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We study the phenomenon of migration of the small molecular weight component of a binary polymer
mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy
functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction
and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed
for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated
values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike
materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an
important role in industrial formulations, where surface migration often leads to decreased product
functionality.
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Introduction.—When a polymer mixture having mobile
components of different molecular weights and with an
interface that is free to the atmosphere is left to equilibrate,
the small molecular weight component migrates to the
surface [1–3]. Several industrial formulations, e.g., choco-
late [4], food packaging [5], etc., suffer from this ubiquitous
problem. While many experimental [1,2,6] and theoretical
studies [7] of this phenomenon exist, a good quantitative
agreement between theoretical predictions and experiments
is still lacking [1]. Further, experimental strategies to
control the amount of material migrating to the surface
is in a nascent stage of development.
In this Letter we ask how the elasticity of the polymer

matrix influences surface migration of small molecules in
polymer mixtures. We propose a free energy functional that
incorporates elasticity of the polymer mixture explicitly, a
feature that has been ignored in previous surface segrega-
tion studies. Using a Schmidt-Binder mean field theory
(SB) and self-consistent field theory (SCFT) we show that
as the sample rigidity is increased (i) the migrant fraction
decreases, and (ii) a wetting transition can be avoided
(demonstrated by a geometric construction [8,9]). These
results are of paramount importance in industrial product
formulations where surface migration of small molecular
weight component results in decreased functional perfor-
mance of the product.
Surface migration.—For a binary mixture, the compo-

nent with the lower surface energy will migrate to the
interface. A balance between loss of translational entropy
and gain in surface energy dictates the equilibrium
morphology of such systems. This is shown in Fig. 1 with
a high migrant (black) concentration close to the interface
(z ¼ 0) of a mixture of low and high (red) molecular
weight polymers. The migrant concentration decreases

monotonically to the bulk concentration ϕ∞ as z → ∞.
A crucial parameter that dictates the thermodynamics of the
system is χN, where χ is the miscibility parameter and N
the molecular weight of the migrant. As χN increases, a
wetting transition characterized by a macroscopic wetting
layer is observed (Fig. 1, inset) [1].
Surface migration was first observed using x-ray photo-

emission spectroscopy [10] and the resolution of the depth
profile of the migrant concentration was improved signifi-
cantly using neutron reflectivity [11]. Further studies
concentrated on the theoretical aspects of the migration

FIG. 1. Schematic figure showing a mixture of low (black) and
high (red) molecular weight polymers, with the low molecular
weight component migrating to the free interface z ¼ 0. A semi-
infinite geometry is assumed. The volume fraction of the migrant
in bulk and at the surface is denoted by ϕ∞ and ϕ1, respectively.
Inset shows migrant concentration profiles for different values of
χN. For low values of χN a monotonically decreasing concen-
tration profile is observed (dashed line). As χN increases, a
wetting transition characterized by a macroscopically thick
migrant layer (solid line with a break) is observed.
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by Schmidt and Binder [12] and, subsequently, a compari-
son between theory and experiments [13]. The wetting
transition of polymer mixtures at the air-mixture interface
was first demonstrated by Steiner et al. [14]. Experimental
and theoretical developments of this phenomenon have
recently been reviewed by a few authors [2,6].
Flory-Huggins theory.—The thermodynamics of mixing

of two chemically different polymers is well described by
Flory-Huggins (FH) theory [15]. Assuming the same
volume for the two monomers, and using it as a volume
unit, the mixing free energy per unit volume is given by

Ffh½ϕ�
kBT

¼ ð1 − ϕÞ
NB

logð1 − ϕÞ þ ϕ

NA
logðϕÞ þ χϕð1 − ϕÞ;

ð1Þ

where χ is the miscibility parameter, and NA and NB are the
degree of polymerization of A and B polymers, respec-
tively. The volume fractions of the A (ϕA ¼ ϕ) and B
(ϕB ¼ 1 − ϕ) polymers in Eq. (1) thus satisfy the incom-
pressibility constraint ϕA þ ϕB ¼ 1. The phase behavior of
such systems is well known [15]. Below a critical value of
the miscibility parameter χ < χc ¼ 1=ð2NAÞ þ 1=ð2NBÞ þ
1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

NANB
p Þ the equilibrium phase is a homogeneous

mixture of A and B polymers. For χ > χc (e.g., caused
by changing temperature) phase segregation occurs with
the system separating into A and B rich regions. Depending
on the parameters, a first or second order transition might
be observed. This is schematically shown in the inset of
Fig. 2 (solid line).
Schmidt-Binder formalism.—While FH free energy

describes the phase separation process in bulk it cannot
be directly applied to study segregation close to an interface

that is exposed to atmosphere. Cahn’s [8] seminal work
provides a cue in this case. This framework offers a way of
calculating the concentration profile of a fluid near a wall,
given a limiting fluid concentration, using the calculus of
variations. The Flory-Huggins as well as Cahn’s theory have
successfully been combined into a single mean field
description to describe the surface segregation of binary
polymer mixtures by Schmidt and Binder [12] (referred as
SB henceforth). The SB free energy functional for a semi-
infinite system (z > 0) with a surface that is selectively
attractive to componentA having area A at z ¼ 0 is given by

FSB½ϕ�
AkBT

¼
Z

∞

0

dz

�

Ffh½ϕ�
kBT

þkðϕÞ
�

dϕ
dz

�

2

−Δμϕ
�

þFsðϕ1Þ;

ð2Þ

where kðϕÞ ¼ ½a2=36ϕð1 − ϕÞ� is the coefficient associated
with the energetic cost of creating a concentration gradient
(obtained within the random phase approximation
[12,13,16]), and Δμ models the exchange chemical poten-
tial. The SB functional also incorporates the surface free
energy gain of themigrantFsðϕ1Þ expressed as a polynomial
expansion of the migrant volume fraction at the surface,
[ϕ1 ¼ ϕðz ¼ 0Þ] and is given by Fsðϕ1Þ ¼ −ϕ1μ1−
ðg=2Þϕ2

1, where μ1 is the surface chemical potential and
the coefficient g characterizes the change in bulk interactions
due to the surface [12,17]. Within the gamut of square
gradient theory the free energy functional in Eq. (2) can be
minimized δFSB½ϕ�=δϕ ¼ 0, to yield an integral expression
for zðϕÞ, which can be inverted to obtain the concentration
profile of the migrant ϕðzÞ [12]. For small values of χN an
exponentially decaying profile shows reasonable agreement
with experimental data [1].
Elastic Flory-Huggins theory.—We now explore the role

of polymer matrix elasticity in the small molecule migra-
tion process. If one component (B polymer in our case)
forms an elastic network as in cross-linked gels (reticulated
permanent network), then its entropic contribution to the
FH mixing free energy would be negligible in comparison
to that of the migrant. Assuming the Flory-Rehner form of
free energy [18] describing the energy cost of a migrating
oligomer as it pushes its way through the matrix, the Flory
Huggins elastic free energy Ffhe can be written as

Ffhe

kBT
¼ ϕ logðϕÞ

NA
þ χϕð1 − ϕÞ þ Fel

kBT
; ð3Þ

where Fel ¼ ~Bðn=2Þ½λ2 þ ð2=λÞ − 3�, modeling uniaxial
network deformation [15,19,20], with λ representing the
relative chain extension (λ ¼ ð1 − ϕ=1 − ϕ∞Þ), n the
number density of chains in the network (n ¼ 1 − ϕ∞)
[20], and ~B the elastic modulus. The free energy that
describes the small molecule migration through a matrix
where elastic effects have been explicitly incorporated is
therefore given by

FIG. 2. The variation of χc on the elastic modulus ~B of a phase
separating the binary mixture with elastic interactions for differ-
ent values of the bulk migrant volume fraction ϕ∞. Main figure
shows χc increases with ~B (as ∼

ffiffiffiffi

~B
p

) indicating that softer
systems are more susceptible to phase separation and decreases
with ϕ∞ for a fixed ~B. Inset shows phase diagram of polymer
mixtures without elastic interactions (see text).
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Ftot½ϕ�
AkBT

¼
Z

∞

0

dz

�

Ffhe

kBT
þ kðϕÞ

�

dϕ
dz

�

2

− Δμϕ
�

þ Fsðϕ1Þ;

ð4Þ

where Ffhe is the elastic Flory Huggins functional in
Eq. (3) and the gradient, exchange chemical potential,
and surface contributions to the free energy is the same as
the SB free energy functional in Eq. (2).
The role of elasticity in the phase separation of binary

polymer mixtures where both species are cross-linked has
been investigated earlier [21–23]. Such a system shows
microphase separation and is different from the functional
proposed here [Eq. (4)].
Before discussing the surface segregation process, we

consider the bulk thermodynamic behavior of the system
described by Eq. (3). This can be obtained easily by
minimizing the elastic FH free energy with respect to ϕ.
The minimization procedure leads to a relation between ϕ
and χ, which for bulk concentration ϕ∞ corresponds to the
binodal curve χ ¼ ½1 − logðϕ∞Þ − NAΔμ�=½NAð1 − 2ϕ∞Þ�.
It is interesting to note that the χ parameter does not depend
on the elastic modulus ~B. The critical value of χc above
which the mixed phase is unstable, obtained from the
relation ∂3Ffhe=∂ϕ3 ¼ 0, however, increases with increas-

ing ~B. This is shown in Fig. 2 with χc ∼
ffiffiffiffi

~B
p

for different
values of ϕ∞. As shown in Fig. 2 χc decreases with
increasing ϕ∞ for a fixed ~B. This can be understood as
follows. As the volume fraction of the migrant increases,
the available free volume decreases and, hence, entropy
decreases. Since a balance between entropic and enthalpic
contributions dictates the equilibrium, a lower value of
enthalpy (and hence lower χ) is required to bring about the
phase separation. With χc increasing with ~B the single
phase region of a rigid system is stable for larger values of χ
in comparison to polymer mixtures without elastic inter-
actions. The phase behavior of the binary polymer mixture
without matrix elasticity is shown in the inset of Fig. 2.
Surface segregation for elastic FH theory.—The SB

formalism outlined earlier can be used to compute the
concentration profile of the migrant ϕðzÞ close to the
interface for the phenomenological free energy functional
described by Eq. (4). Figure 3 shows migrant concentration
profiles for both systems, a symmetric binary polymer
mixture having a bulk concentration ϕ∞ ¼ 0.05 with and
without elastic interactions. The inset shows ϕðzÞ as a
function of depth z for different values of χ for NA ¼ NB ¼
10 in the absence of elasticity [obtained by minimizing
Eq. (2)]. For smaller values of χ [−0.78 (red dashed line)]
an approximate exponentially decaying profile is observed.
As χ increases, migrant concentration reaching the surface
increases monotonically (χ ¼ 0.320, 0.325) and beyond a
critical value χc ¼ 0.327 a macroscopic wetting layer is
observed. In contrast, when elastic interactions are included
(main panel Fig. 3), the migrant fraction for the same value

of miscibility parameter χ (0.320), obtained by integrating
the area under the curve ϕðzÞ decreases monotonically with
increasing ~B. For lower values of the modulus, ~B ¼ 0.1,
0.108 a shoulder (reminiscent of a rounded wetting
transition) is observed. For higher values of ~B (0.13,
0.3) an exponentially decaying profile is obtained, sug-
gesting elastic interactions severely inhibiting migration.
While physically intuitive and relatively straightforward

to implement, the SB model has some disadvantages. First,
the surface migrant fraction ϕ1 is an additional input and
cannot be calculated from the model. In order to establish
our main result, namely, that elastic interactions inhibit
surface migration as the matrix rigidity is increased, we
employ a self-consistent field theoretic approach where this
limitation does not exist. However, both the SB model and
the SCFT framework suffers from the limitation that the
bulk volume fraction ϕ∞ is held constant, no matter how
much material flows to the surface. Modifications to the SB
and SCFT framework that do not suffer from this drawback
will be reported elsewhere [24].
Self-consistent field theory.—First introduced in the

context of polymers by Edwards [25], self-consistent field
theory (SCFT) has been successfully employed to solve
equilibrium behavior of polymeric systems [26]. We
employ the SCFT formalism developed for end absorbed
polymer brushes in polymer matrices [27,28] and adapt it to
our situation (see Supplemental Material [20]).
The concentration profile of the migrant as a function of

distance from the surface (in units of Rg) obtained from the
SCFT calculation is shown in Fig. 4 for a miscibility
parameter χ ¼ 0.22 and surface energy Fs ¼ −2.0. The
migrant polymer has a Kuhn length a ¼ 1 and a degree of
polymerization NA ¼ 10. As the elastic modulus of the
matrix ~B is increased (from 0.001 to 0.11) the amount of

FIG. 3. Migrant concentration profiles ϕðzÞ for the SB model
including the elasticity obtained by minimizing Eq. (4) for
(χ ¼ 0.320 and NA ¼ 10) and increasing ~B. A wetting transition
is not observed in this model. Inset shows concentration profiles
for the SB model without elasticity for the symmetric case NA ¼
NB ¼ 10 with increasing χ. The black solid line with a break
indicates the formation of a macroscopic wetting layer.
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material migrating to the surface decreases monotonically.
In contrast to the SB model where ϕ1 is an additional input,
[(ϕ1 ¼ 1.0) in Fig.(3)], it can be calculated within the
SCFT framework. Figure 4 shows ϕ1 decreasing mono-
tonically with increasing ~B. The inset in Fig. 4 shows the
variation of the migrant concentration at the surface ϕ1 as a
function of ~B for different values of the surface energy Fs.
The effect of elasticity on the migrant fraction ϕ1 is more
pronounced for low values of ~B, (≈0 − 0.02). As expected,
ϕ1 decreases with increasing surface free energy Fs for a
given value of ~B. For the elastic systems considered
here, a wetting transition is not observed. A direct com-
parison between the parameters in the SB model and a
variant of the SCFT method presented here [29] is currently
underway.
Cahn construction.—A geometric way of demonstrating

the absence of a wetting transition has been proposed by
Cahn [8,9] and applied in the context of binary polymer
mixtures [30]. A calculation of the surface migrant
concentration ϕ1 involves solving the equation

F0
sðϕ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðϕ1ÞFðϕ1Þ
p

; ð5Þ

where kðϕÞ has the same meaning as Eq. (4), and Fðϕ1Þ
refers to the Ffh for the SB model and Ffhe when elastic
interactions are present. A graphical method of solving
Eq. (5) is shown in Fig. 5, plotting the surface F0

sðϕ1Þ (blue
solid line) for μ1 ¼ −0.5 and g ¼ 0.4, and bulk free energy
contributions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðϕ1ÞFðϕ1Þ
p

as a function of ϕ1 for a
system with (red dashed line) and without (green dash
dotted line) elastic interactions. In the absence of elasticity
~B ¼ 0 the curves intersect at three points, demarcating
areas S1 and S2. The area difference is related to the
spreading coefficient S ¼ S1 − S2, such that S1 > S2

indicates the formation of a complete wetting layer. For
a finite value of ~B (0.17 in Fig. 5) the wetting transition is
absent [8,9].
Conclusion.—In conclusion, we have analyzed the role

of matrix elasticity on the surface migration of small
molecules in binary polymer mixtures (with the matrix
being a reticulated gel), proposing a phenomenological free
energy functional and using mean field and self-consistent
field theories. We have shown that increasing the rigidity of
the matrix leads to significant reduction of the migrant
fraction on the surface. Further, by increasing the elastic
modulus of the polymer matrix a wetting transition can be
avoided for systems having miscibility parameters in the
range that would otherwise have led to it. This provides a
novel way of controlling surface migration in complex
industrial formulations such as adhesives in hygiene
products where surface migration leads to decreased
product functionality. To the best of our knowledge, the
only experimental system (despite significant differences)
related to the theory presented here investigates segregation
processes in polystyrene networks [31]. A theoretical
formalism that starts from a microscopic Hamiltonian
incorporates long-ranged elastic interactions in hetero-
geneous matrices and employs field theoretic techniques
to arrive at a coarse-grained free energy functional similar
to the one proposed is beyond the scope of the current work
and will be pursued elsewhere. We hope that our theoretical
work will prompt more theoretical and experimental studies
in this direction.
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FIG. 4. Migrant concentration profiles ϕðzÞ for different elastic
moduli ~B of the polymer matrix. The amount of material flowing
to the surface decreases with increasing ~B. The dependence of
the surface fraction ϕ1 as a function of ~B for different surface free
energy Fs is shown in the inset. As expected, the volume fraction
decreases for system with higher Fs.

FIG. 5. Cahn construction showing first order wetting transition
for the Flory Huggins free energy functional, Ffh [Eq. (1)]. An
intersection between Ffhðϕ1Þ and F0

sðϕ1Þ at three points demar-
cate areas S1 and S2, such that S1 > S2 indicates a first-order
wetting transition. A similar graphical construction for the elastic
Flory-Huggins functional Ffhe [Eq. (3)] with ~B ¼ 0.17 shows
one intersection, indicating the absence of the wetting transition.
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