z) < 0} = {z ∈ C

3 : iz� z ∈ V−}. (7)

By definition of the Hermitian cross-product, given λ ∈ C∗ we have:

f(λz) =
〈
i(λz)� (λz), i(λz)� (λz)

〉
=

〈
|λ|2(iz� z), |λ|2(iz� z)

〉
= |λ|4f(z) .

Hence the partition C2,1 \ {0} = U+ ∪ U0 ∪ U− descends to a partition of CP2, and
these sets are SO+(2, 1)-invariant by Proposition 2.6.

In this section we prove the following theorem, which completes the proof of
Theorem 1.

Theorem 2.7. Let U+, U0, U− be as in (5), (6) and (7). The induced parti-
tion of CP2 into the three SO+(2, 1)-invariant sets PU+, PU0, PU− has the following
properties:

(i) The set PU0 \H2
R
= PU0 \ PV− is the lambda set Λ = Λ(SO+(2, 1)).

(ii) The omega set is Ω = Ω(SO+(2, 1)) = (PU+ ∪H2
R
) ∪ PU−.

(iii) Each point in the interior of the Möbius strip M := P� \H
2
R
is the meeting

place of exactly two of the projective lines in Λ, and the set Λ\M is a smooth
3-manifold which fibres over ∂H2

R
with fibre two open 2-discs. Hence this set

is diffeomorphic to the disjoint union of two solid tori S1 × R2.
(iv) The omega set Ω is a complete Kobayashi hyperbolic space.

We set Ω+ = PU+ ∪ H2
R
and Ω− = PU−, so the omega set Ω := CP2 \ Λ is

the union Ω+ ∪ Ω−. We remark that statements (i) and (ii) follow immediately from
Corollary 2.5 and the lemma below.

Lemma 2.8. If z is in U− or in U0 \ R2,1, then z is in V+. Or equivalently, if z
is in V− ∪ V0 and z /∈ R

2,1, then it is in U+

Proof. This lemma is basically a restatement of Lemma 2.1 in the case where
w = z. Suppose that z is not in R2,1. Then z and z are linearly independent. Hence

iz� z is non-zero and orthogonal to the plane
←→
z, z spanned by these two vectors.

Observe that if z (and hence z) is in V− or in V0, then
←→
z, z intersects V− and

therefore iz� z is in V+ by Lemma 2.1 (b). By definition, this means that z is in U+.
Next, if z (and hence z) is in V+ then one of three things can happen:

(a) The plane
←→
z, z intersects V−. Then, as above, its orthogonal vector iz � z is

in V+ and so z is in U+.

(b) The plane
←→
z, z is tangent to V0. Then iz� z is in V0 and z is in U0.

(c) The plane
←→
z, z is entirely in V+. Then iz� z is in V− and z is in U−.

Conversely (still assuming z /∈ R2,1) we have three possibilities, again corresponding
to the different parts of Lemma 2.1:

(a) If z is in U− then iz � z is in V− and the plane
←→
z, z lies entirely outside the

light cone. In particular, z is in V+.

(b) If z is in U0 then iz � z is in V0, the plane
←→
z, z is tangent to the light cone

and the tangency lies in P�. So z is not the point of tangency, hence z is in
V+.
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(c) If z is in U+ then iz� z is in V+ and the plane
←→
z, z intersects V−, V0 and V+.

It is not clear which of these contain z.
Thus, the only way that z ∈ C2,1 \ R2,1 can be in V− ∪ V0 is for it to be in U+.

Let us prove statement (iii) in Theorem 2.7. Every complex projective line L in
Λ meets the Lagrangian plane PR

∼= RP2 in a real projective line 
 which necessarily
is contained inM and is tangent to ∂H2

R
. Recall that every two complex projective

lines in CP2 meet in exactly one point, and every two real projective lines in RP2 meet
in exactly one point. Therefore if we are given two lines L1 and L2 in Λ, then their
intersection is the meeting point of the corresponding real projective lines 
1 and 
2,
which a point in M. Then the claim that each interior point in M is the meeting
place of exactly two lines in Λ follows from the fact that given the circle ∂H2

R
in

RP2 and a point x in the interior ofM, there are exactly two projective lines passing
through x and which are tangent to ∂H2

R
.

As remarked above, every complex projective line L in Λ meets the Lagrangian
plane PR

∼= RP2 in a real projective line 
 which necessarily is contained in M, and
the meeting point of any two of such lines is a point inM. Hence every point in Λ\M
is contained in a unique line in Λ. This determines in the obvious way a projection

π : Λ \M −→ ∂H2
R ,

and this is a fibre bundle with fibre a complex projective line –that is a 2-sphere–
minus its intersection with M, which is a real projective line, –that is a circle. This
proves the statement in Theorem 2.7 (iii).

It remains to prove statement (iv) to complete the proof of Theorem 2.7. Recall
that Kobayashi hyperbolic means that the Kobayashi pseudo metric is an actual
metric. Using [9] and [1, Theorem 1.3], a subset of CP2 that misses more than 4 lines
in general position is necessarily a complete Kobayashi hyperbolic space. In our case,
the omega set is the complement of the lambda set, Ω := CP2 \ Λ. The previous
arguments show that Λ has infinitely many lines: namely, one for each point in the
circle ∂H2

R
. Furthermore, through each point in the Möbius stripM one has exactly

two such lines. Thence Λ has infinitely many lines in general position and the result
follows.

Notice that this contrasts with the PU(1, 1) case where, by Proposition 1.9, all
the lines in the corresponding set Λ(PU(1, 1)) pass through the focal point of the
complex geodesic which is PU(1, 1)-invariant.

3. The fibre bundle Ω→ H2
R
.

3.1. The cross-product and the fibre bundle. Consider the sets U+, U−, U0

and their projectivisations PU+, PU−, PU0 as in Theorem 2.7. We know, Lemma 2.8,
that U+ contains the space of negative vectors V− in C2,1\R2,1. Their projectivisation
is contained in H2

C
\ H2

R
. Goldman in Section 3.3.6 (page 107) of [7] studies the

orthogonal projection ΠR : Hn
C
−→Hn

R
. He shows that ΠR assigns to each z ∈ Hn

C

the midpoint m(z) of the real geodesic segment joining z and z. For this (restricting
the discussion to the case n = 2) he introduces a function η by choosing, for each
z ∈ C2,1, a number η(z) so that

η2(z) = −〈z, z〉 = z23 − z21 − z22 .

Then, for negative vectors z the orthogonal projection ΠR carries the point z = P(z)
into the projectivisation m(z) of the vector defined by:

m(z) := z η(z) + z η(z) .
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Note that taking a different square root of η2(z) changes m(z) by a sign. Hence
m(z) = P(m(z)) is not affected by this choice.

Following this construction we may now define a function Π̃ : U+ ∪ U− → C2,1

by:

Π̃(z) =

{
z η(z) + z η(z) if z ∈ U+, that is f(z) > 0, where η2(z) = −〈z, z〉 ,

iz� z if z ∈ U−, that is f(z) < 0.

By construction, including use of (3), the image of Π̃ is contained in R
2,1 ⊂ C

2,1, the
Lagrangian subspace comprising points with real coordinates.

Lemma 3.1. The projection Π̃ : U+ ∪ U− −→ R2,1 is SO+(2, 1)-equivariant: If

A ∈ SO+(2, 1) then Π̃(Az) = A Π̃(z).

Proof. We consider separately the two cases U±. Given z ∈ U− we have:

Π̃(Az) = i(Az)� (Az) = i(Az) � (Az) = A(iz� z) = A Π̃(z) .

So Π̃ is equivariant in this case.
Now suppose that z ∈ U+. First, note that every A ∈ SO+(2, 1) preserves the

(2, 1)-Hermitian form and satisfies Az = Az for all z, so we have:

η2(Az) = −〈Az, Az〉 = −〈Az, Az〉 = −〈z, z〉 = η2(z) .

Hence η is SO+(2, 1)-invariant. In particular, η(Az) = η(z). Therefore, we have:

Π̃(Az) = Az η(Az) +Az η(Az) = Az η(z) +Az η(z) = A(zη(z) + z η(z)) = A Π̃(z).

Hence Π̃ is equivariant in this case as well.

Lemma 3.2. For each μ ∈ C \ {0} one has Π̃(μz) = |μ|2Π̃(z).

Proof. If z ∈ U− then by definition we have:

Π̃(μ z) = i(μ z)� (μ z) = μμ(iz� z̄) = |μ|2(iz� z̄) = |μ|2Π̃(z),

as stated. Now we consider points in U+. Observe first that we have:

η2(μz) = −〈μz, μz̄〉 = −〈μz, μ z̄〉 = −μ2〈z, z̄〉 = μ2η2(z).

Hence for all z ∈ U+ we have:

Π̃(μ z) = μ z η(μz) + (μ z) η(μz) = μ zμ η(z) + μ zμ η(z) = |μ|2Π̃(z).

An immediate consequence of Lemma 3.2 is that the map Π̃ determines a well-
defined projection map Π : PU+ ∪ PU− −→ P� ⊂ CP2 by

Π(z) = P(Π̃(z)).

We can extend this map continuously across H2
R
by requiring that

Π(z) = z, when z ∈ H2
R.
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This is consistent with the definition of Π̃ on U+: If z has real entries and lies in V−
then, using z = z, we have

η2(z) =
∣∣〈z, z〉∣∣ ,

and so η(z) = η(z). Hence zη(z) + zη(z) = 2η(z) z, and so P
(
(zη(z) + zη(z)

)
= z.

Moreover, using Lemma 3.1, the map Π : (PU+ ∪H2
R
) ∪ PU− −→ P� is SO+(2, 1)-

equivariant. The next lemma shows that the image of Π is contained in the real
hyperbolic disc H2

R
⊂ P�.

Lemma 3.3. The image of Π̃ is in V− ∩ R2,1. Hence the image of Π is in H2
R
.

Proof. We saw by construction that Π̃(z) is invariant under complex conjugation

and so the image of Π̃ is in R2,1 ⊂ C2,1. So it suffices to show Π̃(z) ∈ V−.

The proof that the image of Π̃ is in V− is again is by cases. If z ∈ U− then,

Π̃(z) = iz�z, by definition of Π̃, and iz�z ∈ V− by the definition of U−. This proves
the result in the first case.

Now suppose z ∈ U+. By definition, this means that iz � z ∈ V+. In this case
identity (2.16) in [7] implies:

0 < 〈iz� z, iz� z〉

= 〈z̄, z〉〈z, z〉 − 〈z, z〉〈z̄, z〉

= (−η2(z))(−η2(z))− 〈z, z〉2

= |η(z)|4 − 〈z, z〉2 .

So, if z ∈ U+ then |η(z)|2 > 〈z, z〉. Note that this includes the case where 〈z, z〉 < 0.

Since z ∈ U+, we have Π̃(z) = zη(z) + zη(z). We now show this is in V−.〈
Π̃(z), Π̃(z)

〉
= 〈zη(z) + zη(z), zη(z) + zη(z)〉

= 〈zη(z), zη(z)〉+ 〈zη(z), zη(z)〉+ 〈zη(z), zη(z)〉+ 〈z̄η(z), zη(z)〉

= |η(z)|2〈z, z〉 + η2(z)〈z, z〉+ η2(z)〈z̄, z〉+ |η(z)|2〈z̄, z〉

= |η(z)|2〈z, z〉 − η2(z)η2(z)− η2(z)η2(z) + |η(z)|2〈z̄, z〉

= 2|η(z)|2
(
〈z, z〉 − |η(z)|2

)
< 0 .

Hence Π̃(z) ∈ V− both when z ∈ U− and when z ∈ U+. Putting this together we also

see that Π(z) = P
(
Π̃(z)

)
∈ P(V− ∩R2,1) = H2

R
.

The proof of this result also yields the following corollary, which means that we
can extend the definition of Π(z) continuously to all z ∈ P(U0 \R2,1). In fact, we can
extend it continuously to CP2 \M◦, i.e., all points of CP2 not in the interior of the
Möbius stripM.

Corollary 3.4. Let z be a vector in V+ for which z and z are linearly indepen-
dent and iz� z ∈ V0. Then zη(z) + zη(z) is in the subspace spanned by iz� z.

Proof. Arguing as in the proof of Lemma 3.3, the fact that iz� z ∈ V0 implies

0 = 〈iz� z, iz� z〉 = |η(z)|4 − 〈z, z〉2 .

Since z ∈ V+, this implies that |η(z)|2 = 〈z, z〉 > 0.
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By construction, the point zη(z) + zη(z) is in the complex 2-plane
←→
z, z spanned

by z and z. Again arguing as in Lemma 3.3 we see that

〈zη(z) + zη(z), zη(z) + zη(z)〉 = 2|η(z)|2
(
〈z, z〉 − |η(z)|2

)
= 0.

Hence we see that zη(z) + zη(z) ∈
←→
z, z ∩ V0. From Lemma 2.1 (c) we know this

subspace is spanned by iz� z as required.

Furthermore, the above results enable us to show that U− has two components.

If z ∈ U− then Π̃(z) = iz � z is in V− ∩ R2,1, the interior of the real light cone, that
is, it is a timelike vector in Minkowski space. The interior of the real light cone has
two components, corresponding to future pointing vectors and past pointing vectors.
These two components are distinguished by the sign of the third entry (which is
necessarily non-zero). Therefore, we make the following definition:

For z ∈ U− we define α(z) to be the bottom entry in the vector Π̃(z) = iz� z ∈
V− ∩ R2,1. That is

α(z) =
(
iz� z)3 ∈ R \ {0}. (8)

Hence α(z) > 0 (respectively < 0) if and only if iz� z is future pointing (respectively
past pointing).

Lemma 3.5. The set U− has two components characterised by the sign of α:

U1
− =

{
z ∈ U− : α(z) > 0

}
, U2

− =
{
z ∈ U− : α(z) < 0

}
.

Moreover, any A ∈ SO+(2, 1) preserves these components, and for any μ ∈ C \ {0}
and z ∈ U−, the vector μz is in the same component as z.

Proof. Using (8) we see that α is a continuous function of z. Since it never takes
the value 0, it distinguishes two components.

Using Lemma 3.1, α(Az) is the bottom entry in the vector Aiz � z. Then the
well known fact that the component SO+(2, 1) of SO(2, 1) is characterised by sending
future pointing vectors to future pointing vectors means that α(Az) > 0 (respectively
< 0) if and only if α(z) > (respectively < 0). Therefore A maps U1

− to itself and
maps U2

− to itself.
From Lemma 3.2, for any μ ∈ C\{0}, we have α(μz) = |μ|2 α(z). Thus α(μz) > 0

(respectively < 0) if and only if α(z) > 0 (respectively < 0).

Recall that Ω+ = PU+ ∪H2
R
and Ω− = PU−, so the omega set Ω := CP2 \Λ is

the union Ω+ ∪ Ω−. Moreover, from Lemma 3.5 the components U1
− and U2

− of U−
are projectively invariant and so we define Ω1

− = PU1
− and Ω2

− = PU2
−. That is

Ω+ =
{
z ∈ CP

2 : iz� z ∈ V+ or z ∈ V− for any z with P(z) = z
}
, (9)

Ω1
− =

{
z ∈ CP

2 : iz� z ∈ V− and α(z) > 0 for any z with P(z) = z
}
, (10)

Ω2
− =

{
z ∈ CP

2 : iz� z ∈ V− and α(z) < 0 for any z with P(z) = z
}
. (11)

In the next two sections we will give a precise description of Ω+, Ω
1
− and Ω2

−. We will
show they are all connected, and hence Ω does have exactly three components.

Summarising the previous discussion we have:



468 A. CANO, J. R. PARKER, AND J. SEADE

Theorem 3.6. The projection Π : Ω → H2
R
is an SO+(2, 1)-equivariant smooth

fibre bundle.

The fact that this actually is a fibre bundle follows immediately from the fact the
projection is equivariant, which implies that each fibre has a product neighbourhood.
This is the fibre bundle in Theorem 3.

3.2. The fibre over the origin. In this section we consider the pre-image under
Π of the point o = [0 : 0 : 1] ∈ CP2, which corresponds to the origin in the Klein-
Beltrami disc embedded in the ball H2

C
, where Π is the projection map in Theorem

3.6.
Since SO+(2, 1) acts transitively on H2

R
and the map Π is equivariant, to deter-

mine the fibre of Π over an arbitrary point x = [x1 : x2 : x3] ∈ H2
R
, we need only

to determine the fibre over the special point o, and then see how this fibre moves
under the action of SO+(2, 1) on points in H2

R
. That is what we do in the next sec-

tion; here we focus on the fibres over o. We consider the components of the fibre in
Ω+ = PU+ ∪H2

R
and Ω− = PU− separately.

Lemma 3.7. Suppose that z = [z1 : z2 : z3] ∈ Ω+ is a point for which Π(z) =
o = [0 : 0 : 1]. Then z3 
= 0 and z1/z3, z2/z3 are both purely imaginary. Hence Lo =
(Π|Ω+

)−1(o), the fibre over o of the projection Π restricted to Ω+ is the Lagrangian
plane

Lo =
{
[iy1 : iy2 : x3] : y1, y2, x3 ∈ R, x3 
= 0

}
.

Its boundary consists of the circle Co comprising all points in CP2 that can be repre-
sented by homogeneous coordinates of the same form but with x3 = 0. That is

Co =
{
[iy1 : iy2 : 0] : (y1, y2) ∈ R

2 \ {(0, 0}
}
.

Proof. Since z ∈ Ω+ we have z ∈ U+ or z ∈ H2
R
. If Π(z) = o then

Π̃(z) = zη(z) + zη(z) =

⎛⎝z1η + z1η
z2η + z2η
z3η + z3η

⎞⎠ = o =

⎛⎝00
1

⎞⎠
where η2 = η2(z) = z23 − z21 − z22 . Then

0 = z1η + z1η = z2η + z2η and 1 = z3η + z3η .

These inequalities imply

0 = z1η(z1η + z1η) = z21 |η|
2 + |z1|

2η2, 0 = z2η(z2η + z2η) = z22 |η|
2 + |z2|

2η2.

Hence, if we set η2 = |η|2eiθ then z21 = −|z1|
2eiθ and z22 = −|z2|

2eiθ. Therefore

|η|2eiθ = η2 = z23 − z21 − z22 = z23 + |z1|
2eiθ + |z2|

2eiθ.

Thus, z33 = ε|z3|2eiθ where ε = ±1 and |η|2 = ε|z3|2 + |z1|2 + |z2|2. However,

1 = (z3η+z3η)
2 = z23η

2+2|z3|
2|η|2+z23η

2 = 2ε|z3|
2|η|2+2|z3|

2|η|2 = 2(ε+1)|z3|
2|η|2.
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As the left hand side is non-zero we must have z3 
= 0 and ε = +1. This means that
z23 = |z3|

2eiθ and so, z21/z
2
3 = −|z1|

2/|z3|2 ≤ 0 and z22/z
2
3 = −|z2|

2/|z3|2 ≤ 0. Hence
z1/z3 and z2/z3 are both purely imaginary.

This generalises the result of Goldman in [7], used by Parker and Platis in [13],
that the pre-image of the origin in H2

C
under orthogonal projection onto the real

Lagrangian plane H2
R
is the purely imaginary Lagrangian plane{
[iy1 : iy2 : 1] : y1, y2 ∈ R, y21 + y22 < 1

}
.

In [7, 13] the extra condition y21+y22 < 1 was imposed to ensure that Lo was contained
in H2

C
. We drop this condition and use Lo as given by Lemma 3.7.

Note that the closure Lo = Lo ∪Co of the Lagrangian plane Lo is the fixed point
set of the antiholomorphic involution in C2,1 given by

Ro :

⎛⎝z1
z2
z3

⎞⎠ �−→

⎛⎝−z1−z2
z3

⎞⎠ . (12)

Now we consider the fibre over o of the bundle Ω−
Π
−→ H2

R
.

Lemma 3.8. Suppose that z = [z1 : z2 : z3] ∈ Ω− is a point for which Π(z) = o =
[0 : 0 : 1]. Then z3 = 0 and �(z1z2) 
= 0. Hence Lo = (Π|Ω

−

)−1(o), the fibre over o of
the projection Π restricted to Ω− consists of two open hemispheres D1

o, D
2
o contained

in the projective line So =
{
[z1 : z2 : 0] ∈ CP

2
}
and defined by �(z1z2) 
= 0. In other

words, the components of the fibre are:

D1
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, �(z1z2) > 0

}
,

D2
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, �(z1z2) < 0

}
.

The common boundary of D1
o and D2

o is the circle Co from Lemma 3.7 , namely

Co =
{
[z1 : z2 : 0] : (z1, z2) ∈ C

2 \ {(0, 0}, �(z1z2) = 0
}
.

Proof. Since z ∈ Ω− we have z ∈ U−. If Π(z) = o then

Π̃(z) = iz� z = i

⎛⎝z3z2 − z2z3
z1z3 − z3z1
z1z2 − z2z1

⎞⎠ =

⎛⎝2�(z3z2)2�(z1z3)
2�(z1z2)

⎞⎠ = o =

⎛⎝00
1

⎞⎠ . (13)

Moreover α(z) =
(
iz� z

)
3
= 2�(z1z2) so our description of D1

o and D2
o given above

is consistent with Lemma 3.5. In particular, using (10) and (11), we see that D1
o is

contained in Ω1
− and D2

o is contained in Ω
2
−.

We claim that any solution to (13) must have z3 = 0. If we were to have z3 
= 0,
then z1z2 = (z1z3)(z3z2)/|z3|2. Since �(z1z3) = �(z3z2) = 0, then we also have
�(z1z2) = 0, which is a contradiction. Putting z3 = 0 gives

〈iz� z, iz� z〉 = −4
(
�(z1z2)

)2
.

Since this should be negative, it is clear that �(z1z2) 
= 0.
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The projectivisation of vectors in C2,1 \ {0} with z3 = 0 form the complex pro-
jective line (that is sphere):

So =
{
[z1 : z2 : 0] : (z1, z2) ∈ C

2 \ {(0, 0)}
}
.

The condition �(z1z2) 
= 0 divides this sphere into the two hemispheres D1
o and D2

o

given above. These hemispheres are interchanged by the involution R0 given in (12).

We remark that Theorem 3 in the introduction is now an immediate consequence
of Theorem 3.6, together with Lemmas 3.7 and 3.8.

3.3. The general fibre. Now we use Lemmas 3.7 and 3.8 to determine the
general fibres of the bundle Ω → H2

R
. This yields Theorem 4 in the introduction.

For this it is convenient to think of H2
R
as being the unit ball in [x1 : x2 : 1]

in RP2. Hence the coordinates (x1 : x2) can be described in polar coordinates by(
tanh(t) cos(θ), tanh(t) sin(θ)

)
. Thus in homogeneous coordinates we have:

x = [x1 : x2 : 1] = [tanh(t) cos(θ) : tanh(t) sin(θ) : 1],

As t and θ vary, we obtain all points in the real hyperbolic plane H2
R
embedded in

H2
C
⊂ CP2.
The proof of the following lemma is left as an exercise to the reader:

Lemma 3.9. Let x := [tanh(t) cos(θ) : tanh(t) sin(θ) : 1] be an arbitrary point in
H2

R
. Then the matrix A defined by:

A :=

⎛⎝cosh(t) cos(θ) − sin(θ) sinh(t) cos(θ)
cosh(t) sin(θ) cos(θ) sinh(t) sin(θ)

sinh(t) 0 cosh(t)

⎞⎠
is in SO+(2, 1) and projectively carries o = [0 : 0 : 1] into x.

We may now use this matrix A to translate the fibres over the special point o
given by lemmas (3.7) and (3.8), to the fibres over an arbitrary point in H2

R
. In doing

so, the matrix A will allow us to use a new basis Bx adapted to x. The new basis is

Bx =

⎧⎨⎩
⎛⎝ cos(θ)
sin(θ)
tanh(t)

⎞⎠ ,

⎛⎝− sin(θ)cos(θ)
0

⎞⎠ ,

⎛⎝tanh(t) cos(θ)tanh(t) sin(θ)
1

⎞⎠
⎫⎬⎭ . (14)

We note that the first and last vectors are projective images of the first and last basis
vector under A. In fact we have scaled by 1/ cosh(t) in each case. Since 1/ cosh(t) is
a positive real number, this does not have a significant effect on the fibres.

First consider the fibre in Ω+ over x. Applying the matrix A immediately gives
the following description of the fibre.

Proposition 3.10. Let z ∈ Ω+ be a point for which Π(z) = x, where x ∈ H2
R
is

the point

x := [tanh(t) cos(θ) : tanh(t) sin(θ) : 1].

Then z is the image under the map A given in Lemma 3.9 of a point in Lo. Hence
Lx = (Π|Ω+

)−1(x) is the Lagrangian plane

Lx = P

⎧⎨⎩iy1

⎛⎝ cos(θ)
sin(θ)
tanh(t)

⎞⎠+ iy2

⎛⎝− sin(θ)cos(θ)
0

⎞⎠+ x3

⎛⎝tanh(t) cos(θ)tanh(t) sin(θ)
1

⎞⎠ :
y1, y2, x3 ∈ R,

x3 
= 0

⎫⎬⎭ .
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The boundary of Lo is the circle

Cx =
{
[iy1 cos(θ)− iy2 sin(θ) : iy1 sin(θ) + iy2 cos(θ) : iy1 tanh(t)] : y1, y2 ∈ R

2 \ {(0, 0)}
}
.

We remark that each such plane Lx intersects H2
C
in the set of all points in

H2
C
\H2

R
which are contained in the totally real Lagrangian plane of points Hermitian

orthogonal to H2
R
at x.

We now consider the fibre in Ω− over the point x. Once again, simply applying
A gives the fibre.

Proposition 3.11. Let z ∈ Ω− be a point for which Π(z) = x, where x ∈ H2
R
is

the point

x = [tanh(t) cos(θ) : tanh(t) sin(θ) : 1].

Then z is the image under the map A given in Lemma 3.9 of a point in D1
o or D2

o.
Hence (Π|Ω

−

)−1(x) comprises the two discs

D1
x =

{
[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : �(z1z2) > 0

}
,

D2
x =

{
[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : �(z1z2) < 0

}
.

The common boundary of D1
x and D2

x is the circle Cx from Proposition 3.10, namely

Cx =
{
[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : �(z1z2) = 0

}
.

Consider a vector z that projects to one of D1
x, D

2
x, Cx as in Proposition 3.11,

namely

z =

⎛⎝z1 cos(θ)− z2 sin(θ)
z1 sin(θ) + z2 cos(θ)

z1 tanh(t)

⎞⎠ .

Then using (8), we see that α(z) =
(
iz � z)3 = 2�(z1z2). Therefore, using (10) and

(11) we see that D1
x is contained in Ω

1
− and D2

x is contained in Ω
2
−.

Observe that the construction above shows that Ω+, Ω
1
− and Ω

2
− are all connected.

Thus Ω indeed does have exactly three components. This completes the proof of
Theorem 4 and hence also of Theorem 2 stated in the introduction.

3.4. Limiting behaviour of the fibres as x tends to ∂H2
R
. In this section we

investigate the limiting behaviour of the fibres as the base point tends to the boundary
of H2

R
. Our goal will be to prove Theorem 5.

As above, we parametrise points x in H2
R
via t ∈ R+ and θ ∈ [0, 2, π) as

x =
[
tanh(t) cos(θ) : tanh(t) sin(θ) : 1

]
.

Note that as t tends to infinity then x tends to ∂H2
R
. Therefore to describe the

behaviour as points of H2
R
tend to ∂H2

R
then we should consider a sequence xj
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parametrised by tj and θj with the property that there exists θ so that limj→∞ tj =∞
and limj→∞ θj = θ. The limiting point will be

ξ =
[
cos(θ) : sin(θ) : 1

]
∈ ∂H2

R.

For simplicity of exposition, it is sufficient to fix θ and simply to let t tend to ∞ (so
x tends radially towards ξ). It is straightforward to adapt our arguments to more
general ways that x can tend towards ξ. We use the basis Bx of C

2,1 given in (14).
Note that as t tends to infinity then tanh(t) tends to 1. Thus the first and third basis
vectors tend to the same limit.

Let z be a vector in U0 − R2,1 that projects to the fibre Lξ, namely take

z =

⎛⎝z1 cos(θ)− z2 sin(θ)
z1 sin(θ) + z2 cos(θ)

z1

⎞⎠ .

Then it is easy to see that η2(z) = −z22 and so we define η(z) = iz2. A short calculation
yields

zη(z) + zη(z) = iz� z = 2�(z1z2)

⎛⎝cos(θ)sin(θ)
1

⎞⎠ .

Hence the definition of Π̃(z) extends continuously to the same limit, whether we
approach U0 from U+ or U−. Compare this to Corollary 3.4.

First consider Sx = D1
x ∪D2

x ∪ Cx, which is given by

Sx =
{[

z1 cos(θ)−z2 sin(θ) : z1 sin(θ)+z2 cos(θ) : z1 tanh(t)
]
: (z1, z2) ∈ C

2\{(0, 0)}
}
.

It is clear that as t tends to infinity, then Sx tends to

Lξ =
{[

z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1
]
: (z1, z2) ∈ C

2 \ {(0, 0)}
}

as given in Proposition 1.8. Moreover,

Cx =
{[

z1 cos(θ) − z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)
]
∈ Sx : �(z1z2) = 0

}
,

tends to

Cξ =
{[

z1 cos(θ)−z2 sin(θ) : z1 sin(θ)+z2 cos(θ) : z1
]
∈ Lξ : �(z1z2) = 0

}
= Lξ∩M.

This proves parts (1) and (3) of Theorem 5.
We now consider the limit as t tends to infinity of Lx = Lx ∪ Cx:

Lx = P

⎧⎨⎩y1

⎛⎝ cos(θ)
sin(θ)
tanh(t)

⎞⎠+ y2

⎛⎝− sin(θ)cos(θ)
0

⎞⎠+−ix3

⎛⎝tanh(t) cos(θ)tanh(t) sin(θ)
1

⎞⎠ : y1, y2, x3 ∈ R

⎫⎬⎭ .

Note we have multiplied our homogeneous coordinates by −i. First consider the chart
Px where y2 
= 0 on which we select the inhomogeneous coordinates given by y2 = 1.
This chart is a copy of R2:

Px =

⎧⎨⎩y1

⎛⎝ cos(θ)
sin(θ)
tanh(t)

⎞⎠+

⎛⎝− sin(θ)cos(θ)
0

⎞⎠+−ix3

⎛⎝tanh(t) cos(θ)tanh(t) sin(θ)
1

⎞⎠ : y1, x3 ∈ R

⎫⎬⎭ .
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It is clear that as t tends to ∞ this tends to the following copy of R2 in Lξ, which we
denote by Pξ:

Pξ =

⎧⎨⎩(y1 − ix3)

⎛⎝cos(θ)sin(θ)
1

⎞⎠+

⎛⎝− sin(θ)cos(θ)
0

⎞⎠ : y1, x3 ∈ R

⎫⎬⎭ .

In order to get the whole of Lx we must add to Px the collection of points where
y2 = 0. This is a circle of directions

Qx =

⎧⎨⎩cos(φ)
⎛⎝ cos(θ)
sin(θ)
tanh(t)

⎞⎠+ i sin(φ)

⎛⎝tanh(t) cos(θ)tanh(t) sin(θ)
1

⎞⎠ : φ ∈ [0, π)

⎫⎬⎭ ,

and Px ∪Qx is a copy of RP
2. As t tends to ∞ we see that Qx tends to

Qξ =

⎧⎨⎩eiφ

⎛⎝cos(θ)sin(θ)
1

⎞⎠ : φ ∈ [0, π)

⎫⎬⎭ .

After projectivising, we see that P(Qξ) = ξ, so the whole circle of directions collapses
to a single point, namely ξ itself. Hence Pξ ∪ Qξ = Pξ ∪ {ξ} is a sphere. In fact it
is Lξ. Putting this together, we see that Lx tends pointwise to Lξ as claimed. This
completes the proof of Theorem 5.
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