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Abstract

We look at lattices in Iso+(H2
R), the group of orientation preserving isometries of the

real hyperbolic plane. We study their geometry and dynamics when they act on CP2

via the natural embedding of SO+(2, 1) ↪→ SU(2, 1) ⊂ SL(3,C). We use the Hermitian
cross product in C2,1 introduced by Bill Goldman, to determine the topology of the
Kulkarni limit set ΛKul of these lattices, and show that in all cases its complement ΩKul

has three connected components, each being a disc bundle over H2
R. We get that ΩKul

coincides with the equicontinuity region for the action on CP2. Also, it is the largest
set in CP2 where the action is properly discontinuous and it is a complete Kobayashi
hyperbolic space. As a byproduct we get that these lattices provide the first known
examples of discrete subgroups of SL(3,C) whose Kulkarni region of discontinuity in
CP2 has exactly three connected components, a fact that does not appear in complex
dimension 1 (where it is known that the region of discontinuity of a Kleinian group
acting on CP1 has 0, 1, 2 or infinitely many connected components).

Introduction

The motivation for this work comes from the theory of lattices in SO(n, 1), the group of
linear automorphisms of Rn+1 that preserve the quadratic form x2

1 + · · · + x2
n − x2

n+1. The
problem we study can be expressed as follows. Consider the natural inclusion ρ : SO(n, 1)→

∗Partially supported by grants from CONACYT, PAPIIT-UNAM, Mexico, and the Alan Richards Fel-
lowship at Grey College, U. K.
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SU(m, 1) given by block diagonal matrices ρ : A 7→ (Im−n, A), in the special linear group
of automorphisms of the Hermitian space Cm,1, which is Cm+1 equipped with the Hermitian
form

〈z,w〉 = z1w1 + · · ·+ zmwm − zm+1wm+1.

Let Ξ be the complex line spanned by the null vector ξ = (0, · · · , 0, 1, 1)t, let L be its

Hermitian orthogonal complement, a hyperplane. Let Λ̃ be the orbit of L under this repre-
sentation, that is the family of all hyperplanes ρ(A)(L) for A ∈ SO(n, 1). The problem is
to study the algebraic, geometric and dynamical properties of this set, and of its image Λ

under the projectivisation map Cm+1 \ {0} P→ CPm.
Our interest in this question arose from the fact that if Γ is a lattice in SO(n, 1), and if

we consider the action of Γ on the projective space CPm determined by the representation
ρ, then we know from [10, 4] that Γ acts properly discontinuously on the complement
Ω := CPm \ Λ, which is the region of equicontinuity for the action of Γ. Furthermore, by
[1, 8] (and Theorem 2.7.(iii) below), Ω is a complete Kobayashi hyperbolic space where
SO(n, 1) acts by holomorphic isometries with respect to the Kobayashi metric. Moreover,
if we restrict the discussion to the case n = 2 = m, as we do in this paper, then by
[10] we know further that the set Λ is the Kulkarni limit set ΛKul(Γ) of every lattice Γ in
SO+(2, 1) ⊂ SU(2, 1).

Our approach relies on Bill Goldman’s work [6] on linear algebra in the Hermitian space
C2,1, and more specifically, on the Hermitian cross-product � in this space. This product
� is an alternating “bilinear” map (in fact conjugate bilinear) that associates to each pair
of vectors z, w another vector z � w, which is orthogonal to both z and w whenever these
are linearly independent. See Section 2.1 for more details of the cross-product and its
properties. We also consider the complex conjugation map z 7−→ z in C2,1. We combine
the complex conjugation map with the Hermitian cross-product to define a decomposition
of C2,1 \ {0} into three sets U+, U0, U− which is closely related to, but different from,
the classical decomposition of this Hermitian space into positive, null and negative vectors,
respectively V+, V0, V−. The sets U+, U0, U− correspond to the points where the function
defined by f(z) = 〈iz�z, iz�z〉 is positive, zero or negative, respectively. By definition this
corresponds to the cases when the vector iz� z is in V+, (V0 ∪ {0}) and in V−, respectively.

Let R2,1 ⊂ C2,1 be the set of real points. It is clear that such points are fixed by the
complex conjugation map. We let P< denote the projectivisation of R2,1 \ {0}, which is a
copy of RP2 embedded in CP2. We show (Lemma 2.4) that if z is a non-zero vector such
that f(z) = 0, then either the projectivisation z = P(z) is a point in the set Λ or else the
projectivisation z is in the plane P<. The latter happens if and only if iz � z = 0. This
is used to show that all vectors in V− ∪ V0 whose projectivisation P is not contained in the
Lagrangian plane P< are contained in the set U+, and the set Λ is P(U0) \ P(V−). We then
arrive to the following theorem:

Theorem 1 The set Λ is a 3-dimensional semi-algebraic set that contains the Möbius strip
M := P< \H2

R as its singular set; every point in the interior of M is the meeting point of
exactly two of the projective lines that form the set Λ. Moreover, Λ \M is a fibre bundle
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over ∂H2
R with fibre at each ξ ∈ ∂H2

R the corresponding sphere Lξ –tangent to ∂H2
C at ξ–

minus the circle Cξ := Lξ ∩M. Thence Λ \M is diffeomorphic to a disjoint union of two
solid tori S1 × R2.

This is used to show:

Theorem 2 The complement Ω := CP2 \ Λ has three connected components, Ω+,Ω
1
−,Ω

2
−,

each being SO+(2, 1)-invariant and each being diffeomorphic to an open 4-ball. In particular,
the ball H2

C is contained in one of these components, namely Ω+.

Precise descriptions of Ω+, Ω1
− and Ω2

− are given in (9), (10) and (11). Note that any
matrix A ∈ SO(2, 1)\SO+(2, 1) interchanges the components Ω1

− and Ω2
− and preserves Ω+.

Our next theorem is:

Theorem 3 Let Ω+, Ω1
−, Ω2

− be as in Theorem 2. Then one has a natural projection map
Π : Ω→ H2

R which turns each of these three sets into an SO+(2, 1)-equivariant fibre bundle
over H2

R with fibre a 2-disc, and one has:

1. The fibre over o := [0 : 0 : 1] in Ω+ is the Lagrangian 2-plane

Lo =
{

[iy1 : iy2 : x3] : y1, y2, x3 ∈ R, x3 6= 0
}
.

2. The fibres over o in Ω1
− and Ω2

− are the two open hemispheres D1
o and D2

o determined
by the equator =(z1z2) = 0 in the line So :=

{
[z1 : z2 : 0] : (z1, z2) ∈ C2 \ {(0, 0)}

}
,

which is the projective dual of [0 : 0 : 1]. That is, the fibres are

D1
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, =(z1z2) > 0

}
,

D2
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, =(z1z2) < 0

}
.

3. These three fibres Lo, D
1
o, D

2
o have as common boundary the circle Co:

Co = ∂L+
o =

{
[iy1 : iy2 : 0] : (y1, y2) ∈ R2 \ {(0, 0)}

}
= ∂D1

o = ∂D2
o =

{
[z1 : z2 : 0] : (z1, z2) ∈ C2 \ {(0, 0)}, =(z1z2) = 0

}
.

To determine the fibres of these bundles over a general point in H2
R we use the fact that

SO+(2, 1) acts transitively on H2
R and the bundles in question are equivariant. So we can

just translate the fibres over the special point [0 : 0 : 1] to the fibres over any other point
using the group action. We remark that H2

R is being regarded as the projectivisation of
the set of negative vectors in the totally real 3-space R3 ∈ C3. Thence (see Section 3.3) a
general point in x ∈ H2

R can be described as x = [tanh(t) cos(θ) : tanh(t) sin(θ) : 1] for some
t ≥ 0 and θ ∈ [0, 2π). We get:

3



Theorem 4 Let Π : Ω→ H2
R, Lo, D

1
o, D

2
o and Co be as in Theorem 3. Let x be any point

of H2
R and let Ax ∈ SO+(2, 1) be any map sending o to x. Then

1. The fibre Lx over x in Ω+ is the Lagrangian 2-plane Lx = Ax(Lo).

2. The fibres over x in Ω1
− and Ω2

− are the two open hemispheres D1
x = Ax(D

1
o) and

D2
x = Ax(D

2
o) in the sphere Sx = Ax(So).

3. These three fibres Lx, D1
x, D2

x have as common boundary the circle Cx = Ax(Co).

We give explicit expressions for Lx, D
1
x, D

2
x and Cx in Propositions 3.10 and 3.11. As

a corollary to Theorem 4, we have that if P is an arbitrary fundamental domain for the
action of a cofinite R-Fuchsian group on H2

R, then the inverse image of P by the projection
Π : Ω→ H2

R is a fundamental domain for the action of Γ on Ω. This is in the same vein as
the construction of fundamental domains constructed by Parker and Platis in [12].

Finally, we discuss how the fibres behave as the base point in H2
R tends to the boundary

∂H2
R.

Theorem 5 For x ∈ H2
R let Lx, D1

x, D2
x and Cx be as in Theorem 4. For ξ ∈ ∂H2

R let Lξ
and Cξ be as in Theorem 1. Then as the point x ∈ H2

R tends to ξ ∈ ∂H2
R we have:

1. The circle Cx tends to the circle Cξ.

2. Lx ∪ Cx, the closure of the fibre in Ω+ over x, tends pointwise to Lξ.

3. Sx = D1
x ∪D2

x ∪ Cx, the closure of the fibre in Ω− over x, tends to Lξ.

Perhaps the most surprising feature of this result is part (2), namely that that Lx ∪Cx,
which is a copy of RP2, tends to Lξ, which is a copy of CP1. The way this happens is the
following. We can view Lx∪Cx as a copy of R2 together with a circle of directions at infinity.
As x tends to ξ this circle of directions collapses to a single point. The limit is then a copy
of R2 with a single point at infinity, which is a sphere.

Summarising, we have that duality in RP2 associates a real projective line (a circle) Cx
in the interior of M to each point x ∈ H2

R. Also, duality in CP2 associates to each such
point x a complex projective line (a sphere) Sx in V+∪V0 which meets the totally real plane
P< in the circle Cx. The hemispheres D1

x ∪D2
x = Sx \Cx lie in PU−. The union of all these

pairs of hemispheres D1,2
x fills the whole set PU−, which has two components and fibres over

H2
R in the natural way. This gives an identification between PU− and two components, Ω1

−
and Ω2

− of Ω := CP2 \Λ. On the other hand, each point x ∈ H2
R determines a unique totally

real Lagrangian plane orthogonal to H2
R in H2

C at x; such a plane extends naturally to a
plane in CP2 that has the circle Cx as boundary. The union of all these 2-planes is the set
PU+ ∪H2

R. This is a third component Ω+ of Ω. Thence for each x ∈ H2
R the three fibres

Lx, D
1
x, D

2
x are 2-discs, glued together along their boundary, which is the circle Cx. These

2-discs form a kind of “theta surface”, i.e., a Θ rotated around its vertical axis. Yet, the
horizontal bar actually corresponds to a 2-disc, whose boundary is wrapping twice around
the circle of singular points, together with which it forms a real projective plane.

An immediate consequence of Theorem 3 is:
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Corollary 6 The Kulkarni region of discontinuity ΩKul of all R-Fuchsian lattices has three
connected components, each diffeomorphic to a 4-ball.

This is interesting because if we look at Kleinian subgroups of PSL(2,C) acting on the
projective line, we know that the region of discontinuity either has infinitely many connected
components, or else it has at most two connected components. When we look at discrete
subgroups of PSL(3,C), then the number of connected components in the Kulkarni region
of discontinuity ΩKul can be:

• Zero: For instance the suspension of every discrete subgroup of PSL(2,C) whose limit
set is the whole CP1. (We refer to [4] for the suspension construction.)

• One: For instance a lattice in PU(2, 1) where ΩKul is exactly a copy of H2
C, that is the

unit complex ball (see [4, Corollary 7.2.11 (b)]).

• Two: For instance all the C-Fuchsian lattices described in Section 1.3. More generally,
all groups constructed by suspending a Fuchsian subgroup of PSL(2,C) of the first
kind.

• Four: For instance the examples in [2] of complex Kleinian groups with exactly four
lines in general position in the Kulkarni limit set.

• Infinite: For instance all groups constructed by suspending a Kleinian subgroup of
PSL(2,C) with infinitely many connected components in its region of discontinuity.

The R-Fuchsian lattices are the first known examples of discrete subgroups of PSL(3,C)
where the Kulkarni region of discontinuity has three connected components. We do not know
whether or not the above list exhausts all possibilities, i.e., whether there exist subgroups
of PSL(3,C) where the number of connected components in ΩKul is 6= 0, 1, 2, 3, 4 or ∞.

This paper is arranged as follows. In Section 1, for completeness we first give some
background that we need on projective and complex hyperbolic geometry, limit sets and R-
Fuchsian groups in PU(2, 1). We define here the lambda and omega sets of SO+(2, 1) in CP2,
which we denote by Λ and Ω because they are reminiscent of the limit set and discontinuity
region of discrete groups. We also discuss in this section the analogous problem in the much
simpler case where Iso+(H2

R), the group of orientation preserving isometries of the real
hyperbolic plane, is represented in SU(2, 1) not via the representation SO+(2, 1) considered
above, but instead via the natural embedding S(U(1)×U(1, 1)) ⊂ SU(2, 1). This motivates
the results that we describe below for R-Fuchsian groups, and it also highlights an interesting
point. As we know already, the group Iso+(H2

R) can be embedded in SU(2, 1) in the two
natural ways mentioned above: by thinking of it as being SU(1, 1) or as being SO+(2, 1). In
one case, it yields the subgroup of holomorphic isometries that preserve a complex geodesic,
a 2-disc H1

C, which inherits from H2
C a metric that turns it into the Poincaré disc model

for the hyperbolic plane, with constant curvature −1. In the second case it yields a totally
geodesic invariant 2-disc in H2

R, which inherits from H2
C a metric that turns it into the

Klein-Beltrami model of H2
R, with constant curvature −1

4
. So from the geometric viewpoint
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there are significant differences between these two cases. The results in this article show
that there also significant topological differences between the two cases: In the first of them,
the corresponding set Λ of lines tangent to ∂H2

C at the points in ∂H1
C splits CP2 in two

connected components, each diffeomorphic to a 4-ball; in the second case, the corresponding
set Λ splits CP2 in three connected components, each diffeomorphic to a 4-ball.

In Section 2 we look at the set Λ and prove Theorem 1. Also, we define the projection
Ω → H2

R and show that this gives rise to the appropriate fibre bundles. In Section 3 we
describe the fibre bundle in more detail. First, we give equations for the special fibre over
the origin [0 : 0 : 1] of these bundles, which together with the results of Section 2 proves
Theorems 2 and 3. We go on to complete the proof of Theorem 4 by using the knowledge
we gained about the special fibres over [0 : 0 : 1] and then using the fact that the bundles
in question are equivariant. Finally, we investigate the behaviour of the fibres as the base
point tends to ∂H2

R, which completes the proof of Theorem 5.

Acknowledgements. This research was partially supported by CONACYT and PAPIIT-
UNAM, Mexico. In addition, part of the work was carried out while JRP was supported by
Santander Bank to visit Mexico, and part of it was carried out while JS was visiting Durham
as an Alan Richards Fellow at Grey College, and also supported by a Pascal Fellowship that
allowed AC to visit Durham. We are grateful for all the support we received.

1 Preliminaries on R-Fuchsian groups acting on CP2

1.1 Real and complex hyperbolic space in CP2

The projective space CP2 is the quotient of the complex space C3 minus the origin, by
the action of the non-zero complex numbers: CP2 := (C3 \ {0})/C∗. We denote by P the

projectivisation map C3 \ {0} P→ CP2. Throughout this paper, points in C3 (or in C2,1, see
below) will be denoted by z, and z will denote the image in CP2 under projectivisation. We
will think of z as a column vector in C3, as we want matrices to always act on the left. So,
if z = (z1, z2, z3)t is a column vector in C3 then z = P(z) = [z1 : z2 : z3], using homogeneous
coordinates to denote points in CP2.

Let C2,1 denote a copy of C3 equipped with the Hermitian form:

H(z,w) := 〈z,w〉 = z1w1 + z2w2 − z3w3 ,

where z = (z1, z2, z3)t and w = (w1, w2, w3)t are (column) vectors in C3. Denote by V−, V0,
V+ the sets of negative, null and positive vectors in C2,1 \{0}, respectively, i.e., the non-zero
vectors where the quadratic form Q(z) = |z1|2 + |z2|2 − |z3|2 = H(z, z) is negative, zero or
positive.

In this article we often speak of orthogonality between vectors in C2,1. This means that
the value of the Hermitian form H on these vectors is 0. Given z = [z1 : z2 : z3], by
z⊥ = [z1 : z2 : z3]⊥ we mean the set of all points w = [w1 : w2 : w3] in CP2 such that
z1w1 + z2w2 − z3w3 = 0.
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The set V0 is often referred to as the light cone, and the set V− is the interior of this light
cone. The projectivisation P(V−) of V− plays a key role in what follows. We observe that
each complex line in V− meets the set

B :=


z1

z2

1

 ∈ C3 : |z1|2 + |z2|2 < 1

 ,

in a unique point and therefore P(V−) is a complex 2-dimensional open ball in CP2:

P(B) =
{

[z1 : z2 : 1] ∈ CP2 : z1, z2 ∈ R, |z1|2 + |z2|2 < 1
}

= P(V−) .

The restriction of (−Q) to V− determines a positive definite quadratic form on this set,
which defines a metric on P(V−) and turns it into a model for the complex hyperbolic space
H2

C. The subgroup of SL(3,C) of maps that preserve the quadratic form Q is by definition
SU(2, 1) and its projectivisation PU(2, 1) is the group of holomorphic isometries of H2

C. We

set H
2

C = H2
C ∪ ∂H2

C; this is a closed real 4-ball with boundary the 3-sphere, which is the
projectivisation of V0, the set of null-vectors.

Notice that H2
C contains a copy of the 2-disc:

H2
R =

{
[x1 : x2 : 1] ∈ CP2 : x1, x2 ∈ R, x2

1 + x2
2 < 1

}
= H2

C ∩ P<,

and the induced metric turns this into the Klein-Beltrami model for the real hyperbolic
plane H2

R (see [6]). The orientation preserving isometries of H2
R in this model form the

group SO+(2, 1), which is the connected component of SO(2, 1) containing the identity.
One has a natural embedding:

ιR : SO+(2, 1) −→ SU(2, 1) ,

which allows us to think of SO+(2, 1) as a group of automorphisms of CP2, acting by
isometries on H2

C as well as on the real hyperbolic plane H2
R. In particular, every group of

isometries of the real hyperbolic disc H2
R can be regarded as a group of isometries of H2

C via
this embedding.

Recall that a (classical) Fuchsian group is by definition a discrete subgroup of Iso+(H2
R),

the group of orientation preserving isometries of the real hyperbolic plane. Given a Fuchsian
group Γ, the identification of Iso+(H2

R) with SO+(2, 1) provides a natural way of embedding
Γ in SU(2, 1):

Definition 1.1 The image in SU(2, 1) of a discrete subgroup Γ ⊂ SO+(2, 1) under the
natural embedding SO+(2, 1) −→ SU(2, 1), is called an R-Fuchsian subgroup.

Of course there are other ways of embedding Fuchsian groups in SU(2, 1). For instance
one of these is as C-Fuchsian groups (cf. [7]), and we look at these below.

It is clear that R-Fuchsian groups act on CP2, leaving invariant the ball H2
C as well as

the totally real Lagrangian plane P<.
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1.2 The limit set and equicontinuity

A discrete subgroup Γ of Iso(Hn
R) acts properly discontinuously on Hn

R. In contrast, the
action of Γ on the boundary ∂Hn

R divides this set into two subsets. First, the limit set of Γ is
the set of accumulation points of Γ-orbits. This set is obviously closed and invariant. It also
has many other remarkable properties. Its complement is called the region of discontinuity.
When the limit set is all of ∂Hn

R (and so the region of discontinuity is empty) then Γ is said
to be of the first kind. Otherwise it is of the second kind. In this paper we will only consider
Fuchsian groups (that is discrete groups Γ in Iso+(H2

R)) of the first kind.
Viewing the hyperbolic plane as the Poincaré disc (or the upper half plane) in CP1, we

can naturally identify Isom(H2
R) with the subgroup PU(1, 1) (or PSL(2,R) respectively) of

PSL(2,C). If Γ is a Fuchsian group of the first kind then its limit set is a circle in CP1. The
region of discontinuity is a pair of discs, coincides with the region of equicontinuity and is
the largest subset of CP1 where the action of Γ is properly discontinuous.

In higher dimensions, there are several possible notions of the concept of “limit set”
for discrete groups of projective automorphisms of CPn, and we refer to [4] for a thorough
discussion of this topic. One of these was introduced by Ravi Kulkarni in [9] and applies in
a fairly general setting that includes the one we envisage here. This notion of limit set has
the nice property of granting that its complement is an open invariant set where the action
is properly discontinuous.

Let us recall the definition of the Kulkarni limit set. For simplicity we restrict the
discussion to discrete subgroups of PSL(3,C), so we consider a discrete subgroup Γ ⊂
PSL(3,C). Its Kulkarni limit set ΛKul(Γ) is by definition the union of three Γ-invariant sets
Λ0(Γ), Λ1(Γ) and Λ2(Γ):

• Λ0(Γ) is the closure of the set of points in CP2 with infinite isotropy.

• Λ1(Γ) is the closure in CP2 of the set of accumulation points of orbits of points in
CP2 \ Λ0(Γ).

• Λ2(Γ) is the closure in CP2 of the set of accumulation points of orbits of compact sets
in CP2 \ (Λ0(Γ) ∪ Λ1(Γ)).

The complement ΩKul(Γ) := CP2 \ ΛKul(Γ) is the Kulkarni region of discontinuity of (Γ).
These ideas were introduced by Kulkarni in [9] where he also proved that the action

on the set ΩKul(Γ) is properly discontinuous. For discrete groups of PSL(2,C) this notion
coincides with the usual region of discontinuity, and also with the region of equicontinuity.
But in higher dimensions these notions are different.

We recall that a (possibly non-discrete) family of transformations on a manifold M is
equicontinuous on an open invariant set U ⊂ M if all the transformations have “equal
variation”. More precisely,

Definition 1.2 A family F of continuous functions between complete metric spaces is
equicontinuous at a point x0 ∈ U if for every ε > 0, there exists a δ > 0 (which de-
pends only on ε) such that d(g(x0), g(x)) < ε for all g ∈ F and all x such that d(x0, x) < δ.
The family is equicontinuous on U if it is equicontinuous at each point of U .

8



The family F is called normal if every sequence of functions in F contains a subsequence
which converges uniformly on compact subsets to a continuous function. Moreover, by
Arzelà-Ascoli’s theorem these two notions –equicontinuity and normal family– are equivalent
whenever the domain is a compact set.

Notice also that the union Λ0(Γ) ∪ Λ1(Γ) is the usual (Poincaré) limit set, i.e., the set
of accumulation points of all orbits of points in CP2.

Now suppose that Γ actually is a subgroup of PU(2, 1), so it acts on CP2 leaving invariant
the 4-ball of points in CP2 whose homogeneous coordinates [z1 : z2 : z3] satisfy |z1|2 + |z2|2 <
|z3|3. In this case we also have another notion of limit set defined by Chen and Greenberg
in [5], which we denote by ΛCG(Γ). This is the subset of ∂H2

C where the orbits of points
in H2

C accumulate. As in the classical setting of real hyperbolic groups, one has that if
ΛCG(Γ) has finite cardinality, then it consists of at most two points and such groups are
called elementary.

So for a complex hyperbolic discrete group Γ ⊂ PU(2, 1) we have two notions of a
limit set: The Chen-Greenberg limit set, which takes into account only the action of the
group on the ball H2

C, and the Kulkarni limit set, which looks at the action globally on
all of CP2. We also have the complement of the equicontinuity region. For non-elementary
discrete subgroups of PU(2, 1), the relation between these three sets was established by J.-P.
Navarrete in [10] (see also [4]).

To explain Navarrete’s results in [10] we recall that the boundary of H2
C is a 3-sphere

and at each point z in ∂H2
C there is a unique complex projective line in CP2, denoted Lz,

which is tangent to the 3-sphere ∂H2
C := P(V0) at z. This line is the projectivisation of the

set of vectors in C2,1 which are H-orthogonal to z. The collection of these lines will play an
important role in our construction.

The main result in [10] says:

Theorem 1.3 If Γ ⊂ PU(2, 1) is non-elementary then:

(i) The Kulkarni limit set ΛKul(Γ) is the union of all projective lines in CP2 which are
tangent to ∂H2

C
∼= S3 at points in the Chen-Greenberg limit set ΛCG(Γ).

(ii) The Kulkarni region of discontinuity ΩKul(Γ) is the largest open invariant set in CP2

where the action is properly discontinuous.

(iii) ΩKul(Γ) coincides with the region of equicontinuity.

Remark 1.4 We may naturally consider the generalisation of this theorem to higher di-
mensions: Given a discrete subgroup Γ ⊂ PU(n, 1), we have its Chen-Greenberg limit set
ΛCG(Γ) defined in the same way. This is contained in the (2n − 1)-sphere ∂Hn

C ⊂ CPn.
At each point z of this sphere there is a unique complex projective hyperplane Lz tangent
to ∂Hn

C at z. The union Λ(Γ) of all these hyperplanes at points in ΛCG(Γ) is a closed
Γ-invariant set. It is proved in [3] that the action of Γ on the complement CPn \ Λ(Γ) is
properly discontinuous and this actually is also the region of equicontinuity. Yet, it is not
known whether or not Λ(Γ) is the Kulkarni limit set of Γ acting on CPn.
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Consider a Fuchsian subgroup Γ ⊂ SO+(2, 1). The (Poincaré) limit set Λ of Γ is contained
in the boundary of H2

R which is a circle ∂H2
R = S1. If Γ ⊂ SO+(2, 1) is thought of as a

subgroup of SU(2, 1), then its Chen-Greenberg limit set ΛCG(Γ) coincides with the usual
limit set Λ contained in ∂H2

R. The group is cofinite if and only if its limit set Λ, and hence
also its Chen-Greenberg limit set ΛCG, is the whole circle ∂H2

R; such groups are also called
lattices in SO+(2, 1). We also know, from Theorem 1.3, that in this case the Kulkarni limit
set ΛKul(Γ) is the union of all complex projective lines in CP2 which are tangent to the
3-sphere ∂H2

R at points in ΛCG(Γ).
Inspired by these constructions we observe that if we regard SO+(2, 1) as a subgroup of

SU(2, 1), then SO+(2, 1) itself leaves invariant the circle ∂H2
R = P< ∩ ∂H2

C. Furthermore,
since the (projective) action of SU(2, 1) on CP2 is by holomorphic transformations, every
complex projective line which is tangent to ∂H2

C at a given point ξ, is carried by each
A ∈ SU(2, 1) into the unique complex projective line which is tangent to ∂H2

C at the point
A(ξ).

Definition 1.5 We let Λ = Λ(SO+(2, 1)) be the set defined by:

Λ :=
{
Lξ : ξ ∈ ∂H2

R and Lξ is the unique complex projective line tangent to ∂H2
C at ξ

}
.

We denote by Ω = Ω(SO+(2, 1)) its complement Ω = CP2 \Λ.

By definition Λ is a closed SO+(2, 1)-invariant subset of CP2. The notation is chosen in
analogy with the traditional concepts of limit set and discontinuity region, since we know
from Navarrete [10] that these sets coincide with the Kulkarni limit set and the Kulkarni
region of discontinuity of every cofinite R-Fuchsian subgroup of PU(2, 1).

Proposition 1.6 The set Ω = Ω
(
SO+(2, 1)

)
is the equicontinuity set Eq

(
SO+(2, 1);CP2

)
for the action of SO+(2, 1) on CP2.

Proof: Observe first that there are infinitely many lines in general position contained in
Λ. Hence the theorem of Cartan-Montel for normal families (see [11, Chapter VIII]) implies
Ω ⊂ Eq

(
SO+(2, 1);CP2

)
. Conversely, let L be a line in Λ, tangent to ∂H2

C at a point
ξ ∈ ∂H2

R, and let A ∈ SO+(2, 1) be a parabolic element (see [6]) that leaves ξ invariant.
Then

Eq
(
SO+(2, 1);CP2

)
⊂ Eq(〈A〉) = CP2 \ L ,

which obviously implies

Eq
(
SO+(2, 1);CP2

)
⊂ CP2 \ SO+(2, 1)L ,

and the result follows because SO+(2, 1)L = Λ
(
SO+(2, 1)

)
. 2

We remark that the same statement and the same proof extend to the more general
setting of lattices in SO+(n, 1) ⊂ SU(m, 1) for m ≥ n considered at the beginning of the
introduction.
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Remark 1.7 It is worth saying that the subset Λ̃ ⊂ C2,1 considered in the introduction is
the inverse image of Λ under the projectivisation map P : C3 \ {0} → CP2. Hence Λ̃ is a
holomorphic line bundle over Λ, restriction of the tautological bundle over CP2.

We now observe that the circle ∂H2
R can be parametrised as follows:

∂H2
R =

{
[cos(θ) : sin(θ) : 1] ∈ CP2 : θ ∈ [0, 2π)

}
. (1)

To determine the corresponding lines in Λ we remark that for ξ in ∂H2
C, if the line Lξ passes

through the point ξ = [cos(θ) : sin(θ) : 1], then it passes also through the orthogonal point
[− sin(θ) : cos(θ) : 0]. Hence the corresponding line is:

Lξ =
{

[λ cos(θ)− µ sin(θ) : λ sin(θ) + µ cos(θ) : λ] ∈ CP2 : θ ∈ [0, 2π), [λ : µ] ∈ CP1
}

=
{

[cos(θ) : sin(θ) : 1]⊥
}
.

We arrive to the following proposition:

Proposition 1.8 The set Λ = Λ(SO+(2, 1)) in CP2 is:

Λ =
{

[λ cos θ − µ sin θ : λ sin θ + µ cos θ : λ] ∈ CP2 : θ ∈ [0, 2π] and [λ : µ] ∈ CP1
}
,

the set of projective lines tangent to ∂H2
C at points in the circle ∂H2

R given by (1).

1.3 C-Fuchsian groups

Recall now that the projective line CP1 can be embedded in CP2 in many ways, as for
instance as the set of points with homogeneous coordinates [0 : z2 : z3]. Its group of
automorphisms is PSL(2,C) and one has a group isomorphism:

PSL(2,C) ∼= Iso+(H3
R),

where Iso+(H3
R) is the group of orientation preserving isometries of real hyperbolic 3-space.

Its subgroup PSL(2,R) is isomorphic to SO+(2, 1). The upper-half plane is biholomorphic
to the unit disc

{
[0 : z2 : 1] : |z2|2 < 1

}
, and we can identify PSL(2,R) with the subgroup

PU(1, 1) of PSL(2,C) consisting of maps that preserve this disc.
The group PSL(2,C) has a natural lifting to its double cover SL(2,C) and this latter

group has a canonical embedding in SL(3,C) given by

(
a b
c d

)
7→

1 0 0
0 a b
0 c d

 .

The projective space CP2 can be regarded as being a compactification of C2 by attaching
to it a line L∞ ∼= CP1 at infinity, the “line of directions”. The action of SL(2,C) on C2
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naturally extends to an action on CP2 that leaves L∞ invariant and the action on this line
is the usual action of PSL(2,C). This yields a natural embedding,

ι : PSL(2,C) −→ PSL(3,C) .

This method of embedding subgroups of PSL(2,C) in PSL(3,C) is a special type of the
suspension groups studied in [4].

It is easy to see that we can actually choose the line L∞ to be

L∞ =
{

[0 : z2 : z3] : (z2, z3) ∈ C2 \ {(0, 0)}
}
.

This projective line intersects the complex hyperbolic space H2
C in a complex slice, a copy of

H1
C, which is a 2-disc isometric to H2

R (with the Poincaré disc-model, see [6]). The restriction
of ι to PSL(2,C) preserves the complex hyperbolic space H2

C and determines an embedding:

ιC : PU(1, 1) −→ PU(2, 1) .

Hence every group of isometries of the hyperbolic plane, viewed as H1
C, can be regarded as a

group of isometries of H2
C via this embedding. In fact, passing to the double cover SU(1, 1)

we may consider, more generally, the natural embedding S
(
U(1)× U(1, 1)

)
⊂ SU(2, 1):

ιθ :

(
eiθ,

(
a b
c d

))
7−→

e2iθ 0 0
0 e−iθa e−iθb
0 e−iθc e−iθd

 .

Projectivising the latter group we get an embedding ιθC of PU(1, 1) into PU(2, 1).
As in [7], we call the image in PU(2, 1) of a discrete subgroup Γ ⊂ PU(1, 1) under this

map a C-Fuchsian subgroup. Such a group leaves invariant the sphere ∂H2
C and also leaves

invariant the projective line L∞ =
{

[0 : z2 : z3] : (z2, z3) ∈ C2 \ {(0, 0)}
}

. Hence it leaves
invariant the circle

∂H1
C = ∂H2

C ∩ L∞ =
{

[0 : eiφ : 1] : φ ∈ [0, 2π)
}
.

Notice that one also has a set Λ = Λ(PU(1, 1)) defined similarly to the R-Fuchsian case
(Definition 1.5): It consists of all complex projective lines Lξ in CP2 tangent to ∂H2

C at
points ξ in ∂H1

C. Its complement is the omega set Ω = Ω(PU(1, 1)).
Again, if Γ is a cofinite Fuchsian group in PU(1, 1) and we embed it in PU(2, 1) as

via ιθC, we get a C-Fuchsian group and by Theorem 1.3 we have that the set Λ(U(1, 1))
coincides with the Kulkarni limit set of Γ; its complement Ω(U(1, 1)) is the Kulkarni region
of discontinuity of Γ and coincides with the region of equicontinuity.

At each point ξ = [0 : eiφ : 1] ∈ ∂H1
C the corresponding line Lξ is the unique projective

line passing through ξ and the orthogonal point [1 : 0 : 0]. Thus Lξ is:

Lξ =
{

[µ : λeiφ : λ] ∈ CP2 : φ ∈ [0, 2π) and [λ : µ] ∈ CP1
}

=
{

[0 : eiφ : 1]⊥ ; φ ∈ [0, 2π)
}
,
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where the latter term denotes the set of all points in CP2 orthogonal to ξ = [0 : eiφ : 1] for
the given (2, 1)-Hermitian form.

If z is a point in Ω
(
PU(1, 1)

)
:= CP2 \ Λ

(
PU(1, 1)

)
, then the line passing through ξ

and the point [1 : 0 : 0] meets the projective line L∞ in a unique point, which necessarily
is away from the circle ∂H1

C. This determines a projection Ω→ L∞ \ ∂H1
C, which is easily

seen to be a fibre bundle with fibre C. Since L∞ \ ∂H1
C consists of two open hemispheres,

this bundle is trivial, and we arrive to the following:

Proposition 1.9 The set Λ = Λ(PU(1, 1)) is:

Λ =
{

[µ : λeiφ : λ] ∈ CP2 : φ ∈ [0, 2π) and [λ : µ] ∈ CP1
}
,

tangent to ∂H2
C
∼= S3 at points in the circle ∂H1

C = ∂H2
C ∩ L∞ and meeting at the point

[1 : 0 : 0]. Thence:

1. The set Λ is homeomorphic to the complex cone over the circle ∂H1
C with vertex at

[1 : 0 : 0], and therefore Λ \
{

[1 : 0 : 0]
}

is diffeomorphic to a solid torus S1 × C.

2. Its complement Ω = Ω(PU(1, 1)) is a trivial fibre bundle over the projective line L∞
minus the equator ∂H1

C, with fibre C. Hence this set has two connected components,
each diffeomorphic to a 4-ball D2 × C where D2 is an open 2-disc.

This result motivates what we do below for SO+(2, 1).

2 The Hermitian cross-product

2.1 The linear algebra of the Hermitian cross-product

We recall that one has on C2,1 the Hermitian cross-product � introduced by Bill Goldman
in [6, p. 43], which is an alternating (essentially) bilinear map C2,1 × C2,1 → C2,1 that can
be defined by (see [6, p. 45]):z1

z2

z3

�

w1

w2

w3

 =

z3w2 − z2w3

z1w3 − z3w1

z1w2 − z2w1

 .

In fact for every λ, µ ∈ C∗ and for every z, w ∈ C2,1 one has:

(λz) � (µw) = λµ (z � w) . (2)

Thus � is bilinear, except that scalars act via their complex conjugate. It is also clear
that if the vectors z and w are linearly independent, then the Hermitian cross-product is
a vector orthogonal to both z and w, with respect to the Hermitian form H = 〈 , 〉. This
construction will play a key role in what follows, so we develop here some theory about it,
which can be of interest on its own.
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Let z and w be linearly independent vectors in C2,1, so they span a 2-plane ←→z,w and
determine a projective line ←→z, w in CP2. We are interested in characterising the 2-planes
in C2,1 which give rise to projective lines which are tangent to ∂H2

C, particularly –but not
only– at points in ∂H2

R. Of course these are the 2-planes which are tangent to the light cone
V0 in C2,1.

Lemma 2.1 Suppose that z and w are linearly independent vectors in C2,1. Let←→z,w denote
the complex 2-plane spanned by z and w.

(a) ←→z,w is contained in V+ if and only if z � w is in V−.

(b) ←→z,w ∩ V− 6= ∅ if and only if z � w is in V+.

(c) ←→z,w is tangent to V0 if and only if z � w is in V0. Moreover, ←→z,w ∩ V0 is spanned by
z � w.

Proof: We know from [6] that the cross-product z � w spans the 1-dimensional space
←→z,w

⊥
orthogonal to the 2-plane ←→z,w.

We begin by showing that z�w ∈ ←→z,w if and only if z�w ∈ V0. Suppose z�w ∈ ←→z,w.
Since z � w is orthogonal to all points in ←→z,w we see that 〈z � w, z � w〉 = 0 and so
z�w ∈ V0. If z�w is not contained in←→z,w then {z, w, z�w} spans C2,1 and so is a basis.
Thus, if z � w were in V0 then it would be orthogonal to all three basis vectors, and so to
all vectors in C2,1. This is a contradiction, since the Hermitian form is non-degenerate.

Suppose ←→z,w is tangent to V0. Without loss of generality suppose that z ∈ V+ and
w ∈ V0. We claim that 〈z,w〉 = 0. If not, then consider vτ = z− τ〈z,w〉w where τ ∈ R+.
Clearly vτ is in ←→z,w. However,

〈vτ ,vτ 〉 = 〈z− τ〈z,w〉w, z− τ〈z,w〉w〉 = 〈z, z〉 − 2τ |〈z,w〉|2.

By taking τ sufficiently large, we can force this point to be in V−, a contradiction. Hence w
is orthogonal to z. By construction, w is in V0 and so w is orthogonal to all points in ←→z,w,
the complex span of z and w. Thus, w is a multiple of z � w.

Conversely, suppose z � w lies in ←→z,w, in particular z � w ∈ V0 as above. Any two
(complex) dimensional space must contain a vector in V+, so write←→z,w as the span of z�w
and some z ∈ V+. Then it is clear that any linear combination of z�w and z lies in V+∪V0,
and lies in V0 only when it is a multiple of z�w. Hence ←→z,w is tangent to V0 and ←→z,w∩ V0

is spanned by z � w.
If ←→z,w is contained in V+, then, {z, w, z�w} is a basis of C2,1. Since V− is non-empty,

we must have z�w ∈ V−. Conversely, if z�w ∈ V− then, as the form has signature (2, 1),
any vector orthogonal to z � w must be in V+.

If ←→z,w ∩ V− 6= ∅ then the restriction of the Hermitian form to ←→z,w has signature (1, 1).
Since {z, w, z � w} is a basis of C2,1 and the form has signature (2, 1), then z � w must
be in V+. Conversely, if z�w is in V+ then, since {z, w, z�w} is a basis for C2,1 and the
form has signature (2, 1) we can find a vector orthogonal to z � w that lies in V−. 2
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As a consequence of this lemma, given a complex 2-plane P ⊂ C2,1 passing through the
origin, the corresponding projective line in CP2 is tangent to ∂H2

C if and only if for each
pair of linearly independent vectors z and w in P one has that the vector z � w is in V0;
and in that case z � w ∈ CP2 is the point of tangency of P(P) with ∂H2

C.
Now we observe that given vectors z, w in C2,1 one has: z � w = −w � z so their

projectivisation coincides:

z � w := P(z � w) = P(w � z) = w � z .

For all z, w ∈ C2,1 we have:
z � w = z � w.

In particular, for all z we have:

z � z = −z � z = −z � z , (3)

and therefore, iz � z = iz � z and so iz � z ∈ R2,1 ⊂ C2,1. Moreover, provided z � z 6= 0,
we have:

z � z = P(iz � z) = P(iz � z) = z � z .

This implies that the point z�z ∈ CP2 is invariant under complex conjugation and therefore
it is in P<. We state these facts as a lemma:

Lemma 2.2 Suppose that non-zero vector z ∈ C2,1 for which iz � z 6= 0. Then we have
z � z = P(iz � z), the image of this cross-product under the projectivisation map, is a well
defined point in the real Lagrangian plane P< of points in CP2 that can be represented by
homogeneous coordinates in R.

Consider the lambda set Λ of SO+(2, 1) given in Definition 1.5. Recall that Λ is, by
definition, the set of all complex projective lines in CP2 which are tangent to ∂H2

C at points
in ∂H2

R = ∂H2
C ∩PR. A complex projective line in CP2 is tangent to ∂H2

C if and only if the
corresponding plane in C2,1 is tangent to V0. The point of tangency in ∂H2

C is in PR if the
line of tangency to V0 is preserved by the complex conjugation map. Using Lemma 2.1 (c)
and Lemma 2.2 we can use this to characterise complex projective lines in Λ.

Corollary 2.3 If z ∈ C2,1 is such that z and z are linearly independent and their product
iz � z is in V0, then the projective line

←→
z, z is in Λ and it is tangent to ∂H2

C at the point
z � z ∈ ∂H2

R.

Recall that V0 is by definition the set of null vectors for the Hermitian form and so if
iz� z ∈ V0 then we have 〈iz� z, iz� z〉 = 0. Conversely, suppose that z is a vector in C2,1

for which 〈iz � z, iz � z〉 = 0. Then it may be that either iz � z = 0 or iz � z 6= 0. In the
latter case we must have that z and z span a complex 2-plane orthogonal to z� z, so these
vectors are linearly independent and we are in the setting of Corollary 2.3. On the other
hand, if iz� z = 0 then the two vectors z and z are linearly dependent, which implies they
represent the same point in CP2, so this point is in P<. Thus we get:
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Lemma 2.4 Suppose that z is a vector in C2,1 for which 〈iz � z, iz � z〉 = 0. Then either:

(a) The projectivisation z of z is a point in the set Λ := Λ(SO+(2, 1)) \ P<, and this
happens if and only if iz � z 6= 0; or else

(b) the projectivisation z of z is in the plane P<, and this happens if and only if iz�z = 0.

One clearly has:

iz � z = i

z3z2 − z2z3

z1z3 − z3z1

z1z2 − z2z1

 = 2

x2y3 − x3y2

x3y1 − x1y3

x2y1 − x1y2

 .

Therefore f(z) = 〈iz � z, iz � z〉 can be expressed as the real-valued polynomial

f(z) = 4
(
(x3y2 − x2y3)2 + (x1y3 − x3y1)2 − (x1y2 − x2y1)2

)
. (4)

Corollary 2.5 The set Λ is the semi-algebraic subset of CP2 consisting of points whose
homogeneous coordinates [x1 + iy1 : x2 + iy2 : x3 + iy3] satisfy:

0 ≤ 〈z, z〉 = x2
1 + y2

1 + x2
2 + y2

2 − x2
3 − y2

3 and
0 = 〈iz � z, iz � z〉 = 4(x3y2 − x2y3)2 + 4(x1y3 − x3y1)2 − 4(x1y2 − x2y1)2.

Proof: It is clear that the points z in Λ are outside the ball H2
C and therefore the

correspond to vectors z with 〈z, z〉 ≥ 0. Furthermore, consider a line L ⊂ Λ and a point
z ∈ (L \ P<). The point z is then the projectivisation of a point z ∈ C2,1 such that z and

z are linearly independent and L is the projectivisation of the plane
←→
z, z. Then Lemma 2.1

implies f(z) = 0.
Conversely, Lemma 2.4 ensures that if z is such that 〈iz� z, iz� z〉 = 0 then either z is

in Λ or else it is in the plane P<. So we must show that the points in P< which are in Λ
are exactly those in the Möbius strip M := P< \H2

R. One side is obvious: If z ∈ H2
R then

z /∈ Λ. On the other hand, by definition of the set Λ, this contains all points in ∂H2
R. Now

consider a point x in the interior of M. This point determines exactly two real projective
lines passing through x and tangent to ∂H2

R, and each of these lines determines a complex
projective line which is in Λ and contains the point x. 2

To finish this section we have:

Proposition 2.6 The function f(z) = 〈iz�z, iz�z〉 is invariant under the standard action
of SO+(2, 1) as a subgroup of SU(2, 1).

Proof: Recall that a basic property of the elements in SO+(2, 1) is that these matrices
satisfy Az = Az. Then one has

f(Az) :=
〈
i(Az) � (Az), i(Az) � (Az)

〉
= 〈i(Az) � (Az), i(Az) � (Az)

〉
=

〈
A(iz � z), A(iz � z)

〉
= 〈iz � z, iz � z〉
= f(z) .
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2

A consequence of this result is that Λ, as defined algebraically in Corollary 2.5 is invari-
ant under the action of SO+(2, 1). This proves the first part of Theorem 1 stated in the
introduction.

2.2 A partition of CP2 determined by the cross-product

Given the function f(z) = 〈iz � z, iz � z〉, we consider the sets:

U+ = {z ∈ C3 : f(z) > 0} = {z ∈ C3 : iz � z ∈ V+} , (5)

U0 = {z ∈ C3 \ {0} : f(z) = 0}
= {z ∈ C3 \ {0} : iz � z ∈ V0} ∪ {z ∈ C3 \ {0} : iz � z = 0} , (6)

U− = {z ∈ C3 : f(z) < 0} = {z ∈ C3 : iz � z ∈ V−}. (7)

By definition of the Hermitian cross-product, given λ ∈ C∗ we have:

f(λz) =
〈
i(λz) � (λz), i(λz) � (λz)

〉
=
〈
|λ|2(iz � z), |λ|2(iz � z)

〉
= |λ|4f(z) .

Hence the partition C2,1 \ {0} = U+ ∪ U0 ∪ U− descends to a partition of CP2, and these
sets are SO+(2, 1)-invariant by Proposition 2.6.

In this section we prove the following theorem, which completes the proof of Theorem 1.

Theorem 2.7 Let U+, U0, U− be as in (5), (6) and (7). The induced partition of CP2 into
the three SO+(2, 1)-invariant sets PU+, PU0, PU− has the following properties:

(i) The set PU0 \H2
R = PU0 \ PV− is the lambda set Λ = Λ(SO+(2, 1)).

(ii) The omega set is Ω = Ω(SO+(2, 1)) = (PU+ ∪H2
R) ∪ PU−.

(iii) Each point in the interior of the Möbius strip M := P< \H2
R is the meeting place of

exactly two of the projective lines in Λ, and the set Λ \ M is a smooth 3-manifold
which fibres over ∂H2

R with fibre two open 2-discs. Hence this set is diffeomorphic to
the disjoint union of two solid tori S1 × R2.

(iv) The omega set Ω is a complete Kobayashi hyperbolic space.

We set Ω+ = PU+ ∪H2
R and Ω− = PU−, so the omega set Ω := CP2 \ Λ is the union

Ω+∪Ω−. We remark that statements (i) and (ii) follow immediately from Corollary 2.5 and
the lemma below.

Lemma 2.8 If z is in U− or in U0 \R2,1, then z is in V+. Or equivalently, if z is in V−∪V0

and z /∈ R2,1, then it is in U+
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Proof: This lemma is basically a restatement of Lemma 2.1 in the case where w = z.
Suppose that z is not in R2,1. Then z and z are linearly independent. Hence iz � z is
non-zero and orthogonal to the plane

←→
z, z spanned by these two vectors.

Observe that if z (and hence z) is in V− or in V0, then
←→
z, z intersects V− and therefore

iz � z is in V+ by Lemma 2.1 (b). By definition, this means that z is in U+.
Next, if z (and hence z) is in V+ then one of three things can happen:

(a) The plane
←→
z, z intersects V−. Then, as above, its orthogonal vector iz� z is in V+ and

so z is in U+.

(b) The plane
←→
z, z is tangent to V0. Then iz � z is in V0 and z is in U0.

(c) The plane
←→
z, z is entirely in V+. Then iz � z is in V− and z is in U−.

Conversely (still assuming z /∈ R2,1) we have three possibilities, again corresponding to the
different parts of Lemma 2.1:

(a) If z is in U− then iz� z is in V− and the plane
←→
z, z lies entirely outside the light cone.

In particular, z is in V+.

(b) If z is in U0 then iz � z is in V0, the plane
←→
z, z is tangent to the light cone and the

tangency lies in P<. So z is not the point of tangency, hence z is in V+.

(c) If z is in U+ then iz� z is in V+ and the plane
←→
z, z intersects V−, V0 and V+. It is not

clear which of these contain z.

Thus, the only way that z ∈ C2,1 \ R2,1 can be in V− ∪ V0 is for it to be in U+. 2

Let us prove statement (iii) in Theorem 2.7. Every complex projective line L in Λ meets
the Lagrangian plane PR ∼= RP2 in a real projective line ` which necessarily is contained
in M and is tangent to ∂H2

R. Recall that every two complex projective lines in CP2 meet
in exactly one point, and every two real projective lines in RP2 meet in exactly one point.
Therefore if we are given two lines L1 and L2 in Λ, then their intersection is the meeting
point of the corresponding real projective lines `1 and `2, which a point in M. Then the
claim that each interior point in M is the meeting place of exactly two lines in Λ follows
from the fact that given the circle ∂H2

R in RP2 and a point x in the interior ofM, there are
exactly two projective lines passing through x and which are tangent to ∂H2

R.
As remarked above, every complex projective line L in Λ meets the Lagrangian plane

PR ∼= RP2 in a real projective line ` which necessarily is contained in M, and the meeting
point of any two of such lines is a point in M. Hence every point in Λ \M is contained in
a unique line in Λ. This determines in the obvious way a projection

π : Λ \M −→ ∂H2
R ,

and this is a fibre bundle with fibre a complex projective line –that is a 2-sphere– minus
its intersection with M, which is a real projective line, –that is a circle. This proves the
statement in Theorem 2.7 (iii).
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It remains to prove statement (iv) to complete the proof of Theorem 2.7. Recall that
Kobayashi hyperbolic means that the Kobayashi pseudo metric is an actual metric. Using
[8] and [1, Theorem 1.3], a subset of CP2 that misses more than 3 lines in general position
is necessarily a complete Kobayashi hyperbolic space. In our case, the omega set is the
complement of the lambda set, Ω := CP2 \ Λ. The previous arguments show that Λ has
infinitely many lines: namely, one for each point in the circle ∂H2

R. Furthermore, through
each point in the Möbius strip M one has exactly two such lines. Thence Λ has infinitely
many lines in general position and the result follows.

Notice that this contrasts with the PU(1, 1) case where, by Proposition 1.9, all the lines
in the corresponding set Λ(PU(1, 1)) pass through the focal point of the complex geodesic
which is PU(1, 1)-invariant.

3 The fibre bundle Ω→ H2
R

3.1 The cross-product and the fibre bundle

Consider the sets U+, U−, U0 and their projectivisations PU+, PU−, PU0 as in Theorem
2.7. We know, Lemma 2.8, that U+ contains the space of negative vectors V− in C2,1 \R2,1.
Their projectivisation is contained in H2

C \H2
R. Goldman in Section 3.3.6 (page 107) of [6]

studies the orthogonal projection ΠR : Hn
C−→Hn

R. He shows that ΠR assigns to each z ∈ Hn
C

the midpoint m(z) of the real geodesic segment joining z and z. For this (restricting the
discussion to the case n = 2) he introduces a function η by choosing, for each z ∈ C2,1, a
number η(z) so that

η2(z) = −〈z, z〉 = z2
3 − z2

1 − z2
2 .

Then, for negative vectors z the orthogonal projection ΠR carries the point z = P(z) into
the projectivisation m(z) of the vector defined by:

m(z) := z η(z) + z η(z) .

Note that taking a different square root of η2(z) changes m(z) by a sign. Hence m(z) =
P(m(z)) is not affected by this choice.

Following this construction we may now define a function Π̃ : U+ ∪ U− → C2,1 by:

Π̃(z) =

{
z η(z) + z η(z) if z ∈ U+, that is f(z) > 0, where η2(z) = −〈z, z〉 ,
iz � z if z ∈ U−, that is f(z) < 0.

By construction, including use of (3), the image of Π̃ is contained in R2,1 ⊂ C2,1, the
Lagrangian subspace comprising points with real coordinates.

Lemma 3.1 The projection Π̃ : U+∪U− −→ R2,1 is SO+(2, 1)-equivariant: If A ∈ SO+(2, 1)

then Π̃(Az) = A Π̃(z).
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Proof: We consider separately the two cases U±. Given z ∈ U− we have:

Π̃(Az) = i(Az) � (Az) = i(Az) � (Az) = A(iz � z) = A Π̃(z) .

So Π̃ is equivariant in this case.
Now suppose that z ∈ U+. First, note that every A ∈ SO+(2, 1) preserves the (2, 1)-

Hermitian form and satisfies Az = Az for all z, so we have:

η2(Az) = −〈Az, Az〉 = −〈Az, Az〉 = −〈z, z〉 = η2(z) .

Hence η is SO+(2, 1)-invariant. In particular, η(Az) = η(z). Therefore, we have:

Π̃(Az) = Az η(Az) + Az η(Az) = Az η(z) + Az η(z) = A(zη(z) + z η(z)) = A Π̃(z).

Hence Π̃ is equivariant in this case as well. 2

Lemma 3.2 For each µ ∈ C \ {0} one has Π̃(µz) = |µ|2Π̃(z).

Proof: If z ∈ U− then by definition we have:

Π̃(µ z) = i(µ z) � (µ z) = µµ(iz � z̄) = |µ|2(iz � z̄) = |µ|2Π̃(z),

as stated. Now we consider points in U+. Observe first that we have:

η2(µz) = −〈µz, µz̄〉 = −〈µz, µ z̄〉 = −µ2〈z, z̄〉 = µ2η2(z).

Hence for all z ∈ U+ we have:

Π̃(µ z) = µ z η(µz) + (µ z) η(µz) = µ zµ η(z) + µ zµ η(z) = |µ|2Π̃(z).

2

An immediate consequence of Lemma 3.2 is that the map Π̃ determines a well-defined
projection map Π : PU+ ∪ PU− −→ P< ⊂ CP2 by

Π(z) = P(Π̃(z)).

We can extend this map continuously across H2
R by requiring that

Π(z) = z, when z ∈ H2
R.

This is consistent with the definition of Π̃ on U+: If z has real entries and lies in V− then,
using z = z, we have

η2(z) =
∣∣〈z, z〉∣∣ ,

and so η(z) = η(z). Hence zη(z)+zη(z) = 2η(z) z, and so P
(
(zη(z)+zη(z)

)
= z. Moreover,

using Lemma 3.1, the map Π : (PU+ ∪H2
R) ∪ PU− −→ P< is SO+(2, 1)-equivariant. The

next lemma shows that the image of Π is contained in the real hyperbolic disc H2
R ⊂ P<.
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Lemma 3.3 The image of Π̃ is in V− ∩ R2,1. Hence the image of Π is in H2
R.

Proof: We saw by construction that Π̃(z) is invariant under complex conjugation and

so the image of Π̃ is in R2,1 ⊂ C2,1. So it suffices to show Π̃(z) ∈ V−.

The proof that the image of Π̃ is in V− is again is by cases. If z ∈ U− then, Π̃(z) = iz�z,

by definition of Π̃, and iz � z ∈ V− by the definition of U−. This proves the result in the
first case.

Now suppose z ∈ U+. By definition, this means that iz � z ∈ V+. In this case identity
(2.16) in [6] implies:

0 < 〈iz � z, iz � z〉
= 〈z̄, z〉〈z, z〉 − 〈z, z〉〈z̄, z〉
= (−η2(z))(−η2(z))− 〈z, z〉2

= |η(z)|4 − 〈z, z〉2 .

So, if z ∈ U+ then |η(z)|2 > 〈z, z〉. Note that this includes the case where 〈z, z〉 < 0. Since

z ∈ U+, we have Π̃(z) = zη(z) + zη(z). We now show this is in V−.〈
Π̃(z), Π̃(z)

〉
= 〈zη(z) + zη(z), zη(z) + zη(z)〉
= 〈zη(z), zη(z)〉+ 〈zη(z), zη(z)〉+ 〈zη(z), zη(z)〉+ 〈z̄η(z), zη(z)〉
= |η(z)|2〈z, z〉+ η2(z)〈z, z〉+ η2(z)〈z̄, z〉+ |η(z)|2〈z̄, z〉
= |η(z)|2〈z, z〉 − η2(z)η2(z)− η2(z)η2(z) + |η(z)|2〈z̄, z〉
= 2|η(z)|2

(
〈z, z〉 − |η(z)|2

)
< 0 .

Hence Π̃(z) ∈ V− both when z ∈ U− and when z ∈ U+. Putting this together we also see

that Π(z) = P
(
Π̃(z)

)
∈ P(V− ∩ R2,1) = H2

R. 2

The proof of this result also yields the following corollary, which means that we can
extend the definition of Π(z) continuously to all z ∈ P(U0 \ R2,1). In fact, we can extend it
continuously to CP2 \M◦, i.e., all points of CP2 not in the interior of the Möbius stripM.

Corollary 3.4 Let z be a vector in V+ for which z and z are linearly independent and
iz � z ∈ V0. Then zη(z) + zη(z) is in the subspace spanned by iz � z.

Proof: Arguing as in the proof of Lemma 3.3, the fact that iz � z ∈ V0 implies

0 = 〈iz � z, iz � z〉 = |η(z)|4 − 〈z, z〉2 .

Since z ∈ V+, this implies that |η(z)|2 = 〈z, z〉 > 0.

By construction, the point zη(z)+zη(z) is in the complex 2-plane
←→
z, z spanned by z and

z. Again arguing as in Lemma 3.3 we see that

〈zη(z) + zη(z), zη(z) + zη(z)〉 = 2|η(z)|2
(
〈z, z〉 − |η(z)|2

)
= 0.
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Hence we see that zη(z) + zη(z) ∈ ←→z, z ∩ V0. From Lemma 2.1 (c) we know this subspace is
spanned by iz � z as required. 2

Furthermore, the above results enable us to show that U− has two components. If
z ∈ U− then Π̃(z) = iz � z is in V− ∩ R2,1, the interior of the real light cone, that is, it is a
timelike vector in Minkowski space. The interior of the real light cone has two components,
corresponding to future pointing vectors and past pointing vectors. These two components
are distinguished by the sign of the third entry (which is necessarily non-zero). Therefore,
we make the following definition:

For z ∈ U− we define α(z) to be the bottom entry in the vector Π̃(z) = iz�z ∈ V−∩R2,1.
That is

α(z) =
(
iz � z)3 ∈ R \ {0}. (8)

Hence α(z) > 0 (respectively < 0) if and only if iz � z is future pointing (respectively past
pointing).

Lemma 3.5 The set U− has two components characterised by the sign of α:

U1
− =

{
z ∈ U− : α(z) > 0

}
, U2

− =
{

z ∈ U− : α(z) < 0
}
.

Moreover, any A ∈ SO+(2, 1) preserves these components, and for any µ ∈ C \ {0} and
z ∈ U−, the vector µz is in the same component as z.

Proof: Using (8) we see that α is a continuous function of z. Since it never takes the
value 0, it distinguishes two components.

Using Lemma 3.1, α(Az) is the bottom entry in the vector Aiz�z. Then the well known
fact that the component SO+(2, 1) of SO(2, 1) is characterised by sending future pointing
vectors to future pointing vectors means that α(Az) > 0 (respectively < 0) if and only if
α(z) > (respectively < 0). Therefore A maps U1

− to itself and maps U2
− to itself.

From Lemma 3.2, for any µ ∈ C \ {0}, we have α(µz) = |µ|2 α(z). Thus α(µz) > 0
(respectively < 0) if and only if α(z) > 0 (respectively < 0). 2

Recall that Ω+ = PU+∪H2
R and Ω− = PU−, so the omega set Ω := CP2 \Λ is the union

Ω+ ∪ Ω−. Moreover, from Lemma 3.5 the components U1
− and U2

− of U− are projectively
invariant and so we define Ω1

− = PU1
− and Ω2

− = PU2
−. That is

Ω+ =
{
z ∈ CP2 : iz � z ∈ V+ or z ∈ V− for any z with P(z) = z

}
, (9)

Ω1
− =

{
z ∈ CP2 : iz � z ∈ V− and α(z) > 0 for any z with P(z) = z

}
, (10)

Ω2
− =

{
z ∈ CP2 : iz � z ∈ V− and α(z) < 0 for any z with P(z) = z

}
. (11)

In the next two sections we will give a precise description of Ω+, Ω1
− and Ω2

−. We will show
they are all connected, and hence Ω does have exactly three components.

Summarising the previous discussion we have:
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Theorem 3.6 The projection Π : Ω→ H2
R is an SO+(2, 1)-equivariant smooth fibre bundle.

The fact that this actually is a fibre bundle follows immediately from the fact the pro-
jection is equivariant, which implies that each fibre has a product neighbourhood. This is
the fibre bundle in Theorem 3.

3.2 The fibre over the origin

In this section we consider the pre-image under Π of the point o = [0 : 0 : 1] ∈ CP2, which
corresponds to the origin in the Klein-Beltrami disc embedded in the ball H2

C, where Π is
the projection map in Theorem 3.6.

Since SO+(2, 1) acts transitively on H2
R and the map Π is equivariant, to determine the

fibre of Π over an arbitrary point x = [x1 : x2 : x3] ∈ H2
R, we need only to determine

the fibre over the special point o, and then see how this fibre moves under the action of
SO+(2, 1) on points in H2

R. That is what we do in the next section; here we focus on the
fibres over o. We consider the components of the fibre in Ω+ = PU+ ∪H2

R and Ω− = PU−
separately.

Lemma 3.7 Suppose that z = [z1 : z2 : z3] ∈ Ω+ is a point for which Π(z) = o = [0 : 0 : 1].
Then z3 6= 0 and z1/z3, z2/z3 are both purely imaginary. Hence Lo = (Π|Ω+)−1(o), the fibre
over o of the projection Π restricted to Ω+ is the Lagrangian plane

Lo =
{

[iy1 : iy2 : x3] : y1, y2, x3 ∈ R, x3 6= 0
}
.

Its boundary consists of the circle Co comprising all points in CP2 that can be represented
by homogeneous coordinates of the same form but with x3 = 0. That is

Co =
{

[iy1 : iy2 : 0] : (y1, y2) ∈ R2 \ {(0, 0}
}
.

Proof: Since z ∈ Ω+ we have z ∈ U+ or z ∈ H2
R. If Π(z) = o then

Π̃(z) = zη(z) + zη(z) =

z1η + z1η
z2η + z2η
z3η + z3η

 = o =

0
0
1


where η2 = η2(z) = z2

3 − z2
1 − z2

2 . Then

0 = z1η + z1η = z2η + z2η and 1 = z3η + z3η .

These inequalities imply

0 = z1η(z1η + z1η) = z2
1 |η|2 + |z1|2η2, 0 = z2η(z2η + z2η) = z2

2 |η|2 + |z2|2η2.

Hence, if we set η2 = |η|2eiθ then z2
1 = −|z1|2eiθ and z2

2 = −|z2|2eiθ. Therefore

|η|2eiθ = η2 = z2
3 − z2

1 − z2
2 = z2

3 + |z1|2eiθ + |z2|2eiθ.
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Thus, z3
3 = ε|z3|2eiθ where ε = ±1 and |η|2 = ε|z3|2 + |z1|2 + |z2|2. However,

1 = (z3η + z3η)2 = z2
3η

2 + 2|z3|2|η|2 + z2
3η

2 = 2ε|z3|2|η|2 + 2|z3|2|η|2 = 2(ε+ 1)|z3|2|η|2.

As the left hand side is non-zero we must have z3 6= 0 and ε = +1. This means that
z2

3 = |z3|2eiθ and so, z2
1/z

2
3 = −|z1|2/|z3|2 ≤ 0 and z2

2/z
2
3 = −|z2|2/|z3|2 ≤ 0. Hence z1/z3

and z2/z3 are both purely imaginary. 2

This generalises the result of Goldman in [6], used by Parker and Platis in [12], that the
pre-image of the origin in H2

C under orthogonal projection onto the real Lagrangian plane
H2

R is the purely imaginary Lagrangian plane{
[iy1 : iy2 : 1] : y1, y2 ∈ R, y2

1 + y2
2 < 1

}
.

In [6, 12] the extra condition y2
1 + y2

2 < 1 was imposed to ensure that Lo was contained in
H2

C. We drop this condition and use Lo as given by Lemma 3.7.
Note that the closure Lo = Lo ∪ Co of the Lagrangian plane Lo is the fixed point set of

the antiholomorphic involution in C2,1 given by

Ro :

z1

z2

z3

 7−→
−z1

−z2

z3

 . (12)

Now we consider the fibre over o of the bundle Ω−
Π−→ H2

R.

Lemma 3.8 Suppose that z = [z1 : z2 : z3] ∈ Ω− is a point for which Π(z) = o = [0 : 0 : 1].
Then z3 = 0 and =(z1z2) 6= 0. Hence Lo = (Π|Ω−)−1(o), the fibre over o of the projection
Π restricted to Ω− consists of two open hemispheres D1

o, D
2
o contained in the projective line

So =
{

[z1 : z2 : 0] ∈ CP2
}

and defined by =(z1z2) 6= 0. In other words, the components of
the fibre are:

D1
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, =(z1z2) > 0

}
,

D2
o =

{
[z1 : z2 : 0] : z1, z2 ∈ C, =(z1z2) < 0

}
.

The common boundary of D1
o and D2

o is the circle Co from Lemma 3.7 , namely

Co =
{

[z1 : z2 : 0] : (z1, z2) ∈ C2 \ {(0, 0}, =(z1z2) = 0
}
.

Proof: Since z ∈ Ω− we have z ∈ U−. If Π(z) = o then

Π̃(z) = iz � z = i

z3z2 − z2z3

z1z3 − z3z1

z1z2 − z2z1

 =

2=(z3z2)
2=(z1z3)
2=(z1z2)

 = o =

0
0
1

 . (13)
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Moreover α(z) =
(
iz � z

)
3

= 2=(z1z2) so our description of D1
o and D2

o given above is
consistent with Lemma 3.5. In particular, using (10) and (11), we see that D1

o is contained
in Ω1

− and D2
o is contained in Ω2

−.
We claim that any solution to (13) must have z3 = 0. If we were to have z3 6= 0, then

z1z2 = (z1z3)(z3z2)/|z3|2. Since =(z1z3) = =(z3z2) = 0, then we also have =(z1z2) = 0,
which is a contradiction. Putting z3 = 0 gives

〈iz � z, iz � z〉 = −4
(
=(z1z2)

)2
.

Since this should be negative, it is clear that =(z1z2) 6= 0.
The projectivisation of vectors in C2,1 \ {0} with z3 = 0 form the complex projective

line (that is sphere):

So =
{

[z1 : z2 : 0] : (z1, z2) ∈ C2 \ {(0, 0)}
}
.

The condition =(z1z2) 6= 0 divides this sphere into the two hemispheres D1
o and D2

o given
above. These hemispheres are interchanged by the involution R0 given in (12). 2

We remark that Theorem 3 in the introduction is now an immediate consequence of
Theorem 3.6, together with Lemmas 3.7 and 3.8.

3.3 The general fibre

Now we use Lemmas 3.7 and 3.8 to determine the general fibres of the bundle Ω → H2
R.

This yields Theorem 4 in the introduction. For this it is convenient to think of H2
R as being

the unit ball in [x1 : x2 : 1] in RP2. Hence the coordinates (x1 : x2) can be described in
polar coordinates by

(
tanh(t) cos(θ), tanh(t) sin(θ)

)
. Thus in homogeneous coordinates we

have:
x = [x1 : x2 : 1] = [tanh(t) cos(θ) : tanh(t) sin(θ) : 1],

As t and θ vary, we obtain all points in the real hyperbolic plane H2
R embedded in H2

C ⊂ CP2.
The proof of the following lemma is left as an exercise to the reader:

Lemma 3.9 Let x := [tanh(t) cos(θ) : tanh(t) sin(θ) : 1] be an arbitrary point in H2
R. Then

the matrix A defined by:

A :=

cosh(t) cos(θ) − sin(θ) sinh(t) cos(θ)
cosh(t) sin(θ) cos(θ) sinh(t) sin(θ)

sinh(t) 0 cosh(t)


is in SO+(2, 1) and projectively carries o = [0 : 0 : 1] into x.

We may now use this matrix A to translate the fibres over the special point o given by
lemmas (3.7) and (3.8), to the fibres over an arbitrary point in H2

R. In doing so, the matrix
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A will allow us to use a new basis Bx adapted to x. The new basis is

Bx =


 cos(θ)

sin(θ)
tanh(t)

 ,

− sin(θ)
cos(θ)

0

 ,

tanh(t) cos(θ)
tanh(t) sin(θ)

1

 . (14)

We note that the first and last vectors are projective images of the first and last basis vector
under A. In fact we have scaled by 1/ cosh(t) in each case. Since 1/ cosh(t) is a positive
real number, this does not have a significant effect on the fibres.

First consider the fibre in Ω+ over x. Applying the matrix A immediately gives the
following description of the fibre.

Proposition 3.10 Let z ∈ Ω+ be a point for which Π(z) = x, where x ∈ H2
R is the point

x := [tanh(t) cos(θ) : tanh(t) sin(θ) : 1].

Then z is the image under the map A given in Lemma 3.9 of a point in Lo. Hence Lx =
(Π|Ω+)−1(x) is the Lagrangian plane

Lx = P

iy1

 cos(θ)
sin(θ)

tanh(t)

+ iy2

− sin(θ)
cos(θ)

0

+ x3

tanh(t) cos(θ)
tanh(t) sin(θ)

1

 :
y1, y2, x3 ∈ R,

x3 6= 0

 .

The boundary of Lo is the circle

Cx =
{

[iy1 cos(θ)− iy2 sin(θ) : iy1 sin(θ) + iy2 cos(θ) : iy1 tanh(t)] : y1, y2 ∈ R2 \ {(0, 0)}
}
.

We remark that each such plane Lx intersects H2
C in the set of all points in H2

C \ H2
R

which are contained in the totally real Lagrangian plane of points Hermitian orthogonal to
H2

R at x.
We now consider the fibre in Ω− over the point x. Once again, simply applying A gives

the fibre.

Proposition 3.11 Let z ∈ Ω− be a point for which Π(z) = x, where x ∈ H2
R is the point

x = [tanh(t) cos(θ) : tanh(t) sin(θ) : 1].

Then z is the image under the map A given in Lemma 3.9 of a point in D1
o or D2

o. Hence
(Π|Ω−)−1(x) comprises the two discs

D1
x =

{
[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : =(z1z2) > 0

}
,

D2
x =

{
[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : =(z1z2) < 0

}
.

The common boundary of D1
x and D2

x is the circle Cx from Proposition 3.10, namely

Cx =
{

[z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)] : =(z1z2) = 0
}
.
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Consider a vector z that projects to one of D1
x, D

2
x, Cx as in Proposition 3.11, namely

z =

z1 cos(θ)− z2 sin(θ)
z1 sin(θ) + z2 cos(θ)

z1 tanh(t)

 .

Then using (8), we see that α(z) =
(
iz� z)3 = 2=(z1z2). Therefore, using (10) and (11) we

see that D1
x is contained in Ω1

− and D2
x is contained in Ω2

−.
Observe that the construction above shows that Ω+, Ω1

− and Ω2
− are all connected. Thus

Ω indeed does have exactly three components. This completes the proof of Theorem 4 and
hence also of Theorem 2 stated in the introduction.

3.4 Limiting behaviour of the fibres as x tends to ∂H2
R

In this section we investigate the limiting behaviour of the fibres as the base point tends to
the boundary of H2

R. Our goal will be to prove Theorem 5.
As above, we parametrise points x in H2

R via t ∈ R+ and θ ∈ [0, 2, π) as

x =
[
tanh(t) cos(θ) : tanh(t) sin(θ) : 1

]
.

Note that as t tends to infinity then x tends to ∂H2
R. Therefore to describe the behaviour

as points of H2
R tend to ∂H2

R then we should consider a sequence xj parametrised by tj and
θj with the property that there exists θ so that limj→∞ tj = ∞ and limj→∞ θj = θ. The
limiting point will be

ξ =
[
cos(θ) : sin(θ) : 1

]
∈ ∂H2

R.

For simplicity of exposition, it is sufficient to fix θ and simply to let t tend to∞ (so x tends
radially towards ξ). It is straightforward to adapt our arguments to more general ways that
x can tend towards ξ. We use the basis Bx of C2,1 given in (14). Note that as t tends to
infinity then tanh(t) tends to 1. Thus the first and third basis vectors tend to the same
limit.

Let z be a vector in U0 − R2,1 that projects to the fibre Lξ, namely take

z =

z1 cos(θ)− z2 sin(θ)
z1 sin(θ) + z2 cos(θ)

z1

 .

Then it is easy to see that η2(z) = −z2
2 and so we define η(z) = iz2. A short calculation

yields

zη(z) + zη(z) = iz � z = 2=(z1z2)

cos(θ)
sin(θ)

1

 .

Hence the definition of Π̃(z) extends continuously to the same limit, whether we approach
U0 from U+ or U−. Compare this to Corollary 3.4.
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First consider Sx = D1
x ∪D2

x ∪ Cx, which is given by

Sx =
{[
z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)

]
: (z1, z2) ∈ C2 \ {(0, 0)}

}
.

It is clear that as t tends to infinity, then Sx tends to

Lξ =
{[
z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1

]
: (z1, z2) ∈ C2 \ {(0, 0)}

}
as given in Proposition 1.8. Moreover,

Cx =
{[
z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1 tanh(t)

]
∈ Sx : =(z1z2) = 0

}
.

tends to

Cξ =
{[
z1 cos(θ)− z2 sin(θ) : z1 sin(θ) + z2 cos(θ) : z1

]
∈ Lξ : =(z1z2) = 0

}
= Lξ ∩M.

This proves parts (1) and (3) of Theorem 5.
We now consider the limit as t tends to infinity of Lx = Lx ∪ Cx:

Lx = P

y1

 cos(θ)
sin(θ)

tanh(t)

+ y2

− sin(θ)
cos(θ)

0

+−ix3

tanh(t) cos(θ)
tanh(t) sin(θ)

1

 : y1, y2, x3 ∈ R

 .

Note we have multiplied our homogeneous coordinates by −i. First consider the chart Px
where y2 6= 0 on which we select the inhomogeneous coordinates given by y2 = 1. This chart
is a copy of R2:

Px =

y1

 cos(θ)
sin(θ)

tanh(t)

+

− sin(θ)
cos(θ)

0

+−ix3

tanh(t) cos(θ)
tanh(t) sin(θ)

1

 : y1, x3 ∈ R

 .

It is clear that as t tends to∞ this tends to the following copy of R2 in Lξ, which we denote
by Pξ:

Pξ =

(y1 − ix3)

cos(θ)
sin(θ)

1

+

− sin(θ)
cos(θ)

0

 : y1, x3 ∈ R

 .

In order to get the whole of Lx we must add to Px the collection of points where y2 = 0.
This is a circle of directions

Qx =

cos(φ)

 cos(θ)
sin(θ)

tanh(t)

+ i sin(φ)

tanh(t) cos(θ)
tanh(t) sin(θ)

1

 : φ ∈ [0, π)

 ,

and Px ∪Qx is a copy of RP2. As t tends to ∞ we see that Qx tends to

Qξ =

eiφ
cos(θ)

sin(θ)
1

 : φ ∈ [0, π)

 .
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After projectivising, we see that P(Qξ) = ξ, so the whole circle of directions collapses to a
single point, namely ξ itself. Hence Pξ ∪Qξ = Pξ ∪ {ξ} is a sphere. In fact it is Lξ. Putting
this together, we see that Lx tends pointwise to Lξ as claimed. This completes the proof of
Theorem 5.
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